JP6152434B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP6152434B2
JP6152434B2 JP2016004857A JP2016004857A JP6152434B2 JP 6152434 B2 JP6152434 B2 JP 6152434B2 JP 2016004857 A JP2016004857 A JP 2016004857A JP 2016004857 A JP2016004857 A JP 2016004857A JP 6152434 B2 JP6152434 B2 JP 6152434B2
Authority
JP
Japan
Prior art keywords
film
insulating film
semiconductor device
electrode
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016004857A
Other languages
Japanese (ja)
Other versions
JP2016066820A (en
Inventor
理 小池
理 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2016004857A priority Critical patent/JP6152434B2/en
Publication of JP2016066820A publication Critical patent/JP2016066820A/en
Application granted granted Critical
Publication of JP6152434B2 publication Critical patent/JP6152434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、大規模集積回路などの半導体装置に関し、特に、ウェハレベルCSP(Wafer−level Chip Scale Packaging)を用いて製造された半導体装置に関する。   The present invention relates to a semiconductor device such as a large-scale integrated circuit, and more particularly to a semiconductor device manufactured using a wafer level CSP (Wafer-Level Chip Scale Packaging).

近年、携帯情報端末やデジタルカメラなどの電子機器の小型化に伴い、電子機器に搭載される半導体装置を小型化して回路基板や中間基板といった実装基板に高密度実装することが強く求められており、高密度実装を実現する技術としてウェハレベルCSP(以下、「W−CSP」と呼ぶ。)が知られている。W−CSPは、ウェハから半導体チップを分離することなく、ウェハ状態のままパッケージングを行う技術である。W−CSP構造では、ウェハプロセスにより半導体チップに形成された電極パッドが金属メッキ膜の配線を介して外部接続用の電極端子(はんだボールやはんだコート層など)に接続されている。金属メッキ膜の配線工程は、パッド再配置(Pad Redistribution)あるいは再配線工程と呼ばれる。W−CSP構造では、電極端子のピッチを広げることにより実装基板の配線密度を下げることができ、また、パッケージサイズを半導体チップのサイズまで小さくすることにより高密度実装を実現することができる。W−CSPに関する先行技術文献としては、たとえば、特開2008−021849号公報(特許文献1)が挙げられる。   In recent years, with the miniaturization of electronic devices such as portable information terminals and digital cameras, there is a strong demand for miniaturization of semiconductor devices mounted on electronic devices and high-density mounting on mounting substrates such as circuit boards and intermediate boards. A wafer level CSP (hereinafter referred to as “W-CSP”) is known as a technique for realizing high-density mounting. W-CSP is a technology that performs packaging in a wafer state without separating semiconductor chips from the wafer. In the W-CSP structure, an electrode pad formed on a semiconductor chip by a wafer process is connected to an electrode terminal for external connection (such as a solder ball or a solder coat layer) via a metal plating film wiring. The wiring process of the metal plating film is called a pad redistribution or rewiring process. In the W-CSP structure, the wiring density of the mounting substrate can be lowered by increasing the pitch of the electrode terminals, and high-density mounting can be realized by reducing the package size to the size of the semiconductor chip. As a prior art document regarding W-CSP, for example, Japanese Patent Application Laid-Open No. 2008-021849 (Patent Document 1) can be cited.

特開2008−021849号公報JP 2008-021849 A

W−CSPによる製造工程では、再配線工程の前に、プローブ針(探針)を用いたウェハ検査を行うことがある。具体的には、ウェハプロセスの後、半導体チップの電極パッドの露出面にプローブ針の先端部分を当てて当該半導体チップの電気的特性を測定することにより半導体チップの良否判定が行われる。しかしながら、電極パッドにプローブ針を当てることで電極パッド上に残渣物(たとえば、電極パッドの削り滓)が残り、この残渣物が、再配線工程で形成される層間絶縁膜にクラックを発生させるという問題がある。層間絶縁膜にクラックが発生すると、電気的短絡などの不具合が生じるおそれがある。   In a manufacturing process using W-CSP, a wafer inspection using a probe needle (probe) may be performed before the rewiring process. Specifically, after the wafer process, the quality of the semiconductor chip is determined by applying the tip of the probe needle to the exposed surface of the electrode pad of the semiconductor chip and measuring the electrical characteristics of the semiconductor chip. However, when a probe needle is applied to the electrode pad, a residue (for example, electrode pad shavings) remains on the electrode pad, and this residue causes a crack in the interlayer insulating film formed in the rewiring process. There's a problem. If a crack occurs in the interlayer insulating film, there is a risk that problems such as an electrical short circuit may occur.

上記に鑑みて本発明の目的は、プローブ針を用いたウェハ検査が行われた場合でも、良好な電気的特性を有する半導体装置を提供することである。   In view of the above, an object of the present invention is to provide a semiconductor device having good electrical characteristics even when a wafer inspection using a probe needle is performed.

本発明による半導体装置は、半導体基板と、前記半導体基板の第1主面上に形成された半導体素子と、前記第1主面を被覆する第1の絶縁膜と、前記半導体素子に電気的に接続されると共に前記第1の絶縁膜上に形成され且つ表面に第1領域と前記第1領域の周囲を囲う第2領域とを備えた電極と、前記第1の絶縁膜と前記電極とを被覆すると共に、前記電極の前記第1領域と前記第2領域とを露出させる開口部を有する第2の絶縁膜と、前記電極の上面に対するプローブ針の当接により前記電極より生じ、前記電極の前記上面上及び前記第2の絶縁膜上の少なくとも一方に残留する残渣物と、前記電極の直上に形成され前記電極の前記第1領域に電気的に接続されると共に、前記開口部に対応する頂面が導電体に接続された導電性ポストと、前記導電性ポストの側面と前記第2の絶縁膜と前記電極の前記第2領域とを被覆する第3の絶縁膜と、を備え、前記残渣物は、前記導電性ポスト及び前記第3の絶縁膜の少なくとも一方に埋め込まれ、前記電極の前記第2領域と前記第2領域に対応する前記導電体との距離が、前記電極の前記第1領域と前記第1領域に対応する前記導電体との距離より長いことを特徴とする。 A semiconductor device according to the present invention includes a semiconductor substrate, a semiconductor element formed on the first main surface of the semiconductor substrate, a first insulating film that covers the first main surface, and an electrical connection to the semiconductor element. An electrode which is connected and is formed on the first insulating film and has a first region on the surface and a second region surrounding the first region; and the first insulating film and the electrode And a second insulating film having an opening that covers and exposes the first region and the second region of the electrode, and the probe needle abuts against the upper surface of the electrode. Residue remaining on at least one of the upper surface and the second insulating film is formed directly on the electrode and is electrically connected to the first region of the electrode and corresponds to the opening. A conductive post whose top surface is connected to a conductor; And a third insulating film covering said second region side and the second insulating film and the electrode of the conductive posts, the residue is insulated the conductive posts and the third The distance between the second region of the electrode and the conductor corresponding to the second region embedded in at least one of the films is such that the conductor corresponding to the first region and the first region of the electrode It is characterized by being longer than the distance .

本発明によれば、プローブ針を用いたウェハ検査が行われた場合でも、層間絶縁膜に欠陥が発生することを防止することができるので、良好な電気的特性を有する半導体装置を提供することができる。   According to the present invention, it is possible to prevent a defect from occurring in an interlayer insulating film even when a wafer inspection using a probe needle is performed. Therefore, a semiconductor device having good electrical characteristics is provided. Can do.

本発明に係る実施の形態である半導体装置の一部の断面構造を概略的に示す図である。It is a figure which shows roughly the one part cross-section of the semiconductor device which is embodiment which concerns on this invention. (A)は、ウェハの一例を示す図であり、(B)は、半導体装置の上面を概略的に示す図である。(A) is a figure which shows an example of a wafer, (B) is a figure which shows the upper surface of a semiconductor device roughly. 本実施の形態の半導体装置の製造工程(第1工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (1st process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第2工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (2nd process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第3工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (3rd process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第4工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (4th process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第5工程)を概略的に示す断面図である。It is sectional drawing which shows roughly the manufacturing process (5th process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第6工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (6th process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第7工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (7th process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第8工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (8th process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第9工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (9th process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第10工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (10th process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第11工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (11th process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第12工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (12th process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第13工程)を概略的に示す断面図である。It is sectional drawing which shows roughly the manufacturing process (13th process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第14工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (14th process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第15工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (15th process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第16工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (16th process) of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の製造工程(第17工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (17th process) of the semiconductor device of this Embodiment. 比較例の半導体装置の製造工程(第1工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (1st process) of the semiconductor device of a comparative example. 比較例の半導体装置の製造工程(第2工程)を概略的に示す断面図である。It is sectional drawing which shows roughly the manufacturing process (2nd process) of the semiconductor device of a comparative example. 比較例の半導体装置の製造工程(第3工程)を概略的に示す断面図である。It is sectional drawing which shows roughly the manufacturing process (3rd process) of the semiconductor device of a comparative example. 比較例の半導体装置の製造工程(第4工程)を概略的に示す断面図である。It is sectional drawing which shows schematically the manufacturing process (4th process) of the semiconductor device of a comparative example. 比較例の半導体装置の製造工程(第5工程)を概略的に示す断面図である。It is sectional drawing which shows roughly the manufacturing process (5th process) of the semiconductor device of a comparative example. 比較例の半導体装置の製造工程(第6工程)を概略的に示す断面図である。It is sectional drawing which shows roughly the manufacturing process (6th process) of the semiconductor device of a comparative example. 比較例の半導体装置の製造工程(第7工程)を概略的に示す断面図である。It is sectional drawing which shows roughly the manufacturing process (7th process) of the semiconductor device of a comparative example. ウェハ検査により残渣物が発生した状態を例示する概略断面図である。It is a schematic sectional drawing which illustrates the state where the residue was generated by wafer inspection. 比較例の半導体装置の製造工程で生ずる問題を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the problem which arises in the manufacturing process of the semiconductor device of a comparative example.

以下、本発明に係る実施の形態について図面を参照しつつ説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図1は、本発明に係る実施の形態である半導体装置10の一部の断面構造を概略的に示す図である。図1に示されるように半導体装置10は、半導体素子(たとえば、電界効果トランジスタ、キャパシタまたはインダクタなど)が形成された上部構造を持つ半導体基板11を有している。この半導体基板11は、たとえば半導体ウェハである。半導体基板11としては、たとえば、単結晶半導体、多結晶半導体あるいは化合物半導体からなる構造を含むバルク基板やSOI基板(silicon−on−insulator substrate)を使用することができる。また、半導体基板11は、樹脂基板や金属基板やガラス基板などの下部構造を含むものであってもよい。   FIG. 1 is a diagram schematically showing a partial cross-sectional structure of a semiconductor device 10 according to an embodiment of the present invention. As shown in FIG. 1, a semiconductor device 10 has a semiconductor substrate 11 having an upper structure on which a semiconductor element (for example, a field effect transistor, a capacitor, or an inductor) is formed. The semiconductor substrate 11 is, for example, a semiconductor wafer. As the semiconductor substrate 11, for example, a bulk substrate or a SOI substrate (silicon-on-insulator substrate) including a structure made of a single crystal semiconductor, a polycrystalline semiconductor, or a compound semiconductor can be used. The semiconductor substrate 11 may include a lower structure such as a resin substrate, a metal substrate, or a glass substrate.

半導体基板11上には、下部配線12と、下部配線12を覆うように形成された層間絶縁膜13と、層間絶縁膜13のビア内に形成された層間配線14と、層間絶縁膜13上に形成された下部電極(電極パッド)15と、パッシベーション膜16とが形成されている。下部配線12は、半導体素子と電気的に接続されており、電極15は、層間配線(ビア配線)14を介して下部配線12と電気的に接続されている。本実施の形態では、半導体素子、下部配線12、層間絶縁膜13、層間配線14、電極15及びパッシベーション膜16により、半導体チップ2が構成される。パッシベーション膜16は、電極15の上面の一部を除く領域を被覆して半導体素子を機械的且つ化学的に保護する保護膜である。また下部電極15は、半導体チップ2における最上層配線である。半導体チップ2は既知のウェハプロセスにより形成することができる。   On the semiconductor substrate 11, the lower wiring 12, the interlayer insulating film 13 formed so as to cover the lower wiring 12, the interlayer wiring 14 formed in the via of the interlayer insulating film 13, and the interlayer insulating film 13 A formed lower electrode (electrode pad) 15 and a passivation film 16 are formed. The lower wiring 12 is electrically connected to the semiconductor element, and the electrode 15 is electrically connected to the lower wiring 12 via an interlayer wiring (via wiring) 14. In the present embodiment, the semiconductor chip 2 is configured by the semiconductor element, the lower wiring 12, the interlayer insulating film 13, the interlayer wiring 14, the electrode 15, and the passivation film 16. The passivation film 16 is a protective film that covers a region excluding a part of the upper surface of the electrode 15 and mechanically and chemically protects the semiconductor element. The lower electrode 15 is the uppermost layer wiring in the semiconductor chip 2. The semiconductor chip 2 can be formed by a known wafer process.

半導体装置10は、下部電極15上に形成された下層下地金属膜(UBM膜:Under Bump Metal layer)20と、下層下地金属膜20上に形成された導電性ポスト22と、導電性ポスト22上に開口部を有する層間絶縁膜21と、導電性ポスト22から層間絶縁膜21上の領域まで延在する上層下地金属膜(UBM膜)30と、UBM膜30上に形成された再配線層31と、再配線層31を被覆する層間絶縁膜32と、層間絶縁膜32の開口部に形成された下地金属膜(UBM膜)40と、UBM膜40上にバリアメタル41を介して形成された金属端子42とを有している。図1に示されるようにUBM膜20は、下部電極15の上面に接するように成膜される。導電性ポスト22は、UBM膜20を下地としてこのUBM膜20上に立設されている。導電性ポスト22上には、UBM膜30を下地として再配線層31が形成されている。また、再配線層31は樹脂絶縁膜32により封止されており、この絶縁膜32の開口部にUBM膜40が成膜され、このUBM膜40を下地としてバリアメタル41が形成されている。そして、バリアメタル41上には、外部接続用の金属端子42が形成されている。   The semiconductor device 10 includes a lower base metal film (UBM film: Under Bump Metal layer) 20 formed on the lower electrode 15, a conductive post 22 formed on the lower base metal film 20, and a conductive post 22. An interlayer insulating film 21 having an opening in the upper surface, an upper base metal film (UBM film) 30 extending from the conductive post 22 to a region on the interlayer insulating film 21, and a redistribution layer 31 formed on the UBM film 30 An interlayer insulating film 32 covering the rewiring layer 31, a base metal film (UBM film) 40 formed in the opening of the interlayer insulating film 32, and a barrier metal 41 on the UBM film 40. And a metal terminal 42. As shown in FIG. 1, the UBM film 20 is formed so as to be in contact with the upper surface of the lower electrode 15. The conductive post 22 is erected on the UBM film 20 with the UBM film 20 as a base. A rewiring layer 31 is formed on the conductive post 22 with the UBM film 30 as a base. The rewiring layer 31 is sealed with a resin insulating film 32, and an UBM film 40 is formed in an opening of the insulating film 32, and a barrier metal 41 is formed with the UBM film 40 as a base. On the barrier metal 41, a metal terminal 42 for external connection is formed.

図2(A)は、表面に多数の半導体装置(W−CSP構造)10,…,10を有するウェハ1の一例を示す図であり、図2(B)は、半導体装置10の上面を概略的に示す図である。半導体装置10,…,10はダイシングにより個片化(ウェハ1から分離)される。図2(B)に示されるように、各半導体装置10の表面には、実装基板に接続される金属端子42,…,42が所定のピッチで配列されている。図2(B)のパッケージ構造は、金属端子42,…,42が各半導体装置10の表面の周辺部に形成されたものであるが、これに限らず、表面全体に亘って金属端子42,…,42が形成されたパッケージ構造を作製することもできる。   2A is a diagram illustrating an example of a wafer 1 having a large number of semiconductor devices (W-CSP structures) 10,..., 10 on the surface, and FIG. FIG. The semiconductor devices 10,..., 10 are separated into pieces (separated from the wafer 1) by dicing. As shown in FIG. 2B, metal terminals 42,..., 42 connected to the mounting substrate are arranged on the surface of each semiconductor device 10 at a predetermined pitch. In the package structure of FIG. 2B, the metal terminals 42,..., 42 are formed in the peripheral portion of the surface of each semiconductor device 10, but the present invention is not limited to this, and the metal terminals 42,. .., 42 can be produced.

上記構造を有する半導体装置10の製造方法を以下に説明する。図3〜図19は、本実施の形態の半導体装置10の製造工程を概略的に示す断面図である。   A method for manufacturing the semiconductor device 10 having the above structure will be described below. 3 to 19 are cross-sectional views schematically showing manufacturing steps of the semiconductor device 10 of the present embodiment.

先ず、ウェハプロセスにより半導体基板11の上部に半導体チップ2を形成する(図3)。具体的には、半導体基板11上に電界効果トランジスタなどの半導体素子(図示せず)を形成した後、この半導体素子と電気的に接続される下部配線12のパターンを形成する。その後、たとえばCVD法(chemical vapor deposition method)により、下部配線12上に酸化シリコンなどの絶縁材料を堆積して絶縁膜を形成する。次に、フォトリソグラフィ工程を用いて、この絶縁膜に下部配線12の上面に達するコンタクトホールを形成し、たとえばCVD法により、このコンタクトホールに導電性材料を埋め込む。この導電性材料が埋め込まれた絶縁膜の上面を平坦化することで層間絶縁膜13及び層間配線14が形成される。次に、たとえばスパッタリング法やCVD法により、層間絶縁膜13上にアルミニウムなどの導電層を成膜し、この導電層をパターニングすることにより、層間配線14を介して下部配線12と電気的に接続される下部電極15を形成することができる。さらに下部電極15及び層間絶縁膜13の上にポリイミド樹脂などの絶縁膜を形成し、フォトリソグラフィ工程を用いてこの絶縁膜をパターニングすることで、下部電極15の上面の一部を露出させる開口部16nを持つパッシベーション膜16が形成される。   First, the semiconductor chip 2 is formed on the semiconductor substrate 11 by a wafer process (FIG. 3). Specifically, after forming a semiconductor element (not shown) such as a field effect transistor on the semiconductor substrate 11, a pattern of the lower wiring 12 electrically connected to the semiconductor element is formed. Thereafter, an insulating material such as silicon oxide is deposited on the lower wiring 12 by, for example, a CVD method (chemical vapor deposition method) to form an insulating film. Next, a contact hole reaching the upper surface of the lower wiring 12 is formed in this insulating film by using a photolithography process, and a conductive material is buried in this contact hole by, for example, a CVD method. By planarizing the upper surface of the insulating film embedded with the conductive material, the interlayer insulating film 13 and the interlayer wiring 14 are formed. Next, a conductive layer such as aluminum is formed on the interlayer insulating film 13 by, for example, a sputtering method or a CVD method, and this conductive layer is patterned to be electrically connected to the lower wiring 12 via the interlayer wiring 14. The lower electrode 15 to be formed can be formed. Further, an insulating film such as a polyimide resin is formed on the lower electrode 15 and the interlayer insulating film 13, and this insulating film is patterned using a photolithography process, thereby exposing an upper surface portion of the lower electrode 15. A passivation film 16 having 16n is formed.

以上のウェハプロセスの後は、プローブ針(探針)を用いたウェハ検査が行われる。具体的には、下部電極15の露出面にプローブ針(図示せず)の先端部分を当てて半導体チップ2の電気的特性を測定することにより半導体チップ2の良否判定が行われる。このとき、プローブ針の先端部分が下部電極15を削ることによって下部電極15の表面に接触痕(プローブ痕)が形成され、その削り滓が下部電極15の表面付近に残渣物として残留することがある。あるいは、プローブ針の先端部分とともに残渣物が外部から導入されて下部電極15上に残留することもある。   After the above wafer process, wafer inspection using a probe needle (probe) is performed. Specifically, the quality of the semiconductor chip 2 is determined by measuring the electrical characteristics of the semiconductor chip 2 by placing the tip of a probe needle (not shown) on the exposed surface of the lower electrode 15. At this time, the tip portion of the probe needle scrapes the lower electrode 15 to form a contact mark (probe mark) on the surface of the lower electrode 15, and the shaving residue may remain as a residue near the surface of the lower electrode 15. is there. Alternatively, a residue may be introduced from the outside together with the tip portion of the probe needle and remain on the lower electrode 15.

ウェハ検査が実行された後、たとえばスパッタリング法や真空蒸着法により、ウェハの全面に亘って下部電極15の表面及びパッシベーション膜16の表面に導電性材料を堆積し、たとえば0.5μm〜1μm程度の厚みを持つUBM膜20Bを形成する(図4)。UBM膜20Bは、たとえば、チタン(Ti)、クロム(Cr)、タングステン(W)、金(Au)及び銅(Cu)などの金属材料の中から選択された1種または2種以上の金属膜あるいは合金膜を含むものである。また、UBM膜20Bとしては、Cu/Ti膜といった積層膜を使用することが好ましいが、単層膜でもよい。   After the wafer inspection is performed, a conductive material is deposited on the surface of the lower electrode 15 and the surface of the passivation film 16 over the entire surface of the wafer, for example, by sputtering or vacuum evaporation, for example, about 0.5 μm to 1 μm. A UBM film 20B having a thickness is formed (FIG. 4). The UBM film 20B is, for example, one or more metal films selected from metal materials such as titanium (Ti), chromium (Cr), tungsten (W), gold (Au), and copper (Cu). Or an alloy film is included. The UBM film 20B is preferably a laminated film such as a Cu / Ti film, but may be a single layer film.

次に、下部電極15の直上に開口部50nを有するレジスト膜(第1のレジストパターン)50を形成する(図5)。さらに、この開口部50nにおいて露出するUBM膜20Bを下地(シード層)として、電解メッキ法により、開口部50n内に、レジスト膜50よりも薄い厚み(たとえば3μm〜10μm程度の厚み)を持つ導電性ポスト22を形成する(図6)。導電性ポスト22は、たとえば銅メッキ膜により形成すればよい。その後、灰化処理によりレジスト膜50を除去し、さらに、導電性ポスト22をエッチング阻止膜として、ウェットエッチングによりUBM膜20Bの露出部分を除去する(図7)。この結果、下部電極15上に導電性ポスト22が立設され、この導電性ポスト22の底面と下部電極15の上面との間にのみ介在するUBM膜20が形成される。   Next, a resist film (first resist pattern) 50 having an opening 50n is formed immediately above the lower electrode 15 (FIG. 5). Further, with the UBM film 20B exposed in the opening 50n as a base (seed layer), a conductive film having a thickness (for example, about 3 μm to 10 μm) thinner than the resist film 50 in the opening 50n by electrolytic plating. A sex post 22 is formed (FIG. 6). The conductive post 22 may be formed of a copper plating film, for example. Thereafter, the resist film 50 is removed by ashing, and the exposed portion of the UBM film 20B is removed by wet etching using the conductive post 22 as an etching stopper film (FIG. 7). As a result, the conductive post 22 is erected on the lower electrode 15, and the UBM film 20 interposed only between the bottom surface of the conductive post 22 and the upper surface of the lower electrode 15 is formed.

次に、たとえばスピンコート法や印刷法によりウェハの全面に亘って感光性樹脂材料を塗布することで、導電性ポスト22及びパッシベーション膜16を被覆する塗布膜21Bが形成される(図8)。感光性樹脂材料としては、たとえば、比較的硬化温度が低いポリイミド系材料やPBO(ポリベンゾオキサゾール)系材料の前駆体を用いることができる。続けて、塗布膜21Bを露光してパターニングし、パターニングされた絶縁膜に不活性ガスの雰囲気下で熱処理(キュア)を施すことで塗布膜を固化させる。その後、ディスカム処理を実行してレジストの残滓(スカム)を除去する(図9)。この結果、導電性ポスト22の上面の一部を露出させる開口部21nを持つ層間絶縁膜21が形成される。この層間絶縁膜21は、導電性ポスト22の上面端部を被覆することとなる。層間絶縁膜21の厚みは、UBM膜20と導電性ポスト22との合計の厚みより大きい値(たとえば、5μm〜15μm程度)にすればよい。   Next, a coating film 21B that covers the conductive posts 22 and the passivation film 16 is formed by applying a photosensitive resin material over the entire surface of the wafer, for example, by spin coating or printing (FIG. 8). As the photosensitive resin material, for example, a polyimide material having a relatively low curing temperature or a precursor of a PBO (polybenzoxazole) material can be used. Subsequently, the coating film 21B is exposed and patterned, and the coating film is solidified by applying heat treatment (curing) to the patterned insulating film in an inert gas atmosphere. Thereafter, a resist process is executed to remove resist residues (scum) (FIG. 9). As a result, an interlayer insulating film 21 having an opening 21n exposing a part of the upper surface of the conductive post 22 is formed. The interlayer insulating film 21 covers the upper end portion of the conductive post 22. The thickness of the interlayer insulating film 21 may be set to a value larger than the total thickness of the UBM film 20 and the conductive post 22 (for example, about 5 μm to 15 μm).

その後、たとえばスパッタリング法や真空蒸着法により、導電性ポスト22及び層間絶縁膜21の表面に導電性材料を堆積して、たとえば0.5μm〜1μm程度の厚みを持つUBM膜30Bを形成する(図10)。UBM膜30Bは、たとえば、チタン(Ti)、クロム(Cr)、タングステン(W)、金(Au)及び銅(Cu)などの金属材料の中から選択された1種または2種以上の金属膜あるいは合金膜を含むものであればよい。また、UBM膜30Bは、単層膜、積層膜のいずれでもよい。   Thereafter, a conductive material is deposited on the surfaces of the conductive posts 22 and the interlayer insulating film 21 by, for example, a sputtering method or a vacuum evaporation method to form a UBM film 30B having a thickness of about 0.5 μm to 1 μm, for example (FIG. 10). The UBM film 30B is, for example, one or more metal films selected from metal materials such as titanium (Ti), chromium (Cr), tungsten (W), gold (Au), and copper (Cu). Or what is necessary is just to include an alloy film. Further, the UBM film 30B may be either a single layer film or a laminated film.

さらに、導電性ポスト22の直上に開口部51nを有するレジスト膜(第2のレジストパターン)51を形成する(図11)。さらに、この開口部51nにおいて露出するUBM膜30Bを下地(シード層)として、たとえば電解メッキ法により、再配線層31を形成する(図12)。再配線層31は、たとえば銅メッキ膜により形成すればよい。その後、灰化処理によりレジスト膜51を除去し、さらに、再配線層31をエッチング阻止膜として用いるウェットエッチングによりUBM膜30Bの露出部分を除去する(図13)。この結果、UBM膜30及び再配線層31のパターンが形成される。   Further, a resist film (second resist pattern) 51 having an opening 51n is formed immediately above the conductive post 22 (FIG. 11). Further, using the UBM film 30B exposed in the opening 51n as a base (seed layer), the rewiring layer 31 is formed by, for example, electrolytic plating (FIG. 12). The rewiring layer 31 may be formed of, for example, a copper plating film. Thereafter, the resist film 51 is removed by ashing, and the exposed portion of the UBM film 30B is removed by wet etching using the rewiring layer 31 as an etching stop film (FIG. 13). As a result, patterns of the UBM film 30 and the rewiring layer 31 are formed.

次に、たとえばスピンコート法や印刷法によりウェハの全面に亘って樹脂材料を塗布することで、層間絶縁膜21及び再配線層31を被覆し封止する絶縁膜32Bが形成される(図14)。続けて、絶縁膜32Bをパターニングすることで、再配線層31の上面の一部を露出させる開口部32nを持つ上層絶縁膜32が形成される(図15)。   Next, a resin material is applied over the entire surface of the wafer by, for example, spin coating or printing, thereby forming an insulating film 32B that covers and seals the interlayer insulating film 21 and the rewiring layer 31 (FIG. 14). ). Subsequently, by patterning the insulating film 32B, an upper insulating film 32 having an opening 32n exposing a part of the upper surface of the rewiring layer 31 is formed (FIG. 15).

その後、たとえばスパッタリング法や真空蒸着法により、再配線層31及び上層絶縁膜32の表面に導電性材料を堆積して、UBM膜40Bを形成する(図16)。UBM膜40Bは、たとえば、チタン(Ti)、クロム(Cr)、タングステン(W)、金(Au)及び銅(Cu)などの金属材料の中から選択された1種または2種以上の金属膜あるいは合金膜を含むものである。また、UBM膜40Bは、単層膜、積層膜のいずれでもよい。さらに、開口部32nに連通する開口部53nを有するレジスト膜(第3のレジストパターン)53を形成する(図17)。続けて、これら開口部32n,53nにおいて露出するUBM膜40Bを下地(シード層)として、たとえば電解メッキ法によりバリアメタル41を形成し、このバリアメタル41上に金属端子材料42Bを付着させる(図18)。ここで、金属端子材料42Bは、たとえば、半田ボールバンプで構成すればよい。   Thereafter, a conductive material is deposited on the surfaces of the rewiring layer 31 and the upper insulating film 32 by, for example, sputtering or vacuum vapor deposition to form the UBM film 40B (FIG. 16). The UBM film 40B is, for example, one or more metal films selected from metal materials such as titanium (Ti), chromium (Cr), tungsten (W), gold (Au), and copper (Cu). Or an alloy film is included. Further, the UBM film 40B may be either a single layer film or a laminated film. Further, a resist film (third resist pattern) 53 having an opening 53n communicating with the opening 32n is formed (FIG. 17). Subsequently, using the UBM film 40B exposed in the openings 32n and 53n as a base (seed layer), a barrier metal 41 is formed by, for example, an electrolytic plating method, and a metal terminal material 42B is adhered onto the barrier metal 41 (FIG. 18). Here, the metal terminal material 42B may be composed of, for example, solder ball bumps.

その後、灰化処理によりレジスト膜53を除去し、さらに、バリアメタル41と金属端子材料42Bとをエッチング阻止膜として用いるエッチングにより下地金属膜40Bの露出部分を除去する(図19)。この結果、UBM膜40、バリアメタル41及び金属端子材料42Bを有する構造が形成される。そして、リフロー炉を用いて金属端子材料42Bを溶融させることにより、図1に示すように金属端子42を有する半導体装置10が作製される。   Thereafter, the resist film 53 is removed by ashing, and the exposed portion of the base metal film 40B is removed by etching using the barrier metal 41 and the metal terminal material 42B as an etching stopper film (FIG. 19). As a result, a structure having the UBM film 40, the barrier metal 41, and the metal terminal material 42B is formed. And the semiconductor device 10 which has the metal terminal 42 as shown in FIG. 1 is produced by fuse | melting the metal terminal material 42B using a reflow furnace.

上記したように、ウェハプロセス後のウェハ検査でプローブ針を下部電極15に当てたことで下部電極15の上面付近に残渣物が残留することがある。本実施の形態の製造方法では、たとえ残渣物が残留したとしても、この残渣物を、図6及び図7の工程で形成される導電性ポスト22の内部にその表面から露出しない状態で埋め込むか、図8及び図9の工程で形成される層間絶縁膜21の内部にその表面から露出しない状態で埋め込むか、あるいは、導電性ポスト22及び層間絶縁膜21の内部にこれらの表面から露出しない状態で埋め込むことができる。よって、パターニングされた塗布膜に熱処理(キュア)を施して層間絶縁膜21を形成する際、ウェハ検査で生じた残渣物は外部に露出しない状態でこの塗布膜、導電性ポスト22あるいはその両方に埋め込まれているため、塗布膜の樹脂組成物と残渣物との間の熱膨張係数の違いによる熱応力の発生が抑制される。このことが、残渣物に起因する欠陥(クラック)を層間絶縁膜21に生じさせない理由であると考えられる。したがって、本実施の形態の製造方法を使用することにより電気的特性の良好な半導体装置10を製造することができ、歩留まりの低下を抑制することができる。   As described above, residue may remain near the upper surface of the lower electrode 15 by applying the probe needle to the lower electrode 15 in the wafer inspection after the wafer process. In the manufacturing method of the present embodiment, even if a residue remains, the residue is embedded in the conductive post 22 formed in the steps of FIGS. 6 and 7 without being exposed from the surface thereof. 8 or 9, the interlayer insulating film 21 formed in the process shown in FIGS. 8 and 9 is buried without being exposed from the surface thereof, or the conductive post 22 and the interlayer insulating film 21 are not exposed from these surfaces. Can be embedded. Therefore, when the patterned coating film is subjected to heat treatment (curing) to form the interlayer insulating film 21, the residue generated in the wafer inspection is not exposed to the outside on the coating film, the conductive post 22 or both. Since it is embedded, the generation of thermal stress due to the difference in thermal expansion coefficient between the resin composition of the coating film and the residue is suppressed. This is considered to be the reason why defects (cracks) caused by the residue are not generated in the interlayer insulating film 21. Therefore, by using the manufacturing method of the present embodiment, it is possible to manufacture the semiconductor device 10 with good electrical characteristics, and to suppress a decrease in yield.

また、本実施の形態の半導体装置10の製造方法では、図4の工程でパッシベーション膜16と下部電極15とに接するようにUBM膜20Bが成膜されるが、パッシベーション膜16と下部電極15との段差Haは小さい(たとえば、最大1μm程度である)ので、UBM膜20Bは、下部電極15について高いシール性能を発揮することができる。後述するように、従来の製造工程では、パッシベーション膜16上に層間絶縁膜を形成した後に、この層間絶縁膜と下部電極15との段差が大きな領域にUBM膜が成膜される。このため、このUBM膜のシール性能が低く、UBM膜を下地として金属メッキ膜を形成する際に、メッキ液が下部電極15を浸食(エッチング)することがある。本実施の形態では、パッシベーション膜16と下部電極15との段差Haが小さいため、UBM膜20Bを下地として導電性ポスト22を形成する際に、UBM膜20Bは、メッキ液に対する阻止膜として有効に機能し、下部電極15へのエッチングダメージを抑制することができる。   In the method of manufacturing the semiconductor device 10 according to the present embodiment, the UBM film 20B is formed so as to be in contact with the passivation film 16 and the lower electrode 15 in the step of FIG. Therefore, the UBM film 20B can exhibit high sealing performance with respect to the lower electrode 15 because the height difference Ha is small (for example, about 1 μm at the maximum). As will be described later, in the conventional manufacturing process, after an interlayer insulating film is formed on the passivation film 16, an UBM film is formed in a region where the step between the interlayer insulating film and the lower electrode 15 is large. For this reason, the sealing performance of the UBM film is low, and the plating solution may erode (etch) the lower electrode 15 when forming the metal plating film with the UBM film as a base. In the present embodiment, since the step Ha between the passivation film 16 and the lower electrode 15 is small, the UBM film 20B is effective as a blocking film against the plating solution when the conductive post 22 is formed with the UBM film 20B as a base. It functions, and the etching damage to the lower electrode 15 can be suppressed.

さらに、図10の工程では導電性ポスト22上にUBM膜30Bが成膜されるが、導電性ポスト22の高さを調整することで導電性ポスト22と層間絶縁膜21との段差Hbを小さくすることができる。よって、UBM膜30Bを下地として再配線層31を形成するとき(図12)、UBM膜30Bは、メッキ液に対する阻止膜として有効に機能し、導電性ポスト22へのエッチングダメージを抑制することができる。   Further, in the process of FIG. 10, the UBM film 30B is formed on the conductive post 22, but the step Hb between the conductive post 22 and the interlayer insulating film 21 is reduced by adjusting the height of the conductive post 22. can do. Therefore, when the redistribution layer 31 is formed with the UBM film 30B as a base (FIG. 12), the UBM film 30B effectively functions as a blocking film against the plating solution, and suppresses etching damage to the conductive post 22. it can.

次に、本実施の形態に係る製造方法と対比するために比較例の半導体装置の製造方法について説明する。図20〜図26は、比較例の半導体装置の製造工程を概略的に示す断面図である。   Next, for comparison with the manufacturing method according to the present embodiment, a method for manufacturing a semiconductor device of a comparative example will be described. 20 to 26 are cross-sectional views schematically showing manufacturing steps of the semiconductor device of the comparative example.

先ず、本実施の形態の製造方法と同様に、ウェハプロセスにより半導体基板11の上面に半導体チップ2を形成する(図20)。このウェハプロセスの後に、下部電極15の露出面にプローブ針(探針)を当接してウェハ検査を行う。その後、下部電極15上及びパッシベーション膜16上に感光性樹脂材料を塗布して塗布膜を形成し、この塗布膜を露光してパターニングし、パターニングされた塗布膜を熱処理(キュア)により固化させ、ディスカム処理を実行する。この結果、下部電極15上及びパッシベーション膜16上に開口部25nを有する層間絶縁膜25が形成される(図21)。   First, similarly to the manufacturing method of the present embodiment, the semiconductor chip 2 is formed on the upper surface of the semiconductor substrate 11 by a wafer process (FIG. 20). After this wafer process, a wafer inspection is performed by bringing a probe needle (probe) into contact with the exposed surface of the lower electrode 15. Thereafter, a photosensitive resin material is applied onto the lower electrode 15 and the passivation film 16 to form a coating film, the coating film is exposed and patterned, and the patterned coating film is solidified by heat treatment (cure), Execute the discum process. As a result, an interlayer insulating film 25 having an opening 25n is formed on the lower electrode 15 and the passivation film 16 (FIG. 21).

次に、スパッタリング法により、下部電極15及び層間絶縁膜25の表面に導電性材料を堆積してUBM膜45Bを形成する(図22)。その後、開口部60nを有するレジスト膜60を形成し(図23)、この開口部60nにおいて露出するUBM膜45Bを下地(シード層)として電解メッキ法により、再配線層35を形成する(図24)。その後、灰化処理によりレジスト膜50を除去し、さらに、導電性ポスト22をエッチング阻止膜として、エッチングによりUBM膜20Bの露出部分を除去する(図25)。その後は、図26に示されるように、再配線層35上に、層間絶縁膜26、UBM膜46、バリアメタル47及び金属端子48が形成される。   Next, a conductive material is deposited on the surfaces of the lower electrode 15 and the interlayer insulating film 25 by sputtering to form the UBM film 45B (FIG. 22). Thereafter, a resist film 60 having an opening 60n is formed (FIG. 23), and a rewiring layer 35 is formed by electrolytic plating using the UBM film 45B exposed in the opening 60n as a base (seed layer) (FIG. 24). ). Thereafter, the resist film 50 is removed by ashing, and the exposed portion of the UBM film 20B is removed by etching using the conductive post 22 as an etching stopper film (FIG. 25). Thereafter, as shown in FIG. 26, the interlayer insulating film 26, the UBM film 46, the barrier metal 47 and the metal terminal 48 are formed on the rewiring layer 35.

上述したように、ウェハプロセス後のウェハ検査でプローブ針を下部電極15に当てたことで残渣物が生じることがある。比較例の製造方法では、図21の工程において、パターニングされた塗布膜を熱処理により固化させて層間絶縁膜25を形成するが、塗布膜よりも小さな熱膨張係数を有する残渣物がパターニングされた塗布膜に埋め込まれ、且つこの塗布膜の表面から露出していることがある。この状態で、塗布膜に熱処理及びディスカム処理を施すと、塗布膜の樹脂組成物と残渣物との間の熱膨張係数の差に起因して大きな熱応力が発生し、これが層間絶縁膜25に欠陥(クラック)を生じさせるものと考えられる。特に、残渣物が下部電極15の削り滓である場合、残渣物と塗布膜の樹脂組成物との間の熱膨張係数の差は大きく、層間絶縁膜25に欠陥が発生しやすい。図27(A)は、層間絶縁膜25に埋め込まれ且つその表面から露出する残渣物70の一例を示す断面図である。欠陥(クラック)は、残渣物70の埋め込み位置を基点として生じる。この種の欠陥は、電気的短絡を引き起こして半導体装置の電気的特性を劣化させるという問題がある。   As described above, a residue may be generated by applying the probe needle to the lower electrode 15 in the wafer inspection after the wafer process. In the manufacturing method of the comparative example, in the step of FIG. 21, the patterned coating film is solidified by heat treatment to form the interlayer insulating film 25, but a coating having a residue having a smaller thermal expansion coefficient than that of the coating film is patterned. It may be embedded in the film and exposed from the surface of the coating film. In this state, when the coating film is subjected to heat treatment and discum treatment, a large thermal stress is generated due to the difference in thermal expansion coefficient between the resin composition of the coating film and the residue, which is generated in the interlayer insulating film 25. It is considered that a defect (crack) is caused. In particular, when the residue is a shaving of the lower electrode 15, the difference in thermal expansion coefficient between the residue and the resin composition of the coating film is large, and the interlayer insulating film 25 is likely to be defective. FIG. 27A is a cross-sectional view showing an example of a residue 70 embedded in the interlayer insulating film 25 and exposed from the surface thereof. Defects (cracks) occur from the position where the residue 70 is embedded as a base point. This type of defect has the problem of causing an electrical short circuit and degrading the electrical characteristics of the semiconductor device.

これに対し、本実施の形態の製造方法では、ウェハ検査で生じた残渣物を、図6及び図7の工程で形成される導電性ポスト22の内部にその表面から露出しない状態で埋め込むか、図8及び図9の工程で形成される層間絶縁膜21の内部にその表面から露出しない状態で埋め込むか、あるいは、導電性ポスト22及び層間絶縁膜21の内部にこれらの表面から露出しない状態で埋め込むことができる。図27(B)は、導電性ポスト22及び層間絶縁膜25に埋め込まれ且つこれらの表面から露出しない残渣物71の一例を示す断面図である。パターニングされた塗布膜を熱処理により固化させて層間絶縁膜21を形成する際、この塗布膜に残渣物71が埋め込まれていたとしても、残渣物71は外部に露出していないため、塗布膜の樹脂組成物と残渣物71との間の熱応力の発生が抑制される。それ故、層間絶縁膜21に欠陥(クラック)が発生しないようにすることができる。したがって、ウェハ検査で下部電極15の表面付近に残渣物が残留しても、半導体装置の電気的特性が劣化したり、歩留まりが低下したりすることがないようにすることができる。   On the other hand, in the manufacturing method of the present embodiment, the residue generated in the wafer inspection is embedded in the conductive posts 22 formed in the steps of FIGS. 6 and 7 without being exposed from the surface thereof. The interlayer insulating film 21 formed in the process of FIG. 8 and FIG. 9 is embedded in a state where it is not exposed from the surface, or the conductive post 22 and the interlayer insulating film 21 are not exposed from these surfaces. Can be embedded. FIG. 27B is a cross-sectional view showing an example of a residue 71 embedded in the conductive post 22 and the interlayer insulating film 25 and not exposed from the surface. When the patterned coating film is solidified by heat treatment to form the interlayer insulating film 21, even if the residue 71 is embedded in the coating film, the residue 71 is not exposed to the outside. Generation of thermal stress between the resin composition and the residue 71 is suppressed. Therefore, it is possible to prevent a defect (crack) from occurring in the interlayer insulating film 21. Therefore, even if a residue remains near the surface of the lower electrode 15 in the wafer inspection, it is possible to prevent the electrical characteristics of the semiconductor device from being deteriorated and the yield from being lowered.

また、比較例の製造方法では、ウェハプロセスの後、ウェハ上に層間絶縁膜25を形成し、層間絶縁膜25の開口部25nにUBM膜45Bが形成される(図22)。ここで、層間絶縁膜25の膜厚は通常5μm〜10μm程度であるので、層間絶縁膜25と下部電極15との間に大きな段差Hcが生じてしまう。このとき、図28に示すように、開口部25nにおいては、層間絶縁膜25の側壁の底部でUBM膜45Bの膜厚が薄くなり、メッキ液に対するUBM膜45Bのシール性能が低下する。電解メッキに使用されるメッキ液は金属を溶解する特性を持つことが一般的であるから、層間絶縁膜25の側壁の底部を通してメッキ液(エッチャント)Etが下層の領域15eを浸食するという問題がある。   In the manufacturing method of the comparative example, after the wafer process, the interlayer insulating film 25 is formed on the wafer, and the UBM film 45B is formed in the opening 25n of the interlayer insulating film 25 (FIG. 22). Here, since the film thickness of the interlayer insulating film 25 is usually about 5 μm to 10 μm, a large step Hc is generated between the interlayer insulating film 25 and the lower electrode 15. At this time, as shown in FIG. 28, in the opening 25n, the thickness of the UBM film 45B is reduced at the bottom of the side wall of the interlayer insulating film 25, and the sealing performance of the UBM film 45B against the plating solution is deteriorated. Since the plating solution used for electrolytic plating generally has a property of dissolving metal, there is a problem that the plating solution (etchant) Et erodes the lower region 15e through the bottom of the side wall of the interlayer insulating film 25. is there.

これに対し、本実施の形態では、図4に示されるように、パッシベーション膜16と下部電極15との段差Haが小さいので、UBM膜20Bは、メッキ液に対して高いシール性能を発揮することができる。また、図10に示されるように、導電性ポスト22の高さを調整することで導電性ポスト22と層間絶縁膜21との段差Hbを小さくすることができるので、UBM膜30Bは、メッキ液に対して高いシール性能を発揮することができる。   In contrast, in the present embodiment, as shown in FIG. 4, since the step Ha between the passivation film 16 and the lower electrode 15 is small, the UBM film 20B exhibits high sealing performance against the plating solution. Can do. Also, as shown in FIG. 10, the step Hb between the conductive post 22 and the interlayer insulating film 21 can be reduced by adjusting the height of the conductive post 22, so that the UBM film 30B is made of a plating solution. Can exhibit high sealing performance.

1 ウェハ、 2 半導体チップ、 10 半導体装置、 11 半導体基板、 12 下部配線、 13 層間絶縁膜、 14 層間配線(ビア配線)、 15 下部電極、 16 パッシベーション膜、 20,20B 下層下地金属膜(UBM膜)、 21,25,26 層間絶縁膜、 22 導電性ポスト、 30,30B 上層下地金属膜(UBM膜)、 31,35 再配置配線層(再配線層)、 32 上層絶縁膜、 32B 絶縁膜、 40,45,46 下地金属膜(UBM膜)、 41 バリアメタル、 42,48 金属端子、 47 バリアメタル、 50,51,53 レジスト膜。   DESCRIPTION OF SYMBOLS 1 Wafer, 2 Semiconductor chip, 10 Semiconductor device, 11 Semiconductor substrate, 12 Lower wiring, 13 Interlayer insulation film, 14 Interlayer wiring (via wiring), 15 Lower electrode, 16 Passivation film, 20, 20B Underlayer metal film (UBM film) ), 21, 25, 26 Interlayer insulating film, 22 Conductive post, 30, 30B Upper layer underlayer metal film (UBM film), 31, 35 Rearrangement wiring layer (rewiring layer), 32 Upper layer insulating film, 32B Insulating film, 40, 45, 46 Underlying metal film (UBM film), 41 barrier metal, 42, 48 metal terminal, 47 barrier metal, 50, 51, 53 resist film.

Claims (6)

半導体基板と、
前記半導体基板の第1主面上に形成された半導体素子と、
前記第1主面を被覆する第1の絶縁膜と、
前記半導体素子に電気的に接続されると共に前記第1の絶縁膜上に形成され且つ表面に第1領域と前記第1領域の周囲を囲う第2領域とを備えた電極と、
前記第1の絶縁膜と前記電極とを被覆すると共に、前記電極の前記第1領域と前記第2領域とを露出させる開口部を有する第2の絶縁膜と、
前記電極の上面に対するプローブ針の当接により前記電極より生じ、前記電極の前記上面上及び前記第2の絶縁膜上の少なくとも一方に残留する残渣物と、
前記電極の直上に形成され前記電極の前記第1領域に電気的に接続されると共に、前記開口部に対応する頂面が導電体に接続された導電性ポストと、
前記導電性ポストの側面と前記第2の絶縁膜と前記電極の前記第2領域とを被覆する第3の絶縁膜と、
を備え、
前記残渣物は、前記導電性ポスト及び前記第3の絶縁膜の少なくとも一方に埋め込まれ
前記電極の前記第2領域と前記第2領域に対応する前記導電体との距離が、前記電極の前記第1領域と前記第1領域に対応する前記導電体との距離より長い
ことを特徴とする半導体装置。
A semiconductor substrate;
A semiconductor element formed on the first main surface of the semiconductor substrate;
A first insulating film covering the first main surface;
An electrode electrically connected to the semiconductor element and formed on the first insulating film and having a first region on the surface and a second region surrounding the first region ;
A second insulating film covering the first insulating film and the electrode and having an opening exposing the first region and the second region of the electrode;
A residue generated from the electrode by contact of the probe needle with the upper surface of the electrode, and remaining on at least one of the upper surface of the electrode and the second insulating film;
A conductive post formed immediately above the electrode and electrically connected to the first region of the electrode and having a top surface corresponding to the opening connected to a conductor;
A third insulating film covering a side surface of the conductive post, the second insulating film, and the second region of the electrode ;
With
The residue is embedded in at least one of the conductive post and the third insulating film ,
The distance between the second region of the electrode and the conductor corresponding to the second region is longer than the distance between the first region of the electrode and the conductor corresponding to the first region. Semiconductor device.
前記第3の絶縁膜が熱硬化樹脂であることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the third insulating film is a thermosetting resin. 積層された第1の導電性材料と第2の導電性材料とが前記導電性ポストを構成することを特徴とする請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the first conductive material and the second conductive material that are stacked constitute the conductive post. 前記導電性ポストと前記導電体とは、第3の導電性材料を介して接続されることを特徴とする請求項1から3のいずれか1項に記載の半導体装置。   4. The semiconductor device according to claim 1, wherein the conductive post and the conductor are connected via a third conductive material. 5. 前記導電体は前記頂面から前記第3の絶縁膜上に延在することを特徴とする請求項1から4のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the conductor extends from the top surface onto the third insulating film. 前記残渣物は、前記第の絶縁膜よりも小さな熱膨張係数を有することを特徴とする請求項1から5のいずれか1項に記載の半導体装置。 6. The semiconductor device according to claim 1, wherein the residue has a smaller coefficient of thermal expansion than the third insulating film.
JP2016004857A 2016-01-14 2016-01-14 Semiconductor device Active JP6152434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016004857A JP6152434B2 (en) 2016-01-14 2016-01-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004857A JP6152434B2 (en) 2016-01-14 2016-01-14 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014144668A Division JP5873146B2 (en) 2014-07-15 2014-07-15 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2016066820A JP2016066820A (en) 2016-04-28
JP6152434B2 true JP6152434B2 (en) 2017-06-21

Family

ID=55805843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004857A Active JP6152434B2 (en) 2016-01-14 2016-01-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6152434B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7335036B2 (en) 2019-03-29 2023-08-29 ラピスセミコンダクタ株式会社 Semiconductor package manufacturing method
JP2022084063A (en) * 2020-11-26 2022-06-07 ソニーグループ株式会社 Semiconductor device and method for manufacturing semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3850261B2 (en) * 2001-10-25 2006-11-29 イビデン株式会社 Semiconductor chip
JP2005109427A (en) * 2003-09-12 2005-04-21 Shinko Electric Ind Co Ltd Semiconductor device and its manufacturing method
TWI339419B (en) * 2005-12-05 2011-03-21 Megica Corp Semiconductor chip
JP5168965B2 (en) * 2007-03-20 2013-03-27 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2009231402A (en) * 2008-03-21 2009-10-08 Fujitsu Microelectronics Ltd Semiconductor device, and manufacturing method of semiconductor device
JP2009246218A (en) * 2008-03-31 2009-10-22 Renesas Technology Corp Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2016066820A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
JP5582811B2 (en) Semiconductor device and manufacturing method thereof
US8405199B2 (en) Conductive pillar for semiconductor substrate and method of manufacture
US7364998B2 (en) Method for forming high reliability bump structure
US8258055B2 (en) Method of forming semiconductor die
US7417326B2 (en) Semiconductor device and manufacturing method of the same
US7456090B2 (en) Method to reduce UBM undercut
JP4596001B2 (en) Manufacturing method of semiconductor device
JP5387407B2 (en) Semiconductor device
JP5249080B2 (en) Semiconductor device
JP2007317979A (en) Method for manufacturing semiconductor device
US20160148891A1 (en) Semiconductor structure and method of manufacturing the same
WO2008091023A1 (en) Semiconductor device comprising electromigration prevention film and manufacturing method thereof
JP4765947B2 (en) Semiconductor device and manufacturing method thereof
JP2010192478A (en) Method of manufacturing semiconductor device
JP2012080043A (en) Semiconductor device and method for manufacturing the same
US11244915B2 (en) Bond pads of semiconductor devices
JP6152434B2 (en) Semiconductor device
JP5873146B2 (en) Semiconductor device
JP4264823B2 (en) Manufacturing method of semiconductor device
JP5375354B2 (en) Semiconductor device and manufacturing method thereof
JP4722690B2 (en) Semiconductor device and manufacturing method thereof
JP5168965B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2007258629A (en) Manufacturing method of chip size package
US20060231942A1 (en) Semiconductor device
JP2007258354A (en) Process for manufacturing semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170529

R150 Certificate of patent or registration of utility model

Ref document number: 6152434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150