JP6146063B2 - Carbon long fiber reinforced polyamide composite for compression molding - Google Patents

Carbon long fiber reinforced polyamide composite for compression molding Download PDF

Info

Publication number
JP6146063B2
JP6146063B2 JP2013046955A JP2013046955A JP6146063B2 JP 6146063 B2 JP6146063 B2 JP 6146063B2 JP 2013046955 A JP2013046955 A JP 2013046955A JP 2013046955 A JP2013046955 A JP 2013046955A JP 6146063 B2 JP6146063 B2 JP 6146063B2
Authority
JP
Japan
Prior art keywords
formula
composite material
polyamide
carbon
compression molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013046955A
Other languages
Japanese (ja)
Other versions
JP2014173006A (en
Inventor
葭原 法
法 葭原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2013046955A priority Critical patent/JP6146063B2/en
Publication of JP2014173006A publication Critical patent/JP2014173006A/en
Application granted granted Critical
Publication of JP6146063B2 publication Critical patent/JP6146063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、炭素長繊維とポリアミド樹脂からなる複合材料に関する。詳しくは、長鎖脂肪族ポリアミドと長鎖メチレンテレフタルアミドの共重合体と炭素長繊維からなる複合材料に関する。更に詳しくは、吸水率が低く、平衡吸水下でも高い弾性率と強度を保持し、高耐熱性で比強度の高い構造材用複合材料に関する。   The present invention relates to a composite material composed of long carbon fibers and a polyamide resin. Specifically, the present invention relates to a composite material comprising a long-chain aliphatic polyamide and a long-chain methylene terephthalamide copolymer and carbon long fibers. More specifically, the present invention relates to a composite material for a structural material having a low water absorption rate, a high elastic modulus and strength even under equilibrium water absorption, high heat resistance and high specific strength.

従来、電線被覆法を応用したガラス長繊維強化ポリアミド樹脂複合材料は知られていた(例えば、非特許文献1参照)。しかし、かかる従来技術は、ガラス繊維とポリアミド樹脂のコンパウンド材料を射出成形により成形品を得ていた。コンパウンド工程や射出成形工程でガラス繊維の折損が著しく、ガラス繊維の強度や弾性率への補強効果が低下し、構造材としての実用性能には不満足であった。   Conventionally, a long glass fiber reinforced polyamide resin composite material using an electric wire coating method has been known (see, for example, Non-Patent Document 1). However, according to such conventional technology, a molded product is obtained by injection molding a compound material of glass fiber and polyamide resin. In the compounding process and injection molding process, breakage of the glass fiber was remarkable, the reinforcing effect on the strength and elastic modulus of the glass fiber was lowered, and the practical performance as a structural material was unsatisfactory.

高強度・高剛性成形品を得るために、炭素繊維とポリアミド樹脂の複合材料も研究開発された。しかし、射出成形や押出成形工程で炭素繊維が折損し、その効果は要求に大幅に未達であった。また、強化繊維の折損を避けるために、成形時のせん断変形の小さい圧縮成形についても検討された。しかし、強化繊維が長くなると繊維のからみ合いが起こり、流動性が著しく低下して、大型成形品や細いリブやボス構造を有する成形品は、欠肉が起こり良好な成形品が得られなかった。
繊維の絡み合いが起こらないように、繊維のロービングを単繊維状に開繊した後、ポリアミド樹脂を含浸して、強化繊維とポリアミド樹脂からなる一軸のテープ状プリプレグを予備成形した後、加熱圧縮成形する方法も開示された(例えば、非特許文献2参照)。しかし、一般のポリアミド樹脂の場合、絶乾状態では、高い剛性や強度が得られるが、空気中の水分を吸湿しやすく、多湿状態では、剛性や強度が著しく低下して、目的とする構造材の要求には未達であった。
In order to obtain high-strength and high-rigidity molded products, composite materials of carbon fiber and polyamide resin have also been researched and developed. However, the carbon fiber was broken in the injection molding and extrusion molding processes, and the effect was not fully met. In order to avoid breakage of the reinforcing fiber, compression molding with small shear deformation at the time of molding was also examined. However, when the reinforcing fiber becomes longer, the fibers are entangled and the fluidity is remarkably lowered, and a large molded product or a molded product having a thin rib or boss structure is thinned and a good molded product cannot be obtained. .
To prevent fiber entanglement, fiber roving is opened into a single fiber, then impregnated with polyamide resin, pre-molded with a uniaxial tape-shaped prepreg composed of reinforcing fibers and polyamide resin, and then heat compression molded The method of doing is also disclosed (for example, refer nonpatent literature 2). However, in the case of a general polyamide resin, high rigidity and strength can be obtained in the absolutely dry state, but it easily absorbs moisture in the air. The request was not met.

ポリアミド樹脂として、吸水率の低い、芳香族環を有するポリアミド樹脂の複合材料も、特開平05−005060(特許文献1)や特開2002−234999(特許文献2)のように開示された。しかし、芳香族環を有するポリアミド樹脂は、融点は高くなり、その複合材料を圧縮成形する場合、材料を高温に予熱しなければならなく、予熱が困難になることや酸化による変色や劣化が起こり、工業生産に不適当であった。また、吸水率の低い長鎖脂肪族ポリアミドの複合材料も検討されたが、本来の弾性率や強度および耐熱性低下が大きく、構造材としての要求に不適切であった。このように、工業生産が容易で、かつ使用環境下で高い物性を保持する構造材用の複合材料は見出せていなかった。   As a polyamide resin, a composite material of a polyamide resin having a low water absorption and having an aromatic ring has also been disclosed in JP-A Nos. 05-005060 (Patent Document 1) and JP-A No. 2002-234999 (Patent Document 2). However, the polyamide resin having an aromatic ring has a high melting point, and when compression molding the composite material, the material must be preheated to a high temperature, which makes preheating difficult and causes discoloration and deterioration due to oxidation. It was inappropriate for industrial production. In addition, composite materials of long-chain aliphatic polyamides having a low water absorption rate have been studied, but the original elastic modulus, strength, and heat resistance are greatly reduced, which is inappropriate for the demand as a structural material. Thus, a composite material for a structural material that is easy for industrial production and retains high physical properties under the use environment has not been found.

しかし、工業的には、吸水率が低く、平衡吸湿下でも高い弾性率を保持し、耐熱変形性を有する構造材用ポリアミド複合材料について、市場の高い開発要求があった。   However, industrially, there has been a high development demand on the market for a polyamide composite material for a structural material that has a low water absorption rate, maintains a high elastic modulus even under equilibrium moisture absorption, and has heat deformation resistance.

特開平05−005060号公報JP 05-005060 A 特開2002−234999号公報JP 2002-234999 A

Composites,July, 150 (1973)Composites, July, 150 (1973) SPI(Society of Plastics Industry) 30th 11−C (1975)SPI (Society of Plastics Industry) 30th 11-C (1975)

本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、吸水率が低く、使用環境下の温度や湿度における強度や剛性が飛躍的に優れた比強度の高く構造材用複合材組成物を提供することにある。   The present invention has been made against the background of such prior art problems. That is, an object of the present invention is to provide a composite material composition for structural material having a high specific strength, which has a low water absorption rate, and has dramatically improved strength and rigidity in temperature and humidity under the usage environment.

本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
すなわち、本発明は、以下の構成からなる。
〔1〕 平均10mm以上の炭素長繊維(A)100質量部に対して、80モル%以上が(式1)及び(式2)で表されるアミド単位を有する、融点が200〜300℃のポリアミド共重合体(B)35〜150質量部を含有することを特徴とする圧縮成形用炭素長繊維強化ポリアミド複合材料。
−NH−(CH−NH−CO−(CH−CO− ・・(式1)
−NH−(CH−NH−CO−C−CO− ・・(式2)
ここで、j≧8、k≧7、m≧8、[−C−]はパラフェニレン構造を表す
〔2〕 (式1)、(式2)で表されるアミド単位のモル比が、(式1):(式2)=80:20〜20:80である〔1〕に記載の圧縮成形用炭素長繊維強化ポリアミド複合材料。
〔3〕 ポリアミド共重合体が、(式1)において12≧j≧10、12≧k≧8、(式2)において12≧m≧8であることを特徴とする〔1〕または〔2〕に記載の圧縮成形用炭素長繊維強化ポリアミド複合材料。
〔4〕 絶乾時の成形品の曲げ強度に対する、80℃95%RH下200時間調湿した成形品の曲げ強度の保持率が、80%以上であることを特徴とする〔1〕〜〔3〕のいずれかに記載の圧縮成形用炭素長繊維強化ポリアミド複合材料。
〔5〕 ポリアミド共重合体の融点が240〜280℃であることを特徴とする〔1〕〜〔4〕のいずれかに記載の圧縮成形用炭素長繊維強化ポリアミド複合材料。
〔6〕 ポリアミド複合材料が、テープ状またはシート状である〔1〕〜〔5〕のいずれかに記載の圧縮成形用炭素長繊維強化ポリアミド複合材料。
As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention.
That is, this invention consists of the following structures.
[1] On the basis of 100 parts by mass of carbon long fiber (A) having an average of 10 mm or more, 80 mol% or more has an amide unit represented by (Formula 1) and (Formula 2), and a melting point is 200 to 300 ° C. A carbon long fiber reinforced polyamide composite material for compression molding, comprising 35 to 150 parts by mass of a polyamide copolymer (B).
—NH— (CH 2 ) j —NH—CO— (CH 2 ) k —CO— (Formula 1)
—NH— (CH 2 ) m —NH—CO—C 6 H 4 —CO— (Formula 2)
Here, j ≧ 8, k ≧ 7, m ≧ 8, [—C 6 H 4 —] represents a paraphenylene structure [2] Molar ratio of amide units represented by (Formula 1) and (Formula 2) (Formula 1): (Formula 2) = 80: 20 to 20:80 The carbon long fiber reinforced polyamide composite material for compression molding according to [1].
[3] The polyamide copolymer is 12 ≧ j ≧ 10, 12 ≧ k ≧ 8 in (Formula 1), and 12 ≧ m ≧ 8 in (Formula 2) [1] or [2] 2. A carbon long fiber reinforced polyamide composite material for compression molding as described in 1.
[4] The bending strength retention rate of a molded product that has been conditioned for 200 hours at 80 ° C. and 95% RH with respect to the bending strength of the molded product when absolutely dry is 80% or more. 3] The carbon long fiber reinforced polyamide composite material for compression molding according to any one of [3].
[5] The carbon long fiber reinforced polyamide composite material for compression molding according to any one of [1] to [4], wherein the polyamide copolymer has a melting point of 240 to 280 ° C.
[6] The carbon long fiber reinforced polyamide composite material for compression molding according to any one of [1] to [5], wherein the polyamide composite material is in a tape shape or a sheet shape.

本発明により、吸水率が低く、使用環境下で強度や弾性率が飛躍的に高く、構造材の要求を満たす複合材料を工業的製造工程により提供することができる。本発明により得られた複合材組成物を成形して得られる成形品は、自動車のフレーム部品や機械器具の構造部材やスポーツ器具などに使用される。本発明により、使用環境下で高い強度や弾性率が得られる複合材組成物が提供される理由は、未だ明確でないが、本発明で用いるポリアミド共重合体の次のような特徴によると考えられる。吸水率は低く、強度や弾性率は高いが、融点も高い長鎖メチレンテレフタルアミド単位と、弾性率や強度は低いが、低吸水率の長鎖脂肪族ポリアミド単位を特定比率で共重合することにより、成形加工が工業的に可能な融点に制御できた。さらには、長鎖脂肪族ポリアミド単位による弾性率、強度、及び耐熱性の低さを、長鎖メチレン芳香族ポリアミド単位が補償することにより、吸水率を低下し、吸水による物性低下を抑制する。また、高い機械的物性を有するバランスがとれる組成比で、かつ炭素繊維表面への濡れ性がよく、接着強度が高い特定の組成比が発明できたことによると考えられる。   According to the present invention, it is possible to provide a composite material that has a low water absorption rate, a remarkably high strength and elastic modulus in a use environment, and satisfies the requirements of a structural material by an industrial manufacturing process. A molded product obtained by molding the composite composition obtained according to the present invention is used for a frame part of an automobile, a structural member of a mechanical instrument, a sports instrument, and the like. The reason why the present invention provides a composite composition capable of obtaining high strength and elastic modulus under the use environment is not yet clear, but is considered to be due to the following characteristics of the polyamide copolymer used in the present invention. . Copolymerize long-chain methyleneterephthalamide units with low water absorption, high strength and elastic modulus but high melting point, and long-chain aliphatic polyamide units with low water absorption but low elastic modulus and strength at a specific ratio Thus, the melting point could be controlled to be industrially possible. Furthermore, the long-chain methylene aromatic polyamide unit compensates for the low elastic modulus, strength, and low heat resistance of the long-chain aliphatic polyamide unit, thereby reducing the water absorption rate and suppressing the decrease in physical properties due to water absorption. In addition, it is considered that a specific composition ratio having high mechanical properties and a well-balanced composition ratio, good wettability to the carbon fiber surface, and high adhesive strength could be invented.

以下、本発明を詳述する。
本発明には、重量平均繊維長が10mm以上、好ましくは15mm以上、更に好ましくは20mm以上の炭素長繊維や連続繊維が使用される。重量平均繊維長が10mm未満では、構造材としての強度が未達となり、好ましくない。機械物性上は連続繊維が好ましいが、成形時の金型内における流動性が必要な成形方法の場合、プリプレグとしてより短く切断されたものが使用される。このような場合、炭素長繊維の重量平均繊維長の上限は、プリプレグの長さに相当し、50mm程度であることが好ましい。
炭素繊維としては、製造法に特に制限されないが、ポリアクリロニトル繊維やセルロース繊維などの繊維を空気中で200〜300℃にて処理した後、不活性ガス中で1000〜3000℃以上で焼成され炭化製造された引っ張り強度20t/cm以上、引っ張り弾性率200GPa以上の炭素繊維が好ましい。本発明に使用される単繊維径は、特に制限されないが、複合化の製造ライン工程から3〜25μmが好ましく、特に4〜15μm好ましい。3μm未満では、含浸や脱泡が難しく、25μmを超えると、比表面積が小さくなり、複合化の効果が小さくなり好ましくない。本発明に使用される炭素繊維は、空気や硝酸による湿式酸化、乾式酸化、ヒートクリーニング、ウイスカライジングなどによる接着性改良のための処理されたものが好ましい。また本発明の複合材料製造に使用される炭素繊維は、作業工程の取り扱い性から、100℃以下で軟化する集束剤により集束されていることが好ましい。集束フィラメント数には特に制限ないが、1000〜30000フィラメント、好ましくは、3000〜25000フィラメントが好ましい。本発明に使用される炭素繊維の集束剤は特に限定されないが、炭素繊維と母相のポリアミド共重合体に高い接着力を有するウレタン系、エポキシ系、及び無水マレイン酸変性ポリオレフィン系集束剤が好ましい。
The present invention is described in detail below.
In the present invention, carbon long fibers or continuous fibers having a weight average fiber length of 10 mm or more, preferably 15 mm or more, and more preferably 20 mm or more are used. If the weight average fiber length is less than 10 mm, the strength as a structural material is not achieved, which is not preferable. In terms of mechanical properties, continuous fibers are preferable, but in the case of a molding method that requires fluidity in a mold during molding, a prepreg that is cut shorter is used. In such a case, the upper limit of the weight average fiber length of the carbon long fibers corresponds to the length of the prepreg, and is preferably about 50 mm.
Although it does not restrict | limit especially in a manufacturing method as carbon fiber, After processing fibers, such as a polyacrylonitrile fiber and a cellulose fiber, in air at 200-300 degreeC, it is baked at 1000-3000 degreeC or more in inert gas. Carbon fibers produced by carbonization and having a tensile strength of 20 t / cm 2 or more and a tensile modulus of 200 GPa or more are preferred. Although the diameter of the single fiber used in the present invention is not particularly limited, it is preferably 3 to 25 μm, particularly preferably 4 to 15 μm, from the production line process of the composite. When the thickness is less than 3 μm, impregnation and defoaming are difficult. The carbon fiber used in the present invention is preferably treated for improving adhesion by wet oxidation with air or nitric acid, dry oxidation, heat cleaning, whiskerizing, or the like. Moreover, it is preferable that the carbon fiber used for composite material manufacture of this invention is bundled by the bundling agent which softens at 100 degrees C or less from the handleability of a work process. Although there is no restriction | limiting in particular in the number of focusing filaments, 1000-30000 filaments, Preferably 3000-25000 filaments are preferable. The carbon fiber sizing agent used in the present invention is not particularly limited, but urethane-based, epoxy-based, and maleic anhydride-modified polyolefin-based sizing agents having high adhesion to the polyamide copolymer of carbon fiber and parent phase are preferable. .

本発明には、平均10mm以上の炭素長繊維(A)100質量部に対して、80モル%以上が(式1)及び(式2)で表されるアミド単位を有する、融点200〜300℃のポリアミド共重合体(B)35〜150質量部、好ましくは40〜150質量部、より好ましくは50〜150質量部複合される。
−NH−(CH−NH−CO−(CH−CO− ・・(式1)
−NH−(CH−NH−CO−C−CO− ・・(式2)
ここで、j≧8、k≧7、m≧8、[−C−]はパラフェニレン構造を表す
ポリアミド共重合体(B)が35質量部未満では、炭素繊維へのポリアミド樹脂の含浸が困難であり、また150質量部を超えると、炭素繊維補強の効果が不十分となり、本発明の目的である構造部材としての要求を満たせず好ましくない。
In the present invention, the melting point is 200 to 300 ° C., in which 80 mol% or more has an amide unit represented by (Formula 1) and (Formula 2) with respect to 100 parts by mass of carbon long fiber (A) having an average of 10 mm or more. The polyamide copolymer (B) is 35 to 150 parts by mass, preferably 40 to 150 parts by mass, more preferably 50 to 150 parts by mass.
—NH— (CH 2 ) j —NH—CO— (CH 2 ) k —CO— (Formula 1)
—NH— (CH 2 ) m —NH—CO—C 6 H 4 —CO— (Formula 2)
Here, j ≧ 8, k ≧ 7, m ≧ 8, and [—C 6 H 4 —] represents a paraphenylene structure. When the polyamide copolymer (B) is less than 35 parts by mass, the polyamide resin to the carbon fiber Impregnation is difficult, and if it exceeds 150 parts by mass, the effect of carbon fiber reinforcement becomes insufficient, and the requirement as a structural member, which is the object of the present invention, is not preferable.

本発明には、融点が200〜300℃、好ましくは、220〜280℃、より好ましくは、230℃〜280℃、特に好ましくは,240〜280℃の範囲にある長鎖脂肪族ポリアミド(式1)と長鎖メチレンテレフタルアミド(式2)のポリアミド共重合体が使用される。融点が200℃未満の場合、耐熱変形温度が低く好ましくない。また300℃を超えると、成形時、成形材料の予熱温度として高温が必要になり。酸化変色や劣化が起こり好ましくない。
ポリアミド共重合体の融点は、長鎖脂肪族ポリアミド(式1)と長鎖メチレンテレフタルアミド(式2)の共重合比と、原料モノマーの炭素数に依存する。本発明に使用される長鎖脂肪族ポリアミド(式1)の原料モノマーであるジアミンの炭素数は、8以上(式1で、jが8以上)、好ましくは、10以上である。8未満では、吸水率が期待値に未達となり、好ましくない。具体的には、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミンなどが挙げられる。また長鎖脂肪族ポリアミド(式1)のもう一つの原料であるジカルボン酸の炭素数は、9以上(式1でkが7以上)、好ましくは10以上である。炭素数が9未満では、吸水率が期待値に未達となり、好ましくない。具体的には、アゼライン酸(ノナン二酸)、セバシン酸(デカン二酸)、1,11−ウンデカン酸、1,12−ドデカン酸、1,14−テトラデカン二酸等からなるポリアミド成分などが挙げられる。
長鎖メチレンテレフタルアミド(式2)に使用されるジアミンの炭素数(式2のm)は8以上、好ましくは8〜12、より好ましくは9〜12、特に好ましくは10〜12である。8未満では、吸湿率の低下効果が低く、また融点の低下効果も小さく好ましくない。具体的には、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミンなどが挙げられる。吸水率と融点の低下効果から、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミンが好ましく、特にデカメチレンジアミンが吸湿率や融点の低下効果と弾性率や強度の保持効果のバランスがよく好ましい。
長鎖脂肪族ポリアミド成分(式1)と長鎖メチレンテレフタルアミド成分(式2)のモル比率[(式1):(式2)]は、80:20〜20:80が好ましく、70:30〜30:70がより好ましく、60:40〜40:60がさらに好ましい。長鎖脂肪族ポリアミド成分が80モル%を超えると、弾性率や強度が低下し好ましくない。また20モル%未満では、融点が高く炭素繊維への含浸工程や成形工程の条件幅が狭く好ましくない。
In the present invention, a long-chain aliphatic polyamide having a melting point of 200 to 300 ° C., preferably 220 to 280 ° C., more preferably 230 to 280 ° C., particularly preferably 240 to 280 ° C. (formula 1 ) And a long chain methylene terephthalamide (formula 2) polyamide copolymer. When the melting point is less than 200 ° C., the heat distortion temperature is low, which is not preferable. If the temperature exceeds 300 ° C., a high temperature is required as a preheating temperature of the molding material during molding. Oxidation discoloration and deterioration occur and are not preferable.
The melting point of the polyamide copolymer depends on the copolymerization ratio of the long-chain aliphatic polyamide (formula 1) and the long-chain methylene terephthalamide (formula 2) and the number of carbon atoms of the raw material monomer. The carbon number of the diamine which is a raw material monomer of the long chain aliphatic polyamide (Formula 1) used in the present invention is 8 or more (in Formula 1, j is 8 or more), preferably 10 or more. If it is less than 8, the water absorption rate does not reach the expected value, which is not preferable. Specific examples include octamethylene diamine, nonamethylene diamine, decamethylene diamine, and dodecamethylene diamine. The carbon number of the dicarboxylic acid that is another raw material of the long-chain aliphatic polyamide (Formula 1) is 9 or more (k is 7 or more in Formula 1), preferably 10 or more. If the number of carbon atoms is less than 9, the water absorption rate does not reach the expected value, which is not preferable. Specific examples include polyamide components composed of azelaic acid (nonanedioic acid), sebacic acid (decanedioic acid), 1,11-undecanoic acid, 1,12-dodecanoic acid, 1,14-tetradecanedioic acid, and the like. It is done.
The carbon number of the diamine used in the long-chain methylene terephthalamide (Formula 2) (m in Formula 2) is 8 or more, preferably 8 to 12, more preferably 9 to 12, particularly preferably 10 to 12. If it is less than 8, the lowering effect of the moisture absorption rate is low, and the lowering effect of the melting point is small, which is not preferable. Specific examples include octamethylene diamine, nonamethylene diamine, decamethylene diamine, and dodecamethylene diamine. Nonamethylenediamine, decamethylenediamine, and dodecamethylenediamine are preferable from the viewpoint of the water absorption rate and the melting point lowering effect, and decamethylenediamine is particularly preferable because of the good balance between the moisture absorption rate and melting point lowering effect and the elastic modulus and strength retention effect.
The molar ratio [(Formula 1) :( Formula 2)] of the long-chain aliphatic polyamide component (Formula 1) and the long-chain methylene terephthalamide component (Formula 2) is preferably 80:20 to 20:80, and 70:30 -30: 70 is more preferable, and 60: 40-40: 60 is further more preferable. If the long-chain aliphatic polyamide component exceeds 80 mol%, the elastic modulus and strength decrease, which is not preferable. If it is less than 20 mol%, the melting point is high, and the condition range of the carbon fiber impregnation step and molding step is narrow, which is not preferable.

本発明に使用されるポリアミド共重合体(B)は、(式1)及び(式2)で表される成分の他に、融点が200〜300℃の範囲になるように、20モル%未満の範囲で他のモノマーを共重合することができる。共重合成分としては、ε―カプロラクタムやω―ラウリロラクタムや、ジアミン成分として、1,4−テトラメチレンジアミン、1,6−ヘキサメチレンジアミン、m−キシリレンジアミン、p−キシリレイジアミン、p−フェニレンジアミン、m−フェニレンジアミンなど、また酸成分としては、イソフタル酸、オルソフタル酸、2,6−ナフタレンジカルボン酸、4,4’―ジフェニルジカルボン酸、コハク酸、アジピン酸、1,4−シクロヘキサンジカルボン酸等からなるポリアミド成分などが挙げられる。
ポリアミド共重合体の分子量は特に限定されないが、25℃において測定した98質量%硫酸の5g/l溶液における相対粘度が、1.8〜3.0であることが好ましく、より好ましくは、2.0〜2.8、さらに好ましくは、2.1〜2.7の範囲である。1.8未満では、強度が低下するので好ましくない。3.0を超えると、炭素繊維への含浸性が低下し、また脱泡不良となり、結果として複合材の強度が低下し、好ましくない。
The polyamide copolymer (B) used in the present invention is less than 20 mol% so that the melting point is in the range of 200 to 300 ° C. in addition to the components represented by (Formula 1) and (Formula 2). Other monomers can be copolymerized within the range of. As a copolymerization component, ε-caprolactam or ω-laurylactam, and as a diamine component, 1,4-tetramethylenediamine, 1,6-hexamethylenediamine, m-xylylenediamine, p-xylylenediamine, p -Phenylenediamine, m-phenylenediamine and the like, and the acid components include isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, succinic acid, adipic acid, 1,4-cyclohexane Examples thereof include polyamide components composed of dicarboxylic acid and the like.
The molecular weight of the polyamide copolymer is not particularly limited, but the relative viscosity in a 5 g / l solution of 98% by mass sulfuric acid measured at 25 ° C. is preferably 1.8 to 3.0, more preferably 2. The range is from 0 to 2.8, and more preferably from 2.1 to 2.7. If it is less than 1.8, the strength decreases, which is not preferable. When it exceeds 3.0, the impregnation property to the carbon fiber is deteriorated, and the defoaming is poor. As a result, the strength of the composite material is decreased, which is not preferable.

本発明の複合材料は、100℃にて160時間真空乾燥した状態(絶乾時)の成形体の曲げ強度に対して、80℃95%RH下で200時間調湿した状態の成形品の曲げ強度は、80%以上保持して、高い機械的物性を保持している。80%未満では、使用環境による物性変化が大きく、構造材としては好ましくない。本発明の複合材料が、この強度保持率が80%以上となることは、80℃95%RH環境下での吸水率が低いことと、吸水による可塑化品のガラス転移点が試験環境温度より高く保持されているためと考察される。
さらに具体的には、低吸水率は、疎水性の高い長鎖脂肪族炭化水素モノマー分率が高いこと、高ガラス転移点はテレフタルアミド分率が高いことの特異的な複合効果よるものと考察される。
上記のように、本発明のポリアミド共重合体(B)を選択することにより、この強度保持率を80%以上、さらには85%以上にすることができる。
The composite material of the present invention is a bent product of a molded product that has been conditioned for 200 hours at 80 ° C. and 95% RH with respect to the bending strength of the molded product that has been vacuum-dried at 100 ° C. for 160 hours (when absolutely dry). The strength is maintained at 80% or more, and high mechanical properties are maintained. If it is less than 80%, the physical property change by the use environment is large, and it is not preferable as a structural material. The strength retention of the composite material of the present invention is 80% or more because the water absorption rate is low at 80 ° C. and 95% RH, and the glass transition point of the plasticized product due to water absorption is lower than the test environment temperature. It is considered that it is held high.
More specifically, the low water absorption is considered to be due to the specific combined effect of the high hydrophobic long-chain aliphatic hydrocarbon monomer fraction and the high glass transition point being the high terephthalamide fraction. Is done.
As described above, by selecting the polyamide copolymer (B) of the present invention, the strength retention can be 80% or more, and further 85% or more.

本発明の効果は、複合材料がテープ状またはシート状において特に発揮される。テープ状やシート状成形品は、一般に表面積が大きく、吸湿しやすいことと、成形品の断面係数が小さく曲げ剛性が小さく、吸湿による物性低下の影響を受けやすいためと考察される。   The effect of the present invention is particularly exerted when the composite material is in a tape form or a sheet form. It is considered that tape-shaped and sheet-shaped molded articles generally have a large surface area and are easy to absorb moisture, and that the molded article has a small section modulus and small bending rigidity, and is easily affected by deterioration in physical properties due to moisture absorption.

また、本発明に使用されるポリアミド共重合体は、結晶核剤を含有することが好ましい。結晶核剤が配合されていないと、溶融状態から固化される成形過程で結晶サイズが大きくなり、結晶界面の強度が弱く、靭性が低下し、脆性破棄しやすくなるため好ましくない。本発明において使用される結晶核剤としては、タルク、クレイ、周期表第1a属金属の有機化合物から選ばれた1種以上の組み合わせである。これらの結晶核剤は、ポリアミド共重合体の溶融状態から冷却固化するときに、結晶核剤として作用し、過冷却度が小さい状態から結晶の成長を促進し、球晶状結晶の数を増加して、そのサイズを微細化する。結晶核剤が配合されていないと、固化の過程で成形品コア部が徐冷される以外結晶化せず、結晶が光の波長サイズに到達せずに殆ど透明な成形品となる。タルクやクレイのような珪酸塩が結晶核剤として有効である。これらは、天然石を微細化したものや合成された珪酸塩でもよい。結晶核剤としては、これらの表面の結晶からエピタキシー状に成長することや表面と樹脂界面の自由エネルギーの低下の効果と推察される。表面積が大きい微細なほど好ましい。平均粒径としては、0.1〜20μmが好ましい。また、周期表1a属の有機化合物も有効な結晶核剤として作用する。特に、高級脂肪酸のNa塩、高級脂肪酸のK塩、高級脂肪酸のLi塩が有効である。高級脂肪酸としては、ステアリン酸、モンタン酸、ラウリル酸などが例示される。またアクリル酸やメタクリル酸とポリオレフィンの共重合体をケン化してえられるアイオノマー共重合体が例示される。   Moreover, it is preferable that the polyamide copolymer used for this invention contains a crystal nucleating agent. If the crystal nucleating agent is not blended, the crystal size is increased in the molding process solidified from the molten state, the strength of the crystal interface is weak, the toughness is lowered, and brittleness is easily discarded, which is not preferable. The crystal nucleating agent used in the present invention is one or more combinations selected from talc, clay, and organic compounds of Group 1a metal of the periodic table. These crystal nucleating agents act as crystal nucleating agents when cooled and solidified from the melted state of the polyamide copolymer, promote crystal growth from a state of low supercooling, and increase the number of spherulites. Then, the size is refined. If the crystal nucleating agent is not blended, the molded product core is not crystallized except for the slow cooling during the solidification process, and the crystal does not reach the wavelength of light and becomes an almost transparent molded product. Silicates such as talc and clay are effective as crystal nucleating agents. These may be a refined natural stone or a synthesized silicate. As the crystal nucleating agent, it is presumed that the crystal grows in an epitaxy form from these surface crystals and the effect of lowering the free energy between the surface and the resin interface. The finer the surface area, the better. As an average particle diameter, 0.1-20 micrometers is preferable. In addition, organic compounds belonging to Group 1a of the periodic table also act as effective crystal nucleating agents. In particular, Na salts of higher fatty acids, K salts of higher fatty acids, and Li salts of higher fatty acids are effective. Examples of higher fatty acids include stearic acid, montanic acid, lauric acid and the like. Moreover, the ionomer copolymer obtained by saponifying the copolymer of acrylic acid, methacrylic acid, and polyolefin is illustrated.

結晶核剤の配合量は特に限定されないが、ポリアミド共重合体100質量部に対して、0〜10質量部、好ましくは0.01〜5質量部配合される。結晶核剤としては、タルク、クレイのような鉱物や高級脂肪酸のナトリウム塩、カリウム塩、ジチウム塩、カルシウム塩、亜鉛塩、エチレンーアクリル酸のアルカリ塩やエチレンーメタクリル酸のアルカリ塩などが例示される。   Although the compounding quantity of a crystal nucleating agent is not specifically limited, 0-10 mass parts with respect to 100 mass parts of polyamide copolymers, Preferably 0.01-5 mass parts is mix | blended. Examples of crystal nucleating agents include minerals such as talc and clay, sodium salts of higher fatty acids, potassium salts, dithium salts, calcium salts, zinc salts, alkali salts of ethylene-acrylic acid and alkali salts of ethylene-methacrylic acid. Is done.

本発明においては、さらに高級脂肪酸の周期表第2a属の金属塩が、炭素繊維100質量部に対して、0.05〜5質量部、特に0.1〜2質量部含有することがスタンピング成形性を改良するために好ましい態様である。0.05質量部未満では、スタンピング成形後の離型性が低く深絞り成形品では離型時に変形することや取り出し可能までの冷却時間が長く好ましくない。また、5質量部を超えると成形品表面の外観を損なうことがあり、好ましくない。高級脂肪酸としては、ステアリン酸、ラウリル酸、モンタン酸などが例示される。周期表第2a属としては、マグネシュウム、カルシュウム、バリュウムが挙げられる。具体的な化合物としては、ステアリン酸マグネシュウム、ステアリン酸カルシュウム、モンタン酸カルシュウムが挙げられる。   In the present invention, stamping molding may further include 0.05 to 5 parts by mass, particularly 0.1 to 2 parts by mass of the higher fatty acid periodic table group 2a metal salt with respect to 100 parts by mass of the carbon fiber. This is a preferred embodiment for improving the properties. If it is less than 0.05 parts by mass, the releasability after stamping molding is low, and a deep-drawn molded product is not preferable because it is deformed at the time of mold release and the cooling time until it can be taken out is long. Moreover, when it exceeds 5 mass parts, the external appearance of the molded article surface may be impaired, and it is not preferable. Examples of higher fatty acids include stearic acid, lauric acid, and montanic acid. Examples of periodic table group 2a include magnesium, calcium, and valium. Specific examples of the compound include magnesium stearate, calcium stearate, and calcium montanate.

また、本発明の複合材料の成形法は、スタンピング成形が適当な成形法である。従って、金型温度(金型表面温度)が150℃以下、好ましくは100℃以下の通常の射出成形法とは全く異なり、驚いたことに金型温度160〜280℃、好ましくは、180〜260℃の金型にて成形することが好ましい態様である。金型表面温度が160℃未満では、流動性が低く、流動末端やリブ部の充填不足になることがあり好ましくない。また、280℃を超えると、樹脂表面が酸化し、変色や劣化が起こり好ましくない。充填初期に160〜280℃という高温の金型を使用することにより、本発明の特徴を発揮することができる。より高温の金型において充填することで、充填時の材料温度か充填後の材料温度が、材料の結晶化温度より高くなり。成形品取り出しまでの冷却過程で、最も結晶化速度が速くなる結晶化ピーク温度を経過することにより、成形品表面の結晶化が十分進行するため、耐熱変形性の高い成形品が得られるためと考察される。   The molding method of the composite material of the present invention is a molding method suitable for stamping molding. Therefore, the mold temperature (mold surface temperature) is completely different from the usual injection molding method of 150 ° C. or less, preferably 100 ° C. or less, and surprisingly the mold temperature is 160 to 280 ° C., preferably 180 to 260. It is a preferred embodiment to mold with a metal mold at ° C. If the mold surface temperature is less than 160 ° C., the fluidity is low, and the flow ends and the ribs may be insufficiently filled. Moreover, when it exceeds 280 degreeC, the resin surface will oxidize and discoloration and deterioration will occur and it is not preferable. By using a high-temperature mold of 160 to 280 ° C. in the initial stage of filling, the characteristics of the present invention can be exhibited. By filling in a higher temperature mold, the material temperature at the time of filling or the material temperature after filling becomes higher than the crystallization temperature of the material. Since the crystallization peak temperature at which the crystallization speed becomes the fastest during the cooling process until the molded product is taken out, the surface of the molded product is sufficiently crystallized, so that a molded product with high heat distortion resistance can be obtained. Considered.

本発明の複合材料には、上記の必須成分、任意成分の他に物性改良・成形性改良、耐久性改良を目的として、滑剤、酸化防止剤、難燃剤、耐光剤、耐候剤などが合計で複合材料中10質量%以下の範囲で配合できる。
本発明の複合材料の製造法は特に限定されない。例えば、ポリアミド共重合体の融点以上に温度調節されたスクリュータイプ押出機のホッパーにポリアミド共重合体と安定剤などを所定割合に予備混合して供給する。溶融樹脂をギアポンプの回転数にて計量して、樹脂の融点以上に温度調節された含浸用押出機の上流に供給する。一方、ロービング状の炭素繊維を拡張開繊し、含浸用押出機の下流に供給する。下流先端に開口部を絞ったスリットダイを備えた含浸用押出機中で樹脂圧により、炭素繊維ロービングに樹脂を含浸・脱泡する。下流開口部から吐出されたテープ状の炭素繊維とポリアミド共重合体からなる複合材料を冷却してかせに巻き取る。さらに、このテープ状複合材料を10mm以上にカットすることや、テープ状複合材料をカットせずに織物状に織って成形用に提供される。また、樹脂の融点以上に温度調節されたスクリュータイプ押出機の上流ホッパーにポリアミド共重合体と安定剤などを所定割合に予備混合して供給する。下流の出口ダイにロービング状炭素繊維を供給して、繊維の送り速度と樹脂の吐出量を調節して、所定の繊維含有率からなるストランド状の炭素繊維の樹脂被覆材を得る。このストランドを冷却してかせに巻き取る。このストランドを10mm以上にカットするか、織物状に織って成形用に提供される方法などが上げられる。
本発明の複合材料を、赤外線や高周波により加熱溶融した後、構成するポリアミド共重合体の結晶化温度より高い160〜280℃に温度調節された金型に供給して、圧縮力により賦形し、冷却後脱型する方法で、構造部品が成形される。
In the composite material of the present invention, in addition to the above essential components and optional components, a lubricant, an antioxidant, a flame retardant, a light-proofing agent, a weathering agent and the like are added for the purpose of improving physical properties, improving moldability, and improving durability. It can mix | blend in the range of 10 mass% or less in a composite material.
The method for producing the composite material of the present invention is not particularly limited. For example, a polyamide copolymer and a stabilizer are premixed at a predetermined ratio and supplied to a hopper of a screw type extruder whose temperature is controlled to be equal to or higher than the melting point of the polyamide copolymer. The molten resin is measured at the number of revolutions of the gear pump and supplied upstream of the impregnation extruder whose temperature is adjusted to be equal to or higher than the melting point of the resin. On the other hand, roving-like carbon fibers are expanded and supplied downstream of the impregnation extruder. Carbon fiber roving is impregnated and defoamed with resin pressure in an extruder for impregnation equipped with a slit die having a narrowed opening at the downstream end. The composite material composed of the tape-like carbon fiber and the polyamide copolymer discharged from the downstream opening is cooled and wound up. Furthermore, the tape-like composite material is cut into 10 mm or more, or the tape-like composite material is woven into a woven shape without being cut and provided for molding. In addition, a polyamide copolymer and a stabilizer are premixed at a predetermined ratio and supplied to an upstream hopper of a screw type extruder whose temperature is controlled to be equal to or higher than the melting point of the resin. A roving-like carbon fiber is supplied to the downstream exit die, and a fiber-coating speed and a resin discharge amount are adjusted to obtain a strand-like carbon fiber resin coating material having a predetermined fiber content. The strand is cooled and wound into skeins. A method of cutting the strand into 10 mm or more, or weaving it into a woven shape and providing it for molding can be raised.
After the composite material of the present invention is heated and melted by infrared rays or high frequency, it is supplied to a mold whose temperature is adjusted to 160 to 280 ° C. which is higher than the crystallization temperature of the constituting polyamide copolymer, and is shaped by compressive force. The structural part is formed by the method of demolding after cooling.

本発明の複合材料から得られた成形部品は、自動車のフレーム、バンパーフェースバーサポート材、シャシーシェル、座席フレーム、サスペンジョン支持部、サンルーフフレーム、バンパービーム、2輪車のフレーム、農機具のフレーム、OA機器のフレーム、機械部品など高い強度と剛性の必要な部品に利用される。   Molded parts obtained from the composite material of the present invention include automobile frames, bumper face bar support materials, chassis shells, seat frames, suspension supports, sunroof frames, bumper beams, two-wheeled vehicle frames, farm equipment frames, OA. Used for parts that require high strength and rigidity, such as equipment frames and machine parts.

以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
(測定方法)
(1)炭素長繊維の重量平均繊維長
複合材料または複合成形品の微小片を、2枚のスライドグラス板間で溶融し、厚さ0.05mm程度のフイルム状とした。マイクロスコープ(キーエンス社製)を使用して、透過光により倍率100倍にて限定視野内に各繊維の重心(長さの中心)が存在する繊維の長さを、100本〜200本を測定して、0.1mm間隔のヒストグラムを作成した。クラスの中央値(Xi)と頻度(fi)から次式により求めた。
X=ΣfiXi/ΣfiXi
(2)相対粘度
JIS K6920−2:2009に準じて、25℃の恒温水槽中で、ポリアミド共重合体の98%硫酸の5g/l溶液について、オストワルド粘度計(旭製作所製、4810型)を使用して、溶液の落下秒数と溶媒の落下秒数から求めた。
(3)融点(Tm)
ポリアミド共重合体から、約10mg試験片をアルミパンに採取した。示差走査熱量計(DSC)として、TA instruments社製Q100型DSCを使用し、ISO11357−3に準じて、窒素流動中で20℃/minにて昇温し、ヒートフローのピーク温度を融点とした。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
(Measuring method)
(1) Weight average fiber length of carbon long fiber A fine piece of a composite material or a composite molded product was melted between two slide glass plates to form a film having a thickness of about 0.05 mm. Using a microscope (manufactured by KEYENCE), measure the length of the fibers where the center of gravity (the center of the length) of each fiber exists within a limited field of view at a magnification of 100 times with transmitted light, and measure 100 to 200 fibers. Thus, histograms at intervals of 0.1 mm were created. It calculated | required by the following Formula from the median (Xi) and frequency (fi) of the class.
X = ΣfiXi 2 / ΣfiXi
(2) Relative viscosity According to JIS K6920-2: 2009, an Ostwald viscometer (manufactured by Asahi Seisakusho, Model 4810) is used for a 5 g / l solution of 98% sulfuric acid of a polyamide copolymer in a constant temperature water bath at 25 ° C. It was calculated from the solution falling seconds and the solvent dropping seconds.
(3) Melting point (Tm)
About 10 mg test piece was collected on an aluminum pan from the polyamide copolymer. As a differential scanning calorimeter (DSC), a Q100 DSC manufactured by TA instruments was used, and the temperature was raised at 20 ° C./min in a nitrogen flow according to ISO 11357-3, and the peak temperature of the heat flow was taken as the melting point. .

成形性や物性評価は次のように行った。
(4)吸湿率
得られた平板成形品から切削して得られた100×12.5×2mmの曲げ試験片13本を、恒温恒湿機(ナガノサイエンス社製 LH21−21M型)を使用し、80℃95%RH下にて200時間放置した後、表面付着水をティッシュペーパーで拭き取り、それぞれ質量を測定し、m1とした。この試験片の中から任意の7本を、100℃に温度調節した真空乾燥機(ヤマト科学社製、角型真空定温乾燥器DP43型)に投入し、160時間乾燥した後質量を測定し、m2とした。
次式により、80℃95%RH下での吸湿率を求めた。
吸湿率(%)=(m1−m2)×100/m2
The moldability and physical properties were evaluated as follows.
(4) Moisture absorption rate Using a thermo-hygrostat (LH21-21M type, manufactured by Nagano Science Co., Ltd.) 13 bend test pieces of 100 × 12.5 × 2 mm obtained by cutting from the obtained flat plate molded product. , And left at 80 ° C. under 95% RH for 200 hours, the surface adhering water was wiped off with a tissue paper, and the respective masses were measured to obtain m1. Arbitrary seven of these test pieces were placed in a vacuum dryer (Yamato Scientific Co., Ltd., square vacuum constant temperature dryer DP43 type) whose temperature was adjusted to 100 ° C., dried for 160 hours, and then weighed. m2.
The moisture absorption rate at 80 ° C. and 95% RH was determined by the following formula.
Moisture absorption rate (%) = (m1−m2) × 100 / m2

(5)曲げ特性
(4)にて80℃95%RH下で200H吸湿処理した後、23℃50%RHに調節された試験室で2時間放置した成形品5本(吸湿サンプル)と、吸湿処理後真空乾燥した後、23℃に温度調節された試験室中のデシケータ中で2時間放置された試験片5本(乾燥サンプル)について、ISO178に準拠した3点曲げ試験機(オリエンテック社製テンシロン4L型)を使用して、スパン長80mm、クロスヘッド速度1mm/minによる曲げ強度と曲げ弾性率を測定した。
(6)荷重たわみ温度
(4)にて吸湿処理と真空乾燥処理した成形品3本について、東洋精機社製ヒートデストーションテスターを使用し、ISO75−1,−2に準じて、フラットワイズ方向に1.8MPa荷重下での荷重たわみ温度を求めた。
(7)プリプレグ含浸性
プリプレグの含浸性を、成形品表面の繊維の浮きだし状態から判断した。
○:繊維の浮き出し部分の面積割合が5%未満、×:繊維の浮き出し部分の面積割合が5%以上
(5) Bending characteristics Five molded articles (humidity absorption sample) left for 2 hours in a test room adjusted to 23 ° C and 50% RH after moisture absorption treatment at 80 ° C and 95% RH in (4), and moisture absorption Three-point bending tester (Orientec Co., Ltd.) compliant with ISO178 for five test pieces (dried samples) left for 2 hours in a desiccator in a test chamber whose temperature was adjusted to 23 ° C. Tensilon 4L type) was used to measure the bending strength and the bending elastic modulus at a span length of 80 mm and a crosshead speed of 1 mm / min.
(6) Deflection temperature under load For three molded products that have been subjected to moisture absorption treatment and vacuum drying treatment in (4), use a heat distortion tester manufactured by Toyo Seiki Co., Ltd. in the flatwise direction in accordance with ISO75-1, -2. The deflection temperature under load of 1.8 MPa was determined.
(7) Prepreg impregnation property The prepreg impregnation property was judged from the state of the fiber on the surface of the molded product.
○: Area ratio of the raised part of the fiber is less than 5%, X: Area ratio of the raised part of the fiber is 5% or more

実施例1〜5
表1に示したポリアミド共重合体を、融点+約30℃に温度調節されたスクリュー式押し出し機のホッパーに投入した。押し出し機内で可塑化後、ダイヘッドより含浸台に溶融樹脂を供給した。一方、表1に示した炭素繊維のロービングを拡張開繊して、押出機のダイヘッドに連結された含浸ダイに導き、炭素繊維が100質量部になる速度で、引き取りローラーを駆動して、含浸ダイから引き抜いた。幅10mm・高さ0.2mmのダイから含浸被覆されたテープ状プリプレグを、引き取りローラーにて賦形して固化した後、枷に巻き取った。
テープ状プリプレグを間隔300mm・幅150mmのバー間に10層となるように配列し、巻き上げた。これを、融点より約30℃高い温度に温度調節したヒートプレスの200×200mmの面盤間に配置し、5分間、約5MPa加圧した。その後、面盤と共に取り出し、水冷却回路が配置された冷却盤間に移動し、5MPaに加圧保持した状態で50℃以下まで冷却した。その後、面盤を開放して、炭素繊維が一軸配向した厚さ約2mmの炭素繊維強化ポリアミド共重合体の成形板を得た。成形板から繊維軸方向に100mm×12.5mmのテストピースを切削した。得られたテストピースについて、吸水率、曲げ特性、荷重たわみ温度を評価した。
実施例品は、吸湿時の保持率は80%以上保持している。
Examples 1-5
The polyamide copolymer shown in Table 1 was put into a hopper of a screw type extruder whose temperature was adjusted to the melting point + about 30 ° C. After plasticization in the extruder, the molten resin was supplied from the die head to the impregnation table. On the other hand, the carbon fiber roving shown in Table 1 is expanded and opened, led to an impregnation die connected to the die head of the extruder, and the take-up roller is driven at a speed at which the carbon fiber becomes 100 parts by mass to impregnate. Pulled out from the die. A tape-shaped prepreg impregnated and coated from a die having a width of 10 mm and a height of 0.2 mm was shaped by a take-up roller and solidified, and then wound on a basket.
The tape-shaped prepregs were arranged so as to form 10 layers between bars having an interval of 300 mm and a width of 150 mm, and wound up. This was placed between 200 × 200 mm face plates of a heat press whose temperature was adjusted to about 30 ° C. higher than the melting point, and pressurized for about 5 MPa for 5 minutes. After that, it was taken out together with the face plate, moved between cooling plates provided with a water cooling circuit, and cooled to 50 ° C. or lower in a state where the pressure was kept at 5 MPa. Thereafter, the face plate was opened to obtain a carbon fiber reinforced polyamide copolymer molded plate having a thickness of about 2 mm in which carbon fibers were uniaxially oriented. A test piece of 100 mm × 12.5 mm was cut from the molded plate in the fiber axis direction. About the obtained test piece, the water absorption rate, the bending characteristic, and the deflection temperature under load were evaluated.
The example product has a retention rate of 80% or more when absorbing moisture.

実施例6
実施例1と同様に樹脂を含浸し、含浸ダイから引き抜き、引き取りローラーにて賦形して固化したテープを、35mmにカットして得られた短冊状プリプレグを短冊状のプリプレグテープを200mm×200mmの平板状の型内にランダムにばらまき供給した。型を280℃まで加熱した後、圧縮し、3分間保持後、型を150℃まで冷却して、炭素繊維がランダム配向したプリプレグシートを得た。このプリプレグシートを、予め遠赤外線ヒータにて280℃まで予熱し、圧縮成形機(神藤金属工業所製、50t)に取り付け、予め180℃に温度調節した210mm×210mmのキャビティを有する金型に供給し、30MPaにて3分間圧縮成形し、厚さ約2mmの平板成形品を得た。
圧縮成形により得られた平板成形品の中央部から100mm×12.5mmのテストピースを切削した。得られたテストピースについて、実施例1と同様に吸湿率、曲げ特性、荷重たわみ温度を評価した。
繊維をランダム配向した実施例6では、異方性が殆どなく、吸湿後も410MPaと高い曲げ強度を示している。
Example 6
In the same manner as in Example 1, the tape was impregnated with resin, pulled out from the impregnation die, shaped by a take-off roller and solidified, and the strip-shaped prepreg obtained by cutting into 35 mm was formed into a strip-shaped prepreg tape of 200 mm × 200 mm. The plate was randomly distributed in a flat plate mold. The mold was heated to 280 ° C., compressed, held for 3 minutes, and then cooled to 150 ° C. to obtain a prepreg sheet in which carbon fibers were randomly oriented. This prepreg sheet is preheated to 280 ° C. with a far-infrared heater, attached to a compression molding machine (manufactured by Shinfuji Metal Industry Co., Ltd., 50 t), and supplied to a mold having a 210 mm × 210 mm cavity whose temperature is adjusted to 180 ° C. Then, compression molding was performed at 30 MPa for 3 minutes to obtain a flat molded product having a thickness of about 2 mm.
A test piece of 100 mm × 12.5 mm was cut from the center of the flat molded product obtained by compression molding. About the obtained test piece, the moisture absorption rate, the bending characteristic, and the deflection temperature under load were evaluated in the same manner as in Example 1.
In Example 6 in which the fibers were randomly oriented, there was almost no anisotropy and a high bending strength of 410 MPa was shown even after moisture absorption.

比較例1〜3
ポリアミド共重合体を表2に示したように変更した以外は、実施例1と全く同様にプリプレグテープを作製した後、成形板を成形し、繊維軸方向にテストピースを切削した。得られた試験片について,実施例と全く同様に物性を評価した。得られた試験データを表2に合わせて示した。
Comparative Examples 1-3
A prepreg tape was prepared in the same manner as in Example 1 except that the polyamide copolymer was changed as shown in Table 2, and then a molded plate was formed and a test piece was cut in the fiber axis direction. The physical properties of the obtained test pieces were evaluated in the same manner as in the examples. The obtained test data is shown in Table 2 together.

比較例4
短冊状プリプレグの長さを6.5mmにした以外は、実施例6と全く同様に、ランダム配向した成形板を成形し、平板から切削して得られたテストピースについて、同様に評価した結果を表2に示した。
実施例6と比較して、繊維の補強効果が十分でなく曲げ強度は、乾燥状態でも335MPaと構造材としては不十分である。
Comparative Example 4
Except that the length of the strip-shaped prepreg was set to 6.5 mm, the test piece obtained by forming a randomly oriented molded plate and cutting it from the flat plate was evaluated in the same manner as in Example 6. It is shown in Table 2.
Compared with Example 6, the reinforcing effect of the fiber is not sufficient, and the bending strength is 335 MPa, which is insufficient as a structural material even in a dry state.

実験に使用した原料と記号
PA1:デカメチレンテレフタルアミド/アミド1010=60/40(モル比)共重合体(東洋紡試作品、Tm 255℃、相対粘度2.5)
PA2:デカメチレンテレフタルアミド/アミド1010=20/80(モル比)共重合体(東洋紡試作品,Tm 227℃、相対粘度 2.5)
PA3:デカメチレンテレフタルアミド/アミド1010=80/20(モル比)共重合体(東洋紡試作品、Tm 295℃、相対粘度 2.4)
PA4:ノナメチレンテレフタルアミド/アミド1010=60/40(モル比)共重合体(東洋紡試作品、Tm 248℃、相対粘度2.5)
PA5:ポリアミド6 T802(東洋紡製,相対粘度2.5)
PA6:ポリアミド1010(東洋紡試作品、Tm 200℃、相対粘度2.5)
PA7:ポリデカメチレンテレフタルアミド(東洋紡試作品、Tm 305℃、相対粘度2.5)
炭素繊維:帝人社製東邦テナックス IMS40(単繊維径6.4μm、6000フィラメント)
MW5000:タルク (林化成製、ミクロンホワイト)平均粒径 4μm
CAV102:モンタン酸カルシュウム塩(クラリアント製)
Raw material and symbol PA1: decamethylene terephthalamide / amide 1010 = 60/40 (molar ratio) copolymer (Toyobo prototype, Tm 255 ° C., relative viscosity 2.5)
PA2: decamethylene terephthalamide / amide 1010 = 20/80 (molar ratio) copolymer (Toyobo prototype, Tm 227 ° C., relative viscosity 2.5)
PA3: decamethylene terephthalamide / amide 1010 = 80/20 (molar ratio) copolymer (Toyobo prototype, Tm 295 ° C., relative viscosity 2.4)
PA4: Nonamethylene terephthalamide / amide 1010 = 60/40 (molar ratio) copolymer (Toyobo prototype, Tm 248 ° C., relative viscosity 2.5)
PA5: Polyamide 6 T802 (manufactured by Toyobo, relative viscosity 2.5)
PA6: polyamide 1010 (Toyobo prototype, Tm 200 ° C., relative viscosity 2.5)
PA7: Polydecamethylene terephthalamide (Toyobo prototype, Tm 305 ° C, relative viscosity 2.5)
Carbon fiber: Toho Tenax IMS40 manufactured by Teijin Ltd. (single fiber diameter 6.4 μm, 6000 filaments)
MW5000: Talc (manufactured by Hayashi Kasei Co., Ltd., micron white) average particle size 4 μm
CAV102: Montanic acid calcium salt (manufactured by Clariant)

上記ポリアミドの東洋紡試作品は、特開2010−150445号公報に記載の方法に基づき、適宜原料モノマーを選択することで重合した。アミド1010は、デカメチレンジアミンとセバシン酸からなるアミド単位である。   The polyamide Toyobo prototype was polymerized by appropriately selecting raw material monomers based on the method described in JP 2010-150445 A. Amide 1010 is an amide unit composed of decamethylenediamine and sebacic acid.

繊維を一軸配向した実施例1〜5は、構造材としての高い強度や耐熱性を保持し、かつ吸湿率が低く、吸湿時の強度保持率が高い。   Examples 1 to 5 in which fibers are uniaxially oriented maintain high strength and heat resistance as a structural material, have a low moisture absorption rate, and have a high strength retention rate during moisture absorption.

本発明により、吸湿率が低く、平衡吸湿後の弾性率や曲げ強度が高く、耐熱性に優れたスタンピング成形品を得ることが可能となり、構造部材やハウジングの樹脂化が可能となり、軽量化や省エネルギーの面から産業界に大きく寄与することが期待される。   According to the present invention, it is possible to obtain a stamping molded product having a low moisture absorption rate, a high elastic modulus and bending strength after equilibrium moisture absorption, and excellent heat resistance, and it is possible to make a structural member and a housing resin, and to reduce the weight. It is expected to greatly contribute to the industry from the aspect of energy saving.

Claims (3)

平均10mm以上の炭素長繊維(A)100質量部に対して、80モル%以上が(式1)及び(式2)で表されるアミド単位を有し、(式1)、(式2)で表されるアミド単位のモル比が、(式1):(式2)=80:20〜20:80であり、(式1)において12≧j≧10、12≧k≧8、(式2)において12≧m≧8である、融点が200〜300℃のポリアミド共重合体(B)35〜150質量部を含有し、絶乾時の成形品の曲げ強度に対する、80℃95%RH下200時間調湿した成形品の曲げ強度の保持率が、80%以上であることを特徴とする圧縮成形用炭素長繊維強化ポリアミド複合材料。
−NH−(CH−NH−CO−(CH−CO− ・・(式1)
−NH−(CH−NH−CO−C−CO− ・・(式2)
ここで、[−C−]はパラフェニレン構造を表す
To the average 10mm or more carbon long fibers (A) 100 parts by mass of, possess more than 80 mol% (Formula 1) and amide units represented by formula (2), (Equation 1), (Equation 2) The molar ratio of the amide units represented by the formula is (Formula 1) :( Formula 2) = 80: 20 to 20:80. In (Formula 1), 12 ≧ j ≧ 10, 12 ≧ k ≧ 8, (Formula 1) Ru 12 ≧ m ≧ 8 der in 2), melting point containing polyamide copolymer 200 to 300 [° C. (B) 35 to 150 parts by weight, relative to the bending strength of the molded article at the time of absolute dry, 80 ° C. 95% retention of flexural strength of the molded article was conditioned at 200 hours tone RH is, long carbon fiber reinforced polyamide composite material for compression molding, characterized in der Rukoto 80% or more.
—NH— (CH 2 ) j —NH—CO— (CH 2 ) k —CO— (Formula 1)
—NH— (CH 2 ) m —NH—CO—C 6 H 4 —CO— (Formula 2)
Here , [ —C 6 H 4 —] represents a paraphenylene structure.
ポリアミド共重合体の融点が240〜280℃であることを特徴とする請求項1に記載の圧縮成形用炭素長繊維強化ポリアミド複合材料。 2. The carbon long fiber reinforced polyamide composite material for compression molding according to claim 1, wherein the polyamide copolymer has a melting point of 240 to 280 ° C. 3. ポリアミド複合材料が、テープ状またはシート状である請求項1または2に記載の圧縮成形用炭素長繊維強化ポリアミド複合材料。 3. The carbon long fiber reinforced polyamide composite material for compression molding according to claim 1 or 2 , wherein the polyamide composite material is in the form of a tape or a sheet.
JP2013046955A 2013-03-08 2013-03-08 Carbon long fiber reinforced polyamide composite for compression molding Active JP6146063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046955A JP6146063B2 (en) 2013-03-08 2013-03-08 Carbon long fiber reinforced polyamide composite for compression molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046955A JP6146063B2 (en) 2013-03-08 2013-03-08 Carbon long fiber reinforced polyamide composite for compression molding

Publications (2)

Publication Number Publication Date
JP2014173006A JP2014173006A (en) 2014-09-22
JP6146063B2 true JP6146063B2 (en) 2017-06-14

Family

ID=51694589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046955A Active JP6146063B2 (en) 2013-03-08 2013-03-08 Carbon long fiber reinforced polyamide composite for compression molding

Country Status (1)

Country Link
JP (1) JP6146063B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102542302B1 (en) * 2015-12-18 2023-06-09 디에스엠 아이피 어셋츠 비.브이. pressure vessel
US11046023B2 (en) 2015-12-18 2021-06-29 Dsm Ip Assets B.V. Tapes
JP2018104537A (en) * 2016-12-26 2018-07-05 東レ株式会社 Base material
JP7176236B2 (en) * 2018-06-07 2022-11-22 東洋紡株式会社 Thermoplastic prepreg sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005535754A (en) * 2002-08-09 2005-11-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Polyamide molding composition and electrical and electronic components having improved thermal stability molded therefrom
FR2858626B1 (en) * 2003-08-05 2005-10-07 Atofina SOFT SEMI AROMATIC POLYAMIDES WITH LOW HUMIDITY RESUME
JP5509756B2 (en) * 2009-09-16 2014-06-04 東洋紡株式会社 Carbon long fiber reinforced polyamide composite material
JP5471338B2 (en) * 2009-11-17 2014-04-16 東洋紡株式会社 Carbon long fiber reinforced polyamide composite material

Also Published As

Publication number Publication date
JP2014173006A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP5509756B2 (en) Carbon long fiber reinforced polyamide composite material
KR101196689B1 (en) Composite polyamide article
JP5493350B2 (en) Carbon long fiber reinforced polypropylene composite
JP5987335B2 (en) Carbon long fiber reinforced polyamide resin prepreg and molded product
JP6146063B2 (en) Carbon long fiber reinforced polyamide composite for compression molding
JP5938299B2 (en) Fiber reinforced resin composition
JP5564839B2 (en) Stamping molded products
JP2013543803A (en) Composite structure with improved heat aging and interlayer bond strength
JP2010168526A (en) Carbon filament-reinforced composite material
WO2005092814A1 (en) Process for production of copped strands
JP6453575B2 (en) Fiber reinforced resin composition
JP2016079337A (en) Carbon fiber-reinforced plastic and method for producing the same
JP5471338B2 (en) Carbon long fiber reinforced polyamide composite material
JP7384197B2 (en) Fiber-reinforced resin material, roll, molded product, and method for producing fiber-reinforced resin material
JP5668310B2 (en) Hybrid carbon fiber reinforced thermoplastic resin composite material
JP5789933B2 (en) Compression molding method for fiber reinforced thermoplastic resin sheet
JP5402584B2 (en) Carbon long fiber reinforced polyamide composite material
JP6146062B2 (en) Carbon long fiber reinforced polyamide composite for compression molding
WO2021124907A1 (en) Fiber-reinforced resin composite sheet, fiber-reinforced resin composite material, and molded resin article including same
JP5891657B2 (en) Carbon long fiber reinforced polypropylene molded products
JP6711876B2 (en) Fiber reinforced resin composition
JP5850298B2 (en) Carbon long fiber reinforced polyamide resin composite material
JP6031884B2 (en) Long fiber reinforced polyamide resin molded product
JP7388435B2 (en) Molded product manufacturing method
JP6160095B2 (en) Carbon fiber reinforced thermoplastic resin prepreg sheet or molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R151 Written notification of patent or utility model registration

Ref document number: 6146063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350