JP6031884B2 - Long fiber reinforced polyamide resin molded product - Google Patents

Long fiber reinforced polyamide resin molded product Download PDF

Info

Publication number
JP6031884B2
JP6031884B2 JP2012176993A JP2012176993A JP6031884B2 JP 6031884 B2 JP6031884 B2 JP 6031884B2 JP 2012176993 A JP2012176993 A JP 2012176993A JP 2012176993 A JP2012176993 A JP 2012176993A JP 6031884 B2 JP6031884 B2 JP 6031884B2
Authority
JP
Japan
Prior art keywords
acid
diamine
polyamide
molded product
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012176993A
Other languages
Japanese (ja)
Other versions
JP2013253215A (en
Inventor
葭原 法
法 葭原
名合 聡
聡 名合
霧山 晃平
晃平 霧山
杉原 秀紀
秀紀 杉原
健一 船城
健一 船城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49951013&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6031884(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2012176993A priority Critical patent/JP6031884B2/en
Publication of JP2013253215A publication Critical patent/JP2013253215A/en
Application granted granted Critical
Publication of JP6031884B2 publication Critical patent/JP6031884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、長繊維とポリアミド樹脂からなる複合材料に関する。詳しくは、長繊維と、特定の結晶構造を有するポリアミド6系樹脂組成物からなる複合材料に関する。更に詳しくは、機械的物性に最適な微細構造を有し、機械的性質に優れた構造材用複合材料に関する。   The present invention relates to a composite material composed of long fibers and a polyamide resin. Specifically, the present invention relates to a composite material composed of long fibers and a polyamide 6-based resin composition having a specific crystal structure. More specifically, the present invention relates to a composite material for a structural material having a fine structure optimum for mechanical properties and excellent mechanical properties.

従来、電線被覆法を応用したガラス長繊維強化ポリアミド樹脂複合材料は知られていた(例えば、非特許文献1参照)。しかし、従来技術では、ガラス繊維とポリアミド樹脂からなる長繊維強化ポリアミド樹脂複合材料を射出成形して成形品を得ていた。複合化するコンパウンド化工程や射出成形工程でガラス繊維の折損が著しく、ガラス繊維の強度や弾性率への補強効果が低下し、構造材としての実用性能には不満足であった。ガラス繊維の折損を抑制するために、低粘性ポリアミドと平らなガラス繊維の組み合わせについて開示されているが、構造材としての高い要求には全く未達であった(特許文献1)。   Conventionally, a long glass fiber reinforced polyamide resin composite material using an electric wire coating method has been known (see, for example, Non-Patent Document 1). However, in the prior art, a molded product is obtained by injection molding a long fiber reinforced polyamide resin composite material made of glass fiber and polyamide resin. In the compounding process and the injection molding process for compounding, breakage of the glass fiber was remarkable, the reinforcing effect on the strength and elastic modulus of the glass fiber was lowered, and the practical performance as a structural material was unsatisfactory. In order to suppress breakage of glass fibers, a combination of low-viscosity polyamide and flat glass fibers has been disclosed, but the high demand as a structural material has not been achieved at all (Patent Document 1).

高強度・高剛性成形品を得るために、ガラス繊維より強度や弾性率の高い炭素繊維とポリアミド樹脂の複合材料も研究開発された(非特許文献2参照)。しかし、やはりコンパウンド化工程や射出成形工程で炭素繊維が折損し、その効果は要求に大幅に未達であった。
また、強化繊維の折損を避けるために、成形時のせん断応力が低い圧縮成形についても検討された。しかし、強化繊維が長くなると繊維のからみ合いが起こり、流動性が著しく低下して、大型成形品や細いリブやボス構造を有する成形品は、欠肉が起こり良好な成形品が得られなかった。
繊維の絡み合いが起こらないように、繊維のロービングを単繊維状に開繊した後、ポリアミド樹脂を含浸して、強化繊維とポリアミド樹脂からなる一軸のテープ状プリプレグを予備成形した後、加熱圧縮成形する方法も開示された(例えば、非特許文献3参照)。しかし、一般のポリアミド樹脂の場合、繊維束への含浸性がおとり、ボイド含有が多くなり、強度や剛性が期待値とはかけ離れた複合材となり構造材の要求には未達であった。
In order to obtain a high-strength and high-rigidity molded product, a composite material of carbon fiber and polyamide resin having higher strength and elastic modulus than glass fiber has been researched and developed (see Non-Patent Document 2). However, the carbon fiber was broken in the compounding process and the injection molding process, and the effect was far below the requirement.
In order to avoid breakage of the reinforcing fibers, compression molding with low shear stress during molding was also examined. However, when the reinforcing fiber becomes longer, the fibers are entangled and the fluidity is remarkably lowered, and a large molded product or a molded product having a thin rib or boss structure is thinned and a good molded product cannot be obtained. .
To prevent fiber entanglement, fiber roving is opened into a single fiber, then impregnated with polyamide resin, pre-molded with a uniaxial tape-shaped prepreg composed of reinforcing fibers and polyamide resin, and then heat compression molded The method of doing is also disclosed (for example, refer nonpatent literature 3). However, in the case of a general polyamide resin, the impregnation property into the fiber bundle is reduced, the void content increases, and the strength and rigidity are far from the expected values, so that the demand for the structural material has not been achieved.

含浸性を改善するために、低粘度のポリアミド樹脂を使用することや、樹脂温度を高めることや、含浸工程で高いせん断力を付与することが検討されたが、その効果は小さく、ボイドは抑制されず、含浸性は殆ど向上しなかった。その上、低粘度のポリアミド樹脂の使用や高せん断力により、繊維の破断し、毛羽が発生しやすく、引き抜き成形によるプリプレグが安定して生産できないとう問題があった。特に、単繊維径が細く折れやすい炭素繊維の場合、毛羽が発生しやすく、含浸性のよいプリプレグの安定生産とは両立は困難であった。   In order to improve the impregnation property, it was studied to use a low-viscosity polyamide resin, to increase the resin temperature, and to apply a high shear force in the impregnation process, but the effect was small and voids were suppressed. The impregnation property was hardly improved. In addition, the use of a low-viscosity polyamide resin and a high shearing force have a problem in that fibers are easily broken and fluff is easily generated, and a prepreg by pultrusion cannot be stably produced. In particular, in the case of a carbon fiber having a single fiber diameter that is easy to break, fluff is likely to occur, and it is difficult to achieve both stable production of a prepreg with good impregnation properties.

また母相となる樹脂についても検討された。ポリアミド6と芳香族ポリアミドを母相とし、重量繊維長が1mm〜15mmであるガラス繊維強化ポリアミド樹脂が特許文献2について開示されている。芳香族ポリアミドのポリアミド6より高強度の効果により、複合材の強度が改善されることを開示している。特許文献2には、繊維長を限定する理由として、強化繊維が15mmを超えると成形性が低下するので好ましくないとしている。成形性を保持するために、繊維長を限定しており、母相の樹脂組成による成形性改善効果については全く言及していない。より細く、より弾性率が高い炭素繊維強化の場合も、成形時の流動性のための繊維長の限界はより長くなることは当業界では想定できないことであった。また脂肪族ジアミンとテレフタル酸からなるポリアミド樹脂の共重合の連鎖分布制御により、半結晶化時間が調整できることは開示されている(特許文献3)。しかし、特許文献3では、繊維束への含浸性に適切な結晶化挙動については全く意図せず、検討もされていない。また、高融解熱ポリアミドと低融解熱ポリアミドと液晶樹脂と炭素繊維からなる組成物が開示されている(特許文献4)。特許文献4は、射出成形用の組成物を目的としており、プリプレグ作製に重要な繊維束への含浸性や構造材用のスタンピング成形性の改善については全く意図されておらず、検討もされていない。射出成形品において、高結晶性のポリアミド66にポリアミド6を共重合することにより、成形品のソリが改善されることは知られている。脂環族ポリアミドにポリアミド以外の結晶性樹脂を組み合わせて射出成形性を改善することが開示されている(特許文献5)。しかし、特許文献5では、ポリアミド樹脂の組み合わせによる物性の改善は全く言及していない。また、ポリアミド樹脂とポリアミド樹脂のアロイは、微分散できるが、目的とする物性改善項目は殆ど見出せていない。改善効果として、ポリアミド6やポリアミド66にポリアミド6Tのような高融点ポリアミドの微粉末を添加して結晶核剤としての応用が開示されている(特許文献6)。また、ポリアミド6やポリアミド66のストレスクラッキング性改善として、高級脂肪族ポリアミド(特許文献7)をブレンドすることが開示されている。
このように樹脂を変えることや組み合わせによる改善は進んだが、汎用的なポリアミド6系の結晶性を制御して物性を改善することについては全く開示されていなかった。
物性改善を目的として、ガラス繊維表面を温度可変走査型粘弾性顕微鏡により測定した力学的緩和を表す位相差のピークが120℃から200℃の間に存在するグラフト化ポリアミド樹脂層で被覆することで振動疲労特性が改善されることが開示されている(特許文献8)。この温度範囲に力学分散を起こす分子構造成分を導入すると疲労性改善に有効であり、対応する分子構造としてグラフト構造を開示している。しかし、本願で開示する実質的に線上のポリアミド6系の樹脂が、195℃以上で変化する高次構造である結晶構造やその制御による強度と靭性のバランス性の改善に関する技術は全く開示されていない。
工業的ニーズに近い性能を有する繊維強化複合材には、高強度でかつ破壊強さと破壊ひずみのバランスがよく、その積が尺度となる靭性の高い複合材料成形品開発の強い要求があった。
In addition, the resin used as a matrix was also examined. Patent Document 2 discloses a glass fiber reinforced polyamide resin having polyamide 6 and aromatic polyamide as a parent phase and a weight fiber length of 1 mm to 15 mm. It discloses that the strength of the composite is improved by the effect of higher strength than the polyamide 6 of the aromatic polyamide. In Patent Document 2, as the reason for limiting the fiber length, if the reinforcing fiber exceeds 15 mm, the moldability deteriorates, which is not preferable. In order to maintain moldability, the fiber length is limited, and no mention is made of the effect of improving moldability by the resin composition of the matrix. Even in the case of carbon fiber reinforcement that is thinner and has a higher elastic modulus, it has been impossible for the industry to assume that the limit of the fiber length for fluidity during molding is longer. Further, it is disclosed that the half-crystallization time can be adjusted by controlling the chain distribution of the copolymerization of a polyamide resin composed of an aliphatic diamine and terephthalic acid (Patent Document 3). However, in Patent Document 3, the crystallization behavior suitable for the impregnation property to the fiber bundle is not intended at all and is not studied. Also disclosed is a composition comprising a high melting heat polyamide, a low melting heat polyamide, a liquid crystal resin, and carbon fibers (Patent Document 4). Patent Document 4 aims at a composition for injection molding, and is not intended or studied at all for improvement of impregnation into fiber bundles and stamping moldability for structural materials, which are important for prepreg production. Absent. It is known that the warpage of a molded article is improved by copolymerizing polyamide 6 with a highly crystalline polyamide 66 in an injection molded article. It has been disclosed to improve injection moldability by combining an alicyclic polyamide with a crystalline resin other than polyamide (Patent Document 5). However, Patent Document 5 does not mention improvement of physical properties by a combination of polyamide resins. In addition, polyamide resin and polyamide resin alloy can be finely dispersed, but almost no improvement in physical properties has been found. As an improvement effect, an application as a crystal nucleating agent by adding fine powder of high melting point polyamide such as polyamide 6T to polyamide 6 or polyamide 66 is disclosed (Patent Document 6). Further, blending a higher aliphatic polyamide (Patent Document 7) is disclosed as an improvement in the stress cracking properties of polyamide 6 and polyamide 66.
Thus, although improvement by changing resin and combination progressed, it was not disclosed at all about improving the physical properties by controlling the crystallinity of general-purpose polyamide 6 system.
For the purpose of improving physical properties, the surface of glass fiber is coated with a grafted polyamide resin layer having a phase difference peak between 120 ° C. and 200 ° C. representing mechanical relaxation measured by a variable temperature scanning viscoelastic microscope. It is disclosed that vibration fatigue characteristics are improved (Patent Document 8). Introducing a molecular structural component that causes mechanical dispersion in this temperature range is effective in improving fatigue and discloses a graft structure as a corresponding molecular structure. However, the technology relating to the improvement of the balance between strength and toughness by controlling the crystal structure, which is a higher order structure of the polyamide 6 resin substantially linearly disclosed in the present application, changes at 195 ° C. or higher is completely disclosed. Absent.
Fiber reinforced composite materials having performances close to industrial needs have a strong demand for the development of high-strength composite material molded products having high balance between fracture strength and fracture strain and high product toughness.

特開2008−163340号公報JP 2008-163340 A 特許第4535772号公報Japanese Patent No. 4535772 特開平9−221592号公報JP-A-9-221592 特開2000−313803号公報JP 2000-313803 A 特開2011−57975号公報JP 2011-57975 A 特開昭57−80448号公報JP-A-57-80448 特開昭58−53949号公報JP 58-53949 A 特開2000−319505号公報JP 2000-319505 A

Composites,July, 150 (1973)Composites, July, 150 (1973) ポリアミド樹脂ハンドブック,p204,日刊工業新聞社(昭和63年)Polyamide resin handbook, p204, Nikkan Kogyo Shimbun (1988) SPI(Society of Plastics Industry) 30th 11−C (1975)SPI (Society of Plastics Industry) 30th 11-C (1975)

本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、生産性が高く、高強度でかつ破壊強さと破壊ひずみのバランスがよく靭性の高い複合材料成形品を提供することにある。   The present invention has been made against the background of such prior art problems. That is, an object of the present invention is to provide a composite material molded article having high productivity, high strength, a good balance between fracture strength and fracture strain, and high toughness.

本発明者らは鋭意検討した結果、複合材料の母相をなす樹脂が高強度でかつ破壊強さと破壊ひずみのバランスがよいことが必要であり、靭性の高いポリアミド6樹脂の結晶構造を特定化することで達成できることが分かり、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
すなわち、本発明は、以下の構成からなる。
1.強化繊維40〜80質量%とポリアミド6系樹脂60〜20質量%を含有し、小角X線散乱から求めた長周期分布のピーク値が、8.75nm〜15.0nmであり、かつ広角X線回折の最大散乱強度を示す面間隔が0.43nm〜0.45nmであることを特徴とする長繊維強化ポリアミド樹脂成形品。
2.強化繊維40〜80質量%とポリアミド6系樹脂60〜20質量%を含有し、10℃/分の昇温速度で測定したヒートフロー曲線が195℃から225℃の間で2つ以上の多重吸熱ピークを示し、かつ2番目に大きな吸熱を示すピーク温度が200℃〜215℃の範囲に存在することを特徴とする長繊維強化ポリアミド樹脂成形品。
3.繊維軸方向の曲げ強さと破壊ひずみの積が15MPa以上であることを特徴とする、強化繊維が一方向に配向した1.または2.に記載の長繊維強化ポリアミド樹脂成形品。
4.成形品の面上任意の方向の曲げ強さと破壊ひずみの積が5MPa以上であることを特徴とする、強化繊維が面内ランダムに配向した1.または2.に記載の長繊維強化ポリアミド樹脂成形品。
5.表面温度が165℃〜200℃である金型を使用してスタンピング成形することを特徴とする、1.〜4.のいずれかに記載の長繊維強化ポリアミド樹脂成形品の製造方法。
6.スタンピング成形を行い、次いで、165℃〜200℃で1分〜300分間熱処理することを特徴とする1.〜4.のいずれかに記載の長繊維強化ポリアミド樹脂成形品の製造方法。
As a result of intensive studies, the present inventors need to specify that the resin forming the matrix of the composite material has high strength and a good balance between fracture strength and fracture strain, and specify the crystal structure of polyamide 6 resin with high toughness. As a result, it has been found that the above-mentioned problems can be solved by the following means, and the present invention has been achieved.
That is, this invention consists of the following structures.
1. It contains 40 to 80% by mass of reinforcing fibers and 60 to 20% by mass of polyamide 6-based resin, has a long-period distribution peak value determined from small-angle X-ray scattering of 8.75 nm to 15.0 nm, and wide-angle X-rays A long fiber reinforced polyamide resin molded product, wherein the interplanar spacing showing the maximum scattering intensity of diffraction is 0.43 nm to 0.45 nm.
2. Two or more multiple endotherms with a heat flow curve between 195 ° C. and 225 ° C. containing 40 to 80% by mass of reinforcing fibers and 60 to 20% by mass of polyamide 6 resin and measured at a rate of temperature increase of 10 ° C./min. A long-fiber reinforced polyamide resin molded article having a peak and a peak temperature exhibiting the second largest endotherm in a range of 200 ° C to 215 ° C.
3. 3. The long fiber reinforced polyamide resin molded article according to 1 or 2, wherein the reinforcing fibers are oriented in one direction, wherein the product of the bending strength in the fiber axis direction and the fracture strain is 15 MPa or more.
4). 3. The long fiber reinforced polyamide resin molding according to 1. or 2, wherein the reinforcing fibers are randomly oriented in the plane, wherein the product of the bending strength and the fracture strain in an arbitrary direction on the surface of the molded product is 5 MPa or more. Goods.
5. The method for producing a long fiber reinforced polyamide resin molded article according to any one of 1. to 4., wherein stamping molding is performed using a mold having a surface temperature of 165 ° C to 200 ° C.
6). The method for producing a long fiber reinforced polyamide resin molded article according to any one of 1. to 4., wherein stamping molding is performed, followed by heat treatment at 165 ° C. to 200 ° C. for 1 minute to 300 minutes.

本発明により、母相のポリアミド樹脂の結晶構造の形態や大きさまた融点を特定化することで、破壊強さと破壊ひずみのバランスがよく靭性が高い複合成形品が工業的に提供できるようになった。
本発明により得られた長繊維強化ポリアミド樹脂複合材料を成形して得られる成形品は、自動車のフレーム部品や機械器具の構造部材やスポーツ器具などに使用される。
According to the present invention, by specifying the form, size and melting point of the crystal structure of the polyamide resin of the parent phase, it becomes possible to industrially provide a composite molded article having a good balance between fracture strength and fracture strain and high toughness. It was.
A molded product obtained by molding the long fiber reinforced polyamide resin composite material obtained by the present invention is used for a frame part of an automobile, a structural member of a mechanical instrument, a sports instrument, and the like.

以下、本発明を詳述する。
本発明の長繊維強化ポリアミド樹脂成形品には、強化繊維が40〜80質量%、好ましくは、50〜70質量%含有する。40質量%未満では、構造材として本発明の目的とする強度や弾性率の要求に未達となることや、結晶性が抑制された母相では離型性が劣り、好ましくない。また、80質量%を超えると。樹脂含浸性や成形時の流れ性が極度に低下するので好ましくない。
本発明に使用される強化繊維としては、炭素繊維、ガラス繊維、アラミド繊維、PBO繊維などが上げられる。高強度・高弾性率の面から、特に炭素繊維、ガラス繊維が好ましく、炭素繊維が本発明の効果を発現させる上で特に好ましい。
本発明に使用される強化長繊維の繊維長は、7.5mm以上であれば特に限定されないが、25mm以上、特に30mm以上が好ましい。高い機械的性質、特に高い耐衝撃性が必要な場合は、長い方が好ましい。また高い流動性が必要な場合は、短い方が好ましい。本発明の効果が特に発揮する強度と成形性の両立が必要な場合には、15mm〜70mm、好ましくは25〜50mmの強化繊維が使用される。
The present invention is described in detail below.
The long fiber reinforced polyamide resin molded product of the present invention contains 40 to 80% by mass, preferably 50 to 70% by mass of reinforcing fiber. If it is less than 40% by mass, the structural material does not meet the requirements for the strength and elastic modulus intended by the present invention, and the matrix phase with suppressed crystallinity is inferior in releasability. Moreover, when it exceeds 80 mass%. This is not preferable because the resin impregnation property and the flowability during molding are extremely reduced.
Examples of reinforcing fibers used in the present invention include carbon fibers, glass fibers, aramid fibers, and PBO fibers. From the viewpoint of high strength and high elastic modulus, carbon fibers and glass fibers are particularly preferable, and carbon fibers are particularly preferable in terms of expressing the effects of the present invention.
The fiber length of the reinforcing long fiber used in the present invention is not particularly limited as long as it is 7.5 mm or longer, but is preferably 25 mm or longer, particularly 30 mm or longer. When high mechanical properties, particularly high impact resistance is required, the longer one is preferable. Moreover, when high fluidity is required, the shorter one is preferable. When it is necessary to satisfy both the strength and formability at which the effects of the present invention are particularly exerted, reinforcing fibers of 15 mm to 70 mm, preferably 25 to 50 mm are used.

炭素繊維としては、特に製造法に制限されないが、ポリアクリロニトル繊維やセルロース繊維などの繊維を空気中で200〜300℃にて処理した後、不活性ガス中で1000〜3000℃以上で焼成され炭化製造された引張り強度20t/cm以上、引張り弾性率200GPa以上の炭素繊維が好ましい。本発明に使用される単繊維径は、特に制限されないが、複合化の製造ライン工程から3〜25μmが好ましく、特に4〜15μmが好ましい。3μm未満では、含浸や脱泡が難しく、25μmを超えると、比表面積が小さくなり、複合化の効果が小さくなり好ましくない。本発明に使用される炭素繊維は、空気や硝酸による湿式酸化、乾式酸化、ヒートクリーニング、ウイスカライジングなどによる接着性改良のための処理されたものが好ましい。また本発明の複合材料製造に使用される炭素繊維は、作業工程の取り扱い性から、100℃以下で軟化する集束剤により集束されていることが好ましい。集束フィラメント数には特に制限ないが、1000〜30000フィラメントが好ましく、3000〜25000フィラメントがより好ましい。本発明に使用される炭素繊維の集束剤は特に限定されないが、炭素繊維と母相のポリアミド樹脂に高い接着力を有するウレタン系やエポキシ系集束剤が好ましい。 The carbon fiber is not particularly limited by the production method, but after the fibers such as polyacrylonitrile fiber and cellulose fiber are treated at 200 to 300 ° C. in the air, they are fired at 1000 to 3000 ° C. or more in an inert gas. Carbon fibers produced by carbonization and having a tensile strength of 20 t / cm 2 or more and a tensile modulus of 200 GPa or more are preferred. Although the diameter of the single fiber used in the present invention is not particularly limited, it is preferably 3 to 25 μm, particularly preferably 4 to 15 μm, from the production line process of the composite. When the thickness is less than 3 μm, impregnation and defoaming are difficult. The carbon fiber used in the present invention is preferably treated for improving adhesion by wet oxidation with air or nitric acid, dry oxidation, heat cleaning, whiskerizing, or the like. Moreover, it is preferable that the carbon fiber used for composite material manufacture of this invention is bundled by the bundling agent which softens at 100 degrees C or less from the handleability of a work process. Although there is no restriction | limiting in particular in the number of focusing filaments, 1000-30000 filaments are preferable and 3000-25000 filaments are more preferable. The carbon fiber sizing agent used in the present invention is not particularly limited, but a urethane-based or epoxy-based sizing agent having high adhesion to the carbon fiber and the polyamide resin of the parent phase is preferable.

本発明には、母相として、60〜20質量%、好ましくは50〜30質量%のポリアミド6系の樹脂が使用される。60質量%を超えると荷重を担う強化繊維分率が少なく、高い強度や弾性率が得られない。また20質量%未満では、含浸が不十分となり、繊維間にボイドが残り、高い強度が得られないので好ましくない。   In the present invention, 60 to 20% by mass, preferably 50 to 30% by mass of a polyamide 6-based resin is used as a parent phase. If it exceeds 60% by mass, the fraction of reinforcing fiber bearing the load is small, and high strength and elastic modulus cannot be obtained. If it is less than 20% by mass, the impregnation is insufficient, voids remain between the fibers, and high strength cannot be obtained, which is not preferable.

本発明に使用されるポリアミド6系樹脂は、ポリアミド6構造単位を80モル%、好ましくは90モル%含有すれば特に限定されない。ポリアミド6構造単位が80モル%未満では、融点が低下し、高い耐熱性が得られないから好ましくない。ポリアミド6系樹脂に使用される共重合成分は特に限定されない。共重合されるジアミン成分としては、パラキシリレンジアミン、メタキシリレンジアミン、フェニレンジアミン、トルエンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、2−メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミンなどが例示される。これらの中では、ヘキサメチレンジアミン、ノナメチレンジアミンが好ましい。また、共重合されるジカルボン酸成分としては、アジピン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2−メチルテレフタル酸等が挙げられる。これらの中では、アジピン酸、セバシン酸、テレフタル酸が好ましい。また6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、p−アミノメチル安息香酸などのアミノカルボン酸や、ω―ラウロラクタムなどのラクタムなどが挙げられる。   The polyamide 6-based resin used in the present invention is not particularly limited as long as it contains 80 mol%, preferably 90 mol%, of a polyamide 6 structural unit. If the polyamide 6 structural unit is less than 80 mol%, the melting point is lowered and high heat resistance cannot be obtained, which is not preferable. The copolymerization component used for the polyamide 6 resin is not particularly limited. Examples of diamine components to be copolymerized include paraxylylenediamine, metaxylylenediamine, phenylenediamine, toluenediamine, tetramethylenediamine, hexamethylenediamine, nonamethylenediamine, 2-methylpentamethylenediamine, undecamethylenediamine, dodeca Examples include methylenediamine. Among these, hexamethylenediamine and nonamethylenediamine are preferable. Examples of the dicarboxylic acid component to be copolymerized include adipic acid, peric acid, azelaic acid, sebacic acid, dodecanoic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and 2-methylterephthalic acid. Of these, adipic acid, sebacic acid, and terephthalic acid are preferable. Further, aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and p-aminomethylbenzoic acid, and lactams such as ω-laurolactam can be mentioned.

本発明に使用されるポリアミド樹脂の分子量は特に限定されないが、JISK6920−2に準拠し、25℃において測定した98質量%硫酸の0.05g/l濃度における相対粘度が1.8〜2.8の範囲が好ましく、より好ましくは1.9〜2.65の範囲にある。やや低分子量のものが、炭素繊維への含浸性から好ましい。相対粘度が1.8未満では樹脂が脆く、本発明の効果を発揮しにくい。また2.8を超えると、溶融粘度が高くなり、強化繊維への含浸性が低下するので好ましくない。   Although the molecular weight of the polyamide resin used in the present invention is not particularly limited, the relative viscosity at a concentration of 0.05 g / l of 98 mass% sulfuric acid measured at 25 ° C. in accordance with JISK6920-2 is 1.8 to 2.8. Is preferable, and more preferably in the range of 1.9 to 2.65. Slightly low molecular weight is preferable from the viewpoint of impregnation into carbon fiber. If the relative viscosity is less than 1.8, the resin is brittle and the effects of the present invention are hardly exhibited. On the other hand, if it exceeds 2.8, the melt viscosity becomes high and the impregnation property to the reinforcing fiber is lowered, which is not preferable.

本発明の長繊維強化ポリアミド樹脂成形品は、母相を成すポリアミド6の主たる結晶形態はα型、好ましくは70質量%以上がα型であり、その長周期は、8.75nm〜15.0nm、好ましく8.9nm〜14.0nmにある。このような結晶構造がバランスのとれた機械的性質を示す理由は、未だ明確ではないが、下記のように考察される。主たる結晶形態がα型の場合は、結晶弾性率が高く、安定であり好ましい。また長周期が8.75nm未満では結晶化度や降伏強度が低く高性能を必要とする構造材としては不適で好ましくない。また長周期が15.0nmを超えると靭性が低下し、耐衝撃性を必要とする構造材としては好ましくない。結晶形態は、成形時の結晶化条件や結晶核剤の種類の組み合わせにより制御される。また長周期は、成形時の結晶化条件または共重合成分や可塑剤の配合により制御される。ただ共重合や可塑剤を用いた場合、共重合成分や可塑剤が到達結晶化度を低下する作用を有する場合が多く、目的とする機械的要求性能を損なうことが多いから、結晶化条件により制御することが好ましい。
ポリアミド6の結晶形態において、広角X線回折の最も高い回折強度から観測される面間隔が0.43nm〜0.45nmであれば〈200〉面が成長したα型が主であると判断される。また長周期は、小角X線散乱強度がピークを示す散乱角から算定される。
In the long fiber reinforced polyamide resin molded product of the present invention, the main crystal form of polyamide 6 constituting the matrix is α-type, preferably 70% by mass or more is α-type, and the long period is from 8.75 nm to 15.0 nm. The thickness is preferably 8.9 nm to 14.0 nm. The reason why such a crystal structure exhibits balanced mechanical properties is not yet clear, but is considered as follows. When the main crystal form is α-type, the crystal elastic modulus is high, stable and preferable. Further, if the long period is less than 8.75 nm, the crystallinity and yield strength are low and it is not suitable as a structural material requiring high performance. On the other hand, if the long period exceeds 15.0 nm, the toughness is lowered and it is not preferable as a structural material that requires impact resistance. The crystal form is controlled by a combination of crystallization conditions at the time of molding and the kind of crystal nucleating agent. The long period is controlled by the crystallization conditions at the time of molding or the blending of a copolymer component and a plasticizer. However, when a copolymer or plasticizer is used, the copolymer component or plasticizer often has the effect of lowering the ultimate crystallinity and often impairs the desired mechanical performance. It is preferable to control.
In the crystal form of polyamide 6, if the plane spacing observed from the highest diffraction intensity of wide-angle X-ray diffraction is 0.43 nm to 0.45 nm, it is judged that the α type in which the <200> plane has grown is mainly used. . The long period is calculated from the scattering angle at which the small-angle X-ray scattering intensity shows a peak.

本発明の長繊維強化ポリアミド樹脂成形品は、10℃/分の昇温速度で測定したヒートフロー曲線が195℃から225℃の間で多重ピークを示す。これらの多重ピークは、ポリアミド6系樹脂の融点に由来するもので、無限大サイズの結晶融点である平衡融点に対して、それぞれのピークは結晶化温度の差による結晶サイズの差によるものと推定されている。多重ピーク温度は、それぞれ成形品の熱履歴により決定され、高次構造の指標といえる。特定の多重ピークを有する複合材が、高い破壊強度と良好な破壊ひずみとのバランスを有する理由は、未だ明確ではないが、その結晶サイズや結晶化度が物性上、最も適当であり、有効な代用特性となっていると考察される。本発明の長繊維強化ポリアミド樹脂成形品は、この温度範囲の多重ピークの2番目に大きいヒートフローを示す温度が200℃〜215℃にある。200℃を下回ると、結晶サイズがやや小さく、成形品の強度がやや低く好ましくなく、また215℃を超えると、結晶サイズが大きくなりすぎ、曲げ破壊ひずみが低下し好ましくない。   The long fiber reinforced polyamide resin molded product of the present invention shows multiple peaks when the heat flow curve measured at a heating rate of 10 ° C./min is between 195 ° C. and 225 ° C. These multiple peaks are derived from the melting point of the polyamide 6 resin, and it is estimated that each peak is due to the difference in crystal size due to the difference in crystallization temperature with respect to the equilibrium melting point which is an infinite crystal melting point. Has been. The multiple peak temperature is determined by the thermal history of the molded product, and can be said to be an index of higher order structure. The reason why a composite material having a specific multiple peak has a balance between high fracture strength and good fracture strain is not yet clear, but its crystal size and crystallinity are the most appropriate and effective in terms of physical properties. It is considered to be a substitute characteristic. The long fiber reinforced polyamide resin molded product of the present invention has a temperature at 200 ° C. to 215 ° C. showing the second largest heat flow of multiple peaks in this temperature range. When the temperature is lower than 200 ° C., the crystal size is slightly small, and the strength of the molded product is slightly low, which is not preferable.

本発明の長繊維強化ポリアミド樹脂成形品は、表面温度が165℃〜200℃、好ましくは、170℃〜195℃である金型を使用してスタンピング成形することが好ましい製造方法の態様である。表面温度が165℃未満では、195℃〜225℃の範囲で多重ピークを示さず本発明が達成されないから好ましくない。また表面温度が165℃未満では、本発明の特徴である結晶長周期より構造が小さくなりやすく、本発明が達成されないから好ましくない。結晶構造の影響により、強度や弾性率がやや低くなり好ましくない。多重ピークの2番目に大きなピーク温度は、金型表面温度に依存し、金型温度と共に高くなる。しかし、表面温度が200℃を超えると、多重ピークにおける2番目以下のピークが小さくなり、単一ピーク状になり、本発明の効果の達成上好ましくない。表面温度が200℃を超えた場合、本発明の効果に有効な長周期より大きくなりやすく好ましくない。物性的には、破壊ひずみが低下するため、靭性が低下し好ましくない。   The long fiber reinforced polyamide resin molded product of the present invention is an embodiment of a production method in which stamping molding is preferably performed using a mold having a surface temperature of 165 ° C to 200 ° C, preferably 170 ° C to 195 ° C. If the surface temperature is less than 165 ° C., multiple peaks are not shown in the range of 195 ° C. to 225 ° C., and the present invention is not achieved. On the other hand, when the surface temperature is less than 165 ° C., the structure tends to be smaller than the crystal long period, which is a feature of the present invention, and the present invention is not achieved. Under the influence of the crystal structure, the strength and elastic modulus are somewhat low, which is not preferable. The second largest peak temperature of the multiple peaks depends on the mold surface temperature and increases with the mold temperature. However, when the surface temperature exceeds 200 ° C., the second and lower peaks in the multiple peaks become small and become a single peak, which is not preferable for achieving the effects of the present invention. When surface temperature exceeds 200 degreeC, it becomes easy to become larger than the long period effective for the effect of this invention, and is not preferable. In terms of physical properties, fracture strain is reduced, which is not preferable because toughness is reduced.

本発明の長繊維強化ポリアミド樹脂成形品は、165℃〜200℃、好ましくは170℃〜195℃で1分〜300分間熱処理することが好ましい製造方法の態様である。表表面温度が165℃未満では、195℃〜225℃の範囲で多重ピークを示さず本発明は達成されない。また処理温度が165℃未満では、本発明の特徴である結晶長周期より構造が小さくなりやすく、本発明が達成されないから好ましくない。高次構造の不完全さの影響で強度や弾性率がやや低くなり好ましくない。また、表面温度が200℃を超えると、多重ピークの大きさが2番目以下のピークが小さくなり、単一ピーク状になりやすく本発明には好ましくない。表面温度が200℃を超えた場合、本発明の効果に有効な長周期より大きくなりやすく好ましくない。物性的には、破壊ひずみが低下するため、靭性が低下し好ましくない。
特に210℃を超えると、長周期は過大となり、融点は多重ピークを示さず、ヒートフローの大きな単一ピークとなり、破壊強度や破壊ひずみが低下し、好ましくない。該熱処理を施す場合の成形品は、前述の165℃〜200℃の表面温度の金型を使用したスタンピング成形品でもよいし、また100℃〜170℃の表面温度の金型を使用した圧縮成形品でもよい。該熱処理の方法としては、金型で繊維強化樹脂を賦形冷却後脱型して得られた成形品を、熱風オーブン中や遠赤外線や近赤外線で熱処理する方法等が挙げられる。
The long fiber reinforced polyamide resin molded article of the present invention is an embodiment of a production method in which heat treatment is preferably performed at 165 ° C. to 200 ° C., preferably 170 ° C. to 195 ° C. for 1 minute to 300 minutes. When the surface temperature is less than 165 ° C, multiple peaks are not shown in the range of 195 ° C to 225 ° C, and the present invention is not achieved. If the treatment temperature is less than 165 ° C., the structure tends to be smaller than the crystal long period, which is a feature of the present invention, and the present invention is not achieved. The strength and elastic modulus are slightly lowered due to the imperfection of the higher order structure, which is not preferable. On the other hand, when the surface temperature exceeds 200 ° C., the second peak or less in the size of multiple peaks becomes small, and it tends to be a single peak, which is not preferable for the present invention. When surface temperature exceeds 200 degreeC, it becomes easy to become larger than the long period effective for the effect of this invention, and is not preferable. In terms of physical properties, fracture strain is reduced, which is not preferable because toughness is reduced.
In particular, when the temperature exceeds 210 ° C., the long period becomes excessive, the melting point does not show multiple peaks, and it becomes a single peak having a large heat flow, which is not preferable because the fracture strength and fracture strain are lowered. The molded product when the heat treatment is performed may be a stamped molded product using the above-described mold having a surface temperature of 165 ° C. to 200 ° C. or compression molding using a mold having a surface temperature of 100 ° C. to 170 ° C. Goods are also acceptable. Examples of the heat treatment method include a method of heat-treating a molded product obtained by shaping and cooling a fiber reinforced resin with a mold in a hot air oven, far infrared rays or near infrared rays.

ポリアミド6樹脂の溶融状態から結晶化は、結晶核剤効果を有する無機塩やタルクやクレイのような鉱物により高められることは知られている。本発明の繊維強化ポリアミド樹脂成形品においても、結晶核剤効果は有効であり、生産性を高める効果を有し、好ましい。   It is known that the crystallization from the molten state of the polyamide 6 resin is enhanced by an inorganic salt having a crystal nucleating agent effect or a mineral such as talc or clay. Also in the fiber-reinforced polyamide resin molded product of the present invention, the crystal nucleating agent effect is effective, and has the effect of increasing productivity, which is preferable.

本発明の繊維強化成形品の成形方法は特に限定されないが、強化繊維分率が高く、流動性が低いことや、成形中の繊維の折損を抑制するためにスタンピング成形されることが好ましい態様である。本発明の効果を発揮するには、示差走査熱量計おける10℃/min昇温過程において、発現する融解ピーク温度の中で、最も高い融点に相当する温度より、5〜50℃、好ましくは、10〜40℃高い温度で繊維強化樹脂を加熱した後、金型に投入し、スタンピング成形することが好ましい。5℃未満では成形品の欠肉や、強化繊維が成形品表面に浮き出し好ましくない。また50℃を超えると、成形品にバリの発生が著しくなり二次加工が必要になるので好ましくない。好ましい加熱方法としては、遠赤外線加熱、近赤外線加熱、非接触熱板加熱、接触熱板加熱などが上げられる。   The molding method of the fiber-reinforced molded product of the present invention is not particularly limited, but in a preferred embodiment, the reinforcing fiber fraction is high, the fluidity is low, and stamping molding is performed to suppress fiber breakage during molding. is there. In order to exert the effect of the present invention, in the temperature rising process at 10 ° C./min in the differential scanning calorimeter, among the melting peak temperatures that are expressed, the temperature corresponding to the highest melting point is 5 to 50 ° C., preferably It is preferable to heat the fiber reinforced resin at a temperature higher by 10 to 40 ° C. and then put it into a mold and perform stamping molding. If it is less than 5 ° C., it is not preferable that the molded product is thin or the reinforcing fiber is raised on the surface of the molded product. On the other hand, if it exceeds 50 ° C., burrs are remarkably generated in the molded product and secondary processing is required, which is not preferable. Preferable heating methods include far infrared heating, near infrared heating, non-contact hot plate heating, and contact hot plate heating.

本発明の長繊維強化ポリアミド樹脂成形品において、強化繊維が一軸配向した成形品の場合、繊維軸方向の曲げ強さ(UD:0度曲げ強さ)は好ましくは1400MPa以上,より好ましくは1500MPa以上あり、破壊ひずみは好ましくは1.0%以上、より好ましくは1.2%以上あり、靭性の尺度となる曲げ強さと破壊ひずみの積が好ましくは15MPa以上、より好ましくは18MPa以上で、かつ繊維軸に対して横方向の曲げ強さ(UD:90度曲げ強さ)は、好ましくは100MPa以上、より好ましくは120MPa以上である。また強化繊維を擬似等方性に配向した成形品においては、曲げ強さ(RS:曲げ強さ)は、好ましくは500MPa以上、より好ましくは600MPa以上であり、破壊ひずみは好ましくは1.4%以上、より好ましくは1.5%以上あり、曲げ強さと破壊ひずみの積が好ましくは5MPa以上、より好ましくは7MPa以上であることが好ましい。   In the long fiber reinforced polyamide resin molded product of the present invention, when the reinforced fiber is a uniaxially oriented molded product, the bending strength in the fiber axis direction (UD: 0 degree bending strength) is preferably 1400 MPa or more, more preferably 1500 MPa or more. The fracture strain is preferably 1.0% or more, more preferably 1.2% or more, and the product of the bending strength and the fracture strain as a measure of toughness is preferably 15 MPa or more, more preferably 18 MPa or more, and the fiber. The bending strength in the direction transverse to the axis (UD: 90 ° bending strength) is preferably 100 MPa or more, more preferably 120 MPa or more. Further, in a molded product in which the reinforcing fibers are oriented in a pseudo isotropic manner, the bending strength (RS: bending strength) is preferably 500 MPa or more, more preferably 600 MPa or more, and the fracture strain is preferably 1.4%. As mentioned above, it is more preferably 1.5% or more, and the product of bending strength and fracture strain is preferably 5 MPa or more, more preferably 7 MPa or more.

本発明の長繊維強化ポリアミド樹脂成形品には、上記の必須成分の他に物性改良・成形性改良、耐久性改良を目的として、滑剤、酸化防止剤、難燃剤、耐光剤、耐候剤、離型剤などが配合できる。
本発明の繊維強化成形品の製造法は特に限定されない。例えば、構成するポリアミド樹脂の最も高い融点以上に温度調節されたスクリュータイプ押出機のホッパーにポリアミド樹脂および/またはポリアミド樹脂共重合体を所定割合に予備混合して供給する。溶融樹脂をギアポンプの回転数にて計量して、樹脂の融点以上に温度調節された含浸用押出機の上流に供給する。一方、ロービング状の強化繊維を拡張開繊し、含浸用押出機の下流に供給する。下流先端に開口部を絞ったスリットダイを備えた含浸用押出機中で樹脂圧により、強化繊維ロービングに樹脂を含浸・脱泡する。下流開口部から吐出されたテープ状の強化繊維とポリアミド6樹脂からなる複合材料を冷却してかせに巻き取る。さらに、このテープ状複合材料を20mm以上にカットすることや、テープ状複合材料をカットせずに織物状に織って成形用に提供される。また押出機下流の出口ダイにロービング状強化繊維を供給して、繊維の送り速度と樹脂の吐出量を調節して、所定の繊維含有率からなるストランド状の強化繊維の樹脂被覆材を得る。このストランドを冷却してかせに巻き取る。このストランドを20mm以上にカットするか、織物状に織って、プリプレグを得る。得られたプリプレグを、場合により赤外線加熱や高周波加熱やハロゲン電球加熱して、所定温度に調節した金型に供給してスタンピング成形して得られる。
In addition to the above essential components, the long fiber reinforced polyamide resin molded product of the present invention has a lubricant, an antioxidant, a flame retardant, a light-proofing agent, a weathering agent, a release agent for the purpose of improving physical properties, improving moldability, and improving durability. Molding agents can be blended.
The manufacturing method of the fiber reinforced molded product of the present invention is not particularly limited. For example, a polyamide resin and / or a polyamide resin copolymer are premixed at a predetermined ratio and supplied to a hopper of a screw type extruder whose temperature is controlled to be equal to or higher than the highest melting point of the constituting polyamide resin. The molten resin is measured at the number of revolutions of the gear pump and supplied upstream of the impregnation extruder whose temperature is adjusted to be equal to or higher than the melting point of the resin. On the other hand, roving-like reinforcing fibers are expanded and supplied downstream of the impregnation extruder. The resin is impregnated and defoamed in the reinforcing fiber roving by resin pressure in an impregnation extruder equipped with a slit die having a narrowed opening at the downstream end. The composite material composed of tape-like reinforcing fibers and polyamide 6 resin discharged from the downstream opening is cooled and wound up skein. Furthermore, the tape-shaped composite material is cut into 20 mm or more, or the tape-shaped composite material is woven into a woven shape without being cut and provided for molding. Further, roving-like reinforcing fibers are supplied to the outlet die downstream of the extruder, and the fiber feed rate and resin discharge amount are adjusted to obtain a strand-like reinforcing fiber resin coating material having a predetermined fiber content. The strand is cooled and wound into skeins. This strand is cut into 20 mm or more or woven into a woven form to obtain a prepreg. The obtained prepreg may be obtained by stamping molding by supplying to a mold adjusted to a predetermined temperature by optionally heating with infrared rays, high frequency heating or halogen bulb.

本発明の成形品は、自動車のフレーム、バンパーフェースバーサポート材、シャシーシェル、座席フレーム、サスペンジョン支持部、サンルーフフレーム、バンパービーム、2輪車のフレーム、農機具のフレーム、OA機器のフレーム、機械部品など高い強度と剛性の必要な部品に利用される。   Molded articles of the present invention include automobile frames, bumper face bar support materials, chassis shells, seat frames, suspension supports, sunroof frames, bumper beams, two-wheeled vehicle frames, agricultural machinery frames, OA equipment frames, and mechanical parts. It is used for parts that require high strength and rigidity.

以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
(実施例1〜5と7〜10、比較例1〜6のUD板)
ポリアミド6系樹脂ペレットを100℃にて17時間真空乾燥後、シリンダー温度を280℃に温度制御した2軸押し出し機(日本製鋼所製TEX30)のホッパーに投入し、溶融し、時間当たり一定質量部を押出した。一方、表1に示した強化繊維のロービングを100質量部になる速度で拡張開繊して押出機のダイヘッドに供給した。幅10mm・厚さ0.2mmのダイから含浸被覆されたテープ状プリプレグを引き抜いて固化した後、枷に巻き取った。
テープ状プリプレグを、繊維軸を1方向に揃えて、間隔200mm,幅150mmの枷に巻き取り12層重ねた。これをIRヒータにより、280℃に予熱した後、表1に示した所定温度に調節された200mm×150mm×2mmの金型にセットして、5分間30MPa圧縮保持した。金型を圧縮成形機から取り出した。30分放冷後、金型を開き、厚さ約2mmの、繊維が一軸配向した平板(UD平板)を得た。なお実施例3、4と比較例3については得られた平板を熱風オーブン中で、表1、2に記載の条件で熱処理をした。
(実施例6のRS平板)
また、回転刃をセットとしたテープカッターを使用して、枷に巻き取ったテープ状プリプレグを長さ40mmにカットして短冊を得た。得られた短冊を200mm×150mm×10mmのキャビティ中にランダムに散布し、その上に195mm×145mm×6mmのステンレス板2枚を載せ、上下版共280℃に温度調節したハンドプレスにセットした。3分後から上下版の間隔を狭めていき20秒後に3MPaの圧力を2分掛けた後、キャビティにステンレス板を載荷した状態で取り出した後、表面温度が80℃になるまで放冷し、繊維が擬似等方性に配向したプリプレグシートを取り出した。
得られたプリプレグシートをIRヒータにより、280℃に予熱した後、表1に示した所定温度に調節された200mm×150mm×2mmの金型にセットして、5分間30MPa圧縮保持した。金型を圧縮成形機から取り出した。30分放冷後、金型を開き、厚さ約2mmの平板(RS平板)を得た。
(試験用テストピース)
実施例1〜4と7〜10、比較例1〜4と6については得られたUD平板の中央部から、繊維軸方向に10mm×100mmに5本切り出し0度方向曲げ試験用テストピースを得た。また実施例5の平板から、繊維軸と直交する方向に10mm×100mmに5本切り出し、90度曲げ試験用テストピースを得た。
また得られた実施例6のRS板の中央部から、10mm×100mmに5本切り出し、曲げ試験用テストピースを得た。
試験結果を表1と表2に示した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
(UD board of Examples 1-5 and 7-10, Comparative Examples 1-6)
Polyamide 6 resin pellets are vacuum-dried at 100 ° C for 17 hours, then charged into the hopper of a twin-screw extruder (TEX30 manufactured by Nippon Steel) with the cylinder temperature controlled to 280 ° C, melted, and a constant part by mass per hour Was extruded. On the other hand, the roving of the reinforcing fiber shown in Table 1 was expanded and opened at a speed of 100 parts by mass and supplied to the die head of the extruder. The tape-shaped prepreg coated with impregnation was drawn out of a die having a width of 10 mm and a thickness of 0.2 mm, and then solidified, and then wound up on a basket.
The tape-shaped prepreg was wound on a ridge having an interval of 200 mm and a width of 150 mm with the fiber axes aligned in one direction, and 12 layers were stacked. This was preheated to 280 ° C. with an IR heater, then set in a 200 mm × 150 mm × 2 mm mold adjusted to the predetermined temperature shown in Table 1, and compressed and held at 30 MPa for 5 minutes. The mold was removed from the compression molding machine. After cooling for 30 minutes, the mold was opened to obtain a flat plate (UD flat plate) having a thickness of about 2 mm and fibers uniaxially oriented. In addition, about Example 3, 4 and the comparative example 3, the obtained flat plate was heat-processed on the conditions of Table 1, 2 in a hot-air oven.
(RS flat plate of Example 6)
Moreover, the tape-shaped prepreg wound up with the scissors was cut into 40 mm in length using the tape cutter which set the rotary blade, and the strip was obtained. The obtained strips were randomly scattered in a 200 mm × 150 mm × 10 mm cavity, and two stainless steel plates of 195 mm × 145 mm × 6 mm were placed thereon, and set on a hand press whose temperature was adjusted to 280 ° C. for both the upper and lower plates. After 3 minutes, the interval between the upper and lower plates was narrowed, and after 20 seconds, a pressure of 3 MPa was applied for 2 minutes, and after removing the stainless steel plate loaded in the cavity, it was allowed to cool until the surface temperature reached 80 ° C. A prepreg sheet in which fibers were oriented in a quasi-isotropic manner was taken out.
The obtained prepreg sheet was preheated to 280 ° C. with an IR heater, and then set in a 200 mm × 150 mm × 2 mm mold adjusted to the predetermined temperature shown in Table 1, and compressed and held at 30 MPa for 5 minutes. The mold was removed from the compression molding machine. After cooling for 30 minutes, the mold was opened to obtain a flat plate (RS flat plate) having a thickness of about 2 mm.
(Test piece for testing)
For Examples 1 to 4 and 7 to 10 and Comparative Examples 1 to 4 and 6, 5 pieces were cut into 10 mm × 100 mm in the fiber axis direction from the central part of the obtained UD flat plate to obtain a test piece for 0 degree direction bending test. It was. Further, 5 pieces of 10 mm × 100 mm were cut out from the flat plate of Example 5 in a direction orthogonal to the fiber axis to obtain a test piece for 90 ° bending test.
Moreover, 5 pieces were cut out to 10 mm x 100 mm from the center part of RS board of Example 6 obtained, and the test piece for a bending test was obtained.
The test results are shown in Tables 1 and 2.

(1)結晶面間隔
上述の曲げ試験片の中央部から長さ15mmを切り出し、広角X線回折装置(理学電機社製RINT2500)を使用し、40kV200mAを負荷したCuKαのX線を入射し、回折角2θが10度から40度の間の回折強度分布を1度/分にて測定した。この範囲で回折強度がピークを示す回折角θから次式のブラッグの条件によりその面間隔dを求めた。
2dsin θ=nλ
ここで、λはX線の波長、nは任意の整数である。
(2)長周期
広角X線回折と同様に試料片を作製し、小角X線散乱装置(理学電機社製NANOView-IP)を使用し、40kV30mAの出力でCuをターゲットにしたX線を入射し、639.4mmのカメラ長にて散乱強度の散乱角分布を観測した。方位角360度に渡って平均化したプロファイルにおいて、エア散乱の補正を行わず散乱強度がピークを示す散乱角から長周期を算定した。
(3)ポリアミド6系樹脂の融解多重ピーク温度
上述の曲げ試験片テストピースの表層から試料10mgをDSC用サンプル容器に採取し、SEIKO INSTRUMENTS製SSC5200型DSCを使用して、ISO11357−3に準拠し、窒素40ml/min流動下で室温より300℃まで10℃/minで昇温し、ヒートフロー曲線を温度に対して記録した。ヒートフロー曲線に現れる多重のピーク温度を打ち出した。また140℃と240℃のヒートフロー曲線を結ぶ基線からのヒートフロー曲線の高さを多重ピークの大きさとした。195℃〜225℃間に現れるピーク温度をヒートフローの大きさの順序に整理し、Tm1,Tm2,Tm3とした。特に、成形温度の効果が大きいヒートフローが2番目に大きいピーク温度Tm2に着目した。
(4)曲げ強さ
スタンピング成形して得られた平板から、所定の位置から切削して得た曲げテストピースを、100℃に温度調節した真空乾燥機にて17時間乾燥後、デシケータ中で23℃にて48時間保管後、ISO178に準拠した3点曲げ試験機(オリエンテック社製テンシロン4L型)を使用して、スパン長80mm、クロスヘッド速度1mm/minによる曲げ試験を行ない、次式により、〇度方向曲げ強度を算出した。
σ=3PL/ 2bd2
ここで、σ:曲げ強度(MPa)、L:スパン長(m)、b:幅(m)、d:厚さ(m)、P:最大荷重(N)
(5)破壊ひずみ
曲げ強度の試験で得られた破壊時のたわみ量δから次式により、破壊ひずみεを算定した。
ε=6dδ/ L
(1) Crystal plane spacing A 15 mm length was cut out from the center part of the above-mentioned bending test piece, and a wide-angle X-ray diffractometer (RINT2500 manufactured by Rigaku Corporation) was used to inject CuKα X-rays loaded with 40 kV 200 mA, and A diffraction intensity distribution with an angle 2θ between 10 degrees and 40 degrees was measured at 1 degree / minute. The surface spacing d was determined from the diffraction angle θ at which the diffraction intensity reached a peak within this range, according to the Bragg condition of the following equation.
2dsin θ = nλ
Here, λ is the X-ray wavelength, and n is an arbitrary integer.
(2) Long period A sample piece is prepared in the same manner as wide-angle X-ray diffraction, and a small-angle X-ray scattering device (NANOView-IP manufactured by Rigaku Corporation) is used to inject X-rays targeting Cu at an output of 40 kV and 30 mA. The scattering angle distribution of the scattering intensity was observed with a camera length of 639.4 mm. In the profile averaged over the azimuth 360 degrees, the long period was calculated from the scattering angle at which the scattering intensity showed a peak without correcting the air scattering.
(3) Melt multiple peak temperature of polyamide 6-based resin 10 mg of sample is taken from the surface layer of the above-mentioned bending test piece test piece into a DSC sample container, and conforms to ISO11357-3 using SEIKO INSTRUMENTS SSC5200 type DSC. The temperature was raised from room temperature to 300 ° C. at a rate of 10 ° C./min under a flow of nitrogen of 40 ml / min, and a heat flow curve was recorded against the temperature. Multiple peak temperatures appearing in the heat flow curve were launched. The height of the heat flow curve from the base line connecting the 140 ° C. and 240 ° C. heat flow curves was defined as the size of the multiple peak. The peak temperatures appearing between 195 ° C. and 225 ° C. were arranged in the order of the heat flow, and were designated as Tm1, Tm2, and Tm3. In particular, attention was paid to the peak temperature Tm2 in which the heat flow having the large molding temperature effect is the second largest.
(4) Bending strength A bending test piece obtained by cutting from a predetermined position from a flat plate obtained by stamping molding is dried in a desiccator for 17 hours in a vacuum dryer adjusted to 100 ° C. After storage for 48 hours at ℃, using a three-point bending tester (Orientec Tensilon 4L type) compliant with ISO178, perform a bending test with a span length of 80 mm and a crosshead speed of 1 mm / min. The 0 degree direction bending strength was calculated.
σ = 3PL / 2bd 2
Where σ: bending strength (MPa), L: span length (m), b: width (m), d: thickness (m), P: maximum load (N)
(5) Fracture strain The fracture strain ε was calculated by the following equation from the amount of deflection δ at the time of fracture obtained in the bending strength test.
ε = 6dδ / L 2

実験に使用した原料と記号
PA−A:PA6(東洋紡績製、相対粘度2.5)
PA−B:PA6/66=モル比95/5(東洋紡績製、相対粘度2.5)
PA−C:PA6/66=モル比75/25(東洋紡績製、相対粘度2.5)
炭素繊維:帝人社製東邦テナックス IMS40 6000フィラメント)
ガラス繊維:日本電気硝子(株)製、ER2310−431N、4000フィラメント)
Raw materials used in the experiment and symbol PA-A: PA6 (Toyobo, relative viscosity 2.5)
PA-B: PA6 / 66 = molar ratio 95/5 (manufactured by Toyobo, relative viscosity 2.5)
PA-C: PA6 / 66 = molar ratio 75/25 (manufactured by Toyobo, relative viscosity 2.5)
Carbon fiber: Toho Tenax IMS40 6000 filament manufactured by Teijin Limited)
Glass fiber: manufactured by Nippon Electric Glass Co., Ltd., ER2310-431N, 4000 filament)

本発明の効果により、破壊強さと破壊ひずみのバランスがよく靭性が高い複合成形品が工業的に提供できるようになった。
本発明により得られた長繊維強化ポリアミド樹脂成形品は、自動車のフレーム部品や機械器具の構造部材やスポーツ器具などに使用される。
Due to the effects of the present invention, a composite molded article having a good balance between fracture strength and fracture strain and high toughness can be industrially provided.
The long fiber reinforced polyamide resin molded product obtained by the present invention is used for a frame part of an automobile, a structural member of a mechanical instrument, a sports instrument, and the like.

Claims (6)

強化繊維40〜80質量%とポリアミド6系樹脂60〜20質量%を含有し、該ポリアミド6系樹脂は、ポリアミド6構造単位を80モル%以上含有し、共重合成分としては、パラキシリレンジアミン、メタキシリレンジアミン、フェニレンジアミン、トルエンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、2−メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、アジピン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2−メチルテレフタル酸、6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、p−アミノメチル安息香酸、ω―ラウロラクタムから選ばれるポリアミド樹脂であり、小角X線散乱から求めた長周期分布のピーク値が、8.75nm〜15.0nmであり、かつ広角X線回折の最大散乱強度を示す面間隔が0.43nm〜0.45nmであることを特徴とする長繊維強化ポリアミド樹脂スタンピング成形品。 It contains 40 to 80% by mass of reinforcing fibers and 60 to 20% by mass of a polyamide 6-based resin. The polyamide 6-based resin contains at least 80 mol% of a polyamide 6 structural unit, and as a copolymerization component, paraxylylenediamine , Metaxylylene diamine, phenylene diamine, toluene diamine, tetramethylene diamine, hexamethylene diamine, nonamethylene diamine, 2-methylpentamethylene diamine, undecamethylene diamine, dodecamethylene diamine, adipic acid, peric acid, azelaic acid, sebacine Acid, dodecanoic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-methylterephthalic acid, 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, p-aminomethylbenzoic acid, ω-laurolactam Selected Po An amide resin, the peak value of the long cycle distribution determined from small-angle X-ray scattering is a 8.75Nm~15.0Nm, and the surface distance indicating the maximum scattering intensity of a wide angle X-ray diffraction 0.43Nm~0. A long fiber reinforced polyamide resin stamping molded product characterized by being 45 nm. 強化繊維40〜80質量%とポリアミド6系樹脂60〜20質量%を含有し、該ポリアミド6系樹脂は、ポリアミド6構造単位を80モル%以上含有し、共重合成分としては、パラキシリレンジアミン、メタキシリレンジアミン、フェニレンジアミン、トルエンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、2−メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、アジピン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2−メチルテレフタル酸、6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、p−アミノメチル安息香酸、ω―ラウロラクタムから選ばれるポリアミド樹脂であり、10℃/分の昇温速度で測定したヒートフロー曲線が195℃から225℃の間で2つ以上の多重吸熱ピークを示し、かつ2番目に大きな吸熱を示すピーク温度が200℃〜215℃の範囲に存在することを特徴とする長繊維強化ポリアミド樹脂スタンピング成形品。 It contains 40 to 80% by mass of reinforcing fibers and 60 to 20% by mass of a polyamide 6-based resin. The polyamide 6-based resin contains at least 80 mol% of a polyamide 6 structural unit, and as a copolymerization component, paraxylylenediamine , Metaxylylene diamine, phenylene diamine, toluene diamine, tetramethylene diamine, hexamethylene diamine, nonamethylene diamine, 2-methylpentamethylene diamine, undecamethylene diamine, dodecamethylene diamine, adipic acid, peric acid, azelaic acid, sebacine Acid, dodecanoic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-methylterephthalic acid, 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, p-aminomethylbenzoic acid, ω-laurolactam Selected Po An amide resin, shows two or more multiple endothermic peak heat flow curve measured at a heating rate of 10 ° C. / min between 225 ° C. from 195 ° C., and a peak temperature showing a large endothermic the second 200 A long-fiber reinforced polyamide resin stamping molded product characterized by existing in a range of from ℃ to 215 ℃. 繊維軸方向の曲げ強さと破壊ひずみの積が15MPa以上であることを特徴とする、強化繊維が一方向に配向した請求項1または2に記載の長繊維強化ポリアミド樹脂スタンピング成形品。 The long fiber reinforced polyamide resin stamped molded product according to claim 1 or 2, wherein the product of the bending strength in the fiber axis direction and the fracture strain is 15 MPa or more, and the reinforcing fibers are oriented in one direction. 成形品の面上任意の方向の曲げ強さと破壊ひずみの積が5MPa以上であることを特徴とする、強化繊維が面内ランダムに配向した請求項1または2に記載の長繊維強化ポリアミド樹脂スタンピング成形品。 The long fiber reinforced polyamide resin stamping according to claim 1 or 2, wherein the product of bending strength and fracture strain in an arbitrary direction on the surface of the molded product is 5 MPa or more, and the reinforcing fibers are randomly oriented in the plane. Molding. 表面温度が165℃〜200℃である金型を使用してスタンピング成形することを特徴とする、請求項1〜4のいずれかに記載の長繊維強化ポリアミド樹脂スタンピング成形品の製造方法。 The method for producing a long fiber reinforced polyamide resin stamping molded product according to any one of claims 1 to 4, wherein the stamping molding is performed using a mold having a surface temperature of 165 ° C to 200 ° C. スタンピング成形を行い、次いで、165℃〜200℃で1分〜300分間熱処理することを特徴とする請求項1〜4のいずれかに記載の長繊維強化ポリアミド樹脂スタンピング成形品の製造方法。 The method for producing a long fiber reinforced polyamide resin stamping molded product according to any one of claims 1 to 4, wherein the stamping molding is performed, and then heat treatment is performed at 165 ° C to 200 ° C for 1 minute to 300 minutes.
JP2012176993A 2012-05-11 2012-08-09 Long fiber reinforced polyamide resin molded product Active JP6031884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176993A JP6031884B2 (en) 2012-05-11 2012-08-09 Long fiber reinforced polyamide resin molded product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012109448 2012-05-11
JP2012109448 2012-05-11
JP2012176993A JP6031884B2 (en) 2012-05-11 2012-08-09 Long fiber reinforced polyamide resin molded product

Publications (2)

Publication Number Publication Date
JP2013253215A JP2013253215A (en) 2013-12-19
JP6031884B2 true JP6031884B2 (en) 2016-11-24

Family

ID=49951013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176993A Active JP6031884B2 (en) 2012-05-11 2012-08-09 Long fiber reinforced polyamide resin molded product

Country Status (1)

Country Link
JP (1) JP6031884B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6695693B2 (en) * 2014-01-10 2020-05-20 小松マテーレ株式会社 Fiber-reinforced resin material, method for producing the same, and fiber-reinforced resin molding using the fiber-reinforced resin material
JP2019099603A (en) * 2017-11-29 2019-06-24 東レ株式会社 Continuous fiber reinforced polyamide resin substrate and molded article thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133108A (en) * 1985-11-30 1987-06-16 Toyobo Co Ltd Production of polyamide yarn having high strength and high toughness
JPS62252426A (en) * 1986-04-24 1987-11-04 Toyota Central Res & Dev Lab Inc Production of nylon 6
JP2010202759A (en) * 2009-03-03 2010-09-16 Unitika Ltd Polyamide resin composition pellet and method for producing the same
JP5564839B2 (en) * 2009-06-30 2014-08-06 東洋紡株式会社 Stamping molded products

Also Published As

Publication number Publication date
JP2013253215A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5987335B2 (en) Carbon long fiber reinforced polyamide resin prepreg and molded product
JP6140862B2 (en) Composite polyamide article
JP2016117914A (en) Polyamide composite structures and processes for their preparation
US20120238164A1 (en) Composite polyamide article
JP5509756B2 (en) Carbon long fiber reinforced polyamide composite material
JP5564839B2 (en) Stamping molded products
WO2013051369A1 (en) Fiber-reinforced resin composition
WO2014132776A1 (en) Composite fiber, fabric, knitted article, and composite material
JPS6337694B2 (en)
JP5471338B2 (en) Carbon long fiber reinforced polyamide composite material
JP6031884B2 (en) Long fiber reinforced polyamide resin molded product
WO2019121826A1 (en) Thermoplastic composites and corresponding fabrication methods and articles
JP5812439B2 (en) Laminated molded product of fiber reinforced thermoplastic resin
JP7384197B2 (en) Fiber-reinforced resin material, roll, molded product, and method for producing fiber-reinforced resin material
JP5789933B2 (en) Compression molding method for fiber reinforced thermoplastic resin sheet
JP6146063B2 (en) Carbon long fiber reinforced polyamide composite for compression molding
WO2021124907A1 (en) Fiber-reinforced resin composite sheet, fiber-reinforced resin composite material, and molded resin article including same
JP5891657B2 (en) Carbon long fiber reinforced polypropylene molded products
JP5402584B2 (en) Carbon long fiber reinforced polyamide composite material
JP5850298B2 (en) Carbon long fiber reinforced polyamide resin composite material
JP6160095B2 (en) Carbon fiber reinforced thermoplastic resin prepreg sheet or molded product
CN113939389B (en) Method for producing molded article
JP6146062B2 (en) Carbon long fiber reinforced polyamide composite for compression molding
JP7003417B2 (en) Method for manufacturing carbon fiber polyamide resin composite prepreg, and carbon fiber polyamide resin composite material
CN110418703A (en) Material, the manufacturing method of material, the manufacturing method of localized fusion material, composite material and molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161010

R151 Written notification of patent or utility model registration

Ref document number: 6031884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350