JP6145684B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6145684B2
JP6145684B2 JP2012048751A JP2012048751A JP6145684B2 JP 6145684 B2 JP6145684 B2 JP 6145684B2 JP 2012048751 A JP2012048751 A JP 2012048751A JP 2012048751 A JP2012048751 A JP 2012048751A JP 6145684 B2 JP6145684 B2 JP 6145684B2
Authority
JP
Japan
Prior art keywords
air
partition member
air passage
refrigerator
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012048751A
Other languages
Japanese (ja)
Other versions
JP2013185712A (en
Inventor
亜有子 宮坂
亜有子 宮坂
堀尾 好正
好正 堀尾
愼一 堀井
愼一 堀井
西村 晃一
晃一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012048751A priority Critical patent/JP6145684B2/en
Priority to CN201380012768.4A priority patent/CN104160226B/en
Priority to PCT/JP2013/001149 priority patent/WO2013132785A1/en
Publication of JP2013185712A publication Critical patent/JP2013185712A/en
Application granted granted Critical
Publication of JP6145684B2 publication Critical patent/JP6145684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、冷却器で生成した冷気を強制循環させて貯蔵室を冷却する冷蔵庫に関するものである。   The present invention relates to a refrigerator that cools a storage room by forcibly circulating cool air generated by a cooler.

省エネルギに対する要求が厳しくなる中、冷却器で生成した冷気を強制循環させて貯蔵室を冷却する冷蔵庫においては、その冷却器の冷凍効率だけでなく、送風機の送風効率も重視されている。そのため、送風機から吐出された冷気を効率よく運搬する送風技術が重要となる。従来は送風機の吐出側に複数の部品からなるダクトを形成し各室へ冷気を分配している。(例えば、特許文献1参照)。   As demand for energy saving becomes strict, in a refrigerator that cools a storage room by forcibly circulating cool air generated by a cooler, not only the refrigeration efficiency of the cooler but also the blowing efficiency of the blower is emphasized. Therefore, an air blowing technique that efficiently transports the cold air discharged from the blower is important. Conventionally, a duct composed of a plurality of parts is formed on the discharge side of the blower to distribute cold air to each chamber. (For example, refer to Patent Document 1).

以下、図面を参照しながら従来の冷蔵庫を説明する。   Hereinafter, a conventional refrigerator will be described with reference to the drawings.

図8は従来の冷蔵庫冷却室に設置された送風機周辺の縦断面図である。図において、仕切部材61は、冷却器室57と冷凍室53とを区画するものであり、断熱材61bと、前仕切板61a と、ダンパ装置65と、送風機64と、後仕切板62とを、予め互いに組み込んで、且つ、所定の外形寸法となるように構成してある。仕切部材61の内部には、断熱材61bにより冷蔵室用風路72を構成し、冷蔵室用風路72は途中に冷気分流部(図示せず)を有し冷気の一部を野菜室用風路(図示せず)と連通する。   FIG. 8 is a longitudinal sectional view of the periphery of a blower installed in a conventional refrigerator cooling chamber. In the figure, the partition member 61 divides the cooler chamber 57 and the freezing chamber 53, and includes a heat insulating material 61b, a front partition plate 61a, a damper device 65, a blower 64, and a rear partition plate 62. These are preliminarily assembled with each other and have a predetermined outer dimension. A refrigerating room air passage 72 is formed in the partition member 61 by a heat insulating material 61b, and the refrigerating room air passage 72 has a cold air diversion part (not shown) in the middle thereof for a vegetable room. It communicates with an air passage (not shown).

以上のように構成された冷蔵庫について、以下その動作を説明する。   About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below.

冷却器室57にて生成された冷気は、送風機64によって、その一部が、仕切部材61内に設けた冷凍室用風路92を通って、冷凍室冷却口92aから冷凍室53内に送られる。一方残りの冷気はダンパ装置65を通り冷蔵室冷却用送風ダクト72に送られ、冷気分流部にてさらにその一部が分流され、野菜室冷却用送風ダクト(図示せず)を経由して野菜室(図示せず)内を所定の温度に冷却する。   A part of the cold air generated in the cooler chamber 57 is sent by the blower 64 through the freezer compartment air passage 92 provided in the partition member 61 into the freezer compartment 53 from the freezer compartment cooling port 92a. It is done. On the other hand, the remaining cold air passes through the damper device 65 and is sent to the cooler room cooling air duct 72, and a part of the cold air is further diverted at the cool air branching portion, and the vegetable air passes through the vegetable room cooling air duct (not shown). The inside of the chamber (not shown) is cooled to a predetermined temperature.

以上のように、従来の冷蔵庫では、仕切部材61内に断熱材61bにより冷蔵室および野菜室に連通する送風ダクトを形成することで、各室へ冷気を分配しそれぞれの室を適正な温度に冷却できる冷蔵庫を提供することができる。   As described above, in the conventional refrigerator, by forming the air duct that communicates with the refrigerator compartment and the vegetable compartment by the heat insulating material 61b in the partition member 61, cold air is distributed to each compartment and each room is brought to an appropriate temperature. A refrigerator that can be cooled can be provided.

特開2007−71496号公報JP 2007-71496 A

しかしながら、従来の冷蔵庫の構成では、仕切部材61の外殻を構成する前仕切板61aおよび後仕切板62に加え、冷蔵室用風路72および野菜室用風路、冷気分流部を構成する断熱材61bなどの別部品を必要とするため、送風機64から吐出された冷気が部品の勘合部に接触する機会が増大する。部品勘合部は必ず段差や隙間など不連続面を有するため、冷気のスムーズな流れを阻害し送風効率を低下させ消費電力を増大させるという問題があった。   However, in the structure of the conventional refrigerator, in addition to the front partition plate 61a and the rear partition plate 62 that constitute the outer shell of the partition member 61, the air passage for the refrigerator compartment 72, the air passage for the vegetable compartment, and the heat insulation that constitutes the cold air distribution section. Since another part such as the material 61b is required, the chance that the cold air discharged from the blower 64 contacts the fitting part of the part increases. Since the component fitting part always has a discontinuous surface such as a step or a gap, there has been a problem that the smooth flow of cold air is hindered, the blowing efficiency is lowered, and the power consumption is increased.

さらに、部品点数が増えることで材料費や組立工数が多く必要となるだけでなく仕切部材61の体積が大きくなるため庫内容積が小さくなり、ユーザの使い勝手を損なう可能性
があった。
Furthermore, the increase in the number of parts not only requires a large material cost and assembly man-hours, but also increases the volume of the partition member 61, thereby reducing the internal volume and impairing user convenience.

本発明は、従来の課題を解決するもので、ユーザの使い勝手を損なうことなく、送風機より吐出された冷気を効率よく複数の貯蔵室へ提供しそれぞれの温度に冷却することができる冷蔵庫を安価に提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the conventional problems, and inexpensively provides a refrigerator that can efficiently cool the air discharged from the blower to a plurality of storage rooms and cool it to the respective temperatures without impairing the user-friendliness. The purpose is to provide.

従来の課題を解決するために、本発明の冷蔵庫は、複数の貯蔵室と、前記貯蔵室を冷却する冷気を生成する冷却器と、前記冷却器で生成された冷気を強制的に貯蔵室に送風する送風機と、前記送風機から吐出された冷気を各室へ分配する分配風路と、前記分配風路と前記貯蔵室との間に位置する前仕切部材と、前記分配風路と前記冷却器との間に位置する後仕切部材とを備える冷蔵庫において、前記分配風路内に、前記前仕切部材および前記後仕切部材の両方により構成される冷気ガイド部を有するもので、前記前仕切部材は、前記送風機に対向する面に前記分配風路内側に向かって突出した面からなる冷気整流部を有することを特徴とする。これにより、分配風路の外殻を構成する前仕切部材および後仕切部材が冷気の流れを決定するガイドの役割も果たすため、風路を構成する部品点数を最小限に抑えることができ冷気がスムーズに流れる非常に滑らかな分配風路内を構成することができ送風効率を向上させることにより消費電力を低減することが可能となる。また、前仕切部材および後仕切部材のみで構成することができるため、材料費、加工工数が増えないだけでなく、送風効率を低下させる風路断面積の小型化を行うことなく仕切部材全体の体積を小さくすることが可能となり、貯蔵空間を増加させることができるためユーザの使い勝手を向上させることができる。 In order to solve the conventional problems, a refrigerator according to the present invention includes a plurality of storage rooms, a cooler that generates cool air for cooling the storage room, and the cool air generated by the cooler is forced to the store room. A blower that blows air, a distribution air passage that distributes the cool air discharged from the blower to each chamber, a front partition member positioned between the distribution air passage and the storage chamber, the distribution air passage, and the cooler In the refrigerator comprising a rear partition member positioned between the front and rear partition members , the distribution air passage includes a cold air guide portion configured by both the front partition member and the rear partition member. And a cold air rectifying unit comprising a surface protruding toward the inside of the distribution air passage on a surface facing the blower. As a result, the front partition member and the rear partition member constituting the outer shell of the distribution air passage also serve as a guide for determining the flow of the cold air, so that the number of parts constituting the air passage can be minimized and the cold air can be reduced. The inside of the very smooth distribution air path which flows smoothly can be comprised, and it becomes possible to reduce power consumption by improving ventilation efficiency. In addition, since it can be configured only by the front partition member and the rear partition member, not only the material cost and the processing man-hour are not increased, but also the entire partition member is reduced without reducing the air passage cross-sectional area that reduces the air blowing efficiency. Since the volume can be reduced and the storage space can be increased, the user-friendliness can be improved.

本発明の冷蔵庫は、ユーザの使い勝手を損なうことなく、送風機より吐出された冷気を効率よく複数の貯蔵室へ提供しそれぞれの温度に冷却することができる冷蔵庫を安価に提供することができる。   The refrigerator of the present invention can provide inexpensively a refrigerator that can efficiently provide the cool air discharged from the blower to the plurality of storage rooms and cool it to the respective temperatures without impairing the user-friendliness.

本発明の実施の形態1における冷蔵庫の正面図Front view of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫本体要部正面拡大図Refrigerator body main part front enlarged view in Embodiment 1 of the present invention 本発明の実施の形態1における要部縦断面拡大図The principal part longitudinal cross-sectional enlarged view in Embodiment 1 of this invention 本発明の実施の形態1における要部縦断面拡大図The principal part longitudinal cross-sectional enlarged view in Embodiment 1 of this invention 本発明の実施の形態2における仕切部材正面図Partition member front view according to Embodiment 2 of the present invention 本発明の実施の形態3における仕切部材正面図Partition member front view according to Embodiment 3 of the present invention 従来の冷蔵庫の要部縦断面拡大図The main part longitudinal section enlarged view of the conventional refrigerator

請求項1に記載の発明は、複数の貯蔵室と、前記貯蔵室を冷却する冷気を生成する冷却器と、前記冷却器で生成された冷気を強制的に貯蔵室に送風する送風機と、前記送風機から吐出された冷気を各室へ分配する分配風路と、前記分配風路と前記貯蔵室との間に位置する前仕切部材と、前記分配風路と前記冷却器との間に位置する後仕切部材とを備える冷蔵庫において、前記分配風路内に、前記前仕切部材および前記後仕切部材の両方により構成される冷気ガイド部を有するもので、前記前仕切部材は、前記送風機に対向する面に前記分配風路内側に向かって突出した面からなる冷気整流部を有することを特徴とする。これにより、分配風路の外殻を構成する前仕切部材および後仕切部材が冷気の流れを決定するガイドの役割も果たすため、風路を構成する部品点数を最小限に抑えることができ冷気がスムーズに流れる非常に滑らかな分配風路内を構成することができ送風効率を向上させることにより消費電力を低減することが可能となる。また、前仕切部材および後仕切部材のみで構成することができるため、材料費、加工工数が増えないだけでなく、送風効率を低下させる風路断面積の小型化を行うことなく仕切部材全体の体積を小さくすることが可
能となり、貯蔵空間を増加させることができるためユーザの使い勝手を向上させることができる。
The invention according to claim 1 is a plurality of storage chambers, a cooler that generates cold air that cools the storage chamber, a blower that forcibly blows the cold air generated by the cooler to the storage chamber, and A distribution air passage that distributes the cold air discharged from the blower to each chamber, a front partition member positioned between the distribution air passage and the storage chamber, and a space between the distribution air passage and the cooler. In the refrigerator including a rear partition member, the distribution air passage has a cold air guide portion configured by both the front partition member and the rear partition member , and the front partition member faces the blower. It has a cold air rectification part which consists of a surface which protruded toward the distribution air way inside on the surface. As a result, the front partition member and the rear partition member constituting the outer shell of the distribution air passage also serve as a guide for determining the flow of the cold air, so that the number of parts constituting the air passage can be minimized and the cold air can be reduced. The inside of the very smooth distribution air path which flows smoothly can be comprised, and it becomes possible to reduce power consumption by improving ventilation efficiency. In addition, since it can be configured only by the front partition member and the rear partition member, not only the material cost and the processing man-hour are not increased, but also the entire partition member is reduced without reducing the air passage cross-sectional area that reduces the air blowing efficiency. Since the volume can be reduced and the storage space can be increased, the user-friendliness can be improved.

請求項2に記載の発明は、請求項1に記載の発明において、前記分配風路の下流部は複数の風路に分岐され、前記複数の貯蔵室に連通する複数の吐出口を有し、前記冷気ガイド部は前記送風機に対向する位置に設けられた第一の面と、前記第一の面に隣接しない風路に隣接する第二の面とを有することを特徴とする。これにより、送風機より吐出された冷気を複数ある貯蔵室へそれぞれ必要な量の冷気を分配し効率よく導くことができるため、送風ロスを増加させることなく各室を所定の温度に冷却することが可能となる。   The invention according to claim 2 is the invention according to claim 1, wherein a downstream portion of the distribution air passage is branched into a plurality of air passages, and has a plurality of discharge ports communicating with the plurality of storage chambers. The cold air guide part has a first surface provided at a position facing the blower and a second surface adjacent to an air passage not adjacent to the first surface. As a result, it is possible to efficiently distribute the necessary amount of cool air discharged from the blower to a plurality of storage chambers and efficiently cool each chamber to a predetermined temperature without increasing the air loss. It becomes possible.

請求項3に記載の発明は、請求項2に記載の発明において、前記第一の面と前記第二の面とは鋭角を構成することを特徴とする。これにより、送風機の吐出冷気が渦を作りやすいコーナー部などを廃止することが可能となるため、より効率よく各室への送風を行うことができる冷蔵庫を提供することができる。   The invention described in claim 3 is the invention described in claim 2, characterized in that the first surface and the second surface form an acute angle. Thereby, since it becomes possible to abolish the corner part etc. in which the discharge cold air of a blower tends to make a vortex, the refrigerator which can ventilate each room more efficiently can be provided.

請求項4に記載の発明は、請求項2または3に記載の発明において、前記第一の面と前記第二の面とが連続した面で構成されたことを特徴とする。これにより、分配風路下流部の分岐点が一本の線となるため、面により冷気を分岐させることがなくなり、送風機から吐出された冷気は確実にどちらかの先端風路へと導かれることにより、よどみや渦など送風効率を低下させる減少を防止することができる。   According to a fourth aspect of the present invention, in the second or third aspect of the invention, the first surface and the second surface are continuous surfaces. As a result, the branch point downstream of the distribution air passage becomes a single line, so that the cold air is not branched by the surface, and the cold air discharged from the blower is reliably guided to one of the front air passages. Therefore, it is possible to prevent a decrease in air blowing efficiency such as stagnation and vortex.

請求項5に記載の発明は、請求項2から4に記載の発明において、前記第一の面と前記第二の面は、前記前仕切部材または前記後仕切部材の少なくともどちらか一方に形成されたリブにより構成されたことを特徴とする。これにより、冷気ガイド部の中を中空とすることが可能となり、さらに材料費を抑えることが可能となる。また、仕切部材を整形する金型の設計変更を容易に行うことができるため、貯蔵室のレイアウト変更に伴う風路の改良や、風路の修正や調整の際のコストを下げることができる。   The invention according to claim 5 is the invention according to claims 2 to 4, wherein the first surface and the second surface are formed on at least one of the front partition member and the rear partition member. It is characterized by comprising ribs. As a result, the inside of the cold air guide portion can be made hollow, and the material cost can be further reduced. Moreover, since the design change of the metal mold | die which shapes a partition member can be performed easily, the cost at the time of the improvement of an air path accompanying the layout change of a storage chamber, and correction and adjustment of an air path can be reduced.

請求項6に記載の発明は、請求項2から4に記載の発明において、前記第一の面と前記第二の面は、前記前仕切部材または前記後仕切部材の少なくともどちらか一方に形成された凹凸部により構成されたことを特徴とする。これにより、冷気ガイド部を中空とし材料費を抑えながらも、冷気ガイド部内に回りこむ冷気の無駄な流れを防止することができるため、よりスムーズな風路を提供することができる。   The invention according to claim 6 is the invention according to claims 2 to 4, wherein the first surface and the second surface are formed on at least one of the front partition member and the rear partition member. It is characterized by comprising uneven parts. This makes it possible to prevent a wasteful flow of cool air flowing into the cool air guide portion while reducing the material cost by making the cool air guide portion hollow, thereby providing a smoother air path.

請求項7に記載の発明は、請求項6に記載の発明において、前記凹凸部は一体で形成される前記前仕切部材または前記後仕切部材の基準面に対し、冷蔵庫本体前後方向について前記分配風路の内側に突出していることを特徴とする。これにより、分配風路内の無効空間に冷気が流れることを防止することができるためより効率的な送風が可能となる。また、風路内に突出させることで、分配風路の外側への突出を最小限に抑えることができ、仕切部材全体の占める容積を小さくすることが可能となり貯蔵室容積をより大きくすることができる。   According to a seventh aspect of the present invention, in the invention according to the sixth aspect, the uneven air flow is distributed in the front-rear direction of the refrigerator body with respect to a reference surface of the front partition member or the rear partition member formed integrally. It is characterized by protruding inside the road. Thereby, since it is possible to prevent the cool air from flowing into the invalid space in the distribution air passage, more efficient air blowing is possible. Further, by projecting into the air passage, the outward projection of the distribution air passage can be minimized, the volume occupied by the entire partition member can be reduced, and the storage chamber volume can be further increased. it can.

請求項に記載の発明は、請求項2ないしのいずれか一項に記載の発明において、前記冷気整流部は略円形を有し、前記第一の面は前記冷気整流部と略同心円となる曲線を有することを特徴とする。これにより、送風機の回転に伴う冷気の旋回方向の速度に合わせて冷気ガイド部を構成することが可能となり冷気を失速させることなく吐出口まで導くことができる。 The invention according to claim 8 is the invention according to any one of claims 2 to 7 , wherein the cold air rectification portion has a substantially circular shape, and the first surface is substantially concentric with the cold air rectification portion. It has the curve which becomes. Accordingly, it is possible to configure the cool air guide unit in accordance with the speed of the cool air in the swirling direction accompanying the rotation of the blower, and it is possible to guide the cool air to the discharge port without stalling.

請求項に記載の発明は、請求項1からに記載の発明において、前記冷蔵庫は前記複数の貯蔵室へ冷気を送る風路内に、開口面積を調節できるダンパを備えたことを特徴とする。これにより、ダンパにより所定の貯蔵室への送風量を状況に応じて調整することが可能となるため、各貯蔵室の温度を独立して制御できるためより緻密に温度調整ことができる。 The invention according to claim 9 is the invention according to claims 1 to 8 , wherein the refrigerator is provided with a damper capable of adjusting an opening area in an air passage for sending cold air to the plurality of storage rooms. To do. Thereby, since it becomes possible to adjust the ventilation volume to a predetermined | prescribed storage room according to a condition with a damper, since the temperature of each storage room can be controlled independently, temperature adjustment can be carried out more precisely.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same configurations as those of the conventional example or the embodiments described above, and detailed descriptions thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の正面図、図2は図1におけるA−A断面図、図3は実施の形態1における冷蔵庫本体要部正面拡大図、図4は図3におけるB−B断面図、図5は図3におけるC−C断面図である。
(Embodiment 1)
1 is a front view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, FIG. 3 is an enlarged front view of the main part of the refrigerator body according to Embodiment 1, and FIG. BB sectional view and FIG. 5 are CC sectional views in FIG.

図1から図5において、冷蔵庫100の冷蔵庫本体である断熱箱体101は、主に鋼板を用いた外箱102と、ABSなどの樹脂で成型された内箱103と、外箱102と内箱103との間の空間に発泡充填される硬質発泡ウレタンなどの発泡断熱材とで構成され、周囲と断熱され、複数の貯蔵室に区画されている。最上部に第一の貯蔵室としての冷蔵室104、その冷蔵室104の下部に第四の貯蔵室としての第二の冷凍室105と第五の貯蔵室としての製氷室106が横並びに設けられ、その第二の冷凍室105と製氷室106の下部に第二の貯蔵室としての第一の冷凍室107、そして最下部に第三の貯蔵室としての野菜室108が配置される構成となっている。   In FIG. 1 to FIG. 5, a heat insulating box body 101 which is a refrigerator main body of a refrigerator 100 includes an outer box 102 mainly using a steel plate, an inner box 103 formed of a resin such as ABS, an outer box 102 and an inner box. 103 and a foam heat insulating material such as hard foam urethane filled in a space between the space 103 and the surroundings, insulated from the surroundings, and partitioned into a plurality of storage chambers. A refrigeration room 104 as a first storage room is provided at the top, and a second freezing room 105 as a fourth storage room and an ice making room 106 as a fifth storage room are provided side by side under the refrigeration room 104. The first freezing chamber 107 as the second storage chamber is disposed below the second freezing chamber 105 and the ice making chamber 106, and the vegetable chamber 108 as the third storage chamber is disposed at the bottom. ing.

冷蔵室104は、回転扉である冷蔵室右扉104aと冷蔵室左扉104bを備え、内部には、冷蔵室棚104cや冷蔵室ケース104dが適切に配設され、貯蔵空間を整理し易く構成している。一方、その他の貯蔵室は引き出し式扉を有し、それぞれ第二の冷凍室扉105aには第二の冷凍室ケース105bが、製氷室扉106aには製氷室ケース106bが、第一の冷凍室扉107aには上段冷凍室ケース107bおよび下段冷凍室ケース107cが、野菜室扉108aには上段野菜室ケース108bおよび下段冷凍室ケース108cが、それぞれ扉に取り付けられたフレームに載置される。   The refrigerating room 104 includes a refrigerating room right door 104a and a refrigerating room left door 104b, which are rotary doors, and a refrigerating room shelf 104c and a refrigerating room case 104d are appropriately disposed therein, so that the storage space can be easily arranged. doing. On the other hand, the other storage rooms have drawer doors, the second freezer compartment door 105a has a second freezer compartment case 105b, the icemaker door 106a has an icemaker case 106b, and the first freezer compartment. The upper freezer compartment case 107b and the lower freezer compartment case 107c are placed on the door 107a, and the upper vegetable compartment case 108b and the lower freezer compartment case 108c are placed on the frame attached to the door, respectively.

冷蔵室104は冷蔵保存のために凍らない温度である冷蔵温度帯に設定されており、通常1℃から5℃とし、野菜室108は冷蔵室104と同等の冷蔵温度帯もしくは若干高い温度設定の野菜温度帯2℃から7℃としている。第一の冷凍室107は冷凍温度帯に設定されており、冷凍保存のために通常−22℃から−15℃で設定されているが、冷凍保存状態の向上のために、例えば−30℃や−25℃の低温で設定されることもある。   The refrigerated room 104 is set to a refrigerated temperature zone which is a temperature that does not freeze for refrigerated storage, and is usually set to 1 ° C. to 5 ° C., and the vegetable room 108 has a refrigerated temperature zone equivalent to the refrigerated room 104 or slightly higher The vegetable temperature range is 2 ° C to 7 ° C. The first freezer compartment 107 is set in a freezing temperature zone, and is usually set at −22 ° C. to −15 ° C. for frozen storage, but in order to improve the frozen storage state, for example, −30 ° C. It may be set at a low temperature of -25 ° C.

第二の冷凍室105は、第一の冷凍室107と同等の冷凍温度帯または若干高い温度設定−20℃から−12℃である。製氷室106は、冷蔵室104内の貯水タンク(図示せず)から送られた水で室内上部に設けられた自動製氷機(図示せず)で氷を作り、製氷室ケース106bに貯蔵する。   The second freezer compartment 105 has the same freezing temperature zone as the first freezer compartment 107 or a slightly higher temperature setting of −20 ° C. to −12 ° C. The ice making chamber 106 makes ice with an automatic ice maker (not shown) provided at the upper part of the room with water sent from a water storage tank (not shown) in the refrigerator compartment 104 and stores it in the ice making case 106b.

断熱箱体101の天面部は冷蔵庫の背面方向に向かって階段状に凹みを設けた形状であり、この階段状の凹部に機械室101aを形成して、機械室101aに、圧縮機109、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。すなわち、圧縮機109を配設する機械室101aは、冷蔵室104内の最上部の後方領域に食い込んで形成されることになる。   The top surface portion of the heat insulating box 101 has a stepped recess shape toward the back of the refrigerator. A machine chamber 101a is formed in the stepped recess, and the compressor 109, moisture is formed in the machine chamber 101a. Houses high pressure side components of the refrigeration cycle such as a dryer (not shown) for removal. That is, the machine room 101 a in which the compressor 109 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 104.

このように、手が届きにくくデッドスペースとなっていた断熱箱体101の最上部の貯蔵室後方領域に機械室101aを設けて圧縮機109を配置することにより、従来の冷蔵庫で、使用者が使いやすい断熱箱体101の最下部にあった機械室のスペースを貯蔵室容量として有効に転化することができ、収納性や使い勝手を大きく改善することができる。   Thus, by providing the machine room 101a in the rear region of the uppermost storage room of the heat insulation box 101 that has become a dead space that is difficult to reach, the compressor 109 is disposed in the conventional refrigerator. The space in the machine room at the bottom of the easy-to-use heat insulation box 101 can be effectively converted as the storage room capacity, and the storage performance and usability can be greatly improved.

冷凍サイクルは、圧縮機109と凝縮器と減圧器であるキャピラリーと冷却器112とを順に備えた一連の冷媒流路から形成されており、冷媒として炭化水素系冷媒である例えばイソブタンが封入されている。   The refrigeration cycle is formed of a series of refrigerant flow paths sequentially including a compressor 109, a condenser, a capillary as a decompressor, and a cooler 112, and a hydrocarbon-based refrigerant such as isobutane is enclosed as a refrigerant. Yes.

圧縮機109はピストンがシリンダ内を往復動することで冷媒の圧縮を行う往復動型圧縮機である。断熱箱体101に、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品が機械室101a内に配設されている場合もある。   The compressor 109 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder. In the case of a refrigeration cycle using a three-way valve or a switching valve for the heat insulation box 101, those functional parts may be disposed in the machine room 101a.

また、本実施の形態では冷凍サイクルを構成する減圧器をキャピラリーとしたが、パルスモーターで駆動する冷媒の流量を自由に制御できる電子膨張弁を用いてもよい。   In this embodiment, the decompressor constituting the refrigeration cycle is a capillary. However, an electronic expansion valve that can freely control the flow rate of the refrigerant driven by the pulse motor may be used.

なお、本実施の形態における、以下に述べる発明の要部に関する事項は、従来一般的であった断熱箱体101の最下部の貯蔵室後方領域に機械室を設けて圧縮機109を配置するタイプの冷蔵庫に適用しても構わない。   In the present embodiment, the matter relating to the main part of the invention described below is a type in which a compressor room is provided by providing a machine room in the rear region of the lowermost storage room of the heat insulating box 101, which has been generally used conventionally. It may be applied to other refrigerators.

第一の冷凍室107の背面には冷気を生成する冷却室110が設けられ、第二の冷凍室105および製氷室106、第一の冷凍室107からなる貯蔵室と冷却室110とを区画するために仕切部材111が構成されている。冷却室110内には、冷却器112が配設されており、貯蔵室と熱交換して温められた空気と熱交換し、冷気を生成している。仕切部材111は、貯蔵室側の外殻をなす前仕切部材120と冷却室側の外殻をなす後仕切部材121とから構成され、後仕切部材121は、送風機113を備える。前仕切部材120と後仕切部材121との間の空間は各貯蔵室に向けて冷気を分岐させる分配風路122である。   A cooling chamber 110 for generating cold air is provided on the back surface of the first freezing chamber 107, and the storage chamber consisting of the second freezing chamber 105, the ice making chamber 106, and the first freezing chamber 107 is separated from the cooling chamber 110. Therefore, a partition member 111 is configured. A cooler 112 is disposed in the cooling chamber 110 and exchanges heat with air warmed by exchanging heat with the storage chamber to generate cold air. The partition member 111 includes a front partition member 120 that forms an outer shell on the storage chamber side and a rear partition member 121 that forms an outer shell on the cooling chamber side, and the rear partition member 121 includes a blower 113. A space between the front partition member 120 and the rear partition member 121 is a distribution air passage 122 that divides cold air toward each storage chamber.

送風機113は、吐出面からみて時計回りをする軸流ファンである。以下、冷蔵庫の左右方向の位置を指定する場合、送風機113の回転方向を基準とする。回転方向が反時計回りの送風機を使用する場合は、左右を反転させることで同様の効果を得ることができる。   The blower 113 is an axial fan that rotates clockwise as viewed from the discharge surface. Hereinafter, when the position in the left-right direction of the refrigerator is designated, the rotation direction of the blower 113 is used as a reference. When using a fan with a counterclockwise rotation direction, the same effect can be obtained by reversing the left and right sides.

送風機113の吐出面は冷蔵庫100の正面に対し角度を持って取り付けられ、冷気は斜め上向きに吹き上げるように配設されている。前仕切部材120の送風機113に対向する部分は、送風機113側に突出した冷気整流部120aを構成する。冷気整流部120aは送風機113の回転軸を中心軸とする略円錐台形状をしている。冷気整流部120
aの先端は送風機113の吐出面に平行な面で構成され、その径は送風機113のボス径と略同径である。
The discharge surface of the blower 113 is attached with an angle with respect to the front surface of the refrigerator 100, and the cold air is arranged to blow up obliquely upward. A portion of the front partition member 120 that faces the blower 113 constitutes a cool air rectification unit 120a that protrudes toward the blower 113 side. The cool air rectification unit 120 a has a substantially truncated cone shape with the rotation axis of the blower 113 as the central axis. Cold air rectification unit 120
The tip of a is formed by a surface parallel to the discharge surface of the blower 113, and the diameter thereof is substantially the same as the boss diameter of the blower 113.

分配風路122は、左上冷気ガイド部123、右上冷気ガイド部124、左下冷気ガイド部125、右下冷気ガイド部126により、下流部を4つの風路に分岐する。左上冷気ガイド部123と右上冷気ガイド部124との間は冷蔵室用風路122a、右上冷気ガイド部124と右下冷気ガイド部126との間は第二の冷凍室用風路122b、右下冷気ガイド部126と左下冷気ガイド部125との間は第一の冷凍室用風路122c、左下冷気ガイド部125と左上冷気ガイド部123との間は製氷室用風路122dである。仕切部材111を冷蔵庫100に組み付けた状態で冷蔵室用風路122aは冷蔵室104とその他の貯蔵室を断熱区画する仕切壁118に設けられた冷蔵室接続風路118aに連通し、第二の冷凍室用風路122b及び製氷室用風路122dは仕切壁118と仕切部材111との間に構成される第二の冷凍室用吐出口127および製氷室用吐出口128にそれぞれ連通する。冷蔵室接続風路118aはダンパ119を有し、冷蔵室104へ流れる風量を調節する。また、冷蔵室接続風路118aはダンパ119の下流に野菜室108へ冷気を導く野菜室接続風路118bを備え、ダンパを通った冷気の一部が野菜室用吐出口129から野菜室108へ流れ込む。また、前仕切部材120に設けられた第一の冷凍室用吐出口120bは第一の冷凍室用風路122cの中程から先端に亘って点在し、第一の冷凍室107へ冷気を導入する。   The distribution air passage 122 branches the downstream portion into four air passages by an upper left cool air guide portion 123, an upper right cool air guide portion 124, a lower left cool air guide portion 125, and a lower right cool air guide portion 126. Between the upper left cool air guide portion 123 and the upper right cool air guide portion 124, a refrigerator compartment air passage 122a, and between the upper right cool air guide portion 124 and the lower right cool air guide portion 126, the second freezer compartment air passage 122b, lower right. A first freezer compartment air passage 122c is provided between the cold air guide portion 126 and the lower left cold air guide portion 125, and an ice making chamber air passage 122d is provided between the lower left cold air guide portion 125 and the upper left cold air guide portion 123. In a state where the partition member 111 is assembled to the refrigerator 100, the refrigerating room air passage 122a communicates with the refrigerating room connection air passage 118a provided in the partition wall 118 that insulates the refrigerating compartment 104 and other storage compartments. The freezer compartment air passage 122 b and the ice compartment air passage 122 d communicate with the second freezer compartment outlet 127 and the icemaker outlet 128 configured between the partition wall 118 and the partition member 111, respectively. The refrigerator compartment connection air passage 118 a has a damper 119 to adjust the amount of air flowing to the refrigerator compartment 104. Further, the refrigerator compartment connection air passage 118a includes a vegetable compartment connection air passage 118b that guides the cold air to the vegetable compartment 108 downstream of the damper 119, and a part of the cold air that has passed through the damper passes from the vegetable compartment outlet 129 to the vegetable compartment 108. Flows in. Further, the first freezer compartment discharge ports 120b provided in the front partition member 120 are scattered from the middle to the front end of the first freezer compartment air passage 122c, and cool air is supplied to the first freezer compartment 107. Introduce.

ここで、ダンパ119は冷蔵室接続風路118a内だけでなく、分配風路122内や、冷蔵室104内に設けられた専用風路または吐出口に設けても良い。さらに、必要に応じて第二の冷凍室用風路122b、第一の冷凍室用風路122c、製氷室用風路122dや第二の冷凍室用吐出口127、製氷室用吐出口128、第一の冷凍室用吐出口120b、野菜室用吐出口129に備えることで、さらに精度良く各室の温度を調節することができる。   Here, the damper 119 may be provided not only in the refrigerator compartment connection air passage 118 a but also in the distribution air passage 122 or a dedicated air passage provided in the refrigerator compartment 104 or a discharge port. Further, as necessary, the second freezer compartment air passage 122b, the first freezer compartment air passage 122c, the ice making air passage 122d, the second freezer compartment outlet 127, the ice making outlet 128, By providing the first outlet for freezer 120b and the outlet for vegetable compartment 129, the temperature of each chamber can be adjusted with higher accuracy.

なお、本実施の形態では第二の冷凍室用風路122bおよび第一の冷凍室用風路122c、製氷室用風路122dは、それぞれ第二の冷凍室105、第一の冷凍室107、製氷室106の専用の風路であるが、冷蔵庫100の貯蔵室レイアウトや分配風路122外の風路構成、各室の温度帯などの条件に合わせて冷蔵室用風路122aのように複数の貯蔵室に連通する兼用構造としてもよく、逆に冷蔵室用風路122aを分配風路122内で冷蔵室104に連通する風路と野菜室108に連通する風路とに分割してもよい。   In the present embodiment, the second freezer compartment air passage 122b, the first freezer compartment air passage 122c, and the ice compartment air passage 122d are respectively the second freezer compartment 105, the first freezer compartment 107, Although it is a dedicated air passage for the ice making chamber 106, a plurality of air passages 122a such as a refrigerator compartment air passage 122a according to conditions such as the storage compartment layout of the refrigerator 100, the air passage configuration outside the distribution air passage 122, and the temperature zone of each room. Alternatively, the refrigerating room air passage 122a may be divided into the air passage communicating with the refrigerating chamber 104 and the air passage communicating with the vegetable compartment 108 in the distribution air passage 122. Good.

第一の冷凍室用吐出口120bは冷気整流部120aの中心よりも下方で、且つ、上段冷凍室ケース107bの奥面上端の上方、および、上段冷凍室ケース107bの下面よりも下方で、且つ下段冷凍室ケース107c奥面上端の上方の二箇所に位置し、上段冷凍室ケース107bおよび下段冷凍室ケース107cに冷気を吹き込む。なお、第一の冷凍室用吐出口120b形状は第一の冷凍室107のレイアウトや想定する貯蔵物によって適切に設計されるが、横長の孔を一段または複数段設けることで、第一の冷凍室107全体に冷気をムラなく届けることが容易になる。   The first freezer compartment discharge port 120b is below the center of the cold air rectifying unit 120a, above the upper end of the upper surface of the upper freezer compartment case 107b, below the lower surface of the upper freezer compartment case 107b, and The cooler is blown into the upper freezer compartment case 107b and the lower freezer compartment case 107c at two positions above the upper end of the lower freezer compartment case 107c. Although the shape of the first freezer compartment discharge port 120b is appropriately designed according to the layout of the first freezer compartment 107 and the assumed storage, the first freezer compartment can be provided by providing one or more horizontal holes. It becomes easy to deliver cold air to the entire chamber 107 evenly.

また、冷却器112の下部空間には冷却時に冷却器112やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアント加熱手段114が設けられ、さらにその下部には除霜時に生じる除霜水を受けるためのドレンパン115、その最深部から庫外に貫通したドレンチューブ116が構成され、その下流側の庫外に蒸発皿117が構成されている。なお、ラジアント加熱手段114の代わりに冷却器112に取り付けたパイプヒータなど他形状の加熱手段を用いたり、ラジアント加熱手段114と他形状の加熱手段を併用したりしても構わない。   The lower space of the cooler 112 is provided with a radiant heating means 114 made of glass tube for defrosting the frost and ice adhering to the cooler 112 and its surroundings at the time of cooling. A drain pan 115 for receiving the generated defrost water, a drain tube 116 penetrating from the deepest part to the outside of the cabinet are configured, and an evaporating dish 117 is configured outside of the downstream side. Instead of the radiant heating means 114, another shape heating means such as a pipe heater attached to the cooler 112 may be used, or the radiant heating means 114 and another shape heating means may be used in combination.

左上冷気ガイド部123は前仕切部材120と一体に構成された前ガイド部123aと後仕切部材121と一体に形成された後ガイド部123bからなり、仕切部材111の上端側が最も広く下に向かう程狭くなる略三角形の形状を有している。   The upper left cool air guide portion 123 includes a front guide portion 123a formed integrally with the front partition member 120 and a rear guide portion 123b formed integrally with the rear partition member 121, and the upper end side of the partition member 111 is widest downward. It has a substantially triangular shape that narrows.

前ガイド部123aは、前仕切部材120の一部が分配風路側に突出したガイド凸部123cからなり、ガイド凸部123cの最突出面の外周にはガイド凸部123c側面の延長形状を有するガイドリブ123dを備える。   The front guide portion 123a includes a guide convex portion 123c in which a part of the front partition member 120 protrudes toward the distribution air passage, and a guide rib having an extended shape on the side surface of the guide convex portion 123c on the outer periphery of the most protruding surface of the guide convex portion 123c. 123d.

前ガイド部123aは、下先端部を境としてファンに対向する側に位置する内側面123e(第一の面)及び製氷室用風路122dに面する外側面123f(第二の面)の二面を有する。内側面123eは冷気整流部120aの円錐の中心軸を中心とする略円筒の一部からなる基準面を有し冷蔵室104へ冷気を導く冷蔵室用風路122aの側壁をなし、外側面123fは略鉛直方向に伸び前仕切部材120基準面に略垂直に形成された略平面をからなり製氷室106へ冷気を導く製氷室用先端風路122bの側壁をなす。   The front guide portion 123a includes an inner side surface 123e (first surface) located on the side facing the fan with the lower tip as a boundary, and an outer side surface 123f (second surface) facing the ice making chamber air passage 122d. Has a surface. The inner side surface 123e has a reference surface made up of a part of a substantially cylinder centering on the conical central axis of the cold air rectifying unit 120a, forms a side wall of the cold room air passage 122a that guides the cold air to the cold room 104, and has an outer side surface 123f. Extends in a substantially vertical direction and has a substantially flat surface formed substantially perpendicular to the reference surface of the front partition member 120 and forms a side wall of an ice making chamber front air passage 122b that guides cold air to the ice making chamber 106.

ガイド凸部123cの付け根は緩やかなR(半径1mm以上、望ましくは半径3mm以上)を有し、冷気整流部120aの裾と滑らかに接続する。前ガイド部123aの下先端部は内側面123eと外側面123fの交差する辺であり、送風機113吐出面の中心点を通る水平面よりも上側に位置する。   The base of the guide protrusion 123c has a gentle R (radius 1 mm or more, preferably 3 mm or more), and is smoothly connected to the skirt of the cool air rectification unit 120a. The lower front end portion of the front guide portion 123a is a side where the inner side surface 123e and the outer side surface 123f intersect, and is located above a horizontal plane passing through the center point of the discharge surface of the blower 113.

後ガイド部123bは、後仕切部材121の前ガイド部123aに対向する位置に設けられたリブにより構成され、前ガイド部123aのガイドリブ123d内に丁度収まる形状を有する。ガイド凸部123cと後ガイド部123bとの隙は1〜3mm程度である。   The rear guide portion 123b is configured by a rib provided at a position facing the front guide portion 123a of the rear partition member 121, and has a shape that fits within the guide rib 123d of the front guide portion 123a. The gap between the guide convex portion 123c and the rear guide portion 123b is about 1 to 3 mm.

なお、ガイド凸部123cと後ガイド部123bとの隙は小さい程冷気が入り込みにくく風路抵抗を小さくすることができ、大きいほど左上冷気ガイド部123内にできた結露が内部に溜まることを防止することができるため、冷蔵庫100内における分配風路122の位置や各貯蔵室の温度帯などによって最適値を選択することが望ましい。   Note that the smaller the gap between the guide convex portion 123c and the rear guide portion 123b, the harder the cold air can enter, and the smaller the airway resistance, and the larger the gap, the more the condensation formed in the upper left cold air guide portion 123 is prevented. Therefore, it is desirable to select an optimum value according to the position of the distribution air passage 122 in the refrigerator 100, the temperature zone of each storage room, and the like.

また、右下冷気ガイド部126は前仕切部材120に設けられた中空リブにより構成され、第二の冷凍室用風路122bの下側壁をなす上面126a(第一の面)と第一の冷凍室用風路122cの右上側壁をなす下面126b(第二の面)を有する。同様にして右上冷気ガイド部124および左下冷気ガイド部125も、前仕切部材120に設けられた中空リブであり、互いに異なる風路に面する二つの面(第一の面と第二の面)を有する。   The lower right cool air guide portion 126 is configured by a hollow rib provided in the front partition member 120, and an upper surface 126a (first surface) forming the lower wall of the second freezer compartment air passage 122b and the first refrigeration. It has a lower surface 126b (second surface) forming the upper right side wall of the room air passage 122c. Similarly, the upper right cool air guide portion 124 and the lower left cool air guide portion 125 are also hollow ribs provided in the front partition member 120, and two surfaces (first surface and second surface) facing different air paths. Have

なお、右上冷気ガイド部124、左下冷気ガイド部125、右下冷気ガイド部126は前仕切部材120に設けられた凸部や中実リブ、後仕切部材121に設けられたリブおよび凸部で形成しても良い。   The upper right cool air guide portion 124, the lower left cool air guide portion 125, and the lower right cool air guide portion 126 are formed by convex portions and solid ribs provided on the front partition member 120, and ribs and convex portions provided on the rear partition member 121. You may do it.

なお、本実施の形態における、以下に述べる発明の要部に関する事項は、いずれの貯蔵室においても回転扉を有し、内箱103に貯蔵ケースが載置される構造を有するタイプの冷蔵庫に適用しても構わない。   In addition, the matter regarding the main part of the invention described below in the present embodiment is applied to a refrigerator of a type having a rotating door in any storage room and having a structure in which a storage case is placed in the inner box 103. It doesn't matter.

以上のように構成された本実施の形態の冷蔵庫100について、以下その動作、作用を説明する。   About the refrigerator 100 of this Embodiment comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、冷凍サイクルの動作について説明する。庫内の設定された温度に応じて制御装置(図示せず)からの信号により冷凍サイクルが動作して冷却運転が行われる。圧縮機109の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)である程度凝縮液化し、さらに冷蔵庫本体である断熱箱体101の側面や背面、また断熱箱体101の前面間口
に配設された冷媒配管(図示せず)などを経由し断熱箱体101の結露を防止しながら凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、キャピラリーチューブでは圧縮機109への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器112に至る。
First, the operation of the refrigeration cycle will be described. The refrigeration cycle is operated by a signal from a control device (not shown) according to the set temperature in the refrigerator, and the cooling operation is performed. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed to some extent by a condenser (not shown), and further, the side surface and the rear surface of the heat insulating box body 101 which is the refrigerator main body, and the front opening of the heat insulating box body 101. The heat insulating box 101 is condensed and liquefied while preventing the condensation of the heat insulating box 101 via a refrigerant pipe (not shown) disposed in the tube, and reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 112.

ここで、冷却室110では、送風機113の動作により集められた各貯蔵室内の空気が、冷却器112により液冷媒と熱交換され、冷却器112内の冷媒は蒸発気化する。この時、貯蔵室から戻ってきた空気は、冷却室110内で再び各貯蔵室を冷却するための冷気となる。低温の冷気は送風機113から分配風路122を通り、風路やダンパを用いて分流され、冷蔵室104、第二の冷凍室105、製氷室106、第一の冷凍室107、野菜室108をそれぞれの目的温度帯に冷却する。   Here, in the cooling chamber 110, the air in each storage chamber collected by the operation of the blower 113 is heat-exchanged with the liquid refrigerant by the cooler 112, and the refrigerant in the cooler 112 is evaporated. At this time, the air returned from the storage chamber becomes cool air for cooling each storage chamber again in the cooling chamber 110. The low-temperature cold air flows from the blower 113 through the distribution air passage 122 and is divided by using the air passage and a damper, and passes through the refrigerating room 104, the second freezing room 105, the ice making room 106, the first freezing room 107, and the vegetable room 108. Cool to each target temperature range.

送風機113は、冷蔵庫100正面から見て時計回りに回転する軸流ファンであることから、吐出された冷気は時計回りに旋回しながら放射状に広がるように円錐状に流れる。したがって、冷気整流部120aを吐出冷気の流れに合わせた形状にすることで、渦を発生させることなく、冷気を分配風路122にスムーズに送り出すことができる。また、軸流ファンの吐出側では、中心にファンに向かって戻る気流が発生するが、冷気整流部120aの円錐台上面径をファンのボス径と略同径とすることで、この戻り気流を抑制することができるため、送風機113より冷気に与えられたエネルギを無駄なく送風に生かすことができる。   Since the blower 113 is an axial fan that rotates clockwise as viewed from the front of the refrigerator 100, the discharged cold air flows conically so as to spread radially while turning clockwise. Therefore, by forming the cool air rectifying unit 120a in accordance with the flow of the discharged cool air, the cool air can be smoothly sent to the distribution air path 122 without generating vortices. Also, on the discharge side of the axial fan, an air flow returning toward the fan is generated at the center. However, by setting the upper surface diameter of the truncated cone of the cool air rectifying unit 120a to be substantially the same as the boss diameter of the fan, Since it can suppress, the energy given to cold air from the air blower 113 can be utilized for ventilation without waste.

吐出冷気の作る円錐面と送風機113の回転軸のなす角は送風機113の送る流量や回転数により異なるため、冷気整流部120aの円錐面の角度を変えることで、設計流量に応じた最適設計を行うことができる。例えば、羽根径が90から110mmの送風機113を1200から3000rpm前後で回転させ、0。5から1。0m/minの風量を得る場合、実験に因れば、回転軸と冷気整流部120aの円錐面とのなす角は50から85°が望ましい。半径方向に広がるにつれ徐々に送風機113との距離を大きくすることで、吐出冷気の持つ運動エネルギを圧力エネルギとして効率よく回収することができるため、送風機113の仕事を増やすことなく吐出圧力を高めることができる。本実施の形態のように、貯蔵室が多く、送風回路が多岐にわたり、ダンパ119のように風路抵抗になる部品を多く必要とする風路では、送風機113の仕事が大きくなるため、冷気整流部120aの果たす役割はより大きいものとなる。 Since the angle formed between the conical surface created by the discharged cool air and the rotation axis of the blower 113 varies depending on the flow rate and the number of rotations sent by the blower 113, the optimum design corresponding to the design flow rate can be achieved by changing the angle of the conical surface of the cool air rectifying unit 120a. It can be carried out. For example, when the blower 113 having a blade diameter of 90 to 110 mm is rotated around 1200 to 3000 rpm and an air volume of 0.5 to 1.0 m 3 / min is obtained, according to the experiment, the rotation shaft and the cold air rectifying unit 120a The angle formed with the conical surface is preferably 50 to 85 °. By gradually increasing the distance to the blower 113 as it spreads in the radial direction, the kinetic energy of the discharged cold air can be efficiently recovered as pressure energy, so the discharge pressure is increased without increasing the work of the blower 113 Can do. Since the work of the air blower 113 is increased in an air passage that has many storage chambers, a wide variety of air blowing circuits, and requires many parts that cause air passage resistance such as the damper 119 as in the present embodiment, cold air rectification The part 120a plays a greater role.

冷気整流部120aに沿って広がった冷気のうち、左下冷気ガイド部125と左上冷気ガイド部123との間に流れ出た冷気は、分配風路122左側側壁と外側面123fとの間に形成された製氷室用風路122dを通り製氷室用吐出口128より製氷室106に送風され、左上冷気ガイド部123と右上冷気ガイド部124との間に流れ出た冷気は、内側面123eに沿って冷蔵室用風路122aを通り冷蔵室接続風路118aおよび野菜室接続風路118bより冷蔵室104および野菜室108へ送風され、右上冷気ガイド部124と右下冷気ガイド部126との間に流れ出た冷気は、上面126aおよび分配風路122右側側面に沿って第二の冷凍室用吐出口127より第二の冷凍室105へ送風され、残りの冷気は第一の冷凍室用吐出口120bより第一の冷凍室107へ送風される。このようにして、分配風路122内に吐出された冷気は下流部にて各室への風路に分岐され一定量を各吐出口から各貯蔵室へ送風することが可能となる。   Of the cool air that has spread along the cool air rectifying unit 120a, the cool air that flows between the lower left cool air guide portion 125 and the upper left cool air guide portion 123 is formed between the left side wall of the distribution air passage 122 and the outer surface 123f. The cold air that has flowed between the upper left cold air guide portion 123 and the upper right cold air guide portion 124 through the ice making chamber air passage 122d and blown to the ice making chamber 106 from the ice making chamber discharge port 128 flows along the inner side surface 123e. Cold air that has passed through the air flow path 122a and is blown to the refrigerator compartment 104 and the vegetable compartment 108 from the refrigerator compartment connection air passage 118a and the vegetable compartment connection air passage 118b and flows between the upper right cool air guide portion 124 and the lower right cool air guide portion 126. Is blown from the second freezer discharge port 127 to the second freezer 105 along the upper surface 126a and the right side surface of the distribution air passage 122, and the remaining cold air is discharged from the first freezer freezer. It is blown from the mouth 120b to the first of the freezer compartment 107. In this way, the cool air discharged into the distribution air passage 122 is branched into the air passages to the respective chambers in the downstream portion, and a certain amount can be blown from the respective discharge ports to the respective storage chambers.

このとき、各冷気ガイド部の第一の面と第二の面とは平行でなく吐出冷気の流れに従って徐々に広がる形状をしているため、冷気は徐々に各吐出口に向くように方向修正される。従って、冷気の急激な流れの変化をなくすことができ送風損失を抑えることが可能となる。また、冷気ガイド部は二つの先端風路の間に存在するため、両側の冷気の流れは違う方向を向いていることから、冷気ガイド部がそれぞれの流れに合わせた側壁を有すること
で二つの流れの間に存在する風路の無効空間、つまり渦など冷気の乱れを発生させる空間を削減することができるため送風効率を向上させることができる。
At this time, the first surface and the second surface of each cold air guide part are not parallel, but have a shape that gradually expands according to the flow of the discharged cold air, so the direction of the cold air is gradually adjusted to face each discharge port. Is done. Accordingly, it is possible to eliminate a change in the rapid flow of the cold air and to suppress the air loss. In addition, since the cold air guide portion exists between the two front air passages, the flow of the cold air on both sides is directed in different directions. Since it is possible to reduce the invalid space of the air passage existing between the flows, that is, the space that generates the turbulence of the cold air such as the vortex, the air blowing efficiency can be improved.

また、内側面123eは冷気整流部120aの円錐形状と同軸の円筒形状を持つため、冷気の持つ回転方向の減速を極力低減することができるとともに、内側面123e上のあらゆる点において送風機113からの距離が略一定になるため、面に当たる風量は略均一となり場所による冷気の圧力差を最小限にすることができるため冷気の送風損失を低減することができる。   Further, since the inner side surface 123e has a cylindrical shape that is coaxial with the conical shape of the cold air rectifying unit 120a, it is possible to reduce the deceleration in the rotational direction of the cold air as much as possible, and at any point on the inner side surface 123e, from the blower 113. Since the distance becomes substantially constant, the air volume hitting the surface becomes substantially uniform, and the pressure difference of the cold air depending on the place can be minimized, so that the air blowing loss of the cold air can be reduced.

さらに、全ての冷気ガイド部および冷気整流部120aは前仕切部材120に一体に形成されているため、冷気整流部120aから各先端風路、各吐出口までの風路を滑らかな一枚の面によって構成することが可能となる。送風機より吐出された冷気は冷気整流部120aにあたり冷気整流部120aに沿って流れているため、部品勘合部に見られる段差や隙間にぶつかることなく吐出口まで流れることが可能となり、送風ロスを最低限に抑えることができる。   Further, since all the cool air guide portions and the cool air rectifying portions 120a are formed integrally with the front partition member 120, the air passage from the cool air rectifying portion 120a to each tip air passage and each discharge port is a single smooth surface. It becomes possible to comprise. Since the cold air discharged from the blower hits the cold air rectification unit 120a and flows along the cold air rectification unit 120a, it can flow to the discharge port without hitting a step or a gap seen in the component fitting portion, and the air loss is minimized. To the limit.

左上冷気ガイド部123は前ガイド部123aだけでなく後ガイド部123bも含まれるが、後ガイド部123bは前ガイド部123aよりも内側に収まる形状のため、前仕切部材120表面に沿って流れてきた冷気も左上冷気ガイド部123内に入ることなく、比較的滑らかに流れることができる。冷気の一部が左上冷気ガイド部123内に侵入してしまった際も、前ガイド部123aはガイド凸部123cとガイドリブ123dによって構成されており左上冷気ガイド部123内の空間は小さいため冷気の乱れを小さく抑え送風効率の低下を抑制することができる。さらに、前仕切部材120と後仕切部材121との両方により左上冷気ガイド部123を構成することで、分配風路122の奥行き寸法が大きい場合でもそれぞれの部品の奥行き寸法を大きくすることなく、冷気ガイド部を構成することが可能となるため、奥行き寸法が大きく送風損失の小さい風路を、安価に加工性を損なうことなく構成することができる。   Although the upper left cool air guide part 123 includes not only the front guide part 123a but also the rear guide part 123b, the rear guide part 123b flows along the surface of the front partition member 120 because the rear guide part 123b fits inside the front guide part 123a. The cool air can flow relatively smoothly without entering the upper left cool air guide portion 123. Even when a part of the cool air enters the upper left cool air guide portion 123, the front guide portion 123a is constituted by the guide convex portion 123c and the guide rib 123d, and the space in the upper left cool air guide portion 123 is small, so Disturbances can be kept small, and a reduction in blowing efficiency can be suppressed. Further, by forming the upper left cool air guide portion 123 by both the front partition member 120 and the rear partition member 121, even if the depth dimension of the distribution air passage 122 is large, the cool air is not increased without increasing the depth dimension of each component. Since the guide portion can be configured, an air passage having a large depth dimension and a small blowing loss can be configured at low cost without impairing workability.

このとき、左上冷気ガイド部123は送風機113より吐出された冷気が殆ど直接ぶつかることになるため、送風機113の稼働中は左上冷気ガイド部123内の空気が冷却され左上冷気ガイド部123内に氷結する恐れがある。しかしながら、左上冷気ガイド部123の下先端部において、ガイドリブ123dと後ガイド部123bとの隙間は2mm程度存在するため、左上冷気ガイド部123内の氷結が溶解した際に隙間より排出されるため氷結が成長し左上冷気ガイド部123を変形させる事態を防止することができる。   At this time, since the cool air discharged from the blower 113 almost directly collides with the upper left cool air guide portion 123, the air in the upper left cool air guide portion 123 is cooled while the blower 113 is operating, and the upper left cool air guide portion 123 is frozen. There is a risk of doing. However, since there is a gap of about 2 mm between the guide rib 123d and the rear guide portion 123b at the lower front end portion of the upper left cold air guide portion 123, it is discharged from the gap when the freezing in the upper left cold air guide portion 123 is melted. It is possible to prevent a situation where the upper left cold air guide part 123 is deformed.

なお、これらの結露が左上冷気ガイド部123周辺に溜まることを抑制するため、ガイド凸部123cおよびガイドリブ123d、後ガイド部123bの下先端部は、水捌けを促すように傾斜をつけることが望ましい。   In order to prevent the condensation from accumulating around the upper left cool air guide portion 123, it is desirable that the guide convex portion 123c, the guide rib 123d, and the lower front end portion of the rear guide portion 123b are inclined so as to promote water drainage.

次に除霜時の作用について説明する。冷却中に冷却器112やその周辺に付着した霜や氷を溶かすために、冷蔵庫100は定期的に冷却を中断しラジアント加熱手段114を加熱することで冷却室110内を加熱する。このとき冷却室110内の空気も暖められ冷却室110上方に上り、暖気の一部は送風機113の羽根の間を抜けて分配風路122内へ進入する。分配風路122内に漏れた暖気はさらに上に上昇する。このとき本実施の形態では、左上冷気ガイド部123の下先端部が送風機113の中心点を含む水平面よりも上側に設置されているため、暖気は冷蔵室用風路122aだけでなく製氷室用風路122dにも上ることができる。これにより分配風路122内の暖気が流れ込むことができる容積を大きくでき、分配風路122からさらに貯蔵室へと流れ込む暖気の量を低減することができるため、貯蔵室に保存している貯蔵物の温度上昇を抑えることができユーザの使い勝手を向上することができる。さらに暖気が貯蔵室内で冷却され貯蔵室内に結露や着霜する
ことを低減でき、ユーザの快適性を向上できる。
Next, the action at the time of defrosting will be described. In order to melt frost and ice adhering to the cooler 112 and its periphery during cooling, the refrigerator 100 periodically interrupts cooling and heats the radiant heating means 114 to heat the inside of the cooling chamber 110. At this time, the air in the cooling chamber 110 is also warmed and rises above the cooling chamber 110, and part of the warm air passes through the blades of the blower 113 and enters the distribution air passage 122. The warm air leaking into the distribution air passage 122 rises further upward. At this time, in the present embodiment, since the lower tip portion of the upper left cold air guide portion 123 is installed above the horizontal plane including the center point of the blower 113, the warm air is used not only for the refrigerator compartment air passage 122a but also for the ice making room. It can also go up to the air path 122d. As a result, the volume in which the warm air in the distribution air passage 122 can flow can be increased, and the amount of warm air flowing into the storage chamber from the distribution air passage 122 can be reduced. Therefore, the user's usability can be improved. Furthermore, it is possible to reduce warm air being cooled in the storage chamber and causing condensation or frost formation in the storage chamber, thereby improving user comfort.

以上のように、本実施の形態では、分配風路122内に、前仕切部材120により一体に構成される冷気ガイド部を有することにより、冷気整流部120aから下流部までの風路を滑らかな一枚の面によって構成することが可能となる。送風機より吐出された冷気は冷気整流部120aにあたり冷気整流部120aに沿って流れているため、部品勘合部に見られる段差や隙間にぶつかることなく吐出口まで流れることが可能となり、送風ロスを最低限に抑えることができる。さらには、冷気ガイド部を前仕切部材120および後仕切部材121のみで構成することができるため、材料費、組立工数が増えないだけでなく、送風効率を低下させる風路断面積はそのままで仕切部材111全体の体積を小さくすることが可能となり、貯蔵空間を増加させることができるためユーザの使い勝手を向上させることができる。さらに、前仕切部材120と後仕切部材121との両方により左上冷気ガイド部123を構成することで、分配風路122の奥行き寸法が大きい場合でもそれぞれの部品の奥行き寸法を大きくすることなく、冷気ガイド部を構成することが可能となるため、奥行き寸法が大きく送風損失の小さい風路を、安価に加工性を損なうことなく構成することができる。   As described above, in the present embodiment, by having the cold air guide portion integrally formed by the front partition member 120 in the distribution air passage 122, the air passage from the cold air rectifying portion 120a to the downstream portion is smooth. It can be configured by a single surface. Since the cold air discharged from the blower hits the cold air rectification unit 120a and flows along the cold air rectification unit 120a, it can flow to the discharge port without hitting a step or a gap seen in the component fitting portion, and the air loss is minimized. To the limit. Furthermore, since the cool air guide portion can be configured by only the front partition member 120 and the rear partition member 121, the material cost and the assembly man-hour are not increased, and the air passage cross-sectional area that lowers the air blowing efficiency is maintained as it is. Since the volume of the entire member 111 can be reduced and the storage space can be increased, the user-friendliness can be improved. Further, by forming the upper left cool air guide portion 123 by both the front partition member 120 and the rear partition member 121, even if the depth dimension of the distribution air passage 122 is large, the cool air is not increased without increasing the depth dimension of each component. Since the guide portion can be configured, an air passage having a large depth dimension and a small blowing loss can be configured at low cost without impairing workability.

さらに、分配風路122の下流部は複数の風路に分岐され、複数の貯蔵室に連通する複数の吐出口を有し、冷気ガイド部は送風機113に対向する位置に設けられた第一の面と、第一の面に隣接しない風路に隣接する第二の面とを有することにより、送風機113より吐出された冷気を複数ある貯蔵室へそれぞれ必要な量の冷気を分配し効率よく導くことができるため、送風ロスを増加させることなく各室を所定の温度に冷却することが可能となる。   Further, the downstream portion of the distribution air passage 122 is branched into a plurality of air passages, has a plurality of outlets communicating with the plurality of storage chambers, and the cold air guide portion is a first portion provided at a position facing the blower 113. By having the surface and the second surface adjacent to the air passage that is not adjacent to the first surface, the cool air discharged from the blower 113 is distributed to a plurality of storage chambers, and a necessary amount of cold air is distributed and guided efficiently. Therefore, each chamber can be cooled to a predetermined temperature without increasing the air loss.

また、第一の面と第二の面とは、互いに平行でない部分を有することにより、仕切部材111の形に関係なく各貯蔵室へ向かう風路の数や形を決定することができるため、送風機113の吐出冷気が渦を作りやすいコーナー部などを廃止することが可能となるため、より効率よく各室への送風を行うことができる冷蔵庫を提供することができる。   In addition, since the first surface and the second surface have portions that are not parallel to each other, the number and shape of the air passages toward each storage chamber can be determined regardless of the shape of the partition member 111. Since it becomes possible to abolish a corner portion or the like in which the cool air discharged from the blower 113 easily creates a vortex, it is possible to provide a refrigerator that can blow air to each room more efficiently.

前ガイド部123aは前仕切部材120に形成されたガイド凸部123cで構成されることにより、冷気ガイド部を中空とし材料費を抑えながらも、左上冷気ガイド部123の内部容積を小さくすることで回りこむ冷気の無駄な流れを抑制することができるため、よりスムーズな風路を提供することができる。   The front guide portion 123a is constituted by a guide convex portion 123c formed on the front partition member 120, thereby reducing the internal volume of the upper left cold air guide portion 123 while reducing the material cost by making the cold air guide portion hollow. Since a useless flow of cold air that wraps around can be suppressed, a smoother air path can be provided.

前仕切部材120は、送風機113に対向する面に分配風路122内側に向かって突出した面からなる冷気整流部120aを有することにより、送風機113より吐出された冷気は冷気整流部120aによって放射状に整流され分配風路122内に流れ込むため、送風機113と前仕切部材120との間に発生する渦を抑制することができスムーズに冷気を送風することが可能となる。   The front partition member 120 has the cold air rectification unit 120a having a surface protruding toward the inside of the distribution air passage 122 on the surface facing the blower 113, so that the cold air discharged from the blower 113 is radially radiated by the cold air rectification unit 120a. Since the air is rectified and flows into the distribution air passage 122, vortices generated between the blower 113 and the front partition member 120 can be suppressed, and the cool air can be smoothly blown.

さらに、冷気整流部120aは略円錐形を有し、内側面123eは冷気整流部120aと同じ中心軸周りの略円筒の一部により構成されていることにより、送風機113の回転に伴う冷気の回転方向の速度に合わせて冷気ガイド部を構成することが可能となり冷気を失速させることなく吐出口まで導くことができる。   Further, the cool air rectification unit 120a has a substantially conical shape, and the inner side surface 123e is constituted by a part of a substantially cylindrical portion around the same central axis as the cold air rectification unit 120a, so that the rotation of the cool air accompanying the rotation of the blower 113 is performed. The cool air guide portion can be configured according to the speed in the direction, and the cool air can be guided to the discharge port without stalling.

冷蔵室用風路122aは冷蔵室接続風路118aに連通し、冷蔵室接続風路118a内には冷気の流量を調節する開口面積を調節できるダンパ119を備えたことにより、ダンパ119により冷蔵室104および野菜室108への送風量を状況に応じて調整することが可能となるため、冷蔵室104および野菜室108の温度を冷凍温度帯に冷却される他の貯蔵室と独立して制御できるためより緻密に温度調整ことができる。   The refrigerating room air passage 122a communicates with the refrigerating room connecting air passage 118a, and the damper 119 is provided with a damper 119 capable of adjusting the opening area for adjusting the flow rate of the cold air. 104 and the vegetable room 108 can be adjusted according to the situation, so that the temperature of the refrigeration room 104 and the vegetable room 108 can be controlled independently of other storage rooms cooled to the freezing temperature zone. Therefore, the temperature can be adjusted more precisely.

内側面123eと外側面123fの接点である左上冷気ガイド部123の下先端部は、送風機113の中心点を含む水平面よりも上側に設置されていることにより、除霜中に送風機113の羽根の間から漏れ出た暖気が上へ上がる際に冷蔵室用風路122aだけでなく製氷室用風路122dにも入ることができるため分配風路122内により多くの暖気を溜め込むことが可能となり、貯蔵室まで漏れる暖気の量を少なくすることが可能となる。   The lower tip of the upper left cool air guide 123, which is a contact point between the inner surface 123e and the outer surface 123f, is installed above the horizontal plane including the center point of the blower 113, so that the blades of the blower 113 are removed during defrosting. When the warm air leaked from between rises up, it can enter not only the refrigerating chamber air passage 122a but also the ice making air passage 122d, so that more warm air can be stored in the distribution air passage 122, It is possible to reduce the amount of warm air leaking to the storage room.

(実施の形態2)
図6は本発明の実施の形態2の仕切部材正面図である。
(Embodiment 2)
FIG. 6 is a front view of a partition member according to the second embodiment of the present invention.

なお、実施の形態1と同様の構成および同様の技術思想が適用できる部分については、説明を省略するが、不具合がない限り実施の形態1の構成に本実施の形態を組み合わせて適用することが可能である。   In addition, although description is abbreviate | omitted about the part which can apply the structure similar to Embodiment 1, and the same technical idea, as long as there is no malfunction, it can apply combining this Embodiment with the structure of Embodiment 1. Is possible.

図6において、仕切部材211は図2の仕切部材111と同様にして第二の冷凍室105および製氷室106、第一の冷凍室107からなる貯蔵室と冷却室110とを区画するために構成される。仕切部材211は、貯蔵室側の外殻をなす前仕切部材120と冷却室側の外殻をなす後仕切部材121とから構成され、後仕切部材121は、送風機113を備える。前仕切部材120と後仕切部材121との間の空間は各貯蔵室に向けて冷気を分岐させる分配風路122である。   In FIG. 6, the partition member 211 is configured to partition the storage chamber composed of the second freezing chamber 105, the ice making chamber 106, and the first freezing chamber 107 from the cooling chamber 110 in the same manner as the partitioning member 111 in FIG. 2. Is done. The partition member 211 includes a front partition member 120 that forms an outer shell on the storage chamber side and a rear partition member 121 that forms an outer shell on the cooling chamber side, and the rear partition member 121 includes a blower 113. A space between the front partition member 120 and the rear partition member 121 is a distribution air passage 122 that divides cold air toward each storage chamber.

分配風路122は、左上冷気ガイド部223、右上冷気ガイド部124、左下冷気ガイド部125、右下冷気ガイド部226により、下流部を4つの風路に分岐する。   The distribution air passage 122 branches the downstream portion into four air passages by the upper left cool air guide portion 223, the upper right cool air guide portion 124, the lower left cool air guide portion 125, and the lower right cool air guide portion 226.

左上冷気ガイド部223は前仕切部材120に設けられたリブにより構成され、冷蔵室用風路122aの左側壁をなす内側面223e(第一の面)と製氷室用風路122dの右側壁をなす外側面223f(第二の面)を有する。左上冷気ガイド部223は略鉛直方向に伸び前仕切部材120基準面に略垂直に形成された略平面を持つ薄板リブであり、仕切部材211の上端側は冷蔵室用風路122a側に湾曲するように広がるR形状を有する。   The upper left cold air guide portion 223 is configured by a rib provided on the front partition member 120, and includes an inner side surface 223e (first surface) forming the left side wall of the refrigerator compartment air passage 122a and a right side wall of the ice compartment air passage 122d. The outer surface 223f (second surface) is formed. The upper left cold air guide part 223 is a thin plate rib that extends in a substantially vertical direction and has a substantially flat surface that is formed substantially perpendicular to the reference surface of the front partition member 120, and the upper end side of the partition member 211 is curved toward the cold room air passage 122 a side. It has a rounded R shape.

右下冷気ガイド部226は前仕切部材120に設けられた中空リブにより構成され、第二の冷凍室用風路122bの下側壁をなす上面226a(第一の面)と第一の冷凍室用風路122cの右上側壁をなす下面226b(第二の面)を有する。上面226aおよび下面226bは仕切部材211の右側から中心方向へ伸びており、その根元は略平行であるが徐々に近づき先端部にて接続される。   The lower right cool air guide portion 226 is constituted by a hollow rib provided in the front partition member 120, and an upper surface 226a (first surface) forming the lower side wall of the second freezer compartment air passage 122b and the first freezer compartment. It has a lower surface 226b (second surface) forming the upper right side wall of the air passage 122c. The upper surface 226a and the lower surface 226b extend from the right side of the partition member 211 toward the center, and their roots are substantially parallel but gradually approach and are connected at the tip.

以上のように構成された本発明の実施の形態2における冷蔵庫について、以下その動作を説明する。   About the refrigerator in Embodiment 2 of this invention comprised as mentioned above, the operation | movement is demonstrated below.

送風機113により分配風路122に吐出された冷気は、左上冷気ガイド部223により冷蔵室用風路122aおよび製氷室用風路122dに分流される。このとき左上冷気ガイド部223は薄板リブで構成されているため、分岐点には渦などが発生するスペースがないため、スムーズに分留することができる。また、左上冷気ガイド部の上端はR形状を有しているため冷蔵室用風路122aの上部のコーナー部がなくなりなだらかな流路を形成する。これにより冷気はスムーズに冷蔵室接続風路118aへ導かれるため、送風効率を向上させることができる。   The cool air discharged to the distribution air passage 122 by the blower 113 is diverted into the refrigerating room air passage 122a and the ice making air passage 122d by the upper left cold air guide portion 223. At this time, since the upper left cold air guide part 223 is composed of a thin plate rib, there is no space where a vortex or the like is generated at the branch point, and therefore, the fractionation can be performed smoothly. Moreover, since the upper end of the upper left cold air guide part has an R shape, the upper corner part of the air path 122a for the refrigerator compartment is eliminated, and a gentle flow path is formed. As a result, the cool air is smoothly guided to the refrigerator compartment connection air passage 118a, so that the air blowing efficiency can be improved.

なお、左上冷気ガイド部223の薄板リブは左側に凸の形状を有する弧の形状でも良く、時計回りに旋回する送風機113より吐出される回転成分速度を持つ冷気の流れに沿わせることでよりスムーズに分留することができる。   The thin plate rib of the upper left cold air guide portion 223 may be an arc shape having a convex shape on the left side, and smoother by following the flow of the cold air having the rotational component speed discharged from the blower 113 rotating clockwise. Can be fractionated.

また、分配風路122に吐出された冷気は、右下冷気ガイド部226により第二の冷凍室用風路122bおよび第一の冷凍室用風路122cに分流される。このとき右下冷気ガイド部226の先端部は上面226aおよび下面226bの交線であり右下冷気ガイド部226の幅は徐々に広がるため、冷気は必ずどちらかの風路に分流された後徐々に方向が修正されるため冷気の流れを乱しにくく送風効率を向上させることができる。   Further, the cool air discharged to the distribution air passage 122 is diverted to the second freezer compartment air passage 122b and the first freezer compartment air passage 122c by the lower right cool air guide portion 226. At this time, the front end portion of the lower right cool air guide portion 226 is an intersection line of the upper surface 226a and the lower surface 226b, and the width of the lower right cool air guide portion 226 gradually widens, so that the cool air is always gradually diverted to one of the air paths. Since the direction is corrected, it is difficult to disturb the flow of cold air and the blowing efficiency can be improved.

以上のように、本実施の形態では、内側面223eと外側面223fとが互いに平行でなく上部が広がる形状を有することにより、下流部の風路がコーナー部を持たず冷気をスムーズに流すことができるため送風効率を向上させることが可能となる。   As described above, in the present embodiment, the inner side surface 223e and the outer side surface 223f are not parallel to each other and have a shape in which the upper portion is widened, so that the air passage in the downstream portion does not have a corner portion and allows cool air to flow smoothly. Therefore, it is possible to improve the blowing efficiency.

また、右下冷気ガイド部226の先端部は上面226aおよび下面226bの交線であり右下冷気ガイド部226の幅は徐々に広がることにより、冷気は必ずどちらかの風路に分流された後徐々に方向が修正されるため冷気の流れを乱しにくく送風効率を向上させることが可能となる。   Further, the tip of the lower right cool air guide portion 226 is an intersection line of the upper surface 226a and the lower surface 226b, and the width of the lower right cool air guide portion 226 gradually widens, so that the cool air is always diverted to one of the air paths. Since the direction is gradually corrected, it is difficult to disturb the flow of the cold air, and the blowing efficiency can be improved.

(実施の形態3)
図7は本発明の実施の形態3の冷蔵庫本体要部正面拡大図である。
(Embodiment 3)
FIG. 7 is a front enlarged view of a main part of the refrigerator body according to the third embodiment of the present invention.

なお、実施の形態1または2と同様の構成および同様の技術思想が適用できる部分については、説明を省略するが、不具合がない限り実施の形態1の構成に本実施の形態を組み合わせて適用することが可能である。   In addition, although description is abbreviate | omitted about the part which can apply the structure similar to Embodiment 1 or 2 and the same technical idea, as long as there is no malfunction, it combines and applies this Embodiment to the structure of Embodiment 1. It is possible.

図7において、仕切部材311は図2の仕切部材111と同様にして第二の冷凍室105および製氷室106、第一の冷凍室107からなる貯蔵室と冷却室110とを区画するために構成される。仕切部材311は、貯蔵室側の外殻をなす前仕切部材120と冷却室側の外殻をなす後仕切部材121とから構成され、後仕切部材121は、送風機113を備える。前仕切部材120と後仕切部材121との間の空間は各貯蔵室に向けて冷気を分岐させる分配風路122である。   In FIG. 7, the partition member 311 is configured to partition the cooling chamber 110 from the storage chamber composed of the second freezing chamber 105, the ice making chamber 106, and the first freezing chamber 107 in the same manner as the partitioning member 111 in FIG. 2. Is done. The partition member 311 includes a front partition member 120 that forms an outer shell on the storage chamber side and a rear partition member 121 that forms an outer shell on the cooling chamber side, and the rear partition member 121 includes a blower 113. A space between the front partition member 120 and the rear partition member 121 is a distribution air passage 122 that divides cold air toward each storage chamber.

分配風路122は、左上冷気ガイド部123、右上冷気ガイド部124、左下冷気ガイド部125、右下冷気ガイド部126により、下流部を4つの風路に分岐する。左上冷気ガイド部123と右上冷気ガイド部124との間が冷蔵室用風路122a、右上冷気ガイド部124と右下冷気ガイド部126との間が第二の冷凍室用風路122b、右下冷気ガイド部126と左下冷気ガイド部125との間が第一の冷凍室用風路122c、左下冷気ガイド部125と左上冷気ガイド部123との間が製氷室用風路122dである。   The distribution air passage 122 branches the downstream portion into four air passages by an upper left cool air guide portion 123, an upper right cool air guide portion 124, a lower left cool air guide portion 125, and a lower right cool air guide portion 126. The space between the upper left cold air guide portion 123 and the upper right cold air guide portion 124 is the refrigerator compartment air passage 122a, and the space between the upper right cold air guide portion 124 and the lower right cold air guide portion 126 is the second freezer compartment air passage 122b. The first freezer compartment air passage 122c is between the cold air guide portion 126 and the lower left cold air guide portion 125, and the ice compartment air passage 122d is between the lower left cold air guide portion 125 and the upper left cold air guide portion 123.

冷蔵室用風路122a、第二の冷凍室用風路122b、製氷室用風路122dの際下流部である上端には、それぞれツインダンパ319a、第二の冷凍室用ダンパ319b、製氷室用ダンパ319cを備える。   A twin damper 319a, a second freezer damper 319b, and an ice making room are respectively provided at the upper ends of the air path 122a, the second freezer air path 122b, and the ice making room air passage 122d. A damper 319c is provided.

なお、各ダンパは前仕切部材120または後仕切部材121のいずれかに固定すれば良いが、前仕切部材120と後仕切部材121とで挟み込むように固定することで余分な部品が必要ないため、風路抵抗だけでなく部品点数、組立工数ともに最小限に抑えることが可能となる。また、各ダンパと前仕切部材120および後仕切部材121との間にスポンジテープなどの部品を挟むことで、吸音や吸振などの役目を果たし高品位な冷蔵庫100を提供できるだけでなく、ダンパの周辺からの冷気漏れを抑制することができる。   In addition, each damper may be fixed to either the front partition member 120 or the rear partition member 121, but no extra parts are required by fixing the damper so as to be sandwiched between the front partition member 120 and the rear partition member 121. Not only the air path resistance but also the number of parts and assembly man-hours can be minimized. Further, by sandwiching parts such as sponge tape between each damper and the front partition member 120 and the rear partition member 121, not only can the sound absorbing and vibration absorbing functions be provided, but a high-quality refrigerator 100 can be provided, and the periphery of the damper It is possible to suppress cold air leakage from the air.

仕切部材311を冷蔵庫100に組み付けた状態で冷蔵室用風路122aの先のツインダンパ319aの一方の開口部である冷蔵室用開口部319aaは仕切壁118に設けら
れた冷蔵室接続風路318aに連通し、他方の開口部である野菜室用開口部319abは同じく仕切壁118に設けられた野菜室接続風路318bに連通する。第二の冷凍室用風路122b及び製氷室用風路122dの先の第二の冷凍室用ダンパ319bおよび製氷室用ダンパ319cはそれぞれ仕切壁118と仕切部材311との間に構成される第二の冷凍室用吐出口127および製氷室用吐出口128にそれぞれ連通する。
In a state where the partition member 311 is assembled to the refrigerator 100, the refrigerator compartment opening 319aa which is one opening of the twin damper 319a at the tip of the refrigerator compartment air passage 122a is a refrigerator compartment connection air passage 318a provided in the partition wall 118. The vegetable room opening 319ab, which is the other opening, communicates with the vegetable room connection air passage 318b provided in the partition wall 118. The second freezer compartment damper 319b and the icemaker damper 319c ahead of the second freezer compartment air passage 122b and the ice compartment air passage 122d are respectively configured between the partition wall 118 and the partition member 311. The second freezer compartment outlet 127 and the ice compartment outlet 128 communicate with each other.

以上のように構成された本発明の実施の形態2における冷蔵庫について、以下その動作を説明する。   About the refrigerator in Embodiment 2 of this invention comprised as mentioned above, the operation | movement is demonstrated below.

送風機113により分配風路122に吐出された冷気は、各冷気ガイド部により分流され各貯蔵室へ向かう風路へと流れる。冷蔵室用風路122a、第二の冷凍室用風路122b、製氷室用風路122dはそれぞれツインダンパ319a、第二の冷凍室用ダンパ319b、製氷室用ダンパ319cを有するため、各ダンパを制御することで冷蔵室104、第二の冷凍室105、製氷室106、野菜室108へ流れる冷気の量を調節することができ、各貯蔵室の温度を独立して調節することが可能となり、細かい温度調節が可能となる。また、一室だけの貯蔵物が増えた場合など、その貯蔵室だけを冷却することができため消費電力を最小限に抑えることも可能である。   The cold air discharged to the distribution air passage 122 by the blower 113 is diverted by each cold air guide portion and flows to the air passage toward each storage chamber. The refrigerator air passage 122a, the second freezer air passage 122b, and the ice making air passage 122d have a twin damper 319a, a second freezer damper 319b, and an ice making damper 319c, respectively. By controlling, the amount of cold air flowing to the refrigerator compartment 104, the second freezer compartment 105, the ice making room 106, and the vegetable room 108 can be adjusted, and the temperature of each storage room can be adjusted independently. Fine temperature control is possible. In addition, when the amount of stored items in only one room increases, it is possible to cool only that storage room, and thus it is possible to minimize power consumption.

なお、第一の冷凍室107は最も温度帯が低いため本実施の形態ではダンパを設けていないが、必要に応じて第一の冷凍室用風路122cまたは第一の冷凍室用吐出口120bにダンパを設けることで、更に繊細に温度調節を行うことができる。   Since the first freezer compartment 107 has the lowest temperature zone, no damper is provided in the present embodiment, but the first freezer compartment air passage 122c or the first freezer compartment outlet 120b is used as necessary. By providing a damper on the surface, the temperature can be adjusted more delicately.

以上のように、本実施の形態では、冷蔵室用風路122a、第二の冷凍室用風路122b、製氷室用風路122dはそれぞれツインダンパ319a、第二の冷凍室用ダンパ319b、製氷室用ダンパ319cを有するため、各ダンパを制御することで冷蔵室104、第二の冷凍室105、製氷室106、野菜室108へ流れる冷気の量を調節することができ、各貯蔵室の温度を独立して調節することが可能となり、細かい温度調節が可能となる。   As described above, in the present embodiment, the refrigerating room air passage 122a, the second freezer compartment air passage 122b, and the ice making air passage 122d are respectively the twin damper 319a, the second freezer compartment damper 319b, and the ice making. Since the room damper 319c is provided, the amount of cold air flowing to the refrigerator compartment 104, the second freezer compartment 105, the ice making room 106, and the vegetable room 108 can be adjusted by controlling each damper, and the temperature of each storage room Can be adjusted independently, and fine temperature adjustment becomes possible.

以上のように、本発明にかかる冷蔵庫は、送風機より吐出された冷気を効率よく複数の貯蔵室へ提供しそれぞれの温度に冷却することができる冷蔵庫を安価に提供することができるので、ショーケースなど送風技術を利用した冷却器等の商品にも適用できる。   As described above, the refrigerator according to the present invention can provide the refrigerator that can efficiently cool the air discharged from the blower to the plurality of storage rooms and cool it to the respective temperatures. It can also be applied to products such as coolers using air blowing technology.

100 冷蔵庫
104 冷蔵室(貯蔵室)
105 第二の冷凍室(貯蔵室)
106 製氷室(貯蔵室)
107 第一の冷凍室(貯蔵室)
108 野菜室(貯蔵室)
110 冷却室
111、211、311 仕切部材
112 冷却器
113 送風機
119 ダンパ
120 前仕切部材
120a 冷気整流部
121 後仕切部材
122 分配風路
123、223 左上冷気ガイド部
123c ガイド凸部
123d ガイドリブ
123e、223e 内側面(第一の面)
123f、223f 外側面(第二の面)
124 右上冷気ガイド部
125 左下冷気ガイド部
126、226 右下冷気ガイド部
126a、226a 上面(第一の面)
126b、226b 下面(第二の面)
319a ツインダンパ
319b 第二の冷凍室用ダンパ
319c 製氷室用ダンパ
100 refrigerator 104 refrigerator compartment (storage room)
105 Second freezer room (storage room)
106 Ice making room (storage room)
107 First freezer room (storage room)
108 Vegetable room (storage room)
110 Cooling chamber 111, 211, 311 Partition member 112 Cooler 113 Blower 119 Damper 120 Front partition member 120a Cold air rectifier 121 Rear partition member 122 Distribution air passage 123, 223 Upper left cool air guide portion 123c Guide convex portion 123d Guide ribs 123e, 223e Side (first side)
123f, 223f Outside surface (second surface)
124 Upper right cool air guide part 125 Left lower cool air guide part 126, 226 Right lower cool air guide part 126a, 226a Upper surface (first surface)
126b, 226b Lower surface (second surface)
319a Twin damper 319b Second freezer damper 319c Ice making damper

Claims (9)

複数の貯蔵室と、前記貯蔵室を冷却する冷気を生成する冷却器と、前記冷却器で生成された冷気を強制的に貯蔵室に送風する送風機と、前記送風機から吐出された冷気を各室へ分配する分配風路と、前記分配風路と前記貯蔵室との間に位置する前仕切部材と、前記分配風路と前記冷却器との間に位置する後仕切部材とを備える冷蔵庫において、前記分配風路内に、前記前仕切部材および前記後仕切部材の両方により構成される冷気ガイド部を有するもので、前記前仕切部材は、前記送風機に対向する面に前記分配風路内側に向かって突出した面からなる冷気整流部を有することを特徴とする冷蔵庫。 A plurality of storage chambers, a cooler that generates cool air that cools the storage chamber, a blower that forcibly blows the cool air generated by the cooler to the storage chamber, and the cool air discharged from the blower In a refrigerator comprising a distribution air passage to be distributed to, a front partition member located between the distribution air passage and the storage chamber, and a rear partition member located between the distribution air passage and the cooler, The distribution air passage has a cool air guide portion constituted by both the front partition member and the rear partition member, and the front partition member faces the air blower on the surface facing the blower. A refrigerator having a cold air rectification unit having a protruding surface. 前記分配風路の下流部は複数の風路に分岐され、前記複数の貯蔵室に連通する複数の吐出口を有し、前記冷気ガイド部は前記送風機に対向する位置に設けられた第一の面と、前記第一の面に隣接しない風路に隣接する第二の面とを有することを特徴とする、請求項1に記載の冷蔵庫。   A downstream portion of the distribution air passage is branched into a plurality of air passages, has a plurality of discharge ports communicating with the plurality of storage chambers, and the cold air guide portion is provided at a position facing the blower. The refrigerator according to claim 1, comprising a surface and a second surface adjacent to the air passage that is not adjacent to the first surface. 前記第一の面と前記第二の面とは鋭角を構成することを特徴とする請求項2に記載の冷蔵庫。   The refrigerator according to claim 2, wherein the first surface and the second surface form an acute angle. 前記第一の面と前記第二の面とが連続した面で構成されたことを特徴とする請求項2または3に記載の冷蔵庫。   The refrigerator according to claim 2 or 3, wherein the first surface and the second surface are configured as a continuous surface. 前記第一の面と前記第二の面は、前記前仕切部材または前記後仕切部材の少なくともどちらか一方に形成されたリブにより構成されたことを特徴とする請求項2から4のいずれか一項に記載の冷蔵庫。   The said 1st surface and said 2nd surface were comprised by the rib formed in at least any one of the said front partition member or the said rear partition member, The any one of Claim 2 to 4 characterized by the above-mentioned. The refrigerator according to item. 前記第一の面と前記第二の面は、前記前仕切部材または前記後仕切部材の少なくともどちらか一方に形成された凹凸部により構成されたことを特徴とする請求項2から4のいずれか一項に記載の冷蔵庫。   The said 1st surface and said 2nd surface were comprised by the uneven | corrugated | grooved part formed in at least any one of the said front partition member or the said rear partition member, The any one of Claim 2 to 4 characterized by the above-mentioned. The refrigerator according to one item. 前記凹凸部は一体で形成される前記前仕切部材または前記後仕切部材の基準面に対し、冷蔵庫本体前後方向について前記分配風路の内側に突出していることを特徴とする請求項
6に記載の冷蔵庫。
The said uneven | corrugated | grooved part is protruded inside the said distribution air path about the front-back direction of a refrigerator main body with respect to the reference plane of the said front partition member or the said rear partition member formed integrally. refrigerator.
前記冷気整流部は略円形を有し、前記第一の面は前記冷気整流部と略同心円となる曲線を有することを特徴とする請求項2ないし7のいずれか一項に記載の冷蔵庫。   The refrigerator according to any one of claims 2 to 7, wherein the cold air rectification unit has a substantially circular shape, and the first surface has a curve that is substantially concentric with the cold air rectification unit. 前記冷蔵庫は前記複数の貯蔵室へ冷気を送る風路内に、開口面積を調節できるダンパを備えたことを特徴とする請求項1から8のいずれか一項に記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 8, wherein the refrigerator includes a damper capable of adjusting an opening area in an air passage that sends cold air to the plurality of storage rooms.
JP2012048751A 2012-03-06 2012-03-06 refrigerator Active JP6145684B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012048751A JP6145684B2 (en) 2012-03-06 2012-03-06 refrigerator
CN201380012768.4A CN104160226B (en) 2012-03-06 2013-02-27 Freezer
PCT/JP2013/001149 WO2013132785A1 (en) 2012-03-06 2013-02-27 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012048751A JP6145684B2 (en) 2012-03-06 2012-03-06 refrigerator

Publications (2)

Publication Number Publication Date
JP2013185712A JP2013185712A (en) 2013-09-19
JP6145684B2 true JP6145684B2 (en) 2017-06-14

Family

ID=49387303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012048751A Active JP6145684B2 (en) 2012-03-06 2012-03-06 refrigerator

Country Status (1)

Country Link
JP (1) JP6145684B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6726836B2 (en) * 2015-07-09 2020-07-22 パナソニックIpマネジメント株式会社 refrigerator
JP2020094753A (en) * 2018-12-13 2020-06-18 アクア株式会社 refrigerator
JP7369652B2 (en) * 2020-03-23 2023-10-26 日立グローバルライフソリューションズ株式会社 refrigerator
KR20220018179A (en) * 2020-08-06 2022-02-15 엘지전자 주식회사 refrigerator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10205968A (en) * 1997-01-21 1998-08-04 Toshiba Corp Refrigerator
JP3392719B2 (en) * 1997-06-26 2003-03-31 株式会社東芝 refrigerator
JP3212954B2 (en) * 1997-11-07 2001-09-25 三菱電機株式会社 refrigerator
JP2006078053A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Refrigerator
JP2007071496A (en) * 2005-09-09 2007-03-22 Hitachi Appliances Inc Refrigerator
JP4484943B2 (en) * 2009-02-20 2010-06-16 日立アプライアンス株式会社 refrigerator
JP5838300B2 (en) * 2011-11-10 2016-01-06 パナソニックIpマネジメント株式会社 refrigerator

Also Published As

Publication number Publication date
JP2013185712A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5838300B2 (en) refrigerator
KR101260277B1 (en) Refrigerator
KR101631904B1 (en) Refrigerator
EP2778577B1 (en) Refrigerator
AU2018372734A1 (en) Ice maker-integrated refrigerator
JP6145684B2 (en) refrigerator
CN107421205B (en) Refrigerating device
KR0160424B1 (en) Refrigerator
KR20110027565A (en) Damper apparatus and refrigerator having damper apparatus
JP4739926B2 (en) refrigerator
TWI716636B (en) refrigerator
KR100525401B1 (en) refrigerator
CN109708377A (en) Refrigerator
KR20050094673A (en) Cold air path structure of cold storage room door
CN108317797A (en) Refrigerator
WO2006030736A1 (en) Refrigerator
JP2019117036A (en) refrigerator
JP5513920B2 (en) refrigerator
JP2009036451A (en) Refrigerator
JP6028216B2 (en) refrigerator
JP5895145B2 (en) refrigerator
CN102445049B (en) Refrigerator
WO2013132785A1 (en) Refrigerator
US20160370087A1 (en) Cooled-air circulation structure of refrigerator and method for controlling the same
CN113028707A (en) Refrigerator with a door

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160303

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R151 Written notification of patent or utility model registration

Ref document number: 6145684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151