WO2013132785A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2013132785A1
WO2013132785A1 PCT/JP2013/001149 JP2013001149W WO2013132785A1 WO 2013132785 A1 WO2013132785 A1 WO 2013132785A1 JP 2013001149 W JP2013001149 W JP 2013001149W WO 2013132785 A1 WO2013132785 A1 WO 2013132785A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
partition member
air passage
discharge port
refrigerator
Prior art date
Application number
PCT/JP2013/001149
Other languages
French (fr)
Japanese (ja)
Inventor
亜有子 宮坂
堀尾 好正
愼一 堀井
西村 晃一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012048751A external-priority patent/JP6145684B2/en
Priority claimed from JP2012055564A external-priority patent/JP6028216B2/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380012768.4A priority Critical patent/CN104160226B/en
Publication of WO2013132785A1 publication Critical patent/WO2013132785A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/063Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation with air guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts

Definitions

  • the present invention relates to a refrigerator that cools a storage room by forcibly circulating cool air generated by a cooler.
  • FIG. 14 is a longitudinal sectional view around the blower installed in the conventional refrigerator cooling chamber.
  • the partition member 1 divides the cooler chamber 2 and the freezing chamber 3, and includes a heat insulating material 1b, a front partition plate 1a, a damper device 4, a blower 5, and a rear partition plate 6. These are preliminarily assembled with each other and have a predetermined outer dimension.
  • a cold room air passage 7 is constituted by a heat insulating material 1 b, and the cold room air passage 7 has a cold air diverting portion (not shown) in the middle thereof for a vegetable room. It communicates with an air passage (not shown).
  • a part of the cold air generated in the cooler chamber 2 is sent by the blower 5 into the freezer compartment 3 from the freezer cooling port 8 a through the freezer air passage 8 provided in the partition member 1. It is done. On the other hand, the remaining cold air passes through the damper device 4 and is sent to the air passage 7 for the refrigerating room. A part of the cold air is further diverted in the cold air diverting section, and the vegetable room passes through the air passage for cooling the vegetable room (not shown) The inside is cooled to a predetermined temperature (not shown).
  • the refrigerator compartment air passage 7 constituting the outer shell of the partition member 1
  • the freezer compartment air passage 7 constituting the vegetable compartment air passage, and the heat insulation constituting the cold air distribution section. Since another component such as the material 1b is required, the chance that the cold air discharged from the blower 5 contacts the fitting portion of the component increases. Since the component fitting part always has a discontinuous surface such as a step or a gap, there has been a problem that the smooth flow of cold air is hindered, the blowing efficiency is lowered, and the power consumption is increased.
  • the increase in the number of parts not only requires a lot of material costs and assembly man-hours, but also increases the volume of the partition member 1, so that the internal volume is reduced, which may impair user convenience.
  • FIG. 15 is a cross-sectional view of another conventional refrigerator.
  • the refrigerator body 30 includes a refrigerator compartment 36, a freezing temperature chamber 31, and a vegetable compartment 37 in order from the top.
  • the freezing temperature chamber 31 is disposed below the quick freezing chamber 32 provided with the quick freezing container 41, the ice making chamber 33 juxtaposed beside the quick freezing chamber 32, and the quick freezing chamber 32 and the ice making chamber 33.
  • a freezer compartment 34 has a cooler compartment 62 having a cooler 61 formed on the back thereof by a partition member 50, and the partition member 50 is provided with a cool air passage 50 a.
  • an upper container 42, a middle container 43, and a lower container 44 are provided, and the cool air discharge air passages 52, 53, and 54 configured integrally with the partition member 50 or separately are provided with cool air.
  • Cold air is introduced into the upper container 42, the middle container 43, and the lower container 44 in communication with the passage 50a.
  • the positions of the discharge ports 52 a, 53 a, 54 a of the cold air discharge air passages 52, 53, 54 are the container flange rear walls 42 c, 43 c formed behind the rear walls of the upper container 42, the middle container 43, and the lower container 44. 44c, the front (inside of the cabinet) is formed.
  • the blower 63 is provided in the cooler chamber 62 and forcibly circulates the cold air generated in the cooler chamber 62 to the freezing temperature chamber 31, the refrigerating chamber 36, the vegetable chamber 37, and the like.
  • the cool air generated by the cooler chamber 62 is discharged into the cool air passage 50 a of the partition member 50 by the operation of the blower 63.
  • the cool air discharged into the cool air passage 50a is divided into the freezing temperature chamber cooling air and the refrigerating temperature chamber cooling air in the partition member 50.
  • the cold air for cooling the freezing temperature chamber is discharged into the upper container 42 and the middle container 43, 44 from the respective discharge ports 52a, 53a, 54a of the cold air discharge air passages 52, 53, 54 provided in the partition member 50,
  • the inside of the container is cooled to a predetermined temperature.
  • the positions of the discharge ports 52a, 53a, 54a are more forward than the container flange rear walls 42c, 43c, 44c formed at the rear of the rear walls of the upper container 42, the middle container 43, and the lower container 44 (inside the warehouse). Therefore, it is possible to prevent the cool air discharged from the discharge ports 52a, 53a, 54a from flowing around to the back side of the upper container 42, the middle container 43, and the lower container 44, and to effectively The inside can be cooled.
  • the positions of the discharge ports 52a, 53a, 54a are configured in front of the container flange portion rear walls 42c, 43c, 44c, so that the upper container 42, the middle container 43, the lower container of the discharged cold air
  • the refrigerator which can prevent the leakage to the back side of the container 44 and can cool the inside of a container effectively can be provided.
  • the refrigerator of the present invention includes a plurality of storage rooms, a cooler that generates cool air for cooling the storage room, a blower that forcibly blows the cool air generated by the cooler to the storage room, and the cool air discharged from the blower
  • a distribution air passage that distributes the air to the storage chambers, a front partition member that is located between the distribution air passage and the storage chamber, and a rear partition member that is located between the distribution air passage and the cooler.
  • it has the cold air
  • the front partition member and the rear partition member constituting the outer shell of the distribution air passage also serve as a guide for determining the flow of the cold air, so that the number of parts constituting the air passage can be minimized, A very smooth distribution air passage can be constructed. Therefore, power consumption can be reduced by improving the air blowing efficiency. Moreover, since it can comprise only a front partition member and a rear partition member, material cost and a process man-hour do not increase. Furthermore, the volume of the entire partition member can be reduced without reducing the air passage cross-sectional area that lowers the air blowing efficiency, and the storage space can be increased, thereby improving the user-friendliness. .
  • the refrigerator of the present invention includes a freezer, a cooler that generates cool air for cooling the freezer, a blower that forcibly blows cool air generated by the cooler to the freezer, a freezer and a cooler.
  • a partition member that partitions the cooling chamber, a cool air discharge port that is provided in the partition member and discharges cool air to the freezer chamber, and a mounting member that is provided in the freezer chamber and on which stored items are placed.
  • the outlet is located in front of the rear end of the mounting member.
  • the partition member has a protrusion provided above the cold air discharge port and having a width larger than the width of the cold air discharge port.
  • FIG. 1 is a front view of the refrigerator in the first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of the refrigerator in the first embodiment of the present invention.
  • FIG. 3 is an enlarged front view of a main part of the refrigerator main body according to the first embodiment of the present invention.
  • FIG. 4 is an enlarged vertical cross-sectional view of a main part in the first embodiment of the present invention.
  • FIG. 5 is an enlarged vertical sectional view of a main part in the first embodiment of the present invention.
  • FIG. 6 is a front view of the partition member according to the second embodiment of the present invention.
  • FIG. 7 is a front view of the partition member according to the third embodiment of the present invention.
  • FIG. 8 is a front view of the refrigerator in the fourth embodiment of the present invention.
  • FIG. 1 is a front view of the refrigerator in the first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of the refrigerator in the first embodiment of the present invention.
  • FIG. 3 is an
  • FIG. 9 is a longitudinal sectional view of a refrigerator in the fourth embodiment of the present invention.
  • FIG. 10 is an enlarged front view of the main part of the refrigerator main body according to the fourth embodiment of the present invention.
  • FIG. 11 is an enlarged vertical cross-sectional view of a main part in the fourth embodiment of the present invention.
  • FIG. 12 is an enlarged vertical sectional view of the main part in the fourth embodiment of the present invention.
  • FIG. 13 is an enlarged front view of the main part of the refrigerator body according to the fifth embodiment of the present invention.
  • FIG. 14 is an enlarged vertical cross-sectional view of a main part of a conventional refrigerator.
  • FIG. 15 is a longitudinal sectional view of a conventional refrigerator.
  • FIG. 1 is a front view of a refrigerator according to the first embodiment of the present invention
  • FIG. 2 is a sectional view taken along line 2-2 in FIG. 1
  • FIG. 3 is an enlarged front view of the main part of the refrigerator main body according to the first embodiment of the present invention
  • 4 is a sectional view taken along line 4-4 in FIG. 3
  • FIG. 5 is a sectional view taken along line 5-5 in FIG.
  • a heat insulating box body 101 which is a refrigerator main body of a refrigerator 100 includes an outer box 102 using a heavy steel plate, an inner box 103 formed of a resin such as ABS, an outer box 102 and an inner box 103. And a foam heat insulating material such as hard foam urethane that is foam-filled in the space between the two, and is insulated from the surroundings and partitioned into a plurality of storage chambers.
  • a refrigeration room 104 as a first storage room is provided at the top, and a second freezing room 105 as a fourth storage room and an ice making room 106 as a fifth storage room are provided side by side under the refrigeration room 104.
  • a first freezer compartment 107 as a second storage room is arranged below the second freezing room 105 and the ice making room 106, and a vegetable room 108 as a third storage room is arranged at the bottom.
  • the refrigerating room 104 includes a refrigerating room right door 104a and a refrigerating room left door 104b, which are rotary doors, and a refrigerating room shelf 104c and a refrigerating room case 104d are appropriately disposed therein, so that the storage space can be easily arranged. is doing.
  • the other storage room has a drawer-type door, and a second freezer compartment case 105b is placed on the frame attached to the second freezer compartment door 105a, and is attached to the frame attached to the ice making compartment door 106a. An ice-making chamber case (not shown) is placed.
  • an upper freezer compartment case 107b and a lower freezer compartment case 107c are placed on a frame attached to the first freezer compartment door 107a.
  • An upper vegetable compartment case 108b and a lower vegetable compartment case 108c are placed on the frame attached to the vegetable compartment door 108a.
  • the refrigerated room 104 is set in a refrigerated temperature zone, which is a temperature at which it does not freeze for refrigerated storage, and is usually set to 1 to 5 ° C.
  • the vegetable room 108 has a refrigeration temperature range equivalent to the refrigeration room 104 or a slightly higher temperature setting vegetable temperature range of 2 ° C. to 7 ° C.
  • the first freezer compartment 107 is set in a freezing temperature zone, and is usually set at ⁇ 22 ° C. to ⁇ 15 ° C. for frozen storage, but for improving the frozen storage state, for example, ⁇ 30 ° C. It may be set at a low temperature of -25 ° C.
  • the second freezer compartment 105 has the same freezing temperature zone as the first freezer compartment 107 or a slightly higher temperature setting of ⁇ 20 ° C. to ⁇ 12 ° C.
  • the ice making chamber 106 makes ice with an automatic ice maker (not shown) provided at the upper part of the room with water sent from a water storage tank (not shown) in the refrigerator compartment 104, and an ice making case (not shown). Store in.
  • the top surface portion of the heat insulation box 101 has a stepped recess shape toward the back of the refrigerator, and a machine room 101a is formed in the stepped recess portion.
  • the machine room 101a accommodates high-pressure components of the refrigeration cycle such as the compressor 109 and a dryer (not shown) for removing moisture. That is, the machine room 101 a in which the compressor 109 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 104.
  • the compressor 109 is disposed in the conventional refrigerator.
  • the space in the machine room at the bottom of the easy-to-use heat insulation box 101 can be effectively converted as the storage room capacity, and the storage performance and usability can be greatly improved.
  • the refrigeration cycle is formed of a series of refrigerant flow paths sequentially including a compressor 109, a condenser, a capillary serving as a decompressor, and a cooler 112.
  • a refrigerant for example, isobutane as a hydrocarbon refrigerant is used. It is enclosed.
  • Compressor 109 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder.
  • those functional parts may be disposed in the machine room 101a.
  • the decompressor constituting the refrigeration cycle is a capillary, but an electronic expansion valve that can freely control the flow rate of the refrigerant driven by the pulse motor may be used.
  • the matter relating to the main part of the invention described below is a type in which a compressor room is provided by providing a machine room in the rear region of the lowermost storage room of the heat insulating box 101, which has been generally used conventionally. It may be applied to other refrigerators.
  • a cooling chamber 110 for generating cold air is provided on the back surface of the first freezing chamber 107, and the storage chamber consisting of the second freezing chamber 105, the ice making chamber 106, and the first freezing chamber 107 is separated from the cooling chamber 110. Therefore, a partition member 111 is configured.
  • a cooler 112 is disposed in the cooling chamber 110 and exchanges heat with air warmed by exchanging heat with the storage chamber to generate cold air.
  • the partition member 111 includes a front partition member 120 that forms an outer shell on the storage chamber side and a rear partition member 121 that forms an outer shell on the cooling chamber side, and the rear partition member 121 includes a blower 113.
  • a space between the front partition member 120 and the rear partition member 121 is a distribution air passage 122 that divides cold air toward the storage chambers.
  • the blower 113 is an axial fan that rotates clockwise as viewed from the discharge surface.
  • the rotation direction of the blower 113 is used as a reference.
  • the same effect can be obtained by reversing the left and right sides.
  • the discharge surface of the blower 113 is attached to the front surface of the refrigerator 100 at an angle, and the cold air is arranged to blow up obliquely upward.
  • a portion of the front partition member 120 that faces the blower 113 constitutes a cool air rectification unit 120a that protrudes toward the blower 113 side.
  • the cool air rectification unit 120 a has a substantially truncated cone shape with the rotation axis of the blower 113 as the central axis.
  • the front end of the cool air rectifying unit 120 a is configured by a surface parallel to the discharge surface of the blower 113, and the diameter thereof is substantially the same as the boss diameter of the blower 113.
  • the distribution air passage 122 branches the downstream portion into four air passages by the upper left cool air guide portion 123, the upper right cool air guide portion 124, the lower left cool air guide portion 125, and the lower right cool air guide portion 126.
  • a cold room air passage 122a is formed between the upper left cold air guide portion 123 and the upper right cold air guide portion 124
  • a second freezer compartment air passage 122b is formed between the upper right cold air guide portion 124 and the lower right cold air guide portion 126. Is formed.
  • a first freezer compartment air passage 122c is formed between the lower right cold air guide portion 126 and the lower left cold air guide portion 125, and an ice making room air flow is formed between the lower left cold air guide portion 125 and the upper left cold air guide portion 123.
  • a path 122d is formed.
  • the refrigerating room air passage 122a communicates with the refrigerating room connection air passage 118a provided on the partition wall 118 that insulates the refrigerating room 104 and other storage rooms.
  • the second freezer compartment air passage 122b and the ice compartment air passage 122d communicate with the second freezer compartment outlet 127 and the icemaker outlet 128 formed between the partition wall 118 and the partition member 111, respectively.
  • the refrigerator compartment connection air passage 118 a has a damper 119 to adjust the amount of air flowing to the refrigerator compartment 104.
  • the refrigerator compartment connection air passage 118a includes a vegetable compartment connection air passage 118b that guides the cold air to the vegetable compartment 108 downstream of the damper 119, and a part of the cold air that has passed through the damper passes from the vegetable compartment outlet 129 to the vegetable compartment 108. Flows in. Further, the first freezer compartment discharge ports 120b provided in the front partition member 120 are scattered from the middle to the front end of the first freezer compartment air passage 122c, and cool air is supplied to the first freezer compartment 107. Introduce.
  • the damper 119 may be provided not only in the refrigerator compartment connection air passage 118 a but also in the distribution air passage 122 or a dedicated air passage provided in the refrigerator compartment 104 or a discharge port. Further, as necessary, the second freezer compartment air passage 122b, the first freezer compartment air passage 122c, the ice making air passage 122d, the second freezer compartment outlet 127, the ice making outlet 128, By providing dampers in the first freezer compartment outlet 120b and the vegetable compartment outlet 129, the temperature of each storage room can be adjusted with higher accuracy.
  • the second freezer compartment air passage 122b, the first freezer compartment air passage 122c, and the ice compartment air passage 122d are respectively the second freezer compartment 105, the first freezer compartment 107, although it is a dedicated air passage for the ice making chamber 106, it is similar to the air passage 122a for the refrigerator compartment according to conditions such as the storage compartment layout of the refrigerator 100, the air passage configuration outside the distribution air passage 122, and the temperature zone of each storage compartment. A dual-purpose structure communicating with a plurality of storage rooms may be used. Conversely, the refrigeration chamber air passage 122 a may be divided in the distribution air passage 122 into an air passage communicating with the refrigeration chamber 104 and an air passage communicating with the vegetable compartment 108.
  • the first freezer compartment discharge port 120b is below the center of the cold air rectifying unit 120a, above the upper end of the upper surface of the upper freezer compartment case 107b, below the lower surface of the upper freezer compartment case 107b, and It is located in two places above the upper end of the lower surface of the lower freezer case 107c. Then, cold air is blown into the upper freezer compartment case 107b and the lower freezer compartment case 107c from the first freezer compartment outlet 120b.
  • the shape of the first freezer compartment discharge port 120b is appropriately designed according to the layout of the first freezer compartment 107 and the assumed storage, but by providing one or more horizontal holes, the first It becomes easy to deliver cold air to the entire freezer compartment 107 evenly.
  • a radiant heating means 114 made of a glass tube is provided for defrosting the frost and ice adhering to the cooler 112 and its periphery during cooling. Furthermore, a drain pan 115 for receiving defrost water generated at the time of defrosting of the cooler 112 is provided at a lower portion thereof, and a drain tube 116 penetrating from the deepest portion of the drain pan 115 to the outside of the chamber is formed. An evaporating dish 117 is provided outside the refrigerator.
  • another shape heating means such as a pipe heater attached to the cooler 112 may be used, or the radiant heating means 114 and another shape heating means may be used in combination.
  • the upper left cool air guide portion 123 includes a front guide portion 123a formed integrally with the front partition member 120 and a rear guide portion 123b formed integrally with the rear partition member 121, and the upper end side of the partition member 111 is widest and goes downward. It has a substantially triangular shape that becomes narrower.
  • the front guide portion 123a includes a guide convex portion 123c in which a part of the front partition member 120 protrudes toward the distribution air passage, and a guide rib 123d having an extended shape on the side surface of the guide convex portion 123c on the outer periphery of the most protruding surface of the guide convex portion 123c.
  • the front guide portion 123a has an inner surface 123e that is a first surface located on the side facing the fan with the lower tip as a boundary, and an outer surface 123f that is a second surface facing the air passage 122d for ice making chamber. It has two sides.
  • the inner side surface 123e has a reference surface made up of a part of a substantially cylinder centered on the central axis of the truncated cone of the cold air rectifying unit 120a, and forms a side wall of the cold room air passage 122a that guides the cold air to the cold room 104.
  • the outer side surface 123f is formed in a substantially flat surface extending in a substantially vertical direction and formed substantially perpendicular to the reference surface of the front partition member 120, and forms a side wall of an ice making chamber air passage 122d that guides cold air to the ice making chamber 106.
  • the base of the guide convex portion 123c has a gentle R (radius 1 mm or more, preferably radius 3 mm or more), and is smoothly connected to the skirt of the cool air rectification unit 120a.
  • the lower front end portion of the front guide portion 123a is a side where the inner side surface 123e and the outer side surface 123f intersect, and is located above a horizontal plane passing through the center point of the discharge surface of the blower 113.
  • the rear guide portion 123b is configured by a rib provided at a position facing the front guide portion 123a of the rear partition member 121, and has a shape that fits within the guide rib 123d of the front guide portion 123a.
  • the gap between the guide convex portion 123c and the rear guide portion 123b is about 1 to 3 mm.
  • the lower right cool air guide portion 126 is configured by a hollow rib provided in the front partition member 120, and an upper surface 126a which is a first surface forming the lower wall of the second freezer compartment air passage 122b and the first freezer. It has the lower surface 126b which is the 2nd surface which makes the upper right side wall of the room air path 122c.
  • the upper right cool air guide portion 124 and the lower left cool air guide portion 125 are also hollow ribs provided in the front partition member 120, and have two surfaces, a first surface and a second surface, facing different air paths. Have.
  • the upper right cool air guide portion 124, the lower left cool air guide portion 125, and the lower right cool air guide portion 126 are formed by convex portions and solid ribs provided on the front partition member 120, and ribs and convex portions provided on the rear partition member 121. You may do it.
  • the refrigeration cycle is operated by a signal from a control device (not shown) according to the set temperature in the refrigerator, and the cooling operation is performed.
  • the high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed to some extent by a condenser (not shown). Further, the refrigerant prevents dew condensation on the heat insulating box body 101 via the side and rear surfaces of the heat insulating box body 101 which is the refrigerator main body, and a refrigerant pipe (not shown) disposed in the front opening of the heat insulating box body 101. While condensing into liquid, it reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 112.
  • the air in each storage chamber collected by the operation of the blower 113 is heat-exchanged with the liquid refrigerant by the cooler 112, and the refrigerant in the cooler 112 evaporates.
  • the air returned from the storage chamber becomes cool air for cooling each storage chamber again in the cooling chamber 110.
  • the low-temperature cold air flows from the blower 113 through the distribution air passage 122 and is divided by using the air passage and a damper, and passes through the refrigerating room 104, the second freezing room 105, the ice making room 106, the first freezing room 107, and the vegetable room 108. Cool to each target temperature range.
  • the blower 113 is an axial fan that rotates clockwise as viewed from the front of the refrigerator 100, the discharged cool air flows in a truncated cone shape so as to spread radially while turning clockwise. Therefore, by forming the cool air rectifying unit 120a in accordance with the flow of the discharged cool air, the cool air can be smoothly sent to the distribution air path 122 without generating vortices. Further, on the discharge side of the axial flow fan constituting the blower 113, an air flow returning toward the axial flow fan is generated at the center, but the upper surface diameter of the truncated cone of the cold air rectifying unit 120a is substantially the same as the boss diameter of the axial flow fan. Thus, since this return airflow can be suppressed, the energy given to the cold air from the blower 113 can be utilized for the blown air without waste.
  • the angle between the conical surface created by the discharge cool air and the rotation axis of the blower 113 differs depending on the flow rate and the number of rotations sent by the blower 113. It can be carried out. For example, the case where the blower 113 having a blade diameter of 90 mm to 110 mm is rotated around 1200 rpm to 3000 rpm to obtain an air volume of 0.5 m 3 / min to 1.0 m 3 / min will be described. According to the experiment under these conditions, the angle between the rotating shaft and the conical surface of the cool air rectifying unit 120a is preferably 50 ° to 85 °.
  • the kinetic energy of the discharged cold air can be efficiently recovered as pressure energy, so the discharge pressure is increased without increasing the work of the blower 113 Can do. Since the work of the air blower 113 is increased in an air passage that has many storage chambers, a wide variety of air blowing circuits, and requires many parts that cause air passage resistance such as the damper 119 as in the present embodiment, cold air rectification The part 120a plays a greater role.
  • the cool air that flows between the lower left cool air guide portion 125 and the upper left cool air guide portion 123 is formed between the left side wall of the distribution air passage 122 and the outer surface 123f.
  • the air is sent to the ice making chamber 106 through the ice making chamber discharge port 128 through the ice making chamber air passage 122d.
  • the cold air flowing between the upper left cold air guide part 123 and the upper right cold air guide part 124 passes along the inner side surface 123e through the cold room air passage 122a, and is refrigerated from the cold room connection air path 118a and the vegetable room connection air path 118b. Air is sent to the room 104 and the vegetable room 108.
  • the cold air flowing between the upper right cold air guide portion 124 and the lower right cold air guide portion 126 flows from the second freezer compartment discharge port 127 along the upper surface 126a and the right side surface of the distribution air passage 122 into the second freezer compartment.
  • the remaining cool air is sent to the first freezer compartment 107 from the first freezer outlet 120b.
  • the cool air discharged into the distribution air passage 122 is branched into the air passages to the respective storage chambers in the downstream portion, and a certain amount can be blown from each discharge port to each storage chamber. .
  • each cold air guide part are not parallel, but have a shape that gradually expands according to the flow of the discharged cold air, so the direction of the cold air is gradually adjusted to face each discharge port. Is done. Accordingly, it is possible to eliminate a change in the rapid flow of the cold air, and it is possible to suppress the blowing loss.
  • the cold air guide portion exists between the two front air passages, the flow of the cold air on both sides is directed in different directions. From this fact, the cold air guide portion has side walls adapted to the respective flows, so that it is possible to reduce the invalid space of the air passage existing between the two flows, that is, the space for generating the turbulence of the cold air such as a vortex. Therefore, it is possible to improve the blowing efficiency.
  • the inner side surface 123e has a cylindrical shape that is coaxial with the conical shape of the cold air rectifying unit 120a, it is possible to reduce the deceleration of the cold air in the rotational direction as much as possible. Furthermore, since the distance from the blower 113 is substantially constant at every point on the inner side surface 123e, the air volume hitting the surface is substantially uniform, and the pressure difference of the cold air depending on the location can be minimized. Can be reduced.
  • the air passage from the cool air rectifying portion 120a to each tip air passage and each discharge port is a single smooth surface. It becomes possible to comprise. Since the cold air discharged from the blower 113 hits the cold air rectification unit 120a and flows along the cold air rectification unit 120a, it becomes possible to flow to the discharge port without hitting a step or a gap seen in the component fitting part, and blowing loss is reduced. It can be minimized.
  • the upper left cold air guide part 123 includes not only the front guide part 123a but also the rear guide part 123b. However, since the rear guide portion 123b has a shape that fits inside the front guide portion 123a, the cool air flowing along the front partition member 120 surface flows relatively smoothly without entering the upper left cool air guide portion 123. Can do. Even when a part of the cool air enters the upper left cool air guide portion 123, the front guide portion 123a is constituted by the guide convex portion 123c and the guide rib 123d, and the space in the upper left cool air guide portion 123 is small. It is possible to suppress the disturbance of the air flow and suppress the reduction of the blowing efficiency.
  • the depth dimension of the distribution air passage 122 is large by configuring the upper left cold air guide portion 123 by both the front partition member 120 and the rear partition member 121, without increasing the depth dimension of each component, It becomes possible to comprise a cold air
  • the refrigerator 100 In order to melt frost and ice adhering to the cooler 112 and its periphery during cooling, the refrigerator 100 periodically interrupts cooling and heats the radiant heating means 114 to heat the inside of the cooling chamber 110. At this time, the air in the cooling chamber 110 is also warmed and rises above the cooling chamber 110, and part of the warm air passes through the blades of the blower 113 and enters the distribution air passage 122. The warm air leaking into the distribution air passage 122 rises further upward.
  • the warm air is used not only for the refrigerator compartment air passage 122a but also for the ice making room. It can also go up to the air path 122d.
  • the volume in which the warm air in the distribution air path 122 can flow can be increased, and the amount of warm air flowing from the distribution air path 122 further into the storage chamber can be reduced. Therefore, the temperature rise of the stored item stored in the storage room can be suppressed, and user convenience can be improved. Furthermore, it is possible to reduce warm air being cooled in the storage chamber and causing condensation or frost formation in the storage chamber, thereby improving user comfort.
  • the air passage from the cold air rectifying portion 120a to the downstream portion is smooth. It can be configured by a single surface. Since the cold air discharged from the blower hits the cold air rectification unit 120a and flows along the cold air rectification unit 120a, it can flow to the discharge port without hitting a step or a gap seen in the component fitting portion, and the air loss is minimized. To the limit. Furthermore, the cool air guide part can be configured by only the front partition member 120 and the rear partition member 121.
  • the volume of the partition member 111 can be reduced while the air passage cross-sectional area that reduces the air blowing efficiency is maintained, and the storage space can be increased.
  • User convenience can be improved.
  • the depth dimension of the distribution air passage 122 is large by configuring the upper left cold air guide portion 123 by both the front partition member 120 and the rear partition member 121, without increasing the depth dimension of each component, It becomes possible to comprise a cold air
  • downstream portion of the distribution air passage 122 is branched into a plurality of air passages, has a plurality of outlets communicating with the plurality of storage chambers, and the cold air guide portion is a first portion provided at a position facing the blower 113. And a second surface adjacent to the air passage that is not adjacent to the first surface.
  • first surface and the second surface have portions that are not parallel to each other, so that the number and shape of the air passages toward each storage chamber can be determined regardless of the shape of the partition member 111. For this reason, it becomes possible to abolish the corner part etc. in which the discharge cold air of the air blower 113 is easy to make a vortex, and it can blow air to each store room more efficiently.
  • the front guide portion 123 a has a guide convex portion 123 c formed on the front partition member 120. This makes it possible to suppress the wasteful flow of cool air by reducing the internal volume of the upper left cool air guide portion 123 while reducing the material cost by making the cool air guide portion hollow, and a smoother air path Can be provided.
  • the front partition member 120 has a cold air rectification unit 120 a formed of a surface protruding toward the inside of the distribution air passage 122 on the surface facing the blower 113.
  • the cool air discharged from the blower 113 is rectified radially by the cool air rectification unit 120 a and flows into the distribution air passage 122. Therefore, vortices generated between the blower 113 and the front partition member 120 can be suppressed, and cool air can be blown smoothly.
  • the cold air rectification part 120a has a substantially truncated cone shape, and the inner side surface 123e is constituted by a part of a substantially cylindrical portion around the same central axis as the cold air rectification part 120a.
  • the refrigerating room air passage 122a communicates with the refrigerating room connection air passage 118a, and the refrigerating room connection air passage 118a includes a damper 119 capable of adjusting an opening area for adjusting the flow rate of the cold air. This allows the damper 119 to adjust the amount of air blown to the refrigerator compartment 104 and the vegetable compartment 108 according to the situation, so that the temperature of the refrigerator compartment 104 and the vegetable compartment 108 is cooled to the freezing temperature zone. Because the temperature can be controlled independently of the storage room, the temperature can be adjusted more precisely.
  • the lower tip of the upper left cold air guide 123 which is a contact point between the inner surface 123e and the outer surface 123f, is installed above the horizontal plane including the center point of the blower 113.
  • FIG. 6 is a front view of the partition member of the refrigerator in the second embodiment of the present invention.
  • the partition member 211 partitions the storage chamber composed of the second freezing chamber 105, the ice making chamber 106, and the first freezing chamber 107 from the cooling chamber 110, similarly to the partition member 111 in FIG. 2.
  • the partition member 211 includes a front partition member 120 that forms an outer shell on the storage chamber side and a rear partition member 121 that forms an outer shell on the cooling chamber side, similar to the partition member 111 in FIG.
  • the fan 113 is provided. Further, a space between the front partition member 120 and the rear partition member 121 constituting the partition member 211 is formed with a distribution air passage 222 that branches cold air toward each storage chamber.
  • the distribution air passage 222 branches the downstream portion into four air passages by the upper left cool air guide portion 223, the upper right cool air guide portion 224, the lower left cool air guide portion 225, and the lower right cool air guide portion 226.
  • the upper left cold air guide portion 223 is configured by a rib provided on the front partition member 120, and includes an inner side surface 223e (first surface) forming the left side wall of the refrigerator compartment air passage 222a and a right side wall of the ice compartment air passage 222d.
  • the outer surface 223f (second surface) is formed.
  • the upper left cold air guide part 223 is a thin plate rib that extends in a substantially vertical direction and has a substantially flat surface that is formed substantially perpendicular to the reference plane of the front partition member 120, and the upper end side of the partition member 211 is curved toward the cold room air passage 222a side. It has a rounded R shape.
  • the lower right cool air guide portion 226 is configured by a hollow rib provided in the front partition member 120, and an upper surface 226a (first surface) forming the lower wall of the second freezer compartment air passage 222b and the first freezer compartment. It has a lower surface 226b (second surface) forming the upper right side wall of the air passage 222c.
  • the upper surface 226a and the lower surface 226b extend from the right side of the partition member 211 toward the center, and their roots are substantially parallel but gradually approach and are connected at the tip.
  • the cold air discharged to the distribution air passage 222 by the blower 113 is diverted to the refrigerating room air passage 222a and the ice making air passage 222d by the upper left cold air guide section 223.
  • the upper left cold air guide part 223 is composed of a thin plate rib, there is no space where a vortex or the like is generated at the branch point, and therefore, the fractionation can be performed smoothly.
  • the upper end of the upper left cold air guide part 223 has an R shape, the upper corner part of the cooler air passage 222a is eliminated, and a gentle flow path is formed. As a result, the cool air is smoothly guided to the refrigerating room connection air passage 118a shown in FIG. 3, so that the air blowing efficiency can be improved.
  • the thin plate rib of the upper left cold air guide part 223 may be an arc shape having a convex shape on the left side, and by following the flow of the cold air having the rotational component speed discharged from the blower 113 swirling clockwise, Smooth fractionation is possible.
  • the cool air discharged to the distribution air passage 222 is divided into the second freezer compartment air passage 222b and the first freezer compartment air passage 222c by the lower right cool air guide section 226.
  • the tip of the lower right cold air guide part 226 is an intersection line of the upper surface 226a and the lower surface 226b, and the width of the lower right cold air guide part 226 gradually widens, so that the cold air is always diverted to one of the air paths, Since the direction is gradually corrected, it is difficult to disturb the flow of cold air, and the air blowing efficiency can be improved.
  • the inner side surface 223e and the outer side surface 223f are not parallel to each other and have a shape in which the upper portion is widened, so that the air passage in the downstream portion does not have a corner portion and allows cool air to flow smoothly. Therefore, it is possible to improve the ventilation efficiency.
  • the tip of the lower right cool air guide portion 226 is an intersection line of the upper surface 226a and the lower surface 226b, and the width of the lower right cool air guide portion 226 is gradually widened so that the cool air is always diverted to one of the air paths. Thereafter, since the direction is gradually corrected, it is difficult to disturb the flow of the cold air, and the air blowing efficiency can be improved.
  • FIG. 7 is an enlarged front view of a main part of the refrigerator according to the third embodiment of the present invention.
  • the partition member 311 partitions the storage chamber composed of the second freezing chamber 105, the ice making chamber 106, and the first freezing chamber 107 from the cooling chamber 110, similarly to the partition member 111 of FIG. 2.
  • the partition member 311 includes a front partition member 120 that forms an outer shell on the storage chamber side and a rear partition member 121 that forms an outer shell on the cooling chamber side, similar to the partition member 111 in FIG.
  • the fan 113 is provided. Further, a space between the front partition member 120 and the rear partition member 121 constituting the partition member 311 is formed with a distribution air passage 322 for branching cool air toward each storage chamber.
  • the distribution air passage 322 branches the downstream portion into four air passages by the upper left cool air guide portion 323, the upper right cool air guide portion 324, the lower left cool air guide portion 325, and the lower right cool air guide portion 326.
  • the space between the upper left cold air guide portion 323 and the upper right cold air guide portion 324 is the refrigerator compartment air passage 322a, and the space between the upper right cold air guide portion 324 and the lower right cold air guide portion 326 is the second freezer compartment air passage 322b.
  • Between the lower right cool air guide part 326 and the lower left cool air guide part 325 is a first freezer compartment air path 322c, and between the lower left cool air guide part 325 and the upper left cool air guide part 323 is an ice making room air path 322d.
  • a twin damper 319a, a second freezer damper 319b, and an ice making chamber are respectively provided at the uppermost ends of the cold room air passage 322a, the second freezer air passage 322b, and the ice making air passage 322d.
  • a damper 319c is provided.
  • Each damper may be fixed to either the front partition member 120 or the rear partition member 121 shown in FIG. Furthermore, since it is fixed so as to be sandwiched between the front partition member 120 and the rear partition member 121, it is possible to minimize not only the air path resistance but also the number of parts and the number of assembly steps. In addition, by sandwiching parts such as sponge tape between each damper and the front partition member 120 and the rear partition member 121, not only can the sound absorbing and vibration absorbing functions be provided, but a high-quality refrigerator 100 can be provided as well as the periphery of the damper It is possible to suppress cold air leakage from the air.
  • the refrigerator compartment opening 319d which is one opening of the twin damper 319a at the tip of the refrigerator compartment air passage 322a, is connected to the refrigerator compartment connection air provided in the partition wall 118. It communicates with the road 318a.
  • the other opening 319e for the vegetable room communicates with the vegetable room connection air passage 318b similarly provided in the partition wall 118 and communicates with the vegetable room discharge port 329.
  • the second freezer compartment damper 319b ahead of the second freezer compartment air passage 322b and the ice compartment damper 319c ahead of the ice compartment air passage 322d are respectively configured between the partition wall 118 and the partition member 311.
  • the second freezer compartment discharge port 327 and the ice making chamber discharge port 328 communicate with each other.
  • the cold air discharged to the distribution air passage 322 by the blower 113 is diverted by each cold air guide section and flows to the air passage toward each storage chamber.
  • the refrigerating room air passage 322a has a twin damper 319a
  • the second freezer compartment air passage 322b has a second freezer compartment damper 319b
  • the ice making air passage 322d has an ice making room damper 319c. . Therefore, by controlling each damper, the amount of cold air flowing to the refrigerator compartment 104, the second freezer compartment 105, the ice making compartment 106, and the vegetable compartment 108 shown in FIG. 2 can be adjusted. As a result, the temperature of each storage chamber can be adjusted independently, and fine temperature adjustment is possible. In addition, when the amount of stored items in only one room increases, it is possible to cool only that storage room, and thus it is possible to minimize power consumption.
  • the first freezer compartment 107 has the lowest temperature zone, no damper is provided in the present embodiment, but the first freezer compartment air passage 322c or the first freezer compartment outlet 120b is used as necessary. By providing a damper on the surface, the temperature can be adjusted more delicately.
  • the refrigerating room air passage 322a has the twin damper 319a
  • the second freezer compartment air passage 322b has the second freezer compartment damper 319b
  • the air passage 322d has an ice making room damper 319c.
  • FIG. 8 is a front view of a refrigerator according to the fourth embodiment of the present invention
  • FIG. 9 is a sectional view taken along line 9-9 in FIG. 8
  • FIG. 10 is a front view of a freezing expansion chamber according to the fourth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view taken along line 11-11 in FIG. 10
  • FIG. 12 is an enlarged cross-sectional view showing the positional relationship between the lower discharge port and the lower freezer compartment in the fourth embodiment of the present invention.
  • a heat insulating box 401 which is a refrigerator main body of the refrigerator 400, includes an outer box 402 mainly using a steel plate, an inner box 403 formed of a resin such as ABS, an outer box 402, and an inner box. It is comprised with foam heat insulating materials, such as hard foaming urethane, foam-filled in the space between 403, is heat-insulated with the circumference
  • a refrigeration room 404 as a first storage room is provided at the top, and a second freezing room 405 as a fourth storage room and an ice making room 406 as a fifth storage room are provided side by side under the refrigeration room 404. ing.
  • a first freezing room 407 as a second storage room is arranged below the second freezing room 405 and the ice making room 406, and a vegetable room 408 as a third storage room is arranged at the bottom. Yes.
  • the refrigerating room 404 includes a refrigerating room right door 404a and a refrigerating room left door 404b, which are rotary doors, and a refrigerating room shelf 404c and a refrigerating room case 404d are appropriately disposed therein, so that the storage space can be easily arranged. is doing.
  • the other storage room has a drawer-type door, and the second freezer compartment case 405b is placed on the frame attached to the second freezer compartment door 405a, and the frame attached to the ice compartment door 406a is attached to the frame.
  • An ice-making chamber case (not shown) is placed.
  • an upper freezer compartment case 407b and a lower freezer compartment case 407c are placed on a frame attached to the first freezer compartment door 407a.
  • An upper vegetable compartment case 408b and a lower vegetable compartment case 408c are placed on the frame attached to the vegetable compartment door 408a.
  • the refrigerated room 404 is set in a refrigerated temperature zone, which is a temperature at which it is not frozen for refrigerated storage, and is usually set to 1 ° C to 5 ° C.
  • the vegetable room 408 has a refrigeration temperature range equivalent to the refrigeration room 404 or a slightly higher temperature set vegetable temperature range of 2 ° C. to 7 ° C.
  • the first freezer compartment 407 is set in a freezing temperature zone, and is usually set at ⁇ 22 ° C. to ⁇ 15 ° C. for frozen storage, but for improving the frozen storage state, for example, ⁇ 30 ° C. It may be set at a low temperature of -25 ° C.
  • the second freezer compartment 405 has the same freezing temperature zone as the first freezer compartment 407 or a slightly higher temperature setting of ⁇ 20 ° C. to ⁇ 12 ° C.
  • the ice making chamber 406 makes ice with an automatic ice maker (not shown) provided at the upper part of the room with water sent from a water storage tank (not shown) in the refrigerator compartment 404, and an ice making case (not shown). Store in.
  • the top surface portion of the heat insulating box 401 has a stepped recess shape toward the back of the refrigerator, and a machine room 401a is formed in the stepped recess.
  • the machine room 401a accommodates high-pressure components of the refrigeration cycle such as the compressor 409 and a dryer (not shown) for removing moisture. That is, the machine room 401 a in which the compressor 409 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 404.
  • the machine room 401a by providing the machine room 401a and arranging the compressor 409 in the rear area of the uppermost storage room of the heat-insulating box 401, which is difficult to reach and is a dead space, the user can use the conventional refrigerator to The space in the machine room at the bottom of the easy-to-use heat insulating box 401 can be effectively converted as the storage room capacity, and the storage performance and usability can be greatly improved.
  • the refrigeration cycle is formed of a series of refrigerant flow paths sequentially including a compressor 409, a condenser, a capillary serving as a decompressor, and a cooler 412.
  • a refrigerant for example, isobutane as a hydrocarbon-based refrigerant is enclosed. Yes.
  • Compressor 409 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder.
  • those functional components may be disposed in the machine room 401a.
  • the decompressor constituting the refrigeration cycle is a capillary, but an electronic expansion valve that can freely control the flow rate of the refrigerant driven by the pulse motor may be used.
  • the matters relating to the main part of the invention described below are the types in which the compressor 409 is arranged by providing a machine room in the rear region of the lowermost storage room of the heat insulating box 401 that has been conventionally general. It may be applied to other refrigerators.
  • a cooling chamber 410 for generating cold air is provided on the back surface of the first freezing chamber 407, and the storage chamber composed of the second freezing chamber 405, the ice making chamber 406, and the first freezing chamber 407 and the cooling chamber 410 are partitioned. Therefore, a partition member 411 is configured.
  • a cooler 412 is disposed in the cooling chamber 410, and heat is exchanged with air warmed by heat exchange with the storage chamber to generate cold air.
  • the lower space of the cooler 412 is provided with a radiant heating means 414 made of glass tube for defrosting the cooler 412 and its surroundings during cooling, and further, the lower part is removed from the defrosting generated during the defrosting.
  • a drain pan 415 for receiving frost water, a drain tube 416 penetrating from the deepest part to the outside of the cabinet are configured, and an evaporating dish 417 is configured outside the downstream side.
  • the radiant heating means 414 instead of the radiant heating means 414, another shape heating means such as a pipe heater attached to the cooler 412 may be used, or the radiant heating means 414 and another shape heating means may be used in combination.
  • the partition member 411 includes a front partition member 420 that forms an outer shell on the storage chamber side and a rear partition member 421 that forms an outer shell on the cooling chamber side, and the rear partition member 421 includes a blower 413.
  • a space between the front partition member 420 and the rear partition member 421 is a distribution air passage 422 that branches cold air toward each storage chamber.
  • the blower 413 is an axial fan that rotates clockwise as viewed from the discharge surface.
  • the rotation direction of the blower 413 is used as a reference.
  • the same effect can be obtained by reversing the left and right sides.
  • the discharge surface of the blower 413 is attached with an angle with respect to the front surface of the refrigerator 400, and the cold air is arranged to blow up obliquely upward. Further, when viewed from the front of the first freezer compartment 407, the center of the blower 413 is located on the left side with respect to the center of the first freezer compartment 407, and is located above the upper end of the upper surface of the upper freezer compartment case 407b.
  • the portion of the front partition member 420 that faces the blower 413 constitutes a cool air rectification unit 420 a that protrudes toward the blower 413.
  • the cool air rectification unit 420 a has a substantially truncated cone shape with the rotation axis of the blower 413 as the central axis.
  • the front end of the cool air rectifying unit 420a is formed by a surface parallel to the discharge surface of the blower 413, and the diameter thereof is substantially the same as the boss diameter of the blower 413.
  • the front partition member 420 has an upper discharge port 420b below the cool air rectifying unit 420a and above the upper freezer compartment case 407b, and is integrally or separately provided between the lower freezer compartment case 407c and the upper freezer compartment case 407b.
  • An air passage 423 is provided.
  • the lower air passage 423 has a lower discharge port 423a at its tip.
  • the upper discharge port 420b and the lower discharge port 423a communicate with the distribution air passage 422 and the first freezer compartment 407.
  • the lower air passage 423 projects from the front partition member 420 into the first freezer compartment 407, and the lower outlet 423a is provided in front of the rear end flange of the lower freezer compartment case 407c as shown in FIG.
  • the left and right ends of the upper surface of the lower air passage 423 are chamfered with R of 5 mm or more, and both ends have a shape that is the lowest position in the upper surface.
  • the upper discharge port 420b includes a plurality of holes so that the width is distributed within the width of the upper freezer compartment case 407b. At least one of the holes passes through the center of the first freezer compartment 407 when viewed from the front.
  • the lower air passage 423 is composed of a plurality of projecting air passages so that the width is distributed within the width of the lower freezer compartment case 407c, and has one or more lower discharge ports 423a at the tip of each projecting air passage.
  • the upper discharge port 420b and the lower discharge port 423a may be configured by a plurality of upper and lower holes, or the number of steps may be changed in the width direction, thereby determining the distribution of cool air in the storage case, It becomes possible to cool appropriately.
  • a second freezer compartment air passage 424 configured by a front partition member 420 and a partition wall 418 is provided between the partition wall 418 and the partition member 411 that insulate the refrigerator compartment 404 from other storage chambers.
  • an ice making room air passage 425 The second freezer compartment air passage 424 has a second freezer compartment outlet 424a, and the ice making air passage has an ice making outlet 425a.
  • the second freezer compartment discharge port 424a and the ice making chamber discharge port 425a are provided in front of the second freezer compartment case 405b and the rear end flange of the ice making machine (not shown).
  • the second freezer compartment air passage 424 and the ice making compartment air passage 425 may be provided separately from the front partition member 420 and the partition wall 418, or may be divided and provided only partially.
  • the front partition member 420 has a straight inclined rib 420c that is downwardly inclined to the right of the cool air rectifying unit 420a above the upper discharge port 420b.
  • the right end of the inclined rib 420c is on the right side of the right end of the upper discharge port 420b, and the angle formed by the upper side of the inclined rib 420c and the horizontal plane is 5 degrees or more.
  • the front partition member 420 has a chevron rib 420d having a chevron shape above each hole above the lower air passage 423.
  • the chevron rib 420d has a width larger than the lateral width of one hole of the lower discharge port 423a, and the angle between each side and the horizontal plane is 5 degrees or more.
  • the inclined rib 420c and the chevron rib 420d may each be configured by a curve such as an arc shape or a kamaboko shape.
  • the front partition member 420 has valley ribs 420e in the valleys of the plurality of projecting air passages of the lower air passage 423.
  • the valley rib 420e is a rib having a vertical linear shape, and has a length from the periphery of the end of the mountain-shaped rib 420d to the height of the lower discharge port 423a or the length below it.
  • the lower air passage 423 has a plurality of lower ribs 423b on the first freezing chamber 407 side.
  • the lower rib 423 b starts from the upper surface of the lower air passage 423, passes through the lower discharge port 423 a, is connected to the lower air passage 423, and is connected to the front partition member 420.
  • the lower side of the lower rib 423b has a steeper slope than the lower surface of the lower air passage 423, and the angle formed with the horizontal plane is 10 ° or more.
  • the upper discharge port 420b has one or more upper ribs 420f.
  • the upper rib 420f has a vertical straight shape protruding toward the first freezer compartment 407, and is provided at least on the side of the upper discharge port 420b far from the blower 413.
  • the second freezer compartment air passage 424 has a second freezer compartment rib 424b on the lower surface.
  • the second freezer compartment rib 424b has a substantially triangular shape having two sides of the lower surface of the second freezer compartment air passage 424 and the front partition member 420, and extends across the width of the lower surface of the second freezer compartment air passage 424. Are provided.
  • the refrigeration cycle is operated by a signal from a control device (not shown) according to the set temperature in the refrigerator, and the cooling operation is performed.
  • the high-temperature and high-pressure refrigerant discharged by the operation of the compressor 409 is condensed to some extent by a condenser (not shown). Further, the refrigerant prevents water droplets on the heat insulating box 401 via the side and back of the heat insulating box 401 that is the main body of the refrigerator, and a refrigerant pipe (not shown) disposed at the front opening of the heat insulating box 401. While condensing into liquid, it reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 409 and becomes a low-temperature and low-pressure liquid refrigerant and reaches the cooler 412.
  • the air in each storage chamber collected by the operation of the blower 413 is heat-exchanged with the liquid refrigerant by the cooler 412, and the refrigerant in the cooler 412 evaporates.
  • the air returned from the storage chamber becomes cool air for cooling each storage chamber again in the cooling chamber 410.
  • the low-temperature cold air flows from the blower 413 through the distribution air passage 422 and is divided using the air passage and the damper, and passes through the refrigerating room 404, the second freezing room 405, the ice making room 406, the first freezing room 407, and the vegetable room 408. Cool to each target temperature range.
  • the blower 413 is an axial fan that rotates clockwise when viewed from the front of the refrigerator 400, the discharged cool air flows conically so as to spread radially while turning clockwise. Therefore, by forming the cool air rectifying unit 420a in accordance with the flow of the discharged cool air, the cool air can be smoothly sent to the distribution air path 422 without generating vortices.
  • the cool air rectifying unit 420a on the discharge side of the axial flow fan constituting the blower 413, an air flow returning toward the axial flow fan is generated in the center, but the upper surface diameter of the truncated cone of the cold air rectifying unit 420a is substantially the same as the boss diameter of the axial flow fan. Thus, since this return airflow can be suppressed, the energy given to the cold air from the blower 413 can be utilized for the blown air without waste.
  • the angle between the conical surface created by the discharged cool air and the rotation axis of the blower 413 differs depending on the flow rate and the number of rotations sent by the blower 413. It can be carried out. For example, a case will be described in which a blower 413 having a blade diameter of 90 mm to 410 mm is rotated around 1200 rpm to 3000 rpm to obtain an air volume of 0.5 m 3 / min to 1.0 m 3 / min. According to the experiment under this condition, the angle formed by the rotating shaft and the conical surface of the cool air rectifying unit 420a is preferably 50 ° to 85 °.
  • the kinetic energy of the discharged cold air can be efficiently recovered as pressure energy, so the discharge pressure is increased without increasing the work of the blower 413 Can do.
  • the work of the air blower 413 increases, so the cold air rectification unit The role played by 420a is greater.
  • a part of the cold air that spreads along the cold air rectification unit 420a is discharged into the first freezing chamber 407 from an upper discharge port 420b provided in the cold air rectification unit 420a.
  • a force along the cold air rectification unit 420a is acting on the cold air due to the Coanda effect. Therefore, the cool air discharged from the holes provided in the cool air rectification unit 420 a is smoothly discharged toward the front of the blower 413. Therefore, it is possible to send cold air to the front of the blower 413, which has conventionally been difficult to send cold air.
  • the hole of the upper stage discharge port 420b located in the center of the 1st freezer compartment 407 has the upper stage rib 420f perpendicular
  • the upper rib 420f can be formed without increasing the number of parts by being molded integrally with the front partition member 420, so that variation in the wind direction due to the solid can be reduced. Furthermore, the structure which can suppress a deformation
  • frost or ice may adhere to the surface of the front partition member 420 on the first freezer compartment 407 side due to a temperature difference.
  • the frost or ice is dissolved by a part of the warm air in the cooling chamber 410 that has passed through the blades of the blower 413 and entered the distribution air passage 422. To do.
  • the refrigerator 400 periodically stops cooling and heats the radiant heating means 414 in order to melt frost and ice adhering to the cooler 412 and its surroundings, so that the frost and ice on the surface of the front partition member 420 are also periodically There is no worry of growing and squeezing the storage space.
  • the upper discharge port 420b is a hole opened in the front partition member 420, and cold air passes when the first freezing chamber 407 is cooled. Therefore, when a water droplet falls on the upper discharge port 420b, a water droplet is formed in the upper discharge port 420b. And the cooling capacity may be reduced by blocking the holes by forming ice during cooling. Therefore, by providing the inclined rib 420c, it is possible to realize a high quality capable of stably cooling the storage chamber.
  • the mountain-shaped rib 420d causes water droplets to flow downward from both ends of the mountain-shaped rib 420d. Since the width of the chevron rib 420d is larger than the width of the lower air passage 423, water droplets flowing downward from both ends of the chevron rib 420d pass through both sides of the lower air passage 423 and flow downward. Accordingly, it is possible to prevent water from dripping onto the lower air passage 423 protruding inside the lower freezer compartment case 407c and dripping into the lower freezer compartment case 407c.
  • the lower freezer compartment case 407c is a storage container and does not have a hole at the bottom, if it drops into the lower freezer compartment case 407c, water accumulates inside the lower freezer compartment case 407c and freezes during cooling, so that ice grows. In addition, the stored item is fixed to the case with ice, so that the user's convenience is impaired and unpleasant feeling is given.
  • the water droplets flowing down the surface of the front partition member 420 flow from the lower end of the front partition member 420 to the bottom surface of the first freezing chamber 407 and then flow to the lower drain pan 415 and the drain tube 416. It is structured to be discharged outside the warehouse. However, by providing a mechanism for collecting the water droplets in the front partition member 420 and dropping it directly to the drain pan 415, the water droplets do not drop on the bottom surface of the first freezing chamber 407, which is a storage space, and the quality is further improved.
  • a refrigerator can be provided.
  • the valley rib 420e exists in the valley of the lower air passage 423, the water flowing down from the mountain-shaped rib 420d is actively attracted to the valley rib 420e by the surface tension. Therefore, it is possible to further reduce the risk of water flowing down from the mountain-shaped rib 420d flowing into the lower air passage 423.
  • the valley rib 420e may be a shape or substance having an action of attracting water even if it is not a rib, and may be replaced with a recess or a hydrophilic surface of the same shape, or may be configured by fitting another part. You can also.
  • the water droplet does not flow into the upper discharge port 420b and the lower air passage 423.
  • the unlikely event that it flows, or when water droplets are generated immediately above the upper discharge port 420b or on the surface of the lower air passage 423 it is necessary to prevent the water droplets from icing in the discharge ports or dropping into the storage case. is there.
  • the upper discharge port 420b since the upper discharge port 420b has the upper rib 420f, even when water droplets are generated at the upper discharge port 420b due to a temperature difference or water droplets generated above the upper discharge port 420b flow down, the upper discharge port 420b travels along the upper rib 420f. Then, it can flow to below the upper discharge port 420b. Therefore, it is possible to prevent water droplets from accumulating in the upper discharge port 420b and provide a high-quality refrigerator. If the upper rib 420f is configured horizontally, the water droplets do not flow down, and the phenomenon of being cooled by the discharged cool air and becoming ice may be repeated, and the upper discharge port 420b may be blocked.
  • the lower air passage 423 has a lower rib 423b.
  • Water droplets generated or flowed down on the upper surface of the lower air passage 423 or around the lower discharge port 423a can reach the surface of the front partition member 420 below the lower air passage 423 through the lower rib 423b.
  • the lower side of the lower rib 423b is steeper than the lower surface of the lower air path 423, water flows preferentially through the lower rib 423b over the surface of the lower air path 423.
  • the risk of dropping into the freezer compartment 407c can be further reduced.
  • the angle formed by the lower side of the lower rib 423b and the horizontal plane is 10 ° or more, it becomes possible to attract and guide water more reliably.
  • the installation interval of the lower ribs 423b is too narrow, the wind path resistance of the cold air increases to reduce the air blowing efficiency and increase the power consumption, and if it is too wide, the possibility of water drops dripping from the gaps of the lower ribs 423b increases.
  • it is necessary to set appropriately according to the wind speed and air volume of the chilled air to be circulated, and the temperature range of the storage room generally 10 mm to 20 mm is desirable.
  • the second freezer compartment rib 424b guides water droplets generated on the lower surface of the second freezer compartment air passage 424 to the surface of the front partition member 420, thereby preventing the second freezer compartment rib 424b from dropping into the second freezer compartment case 405b. it can. Since the second freezer compartment rib 424b has a substantially triangular shape with the lower surface of the second freezer compartment air passage 424 as one side, the lower side is steeper than the lower surface of the second freezer compartment air passage 424. Water droplets flow through the second freezer compartment rib 424b preferentially over the second freezer compartment air passage 424.
  • the second freezer compartment rib 424b may have other shapes such as a trapezoidal shape instead of a substantially triangular shape as long as the lower surface of the second freezer compartment air passage 424 and the front partition member 420 have two sides. It is desirable to have a steeper slope than the lower surface of the second freezer compartment air passage 424 as in the case of a triangle. Furthermore, if the interval between the second freezer compartment ribs 424b is too narrow, it is easy to hold water droplets, and if it is too wide, there is a high possibility that waterdrops will drip from the gap between the second freezer compartment ribs 424b. ⁇ 20 mm is desirable.
  • the warm air in the cooling chamber 410 leaked from the blower 413 during the defrosting operation further leaks into the storage space from the upper discharge port 420b.
  • the warm air is cooled by the wall surface of the second freezer compartment air passage 424 and is condensed on the surface of the air passage, so that the lower surface of the second freezer compartment air passage 424 is liable to have water droplets, so that the effect of the second freezer compartment rib 424b is achieved. Can be said to be very large.
  • the draining structure such as the inclined rib 420c, the chevron rib 420d, the valley rib 420e, the upper rib 420f, the lower rib 423b, the second freezer compartment rib, etc. has a second freezing compartment 405, an ice making compartment 406, This is effective not only in the first freezing chamber 407 but also in the vicinity of the cold air outlet of other storage chambers where a temperature difference is likely to occur. If necessary, by providing ribs in the outlet of the refrigerator compartment 404 and the outlet of the vegetable compartment 408, water droplets accumulate in the refrigerator compartment shelf 404c, refrigerator compartment case 404d, upper vegetable compartment case 408b, etc. Wetting can be prevented.
  • the upper discharge port 420b, the lower discharge port 423a, and the second freezer compartment discharge port 424a are inclined ribs 420c, chevron ribs 420d, valley ribs 420e, It has a draining structure with ribs 420f, lower ribs 423b, and second freezer compartment ribs.
  • the chevron rib 420d has a width larger than the width of the lower discharge port 423a, the water droplets formed above the lower discharge port 423a travel along the chevron rib 420d to avoid the lower air path from side to side. run down. Therefore, in order to suppress falling from the lower air passage 423 to the lower freezer compartment case, it is possible to provide a high-quality refrigerator without accumulating in the lower freezer compartment case on which stored items are placed.
  • the chevron rib 420d is separated from the lower discharge port 423a and is provided at a position where the flow of cool air is gentle, it prevents air flow resistance and impairs the blowing efficiency, and suppresses an increase in power consumption.
  • the upper surface of the inclined rib 420c has a straight line shape with the right end being the lowest, and the upper surface of the chevron rib 420d has a mountain shape having the lowest left and right ends.
  • the water droplets generated above the upper discharge port 420b and the lower discharge port 423a flow down to the ribs and then immediately flow to the lower side without accumulating on the ribs, and further downward along the surface of the front partition member 420. run down. Therefore, it is possible to prevent water droplets from collecting on the ribs and falling over the ribs and dropping from the front to the cold air discharge port.
  • the upper discharge port 420b is blocked by icing, or water droplets collect in the lower freezer compartment case. The risk can be further reduced.
  • an upper discharge port 420b, a lower discharge port 423a, and a second freezer compartment discharge port 424a have an upper rib 420f, a lower rib 423b, a valley rib 420e, and a second freezer compartment rib 424b that guide water flow therearound.
  • the valley rib 420e is provided in the lower periphery of both ends of the mountain-shaped rib 420d.
  • the water droplets that flow down from both ends of the mountain-shaped rib 420d while avoiding the lower air passage 423 in the left-right direction are attracted to the valley rib 420e even when the upper water droplets are collected and the amount is high or the momentum is strong. Therefore, it flows along the valley rib 420e. Therefore, it is possible to minimize the risk that water droplets away from the mountain-shaped rib 420d will flow again into the lower air passage 423.
  • the valley rib 420e is a rib formed integrally with the front partition member 420.
  • the upper rib 420f and the lower rib 423b are ribs in contact with the upper side and the lower side of the upper discharge port 420b and the lower discharge port 423a.
  • the water droplets that have flowed down to the discharge port are guided to the bottom of the discharge port through the ribs without accumulating at the discharge port or falling off the upper side and falling into the lower freezer compartment case 407c. Therefore, it is possible to provide a high-quality refrigerator that further reduces the risk of blocking the upper discharge port 420b due to icing or the accumulation of water droplets in the lower freezer compartment case.
  • the lower air passage 423 and the second freezer compartment air passage 424 each have a lower rib 423b and a second freezer compartment rib 424b on the lower surface.
  • water drops that have flowed down to the lower surface of the air passage are guided from the tip of the cool air discharge air passage to the base through the rib. Therefore, it can prevent dripping from the front-end
  • the lower ribs 423b and the lower sides of the second freezer compartment ribs 424b form a larger angle with respect to the horizontal plane than the lower surfaces of the lower airflow passage 423 and the second freezer compartment air passage 424.
  • the flowing water droplets tend to flow along the lower side of the rib rather than the lower surface of the air passage, so that the water droplets can be reliably guided by the guide portion.
  • the angle between the lower rib 423b and the lower side of the second freezer compartment rib 424b and the horizontal plane is 10 ° or more, so that it is possible to guide the flowing water droplets along the guide portion more smoothly. Become. Therefore, dripping to the lower freezer compartment case 407c and the second freezer compartment case 405b can be further suppressed.
  • FIG. 13 is a partition member front view of the refrigerator in the 5th Embodiment of this invention.
  • the front partition member 520 divides the storage chamber composed of the second freezing chamber 405, the ice making chamber 406, and the first freezing chamber 407 from the distribution air passage 422 in the same manner as the front partition member 420 of FIG. 9. To do.
  • the front partition member 520 has a lower air passage 523 integrally or separately between the lower freezer compartment case 407c and the upper freezer compartment case 407b, and the lower air passage 523 has a lower outlet 523a at the tip thereof.
  • the front partition member 520 has a hanging rib 520d from the upper side of the lower air passage 523 to the side.
  • the number of drooping ribs is the same as the number of lower air passages 523, the upper surface has the highest mountain shape at the center, the side surface extending from the left end of the upper surface is substantially vertical, and the lower end reaches below the lower surface of the lower air passage 523. .
  • the right end of the upper surface of the drooping rib 520d that does not have a side surface is located above the upper surface of the drooping rib 520d adjacent to the right.
  • the gap between the right end of the drooping rib 520d and the left upper surface of the drooping rib 520d adjacent to the right is preferably 5 mm or more so that water drops can easily flow.
  • the side may be provided on the right side of the upper side, or may be used in combination with the chevron rib 420d of the fourth embodiment.
  • Water droplets generated above the drooping rib 520d flow along the surface of the front partition member 520 to the drooping rib 520d.
  • the water droplets that have reached the drooping rib 520d are divided and flow downward by the inclination of the upper surface of the drooping rib 520d.
  • the water droplets flowing in the left direction are directly guided to the lower side of the lower air passage 523 along the side surface of the drooping rib 520d.
  • the water droplets flowing in the right direction are separated from the drooping rib 520d from the right end of the upper surface of the drooping rib 520d, and flow downward along the surface of the front partition member 520.
  • the right end of the drooping rib 520d is located above the upper left surface of the drooping rib 520d adjacent to the right. For this reason, the water droplets flowing from the right end of the drooping rib 520d are received by the upper left surface of the drooping rib 520d adjacent to the right, and in the same way as the water droplets flowing leftward, below the lower air path 523 along the side surface. Be guided.
  • the drooping rib 520d is connected to the upper surface and the side surface, it is possible to guide the water drop received above the lower air passage 523 to the lower air passage 523 without releasing it. Therefore, the received water droplet can be more reliably moved away from the lower air passage 523 and the lower outlet 523a. Thus, the effect can be further enhanced by combining the portion for receiving the water droplet and the portion for guiding the water droplet.
  • the upper surface of the drooping rib 520d has a width larger than the width of the lower discharge port 523a, so that water droplets formed above the lower discharge port 523a travel along the drooping rib 520d. Then, it flows down, avoiding the lower air path to the left and right. Therefore, in order to prevent water droplets from falling from the lower air passage 523 to the lower freezer compartment case, it is possible to provide a high-quality refrigerator without accumulating in the lower freezer compartment case on which stored items are placed.
  • the upper surface of the drooping rib 520d has the lowest mountain shape at the left and right ends, so that water droplets generated above the lower discharge port 523a flow down to the drooping rib 520d and immediately flow down without collecting. Therefore, it is possible to prevent the accumulated water droplets from dripping over the ribs and falling from the front to the lower discharge port 523a.
  • the drooping rib 520d has a side surface passing through the side of the lower air passage 523 and extending below the lower air passage 523, water drops received on the upper surface of the drooping rib 520d are not separated from the lower air passage. It can be reliably guided to below 523.
  • the present invention includes a plurality of storage chambers, a cooler that generates cool air for cooling the storage chamber, and a blower that forcibly blows the cool air generated by the cooler into the storage chamber.
  • a distribution air passage that distributes the cool air discharged from the blower to each of the storage chambers
  • a front partition member that is positioned between the distribution air passage and the storage chamber, and a space between the distribution air passage and the cooler.
  • a rear partition member has the cool air guide part comprised by at least any one of a front partition member and a rear partition member in a distribution air path.
  • the front partition member and the rear partition member constituting the outer shell of the distribution air passage also serve as a guide for determining the flow of the cold air, the number of parts constituting the air passage can be minimized. And the inside of the very smooth distribution wind path through which cool air flows smoothly can be comprised, and it becomes possible to reduce power consumption by improving ventilation efficiency.
  • the entire partition member is reduced without reducing the air passage cross-sectional area that reduces the air blowing efficiency. The volume can be reduced. Therefore, since the storage space can be increased, user convenience can be improved.
  • the downstream portion of the distribution air passage is branched into a plurality of air passages, has a plurality of discharge ports communicating with the plurality of storage chambers, and the cold air guide portion is provided at a position facing the blower.
  • the first surface and the second surface form an acute angle.
  • the present invention is constituted by a surface in which the first surface and the second surface are continuous.
  • the branch point downstream of the distribution air passage becomes a single line, so that the cold air is not branched by the surface, and the cold air discharged from the blower is reliably guided to one of the front air passages. Therefore, it is possible to prevent a decrease in air blowing efficiency such as stagnation and vortex.
  • the first surface and the second surface are constituted by ribs formed on at least one of the front partition member and the rear partition member.
  • the inside of the cold air guide portion can be made hollow, and the material cost can be further reduced.
  • die which shapes a partition member can be performed easily, the cost at the time of the improvement of an air path accompanying the layout change of a storage chamber, and correction and adjustment of an air path can be reduced.
  • the first surface and the second surface are constituted by uneven portions formed on at least one of the front partition member and the rear partition member. This makes it possible to prevent a wasteful flow of cool air flowing into the cool air guide portion while reducing the material cost by making the cool air guide portion hollow, thereby providing a smoother air path.
  • the concavo-convex portion protrudes inside the distribution air passage in the front-rear direction of the refrigerator main body with respect to the reference surface of the front partition member or the rear partition member formed integrally.
  • the cold air guide portion is constituted by both the front partition member and the rear partition member. Therefore, it becomes possible to make the depth dimension of a single partition member small, and it can improve workability.
  • the front partition member has a cold air rectification unit including a surface protruding toward the inside of the distribution air passage on a surface facing the blower.
  • the cold air rectification portion has a substantially circular shape
  • the first surface has a curve that is substantially concentric with the cold air rectification portion. Accordingly, it is possible to configure the cool air guide unit in accordance with the speed of the cool air in the swirling direction accompanying the rotation of the blower, and it is possible to guide the cool air to the discharge port without stalling.
  • the present invention includes a damper capable of adjusting the opening area in an air passage that sends cold air to a plurality of storage rooms.
  • the contact point between the first surface and the second surface is located above the horizontal plane including the center point of the blower.
  • the present invention also includes a storage chamber, a cooling chamber that generates cool air for cooling the storage chamber, a cooler provided in the cooling chamber, and a blower that forcibly blows the cool air generated by the cooler to the storage chamber.
  • a partition member that divides the storage chamber and the cooling chamber, a discharge port that is provided in the partition member and discharges cold air to the storage chamber, and a mounting member that is provided in the storage chamber and mounts stored items are provided.
  • the discharge port is located in front of the rear end portion of the mounting member.
  • the drainage structure which prevents the dripping of water in a mounting member is provided in the periphery of a discharge outlet. As a result, water droplets generated around the discharge port or water droplets flowing from above the discharge port can be guided so as to flow under the discharge port while avoiding the discharge port. It becomes possible to provide a high-quality refrigerator that prevents dripping.
  • the draining structure is constituted by a protrusion having a width larger than the width of the discharge port above the discharge port.
  • the upper surface of the protrusion is configured at a position where at least one of the left and right ends is the lowest.
  • the upper surface of the protrusion has an angle of 5 ° or more with respect to the horizontal plane. Therefore, the water that has fallen on the protrusion can flow to a lower position more smoothly.
  • the draining structure is constituted by a guide portion configured in the vertical direction around the discharge port.
  • the present invention comprises a draining structure comprising a protrusion having a width larger than the width of the discharge port above the discharge port, and a guide portion configured in the vertical direction around the discharge port, Provided at the lower periphery of at least one of the left and right ends of the protrusion.
  • the guide portion has a rib shape provided on the side of the discharge port.
  • the guide portion has a rib shape in contact with the upper side and the lower side of the discharge port. Accordingly, since the water droplets are guided to the bottom of the discharge port through the guide portion, it is possible to provide a high-quality refrigerator that prevents staying at the discharge port and dripping onto the mounting member.
  • the guide portion is a rib protruding from the lower surface of the discharge air passage that guides cold air to the discharge port.
  • the guide portion is a rib protruding from the upper surface of the discharge air passage that guides cold air to the discharge port.
  • the angle formed between the lower side of the guide portion and the horizontal plane is made larger than the angle formed between the lower surface of the cool air discharge air passage and the horizontal plane.
  • the angle formed by the lower side of the guide portion and the horizontal plane is 10 ° or more.
  • the refrigerator according to the present invention can provide the refrigerator that can efficiently cool the air discharged from the blower to the plurality of storage rooms and cool it to the respective temperatures. It can also be applied to products such as coolers using air blowing technology.

Abstract

As a result of having a cold air guiding section configured as a single piece by a front partitioning member in the air distribution path, the air paths from the laminar cold air flow section (120a) to the various leading edge air paths and to the various discharge ports are configured from a single smooth surface. Cold air discharged from a fan (113) is able to flow to the various discharge ports (127, 128, 129) along the surface of the front partition member without colliding with the level differences or gaps seen in sections where components interdigitate and ventilation loss can be kept to a minimum.

Description

冷蔵庫refrigerator
 本発明は、冷却器で生成した冷気を強制循環させて貯蔵室を冷却する冷蔵庫に関するものである。 The present invention relates to a refrigerator that cools a storage room by forcibly circulating cool air generated by a cooler.
 省エネルギに対する要求が厳しくなる中、冷却器で生成した冷気を強制循環させて貯蔵室を冷却する冷蔵庫においては、その冷却器の冷凍効率だけでなく、送風機の送風効率も重視されている。そのため、送風機から吐出された冷気を効率よく運搬する送風技術が重要となる。従来は送風機の吐出側に複数の部品からなるダクトを形成し各貯蔵室へ冷気を分配している。(例えば、特許文献1、特許文献2参照)。 As demand for energy saving becomes stricter, in a refrigerator that cools a storage room by forcibly circulating cool air generated by a cooler, not only the refrigeration efficiency of the cooler but also the blowing efficiency of the blower is emphasized. Therefore, an air blowing technique that efficiently transports the cold air discharged from the blower is important. Conventionally, a duct composed of a plurality of parts is formed on the discharge side of the blower to distribute the cold air to each storage chamber. (For example, refer to Patent Document 1 and Patent Document 2).
 以下、図面を参照しながら従来の冷蔵庫を説明する。 Hereinafter, a conventional refrigerator will be described with reference to the drawings.
 図14は従来の冷蔵庫冷却室に設置された送風機周辺の縦断面図である。図において、仕切部材1は、冷却器室2と冷凍室3とを区画するものであり、断熱材1bと、前仕切板1aと、ダンパ装置4と、送風機5と、後仕切板6とを、予め互いに組み込んで、且つ、所定の外形寸法となるように構成してある。仕切部材1の内部には、断熱材1bにより冷蔵室用風路7を構成し、冷蔵室用風路7は途中に冷気分流部(図示せず)を有し冷気の一部を野菜室用風路(図示せず)と連通する。 FIG. 14 is a longitudinal sectional view around the blower installed in the conventional refrigerator cooling chamber. In the figure, the partition member 1 divides the cooler chamber 2 and the freezing chamber 3, and includes a heat insulating material 1b, a front partition plate 1a, a damper device 4, a blower 5, and a rear partition plate 6. These are preliminarily assembled with each other and have a predetermined outer dimension. Inside the partition member 1, a cold room air passage 7 is constituted by a heat insulating material 1 b, and the cold room air passage 7 has a cold air diverting portion (not shown) in the middle thereof for a vegetable room. It communicates with an air passage (not shown).
 以上のように構成された冷蔵庫について、以下その動作を説明する。 About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below.
 冷却器室2にて生成された冷気は、送風機5によって、その一部が、仕切部材1内に設けた冷凍室用風路8を通って、冷凍室冷却口8aから冷凍室3内に送られる。一方残りの冷気はダンパ装置4を通り冷蔵室用風路7に送られ、冷気分流部にてさらにその一部が分流され、野菜室冷却用送風路(図示せず)を経由して野菜室(図示せず)内を所定の温度に冷却する。 A part of the cold air generated in the cooler chamber 2 is sent by the blower 5 into the freezer compartment 3 from the freezer cooling port 8 a through the freezer air passage 8 provided in the partition member 1. It is done. On the other hand, the remaining cold air passes through the damper device 4 and is sent to the air passage 7 for the refrigerating room. A part of the cold air is further diverted in the cold air diverting section, and the vegetable room passes through the air passage for cooling the vegetable room (not shown) The inside is cooled to a predetermined temperature (not shown).
 以上のように、従来は、仕切部材1内に断熱材1bにより冷蔵室および野菜室に連通する送風ダクトを形成することで、各貯蔵室へ冷気を分配しそれぞれの室を適正な温度に冷却できる冷蔵庫を提供していた。 As described above, conventionally, by forming the air duct that communicates with the refrigerator compartment and the vegetable compartment by the heat insulating material 1b in the partition member 1, the cold air is distributed to each storage compartment and each room is cooled to an appropriate temperature. We were able to provide a refrigerator.
 しかしながら、従来の冷蔵庫の構成では、仕切部材1の外殻を構成する前仕切板1aおよび後仕切板6に加え、冷蔵室用風路7および野菜室用風路、冷気分流部を構成する断熱材1bなどの別部品を必要とするため、送風機5から吐出された冷気が部品の勘合部に接触する機会が増大する。部品勘合部は必ず段差や隙間など不連続面を有するため、冷気のスムーズな流れを阻害し送風効率を低下させ消費電力を増大させるという問題があった。 However, in the structure of the conventional refrigerator, in addition to the front partition plate 1a and the rear partition plate 6 constituting the outer shell of the partition member 1, the refrigerator compartment air passage 7, the vegetable compartment air passage, and the heat insulation constituting the cold air distribution section. Since another component such as the material 1b is required, the chance that the cold air discharged from the blower 5 contacts the fitting portion of the component increases. Since the component fitting part always has a discontinuous surface such as a step or a gap, there has been a problem that the smooth flow of cold air is hindered, the blowing efficiency is lowered, and the power consumption is increased.
 さらに、部品点数が増えることで材料費や組立工数が多く必要となるだけでなく仕切部材1の体積が大きくなるため庫内容積が小さくなり、ユーザの使い勝手を損なう可能性があった。 Furthermore, the increase in the number of parts not only requires a lot of material costs and assembly man-hours, but also increases the volume of the partition member 1, so that the internal volume is reduced, which may impair user convenience.
 次に、従来の他の冷蔵庫について説明する。 Next, another conventional refrigerator will be described.
 図15は従来の他の冷蔵庫の断面図である。図において、冷蔵庫本体30は、上から順に、冷蔵室36、冷凍温度室31、野菜室37を備えている。冷凍温度室31は、その上部に、急速冷凍容器41を設けた急速冷凍室32と、急速冷凍室32の横に並置した製氷室33と、急速冷凍室32及び製氷室33の下方に配置された冷凍室34とから構成される。冷凍室34はその背部に、冷却器61を有する冷却器室62を仕切部材50により区画形成してあり、仕切部材50には冷気通路50aが設けてある。冷凍室34内には、3段重ねの上段容器42、中段容器43、及び下段容器44が備えられ、仕切部材50と一体若しくは別体に構成された冷気吐出風路52、53、54は冷気通路50aと連通し上段容器42、中段容器43、下段容器44に冷気を導入する。この冷気吐出風路52、53、54の吐出口52a、53a、54aの位置は、上段容器42、中段容器43、下段容器44の背面壁の後方に作られた容器フランジ部後壁42c、43c、44cより、前方(庫内側)に成るように構成してある。 FIG. 15 is a cross-sectional view of another conventional refrigerator. In the figure, the refrigerator body 30 includes a refrigerator compartment 36, a freezing temperature chamber 31, and a vegetable compartment 37 in order from the top. The freezing temperature chamber 31 is disposed below the quick freezing chamber 32 provided with the quick freezing container 41, the ice making chamber 33 juxtaposed beside the quick freezing chamber 32, and the quick freezing chamber 32 and the ice making chamber 33. And a freezer compartment 34. The freezer compartment 34 has a cooler compartment 62 having a cooler 61 formed on the back thereof by a partition member 50, and the partition member 50 is provided with a cool air passage 50 a. In the freezer compartment 34, an upper container 42, a middle container 43, and a lower container 44 are provided, and the cool air discharge air passages 52, 53, and 54 configured integrally with the partition member 50 or separately are provided with cool air. Cold air is introduced into the upper container 42, the middle container 43, and the lower container 44 in communication with the passage 50a. The positions of the discharge ports 52 a, 53 a, 54 a of the cold air discharge air passages 52, 53, 54 are the container flange rear walls 42 c, 43 c formed behind the rear walls of the upper container 42, the middle container 43, and the lower container 44. 44c, the front (inside of the cabinet) is formed.
 送風機63は冷却器室62に設けられ、冷却器室62にて生成した冷気を、冷凍温度室31、冷蔵室36、野菜室37等に強制循環する。 The blower 63 is provided in the cooler chamber 62 and forcibly circulates the cold air generated in the cooler chamber 62 to the freezing temperature chamber 31, the refrigerating chamber 36, the vegetable chamber 37, and the like.
 以上のように構成された冷蔵庫について、以下その動作を説明する。 About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below.
 冷却器室62により生成された冷気は、送風機63の運転により仕切部材50の冷気通路50a内に吐出される。冷気通路50a内に吐出された冷気は、仕切部材50内で冷凍温度室冷却用冷気と冷蔵温度室冷却用冷気とに分流される。冷凍温度室冷却用冷気は、仕切部材50に設けられた冷気吐出風路52、53、54のそれぞれの吐出口52a、53a、54aより上段容器42、中段容器43、44内に吐出されて、容器内を所定の温度に冷却する。このとき、吐出口52a、53a、54aの位置は、上段容器42、中段容器43、下段容器44の背面壁の後方に作られた容器フランジ部後壁42c、43c、44cより、前方(庫内側)に成るように構成してあるため、吐出口52a、53a、54aから吐出された冷気が上段容器42、中段容器43、下段容器44の背面側に回りこむことを防止し、効果的に容器内を冷却することができる。 The cool air generated by the cooler chamber 62 is discharged into the cool air passage 50 a of the partition member 50 by the operation of the blower 63. The cool air discharged into the cool air passage 50a is divided into the freezing temperature chamber cooling air and the refrigerating temperature chamber cooling air in the partition member 50. The cold air for cooling the freezing temperature chamber is discharged into the upper container 42 and the middle container 43, 44 from the respective discharge ports 52a, 53a, 54a of the cold air discharge air passages 52, 53, 54 provided in the partition member 50, The inside of the container is cooled to a predetermined temperature. At this time, the positions of the discharge ports 52a, 53a, 54a are more forward than the container flange rear walls 42c, 43c, 44c formed at the rear of the rear walls of the upper container 42, the middle container 43, and the lower container 44 (inside the warehouse). Therefore, it is possible to prevent the cool air discharged from the discharge ports 52a, 53a, 54a from flowing around to the back side of the upper container 42, the middle container 43, and the lower container 44, and to effectively The inside can be cooled.
 以上のように、従来の冷蔵庫では、吐出口52a、53a、54aの位置を容器フランジ部後壁42c、43c、44cより前方に構成することで、吐出冷気の上段容器42、中段容器43、下段容器44の背面側への漏れを防止し、効果的に容器内を冷却することができる冷蔵庫を提供することができる。 As described above, in the conventional refrigerator, the positions of the discharge ports 52a, 53a, 54a are configured in front of the container flange portion rear walls 42c, 43c, 44c, so that the upper container 42, the middle container 43, the lower container of the discharged cold air The refrigerator which can prevent the leakage to the back side of the container 44 and can cool the inside of a container effectively can be provided.
 しかしながら、従来の冷蔵庫の構成では、冷却器室62により生成された冷気が送風機63の運転により仕切部材50の冷気通路50a内に吐出される際に、冷凍温度室31の室温より低い温度まで仕切部材50を冷却することで、仕切部材50の庫内側表面に霜や氷結ができる。これが冷却器61を除霜する際にその暖気で溶け冷気吐出風路52、53、54を伝い上段容器42、中段容器43、下段容器44の内側に溜まるという問題があった。 However, in the conventional refrigerator configuration, when the cool air generated by the cooler chamber 62 is discharged into the cool air passage 50a of the partition member 50 by the operation of the blower 63, the partition is made to a temperature lower than the room temperature of the freezing temperature chamber 31. By cooling the member 50, frost and freezing can be formed on the inner surface of the partition member 50. When this defrosts the cooler 61, there is a problem that it melts with the warm air and accumulates inside the upper vessel 42, the middle vessel 43, and the lower vessel 44 through the cold air discharge air passages 52, 53, 54.
特開2007-71496号公報JP 2007-71496 A 特開2009-139088号公報JP 2009-139088 A
 本発明の冷蔵庫は、複数の貯蔵室と、貯蔵室を冷却する冷気を生成する冷却器と、冷却器で生成された冷気を強制的に貯蔵室に送風する送風機と、送風機から吐出された冷気を貯蔵室それぞれへ分配する分配風路と、分配風路と貯蔵室との間に位置する前仕切部材と、分配風路と冷却器との間に位置する後仕切部材とを備える。そして、分配風路内に、前仕切部材と後仕切部材の少なくともどちらか一方により構成される冷気ガイド部を有することを特徴とする。 The refrigerator of the present invention includes a plurality of storage rooms, a cooler that generates cool air for cooling the storage room, a blower that forcibly blows the cool air generated by the cooler to the storage room, and the cool air discharged from the blower A distribution air passage that distributes the air to the storage chambers, a front partition member that is located between the distribution air passage and the storage chamber, and a rear partition member that is located between the distribution air passage and the cooler. And it has the cold air | gas guide part comprised by at least any one of a front partition member and a rear partition member in a distribution air path, It is characterized by the above-mentioned.
 これにより、分配風路の外殻を構成する前仕切部材および後仕切部材が冷気の流れを決定するガイドの役割も果たすため、風路を構成する部品点数を最小限に抑えることができ、冷気がスムーズに流れる非常に滑らかな分配風路内を構成することができる。従って、送風効率を向上させることにより、消費電力を低減することが可能となる。また、前仕切部材および後仕切部材のみで構成することができるため、材料費、加工工数が増えない。さらに、送風効率を低下させる風路断面積の小型化を行うことなく仕切部材全体の体積を小さくすることが可能となり、貯蔵空間を増加させることができるため、ユーザの使い勝手を向上させることができる。 As a result, the front partition member and the rear partition member constituting the outer shell of the distribution air passage also serve as a guide for determining the flow of the cold air, so that the number of parts constituting the air passage can be minimized, A very smooth distribution air passage can be constructed. Therefore, power consumption can be reduced by improving the air blowing efficiency. Moreover, since it can comprise only a front partition member and a rear partition member, material cost and a process man-hour do not increase. Furthermore, the volume of the entire partition member can be reduced without reducing the air passage cross-sectional area that lowers the air blowing efficiency, and the storage space can be increased, thereby improving the user-friendliness. .
 また、本発明の冷蔵庫は、冷凍室と、冷凍室を冷却する冷気を生成する冷却器と、冷却器で生成された冷気を強制的に冷凍室に送風する送風機と、冷凍室と冷却器を有する冷却室とを区画する仕切部材と、仕切部材に設けられて冷凍室に冷気を吐出する冷気吐出口と、冷凍室に設けられて貯蔵物を載置する載置部材とを備え、冷気吐出口が載置部材の後端部より前方に位置する。そして、仕切部材は、冷気吐出口の上方に設けられ冷気吐出口の幅よりも大きい幅を有する突起部を有することを特徴とする。 The refrigerator of the present invention includes a freezer, a cooler that generates cool air for cooling the freezer, a blower that forcibly blows cool air generated by the cooler to the freezer, a freezer and a cooler. A partition member that partitions the cooling chamber, a cool air discharge port that is provided in the partition member and discharges cool air to the freezer chamber, and a mounting member that is provided in the freezer chamber and on which stored items are placed. The outlet is located in front of the rear end of the mounting member. The partition member has a protrusion provided above the cold air discharge port and having a width larger than the width of the cold air discharge port.
 これにより、仕切部材表面にできた水滴は、冷気吐出口を伝って載置部材に落ちることなく、冷気吐出口を左右方向に回避して仕切部材の下に流れ落ちる。そのため、水滴が貯蔵物を載置するところに溜まることなく、高品位な冷蔵庫を提供することが可能となる。このとき、突起部は冷気の流れに関係のない位置に存在するため、風路抵抗になることがなく、送風効率を損なう恐れはない。 Thus, water droplets formed on the surface of the partition member do not fall on the mounting member through the cool air discharge port, and flow down under the partition member while avoiding the cool air discharge port in the left-right direction. Therefore, it becomes possible to provide a high-quality refrigerator without water drops collecting on the place where the stored items are placed. At this time, since the projecting portion is present at a position unrelated to the flow of the cold air, there is no air path resistance and there is no fear of impairing the air blowing efficiency.
図1は、本発明の第1の実施の形態における冷蔵庫の正面図である。FIG. 1 is a front view of the refrigerator in the first embodiment of the present invention. 図2は、本発明の第1の実施の形態における冷蔵庫の縦断面図である。FIG. 2 is a longitudinal sectional view of the refrigerator in the first embodiment of the present invention. 図3は、本発明の第1の実施の形態における冷蔵庫本体の要部拡大正面図である。FIG. 3 is an enlarged front view of a main part of the refrigerator main body according to the first embodiment of the present invention. 図4は、本発明の第1の実施の形態における要部拡大縦断面図である。FIG. 4 is an enlarged vertical cross-sectional view of a main part in the first embodiment of the present invention. 図5は、本発明の第1の実施の形態における要部拡大縦断面図である。FIG. 5 is an enlarged vertical sectional view of a main part in the first embodiment of the present invention. 図6は、本発明の第2の実施の形態における仕切部材正面図である。FIG. 6 is a front view of the partition member according to the second embodiment of the present invention. 図7は、本発明の第3の実施の形態における仕切部材正面図である。FIG. 7 is a front view of the partition member according to the third embodiment of the present invention. 図8は、本発明の第4の実施の形態における冷蔵庫の正面図である。FIG. 8 is a front view of the refrigerator in the fourth embodiment of the present invention. 図9は、本発明の第4の実施の形態における冷蔵庫の縦断面図である。FIG. 9 is a longitudinal sectional view of a refrigerator in the fourth embodiment of the present invention. 図10は、本発明の第4の実施の形態における冷蔵庫本体の要部拡大正面図である。FIG. 10 is an enlarged front view of the main part of the refrigerator main body according to the fourth embodiment of the present invention. 図11は、本発明の第4の実施の形態における要部拡大縦断面図である。FIG. 11 is an enlarged vertical cross-sectional view of a main part in the fourth embodiment of the present invention. 図12は、本発明の第4の実施の形態における要部拡大縦断面図である。FIG. 12 is an enlarged vertical sectional view of the main part in the fourth embodiment of the present invention. 図13は、本発明の第5の実施の形態における冷蔵庫本体要部拡大正面図である。FIG. 13 is an enlarged front view of the main part of the refrigerator body according to the fifth embodiment of the present invention. 図14は、従来の冷蔵庫の要部拡大縦断面図である。FIG. 14 is an enlarged vertical cross-sectional view of a main part of a conventional refrigerator. 図15は、従来の冷蔵庫の縦断面図である。FIG. 15 is a longitudinal sectional view of a conventional refrigerator.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.
 (第1の実施の形態)
 図1は本発明の第1の実施の形態における冷蔵庫の正面図、図2は図1における2-2線断面図、図3は本発明の第1の実施の形態における冷蔵庫本体要部拡大正面図、図4は図3における4-4線断面図、図5は図3における5-5線断面図である。
(First embodiment)
1 is a front view of a refrigerator according to the first embodiment of the present invention, FIG. 2 is a sectional view taken along line 2-2 in FIG. 1, and FIG. 3 is an enlarged front view of the main part of the refrigerator main body according to the first embodiment of the present invention. 4 is a sectional view taken along line 4-4 in FIG. 3, and FIG. 5 is a sectional view taken along line 5-5 in FIG.
 図1から図5において、冷蔵庫100の冷蔵庫本体である断熱箱体101は、重荷鋼板を用いた外箱102と、ABSなどの樹脂で成型された内箱103と、外箱102と内箱103との間の空間に発泡充填される硬質発泡ウレタンなどの発泡断熱材とで構成され、周囲と断熱され、複数の貯蔵室に区画されている。最上部に第一の貯蔵室としての冷蔵室104、その冷蔵室104の下部に第四の貯蔵室としての第二の冷凍室105と第五の貯蔵室としての製氷室106が横並びに設けられている。その第二の冷凍室105と製氷室106の下部に第二の貯蔵室としての第一の冷凍室107、そして最下部に第三の貯蔵室としての野菜室108が配置される構成となっている。 In FIG. 1 to FIG. 5, a heat insulating box body 101 which is a refrigerator main body of a refrigerator 100 includes an outer box 102 using a heavy steel plate, an inner box 103 formed of a resin such as ABS, an outer box 102 and an inner box 103. And a foam heat insulating material such as hard foam urethane that is foam-filled in the space between the two, and is insulated from the surroundings and partitioned into a plurality of storage chambers. A refrigeration room 104 as a first storage room is provided at the top, and a second freezing room 105 as a fourth storage room and an ice making room 106 as a fifth storage room are provided side by side under the refrigeration room 104. ing. A first freezer compartment 107 as a second storage room is arranged below the second freezing room 105 and the ice making room 106, and a vegetable room 108 as a third storage room is arranged at the bottom. Yes.
 冷蔵室104は、回転扉である冷蔵室右扉104aと冷蔵室左扉104bを備え、内部には、冷蔵室棚104cや冷蔵室ケース104dが適切に配設され、貯蔵空間を整理し易く構成している。一方、その他の貯蔵室は引き出し式扉を有し、第二の冷凍室扉105aに取り付けられたフレームには第二の冷凍室ケース105bが載置され、製氷室扉106aに取り付けられたフレームには製氷室ケース(図示せず)が載置される。また、第一の冷凍室扉107aに取り付けられたフレームには上段冷凍室ケース107bおよび下段冷凍室ケース107cが載置される。野菜室扉108aに取り付けられたフレームには上段野菜室ケース108bおよび下段野菜室ケース108cが載置される。 The refrigerating room 104 includes a refrigerating room right door 104a and a refrigerating room left door 104b, which are rotary doors, and a refrigerating room shelf 104c and a refrigerating room case 104d are appropriately disposed therein, so that the storage space can be easily arranged. is doing. On the other hand, the other storage room has a drawer-type door, and a second freezer compartment case 105b is placed on the frame attached to the second freezer compartment door 105a, and is attached to the frame attached to the ice making compartment door 106a. An ice-making chamber case (not shown) is placed. Further, an upper freezer compartment case 107b and a lower freezer compartment case 107c are placed on a frame attached to the first freezer compartment door 107a. An upper vegetable compartment case 108b and a lower vegetable compartment case 108c are placed on the frame attached to the vegetable compartment door 108a.
 冷蔵室104は冷蔵保存のために凍らない温度である冷蔵温度帯に設定されており、通常1℃から5℃としている。野菜室108は冷蔵室104と同等の冷蔵温度帯もしくは若干高い温度設定の野菜温度帯2℃から7℃としている。第一の冷凍室107は冷凍温度帯に設定されており、冷凍保存のために通常-22℃から-15℃で設定されているが、冷凍保存状態の向上のために、例えば-30℃や-25℃の低温で設定されることもある。 The refrigerated room 104 is set in a refrigerated temperature zone, which is a temperature at which it does not freeze for refrigerated storage, and is usually set to 1 to 5 ° C. The vegetable room 108 has a refrigeration temperature range equivalent to the refrigeration room 104 or a slightly higher temperature setting vegetable temperature range of 2 ° C. to 7 ° C. The first freezer compartment 107 is set in a freezing temperature zone, and is usually set at −22 ° C. to −15 ° C. for frozen storage, but for improving the frozen storage state, for example, −30 ° C. It may be set at a low temperature of -25 ° C.
 第二の冷凍室105は、第一の冷凍室107と同等の冷凍温度帯または若干高い温度設定-20℃から-12℃である。製氷室106は、冷蔵室104内の貯水タンク(図示せず)から送られた水で室内上部に設けられた自動製氷機(図示せず)で氷を作り、製氷室ケース(図示せず)に貯蔵する。 The second freezer compartment 105 has the same freezing temperature zone as the first freezer compartment 107 or a slightly higher temperature setting of −20 ° C. to −12 ° C. The ice making chamber 106 makes ice with an automatic ice maker (not shown) provided at the upper part of the room with water sent from a water storage tank (not shown) in the refrigerator compartment 104, and an ice making case (not shown). Store in.
 断熱箱体101の天面部は冷蔵庫の背面方向に向かって階段状に凹みを設けた形状であり、この階段状の凹部に機械室101aを形成している。機械室101aに、圧縮機109、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。すなわち、圧縮機109を配設する機械室101aは、冷蔵室104内の最上部の後方領域に食い込んで形成されることになる。 The top surface portion of the heat insulation box 101 has a stepped recess shape toward the back of the refrigerator, and a machine room 101a is formed in the stepped recess portion. The machine room 101a accommodates high-pressure components of the refrigeration cycle such as the compressor 109 and a dryer (not shown) for removing moisture. That is, the machine room 101 a in which the compressor 109 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 104.
 このように、手が届きにくくデッドスペースとなっていた断熱箱体101の最上部の貯蔵室後方領域に機械室101aを設けて圧縮機109を配置することにより、従来の冷蔵庫で、使用者が使いやすい断熱箱体101の最下部にあった機械室のスペースを貯蔵室容量として有効に転化することができ、収納性や使い勝手を大きく改善することができる。 Thus, by providing the machine room 101a in the rear region of the uppermost storage room of the heat insulation box 101 that has become a dead space that is difficult to reach, the compressor 109 is disposed in the conventional refrigerator. The space in the machine room at the bottom of the easy-to-use heat insulation box 101 can be effectively converted as the storage room capacity, and the storage performance and usability can be greatly improved.
 冷凍サイクルは、圧縮機109と、凝縮器と、減圧器であるキャピラリーと、冷却器112とを順に備えた一連の冷媒流路から形成されており、冷媒として炭化水素系冷媒である例えばイソブタンが封入されている。 The refrigeration cycle is formed of a series of refrigerant flow paths sequentially including a compressor 109, a condenser, a capillary serving as a decompressor, and a cooler 112. As a refrigerant, for example, isobutane as a hydrocarbon refrigerant is used. It is enclosed.
 圧縮機109はピストンがシリンダ内を往復動することで冷媒の圧縮を行う往復動型圧縮機である。断熱箱体101に、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品が機械室101a内に配設されている場合もある。 Compressor 109 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder. In the case of a refrigeration cycle using a three-way valve or a switching valve for the heat insulation box 101, those functional parts may be disposed in the machine room 101a.
 また、本実施の形態では冷凍サイクルを構成する減圧器をキャピラリーとしたが、パルスモーターで駆動する冷媒の流量を自由に制御できる電子膨張弁を用いてもよい。 In the present embodiment, the decompressor constituting the refrigeration cycle is a capillary, but an electronic expansion valve that can freely control the flow rate of the refrigerant driven by the pulse motor may be used.
 なお、本実施の形態における、以下に述べる発明の要部に関する事項は、従来一般的であった断熱箱体101の最下部の貯蔵室後方領域に機械室を設けて圧縮機109を配置するタイプの冷蔵庫に適用しても構わない。 In the present embodiment, the matter relating to the main part of the invention described below is a type in which a compressor room is provided by providing a machine room in the rear region of the lowermost storage room of the heat insulating box 101, which has been generally used conventionally. It may be applied to other refrigerators.
 第一の冷凍室107の背面には冷気を生成する冷却室110が設けられ、第二の冷凍室105および製氷室106、第一の冷凍室107からなる貯蔵室と冷却室110とを区画するために仕切部材111が構成されている。冷却室110内には、冷却器112が配設されており、貯蔵室と熱交換して温められた空気と熱交換し、冷気を生成している。仕切部材111は、貯蔵室側の外殻をなす前仕切部材120と冷却室側の外殻をなす後仕切部材121とから構成され、後仕切部材121は、送風機113を備える。前仕切部材120と後仕切部材121との間の空間は貯蔵室それぞれに向けて冷気を分岐させる分配風路122である。 A cooling chamber 110 for generating cold air is provided on the back surface of the first freezing chamber 107, and the storage chamber consisting of the second freezing chamber 105, the ice making chamber 106, and the first freezing chamber 107 is separated from the cooling chamber 110. Therefore, a partition member 111 is configured. A cooler 112 is disposed in the cooling chamber 110 and exchanges heat with air warmed by exchanging heat with the storage chamber to generate cold air. The partition member 111 includes a front partition member 120 that forms an outer shell on the storage chamber side and a rear partition member 121 that forms an outer shell on the cooling chamber side, and the rear partition member 121 includes a blower 113. A space between the front partition member 120 and the rear partition member 121 is a distribution air passage 122 that divides cold air toward the storage chambers.
 送風機113は、吐出面からみて時計回りをする軸流ファンである。以下、冷蔵庫の左右方向の位置を指定する場合、送風機113の回転方向を基準とする。回転方向が反時計回りの送風機を使用する場合は、左右を反転させることで同様の効果を得ることができる。 The blower 113 is an axial fan that rotates clockwise as viewed from the discharge surface. Hereinafter, when the position in the left-right direction of the refrigerator is designated, the rotation direction of the blower 113 is used as a reference. When using a fan with a counterclockwise rotation direction, the same effect can be obtained by reversing the left and right sides.
 送風機113の吐出面は冷蔵庫100の正面に対し角度を持って取り付けられ、冷気は斜め上向きに吹き上げるように配設されている。前仕切部材120の送風機113に対向する部分は、送風機113側に突出した冷気整流部120aを構成する。冷気整流部120aは送風機113の回転軸を中心軸とする略円錐台形状をしている。冷気整流部120aの先端は送風機113の吐出面に平行な面で構成され、その径は送風機113のボス径と略同径である。 The discharge surface of the blower 113 is attached to the front surface of the refrigerator 100 at an angle, and the cold air is arranged to blow up obliquely upward. A portion of the front partition member 120 that faces the blower 113 constitutes a cool air rectification unit 120a that protrudes toward the blower 113 side. The cool air rectification unit 120 a has a substantially truncated cone shape with the rotation axis of the blower 113 as the central axis. The front end of the cool air rectifying unit 120 a is configured by a surface parallel to the discharge surface of the blower 113, and the diameter thereof is substantially the same as the boss diameter of the blower 113.
 分配風路122は、左上冷気ガイド部123、右上冷気ガイド部124、左下冷気ガイド部125、右下冷気ガイド部126により、下流部を4つの風路に分岐する。左上冷気ガイド部123と右上冷気ガイド部124との間は冷蔵室用風路122aが形成され、右上冷気ガイド部124と右下冷気ガイド部126との間は第二の冷凍室用風路122bが形成されている。さらに、右下冷気ガイド部126と左下冷気ガイド部125との間は第一の冷凍室用風路122cが形成され、左下冷気ガイド部125と左上冷気ガイド部123との間は製氷室用風路122dが形成されている。 The distribution air passage 122 branches the downstream portion into four air passages by the upper left cool air guide portion 123, the upper right cool air guide portion 124, the lower left cool air guide portion 125, and the lower right cool air guide portion 126. A cold room air passage 122a is formed between the upper left cold air guide portion 123 and the upper right cold air guide portion 124, and a second freezer compartment air passage 122b is formed between the upper right cold air guide portion 124 and the lower right cold air guide portion 126. Is formed. Further, a first freezer compartment air passage 122c is formed between the lower right cold air guide portion 126 and the lower left cold air guide portion 125, and an ice making room air flow is formed between the lower left cold air guide portion 125 and the upper left cold air guide portion 123. A path 122d is formed.
 仕切部材111を冷蔵庫100に組み付けた状態で冷蔵室用風路122aは冷蔵室104とその他の貯蔵室を断熱区画する仕切壁118に設けられた冷蔵室接続風路118aに連通する。第二の冷凍室用風路122b及び製氷室用風路122dは仕切壁118と仕切部材111との間に構成される第二の冷凍室用吐出口127および製氷室用吐出口128にそれぞれ連通する。冷蔵室接続風路118aはダンパ119を有し、冷蔵室104へ流れる風量を調節する。また、冷蔵室接続風路118aはダンパ119の下流に野菜室108へ冷気を導く野菜室接続風路118bを備え、ダンパを通った冷気の一部が野菜室用吐出口129から野菜室108へ流れ込む。また、前仕切部材120に設けられた第一の冷凍室用吐出口120bは第一の冷凍室用風路122cの中程から先端に亘って点在し、第一の冷凍室107へ冷気を導入する。 With the partition member 111 assembled to the refrigerator 100, the refrigerating room air passage 122a communicates with the refrigerating room connection air passage 118a provided on the partition wall 118 that insulates the refrigerating room 104 and other storage rooms. The second freezer compartment air passage 122b and the ice compartment air passage 122d communicate with the second freezer compartment outlet 127 and the icemaker outlet 128 formed between the partition wall 118 and the partition member 111, respectively. To do. The refrigerator compartment connection air passage 118 a has a damper 119 to adjust the amount of air flowing to the refrigerator compartment 104. Further, the refrigerator compartment connection air passage 118a includes a vegetable compartment connection air passage 118b that guides the cold air to the vegetable compartment 108 downstream of the damper 119, and a part of the cold air that has passed through the damper passes from the vegetable compartment outlet 129 to the vegetable compartment 108. Flows in. Further, the first freezer compartment discharge ports 120b provided in the front partition member 120 are scattered from the middle to the front end of the first freezer compartment air passage 122c, and cool air is supplied to the first freezer compartment 107. Introduce.
 ここで、ダンパ119は冷蔵室接続風路118a内だけでなく、分配風路122内や、冷蔵室104内に設けられた専用風路または吐出口に設けても良い。さらに、必要に応じて第二の冷凍室用風路122b、第一の冷凍室用風路122c、製氷室用風路122dや第二の冷凍室用吐出口127、製氷室用吐出口128、第一の冷凍室用吐出口120b、野菜室用吐出口129にダンパを備えることで、さらに精度良く各貯蔵室の温度を調節することができる。 Here, the damper 119 may be provided not only in the refrigerator compartment connection air passage 118 a but also in the distribution air passage 122 or a dedicated air passage provided in the refrigerator compartment 104 or a discharge port. Further, as necessary, the second freezer compartment air passage 122b, the first freezer compartment air passage 122c, the ice making air passage 122d, the second freezer compartment outlet 127, the ice making outlet 128, By providing dampers in the first freezer compartment outlet 120b and the vegetable compartment outlet 129, the temperature of each storage room can be adjusted with higher accuracy.
 なお、本実施の形態では第二の冷凍室用風路122bおよび第一の冷凍室用風路122c、製氷室用風路122dは、それぞれ第二の冷凍室105、第一の冷凍室107、製氷室106の専用の風路であるが、冷蔵庫100の貯蔵室レイアウトや分配風路122外の風路構成、各貯蔵室の温度帯などの条件に合わせて冷蔵室用風路122aのように複数の貯蔵室に連通する兼用構造としてもよい。逆に冷蔵室用風路122aを分配風路122内で冷蔵室104に連通する風路と野菜室108に連通する風路とに分割してもよい。 In the present embodiment, the second freezer compartment air passage 122b, the first freezer compartment air passage 122c, and the ice compartment air passage 122d are respectively the second freezer compartment 105, the first freezer compartment 107, Although it is a dedicated air passage for the ice making chamber 106, it is similar to the air passage 122a for the refrigerator compartment according to conditions such as the storage compartment layout of the refrigerator 100, the air passage configuration outside the distribution air passage 122, and the temperature zone of each storage compartment. A dual-purpose structure communicating with a plurality of storage rooms may be used. Conversely, the refrigeration chamber air passage 122 a may be divided in the distribution air passage 122 into an air passage communicating with the refrigeration chamber 104 and an air passage communicating with the vegetable compartment 108.
 第一の冷凍室用吐出口120bは冷気整流部120aの中心よりも下方で、且つ、上段冷凍室ケース107bの奥面上端の上方、および、上段冷凍室ケース107bの下面よりも下方で、且つ下段冷凍室ケース107c奥面上端の上方の二箇所に位置する。そして、上段冷凍室ケース107bおよび下段冷凍室ケース107cに第一の冷凍室用吐出口120bから冷気を吹き込む。なお、第一の冷凍室用吐出口120bの形状は第一の冷凍室107のレイアウトや想定する貯蔵物によって適切に設計されるが、横長の孔を一段または複数段設けることで、第一の冷凍室107全体に冷気をムラなく届けることが容易になる。 The first freezer compartment discharge port 120b is below the center of the cold air rectifying unit 120a, above the upper end of the upper surface of the upper freezer compartment case 107b, below the lower surface of the upper freezer compartment case 107b, and It is located in two places above the upper end of the lower surface of the lower freezer case 107c. Then, cold air is blown into the upper freezer compartment case 107b and the lower freezer compartment case 107c from the first freezer compartment outlet 120b. Note that the shape of the first freezer compartment discharge port 120b is appropriately designed according to the layout of the first freezer compartment 107 and the assumed storage, but by providing one or more horizontal holes, the first It becomes easy to deliver cold air to the entire freezer compartment 107 evenly.
 また、冷却器112の下部空間には冷却時に冷却器112やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアント加熱手段114が設けてある。さらにその下部には冷却器112の除霜時に生じる除霜水を受けるためのドレンパン115が設けてあり、そのドレンパン115の最深部から庫外に貫通したドレンチューブ116が形成され、その下流側の庫外に蒸発皿117が設けてある。なお、ラジアント加熱手段114の代わりに冷却器112に取り付けたパイプヒータなど他形状の加熱手段を用いたり、ラジアント加熱手段114と他形状の加熱手段を併用したりしても構わない。 Also, in the lower space of the cooler 112, a radiant heating means 114 made of a glass tube is provided for defrosting the frost and ice adhering to the cooler 112 and its periphery during cooling. Furthermore, a drain pan 115 for receiving defrost water generated at the time of defrosting of the cooler 112 is provided at a lower portion thereof, and a drain tube 116 penetrating from the deepest portion of the drain pan 115 to the outside of the chamber is formed. An evaporating dish 117 is provided outside the refrigerator. Instead of the radiant heating means 114, another shape heating means such as a pipe heater attached to the cooler 112 may be used, or the radiant heating means 114 and another shape heating means may be used in combination.
 左上冷気ガイド部123は前仕切部材120と一体に構成された前ガイド部123aと後仕切部材121と一体に形成された後ガイド部123bからなり、仕切部材111の上端側が最も広く、下に向かう程狭くなる略三角形の形状を有している。 The upper left cool air guide portion 123 includes a front guide portion 123a formed integrally with the front partition member 120 and a rear guide portion 123b formed integrally with the rear partition member 121, and the upper end side of the partition member 111 is widest and goes downward. It has a substantially triangular shape that becomes narrower.
 前ガイド部123aは、前仕切部材120の一部が分配風路側に突出したガイド凸部123cと、ガイド凸部123cの最突出面の外周の、ガイド凸部123c側面の延長形状を有するガイドリブ123dとを備える。 The front guide portion 123a includes a guide convex portion 123c in which a part of the front partition member 120 protrudes toward the distribution air passage, and a guide rib 123d having an extended shape on the side surface of the guide convex portion 123c on the outer periphery of the most protruding surface of the guide convex portion 123c. With.
 さらに、前ガイド部123aは、下先端部を境としてファンに対向する側に位置する第一の面である内側面123e及び製氷室用風路122dに面する第二の面である外側面123fの二面を有する。内側面123eは冷気整流部120aの円錐台の中心軸を中心とする略円筒の一部からなる基準面を有し、冷蔵室104へ冷気を導く冷蔵室用風路122aの側壁をなす。外側面123fは略鉛直方向に伸び前仕切部材120の基準面に略垂直に形成された略平面からなり、製氷室106へ冷気を導く製氷室用風路122dの側壁をなす。 Further, the front guide portion 123a has an inner surface 123e that is a first surface located on the side facing the fan with the lower tip as a boundary, and an outer surface 123f that is a second surface facing the air passage 122d for ice making chamber. It has two sides. The inner side surface 123e has a reference surface made up of a part of a substantially cylinder centered on the central axis of the truncated cone of the cold air rectifying unit 120a, and forms a side wall of the cold room air passage 122a that guides the cold air to the cold room 104. The outer side surface 123f is formed in a substantially flat surface extending in a substantially vertical direction and formed substantially perpendicular to the reference surface of the front partition member 120, and forms a side wall of an ice making chamber air passage 122d that guides cold air to the ice making chamber 106.
 ガイド凸部123cの付け根は緩やかなR(半径1mm以上、望ましくは半径3mm以上)を有し、冷気整流部120aの裾と滑らかに接続する。前ガイド部123aの下先端部は内側面123eと外側面123fの交差する辺であり、送風機113吐出面の中心点を通る水平面よりも上側に位置する。 The base of the guide convex portion 123c has a gentle R (radius 1 mm or more, preferably radius 3 mm or more), and is smoothly connected to the skirt of the cool air rectification unit 120a. The lower front end portion of the front guide portion 123a is a side where the inner side surface 123e and the outer side surface 123f intersect, and is located above a horizontal plane passing through the center point of the discharge surface of the blower 113.
 後ガイド部123bは、後仕切部材121の前ガイド部123aに対向する位置に設けられたリブにより構成され、前ガイド部123aのガイドリブ123d内に丁度収まる形状を有する。ガイド凸部123cと後ガイド部123bとの隙間は1~3mm程度である。 The rear guide portion 123b is configured by a rib provided at a position facing the front guide portion 123a of the rear partition member 121, and has a shape that fits within the guide rib 123d of the front guide portion 123a. The gap between the guide convex portion 123c and the rear guide portion 123b is about 1 to 3 mm.
 なお、ガイド凸部123cと後ガイド部123bとの隙間は小さい程冷気が入り込みにくく風路抵抗を小さくすることができ、大きいほど左上冷気ガイド部123内にできた結露が内部に溜まることを防止することができるため、冷蔵庫100内における分配風路122の位置や各貯蔵室の温度帯などによって最適値を選択することが望ましい。 Note that the smaller the gap between the guide convex portion 123c and the rear guide portion 123b, the more difficult it is for cold air to enter, and the smaller the airway resistance, and the larger the gap, the more the condensation formed in the upper left cold air guide portion 123 is prevented. Therefore, it is desirable to select an optimum value according to the position of the distribution air passage 122 in the refrigerator 100, the temperature zone of each storage room, and the like.
 また、右下冷気ガイド部126は前仕切部材120に設けられた中空リブにより構成され、第二の冷凍室用風路122bの下側壁をなす第一の面である上面126aと第一の冷凍室用風路122cの右上側壁をなす第二の面である下面126bを有する。同様にして右上冷気ガイド部124および左下冷気ガイド部125も、前仕切部材120に設けられた中空リブであり、互いに異なる風路に面する第一の面と第二の面の二つの面を有する。 Further, the lower right cool air guide portion 126 is configured by a hollow rib provided in the front partition member 120, and an upper surface 126a which is a first surface forming the lower wall of the second freezer compartment air passage 122b and the first freezer. It has the lower surface 126b which is the 2nd surface which makes the upper right side wall of the room air path 122c. Similarly, the upper right cool air guide portion 124 and the lower left cool air guide portion 125 are also hollow ribs provided in the front partition member 120, and have two surfaces, a first surface and a second surface, facing different air paths. Have.
 なお、右上冷気ガイド部124、左下冷気ガイド部125、右下冷気ガイド部126は前仕切部材120に設けられた凸部や中実リブ、後仕切部材121に設けられたリブおよび凸部で形成しても良い。 The upper right cool air guide portion 124, the lower left cool air guide portion 125, and the lower right cool air guide portion 126 are formed by convex portions and solid ribs provided on the front partition member 120, and ribs and convex portions provided on the rear partition member 121. You may do it.
 なお、本実施の形態における、以下に述べる発明の要部に関する事項は、いずれの貯蔵室においても回転扉を有し、内箱103に貯蔵ケースが載置される構造を有するタイプの冷蔵庫に適用しても構わない。 In addition, the matter regarding the main part of the invention described below in the present embodiment is applied to a refrigerator of a type having a rotating door in any storage room and having a structure in which a storage case is placed in the inner box 103. It doesn't matter.
 以上のように構成された本実施の形態の冷蔵庫100について、以下その動作、作用を説明する。 The operation and action of the refrigerator 100 of the present embodiment configured as described above will be described below.
 まず、冷凍サイクルの動作について説明する。庫内の設定された温度に応じて制御装置(図示せず)からの信号により冷凍サイクルが動作して冷却運転が行われる。圧縮機109の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)である程度凝縮液化する。さらに、その冷媒は冷蔵庫本体である断熱箱体101の側面や背面、また断熱箱体101の前面間口に配設された冷媒配管(図示せず)などを経由し断熱箱体101の結露を防止しながら凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、キャピラリーチューブでは圧縮機109への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器112に至る。 First, the operation of the refrigeration cycle will be described. The refrigeration cycle is operated by a signal from a control device (not shown) according to the set temperature in the refrigerator, and the cooling operation is performed. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed to some extent by a condenser (not shown). Further, the refrigerant prevents dew condensation on the heat insulating box body 101 via the side and rear surfaces of the heat insulating box body 101 which is the refrigerator main body, and a refrigerant pipe (not shown) disposed in the front opening of the heat insulating box body 101. While condensing into liquid, it reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 112.
 ここで、冷却室110では、送風機113の動作により集められた各貯蔵室内の空気が、冷却器112により液冷媒と熱交換され、冷却器112内の冷媒は蒸発気化する。この時、貯蔵室から戻ってきた空気は、冷却室110内で再び各貯蔵室を冷却するための冷気となる。低温の冷気は送風機113から分配風路122を通り、風路やダンパを用いて分流され、冷蔵室104、第二の冷凍室105、製氷室106、第一の冷凍室107、野菜室108をそれぞれの目的温度帯に冷却する。 Here, in the cooling chamber 110, the air in each storage chamber collected by the operation of the blower 113 is heat-exchanged with the liquid refrigerant by the cooler 112, and the refrigerant in the cooler 112 evaporates. At this time, the air returned from the storage chamber becomes cool air for cooling each storage chamber again in the cooling chamber 110. The low-temperature cold air flows from the blower 113 through the distribution air passage 122 and is divided by using the air passage and a damper, and passes through the refrigerating room 104, the second freezing room 105, the ice making room 106, the first freezing room 107, and the vegetable room 108. Cool to each target temperature range.
 送風機113は、冷蔵庫100の正面から見て時計回りに回転する軸流ファンであることから、吐出された冷気は時計回りに旋回しながら放射状に広がるように円錐台状に流れる。したがって、冷気整流部120aを吐出冷気の流れに合わせた形状にすることで、渦を発生させることなく、冷気を分配風路122にスムーズに送り出すことができる。また、送風機113を構成する軸流ファンの吐出側では、中心に軸流ファンに向かって戻る気流が発生するが、冷気整流部120aの円錐台上面径を軸流ファンのボス径と略同径とすることで、この戻り気流を抑制することができるため、送風機113より冷気に与えられたエネルギを無駄なく送風に生かすことができる。 Since the blower 113 is an axial fan that rotates clockwise as viewed from the front of the refrigerator 100, the discharged cool air flows in a truncated cone shape so as to spread radially while turning clockwise. Therefore, by forming the cool air rectifying unit 120a in accordance with the flow of the discharged cool air, the cool air can be smoothly sent to the distribution air path 122 without generating vortices. Further, on the discharge side of the axial flow fan constituting the blower 113, an air flow returning toward the axial flow fan is generated at the center, but the upper surface diameter of the truncated cone of the cold air rectifying unit 120a is substantially the same as the boss diameter of the axial flow fan. Thus, since this return airflow can be suppressed, the energy given to the cold air from the blower 113 can be utilized for the blown air without waste.
 吐出冷気の作る円錐台面と送風機113の回転軸のなす角は送風機113の送る流量や回転数により異なるため、冷気整流部120aの円錐面の角度を変えることで、設計流量に応じた最適設計を行うことができる。例えば、羽根径が90mmから110mmの送風機113を1200rpmから3000rpm前後で回転させ、0.5m/minから1.0m/minの風量を得る場合について説明する。この条件による実験に因れば、回転軸と冷気整流部120aの円錐面とのなす角は50°から85°が望ましい。半径方向に広がるにつれ徐々に送風機113との距離を大きくすることで、吐出冷気の持つ運動エネルギを圧力エネルギとして効率よく回収することができるため、送風機113の仕事を増やすことなく吐出圧力を高めることができる。本実施の形態のように、貯蔵室が多く、送風回路が多岐にわたり、ダンパ119のように風路抵抗になる部品を多く必要とする風路では、送風機113の仕事が大きくなるため、冷気整流部120aの果たす役割はより大きいものとなる。 The angle between the conical surface created by the discharge cool air and the rotation axis of the blower 113 differs depending on the flow rate and the number of rotations sent by the blower 113. It can be carried out. For example, the case where the blower 113 having a blade diameter of 90 mm to 110 mm is rotated around 1200 rpm to 3000 rpm to obtain an air volume of 0.5 m 3 / min to 1.0 m 3 / min will be described. According to the experiment under these conditions, the angle between the rotating shaft and the conical surface of the cool air rectifying unit 120a is preferably 50 ° to 85 °. By gradually increasing the distance to the blower 113 as it spreads in the radial direction, the kinetic energy of the discharged cold air can be efficiently recovered as pressure energy, so the discharge pressure is increased without increasing the work of the blower 113 Can do. Since the work of the air blower 113 is increased in an air passage that has many storage chambers, a wide variety of air blowing circuits, and requires many parts that cause air passage resistance such as the damper 119 as in the present embodiment, cold air rectification The part 120a plays a greater role.
 冷気整流部120aに沿って広がった冷気のうち、左下冷気ガイド部125と左上冷気ガイド部123との間に流れ出た冷気は、分配風路122左側側壁と外側面123fとの間に形成された製氷室用風路122dを通り、製氷室用吐出口128より製氷室106に送風される。左上冷気ガイド部123と右上冷気ガイド部124との間に流れ出た冷気は、内側面123eに沿って冷蔵室用風路122aを通り、冷蔵室接続風路118aおよび野菜室接続風路118bより冷蔵室104および野菜室108へ送風される。さらに、右上冷気ガイド部124と右下冷気ガイド部126との間に流れ出た冷気は、上面126aおよび分配風路122右側側面に沿って第二の冷凍室用吐出口127より第二の冷凍室105へ送風され、残りの冷気は第一の冷凍室用吐出口120bより第一の冷凍室107へ送風される。このようにして、分配風路122内に吐出された冷気は、下流部にて貯蔵室それぞれへの風路に分岐され、一定量を各吐出口から各貯蔵室へ送風することが可能となる。 Of the cool air that has spread along the cool air rectifying unit 120a, the cool air that flows between the lower left cool air guide portion 125 and the upper left cool air guide portion 123 is formed between the left side wall of the distribution air passage 122 and the outer surface 123f. The air is sent to the ice making chamber 106 through the ice making chamber discharge port 128 through the ice making chamber air passage 122d. The cold air flowing between the upper left cold air guide part 123 and the upper right cold air guide part 124 passes along the inner side surface 123e through the cold room air passage 122a, and is refrigerated from the cold room connection air path 118a and the vegetable room connection air path 118b. Air is sent to the room 104 and the vegetable room 108. Further, the cold air flowing between the upper right cold air guide portion 124 and the lower right cold air guide portion 126 flows from the second freezer compartment discharge port 127 along the upper surface 126a and the right side surface of the distribution air passage 122 into the second freezer compartment. The remaining cool air is sent to the first freezer compartment 107 from the first freezer outlet 120b. In this way, the cool air discharged into the distribution air passage 122 is branched into the air passages to the respective storage chambers in the downstream portion, and a certain amount can be blown from each discharge port to each storage chamber. .
 このとき、各冷気ガイド部の第一の面と第二の面とは平行でなく吐出冷気の流れに従って徐々に広がる形状をしているため、冷気は徐々に各吐出口に向くように方向修正される。従って、冷気の急激な流れの変化をなくすことができ、送風損失を抑えることが可能となる。また、冷気ガイド部は二つの先端風路の間に存在するため、両側の冷気の流れは違う方向を向いている。このことから、冷気ガイド部がそれぞれの流れに合わせた側壁を有することで、二つの流れの間に存在する風路の無効空間、つまり渦など冷気の乱れを発生させる空間を削減することができるため、送風効率を向上させることができる。 At this time, the first surface and the second surface of each cold air guide part are not parallel, but have a shape that gradually expands according to the flow of the discharged cold air, so the direction of the cold air is gradually adjusted to face each discharge port. Is done. Accordingly, it is possible to eliminate a change in the rapid flow of the cold air, and it is possible to suppress the blowing loss. In addition, since the cold air guide portion exists between the two front air passages, the flow of the cold air on both sides is directed in different directions. From this fact, the cold air guide portion has side walls adapted to the respective flows, so that it is possible to reduce the invalid space of the air passage existing between the two flows, that is, the space for generating the turbulence of the cold air such as a vortex. Therefore, it is possible to improve the blowing efficiency.
 また、内側面123eは冷気整流部120aの円錐形状と同軸の円筒形状を持つため、冷気の持つ回転方向の減速を極力低減することができる。さらに、内側面123e上のあらゆる点において送風機113からの距離が略一定になるため、面に当たる風量は略均一となり場所による冷気の圧力差を最小限にすることができるため、冷気の送風損失を低減することができる。 Further, since the inner side surface 123e has a cylindrical shape that is coaxial with the conical shape of the cold air rectifying unit 120a, it is possible to reduce the deceleration of the cold air in the rotational direction as much as possible. Furthermore, since the distance from the blower 113 is substantially constant at every point on the inner side surface 123e, the air volume hitting the surface is substantially uniform, and the pressure difference of the cold air depending on the location can be minimized. Can be reduced.
 さらに、全ての冷気ガイド部および冷気整流部120aは前仕切部材120に一体に形成されているため、冷気整流部120aから各先端風路、各吐出口までの風路を滑らかな一枚の面によって構成することが可能となる。送風機113より吐出された冷気は冷気整流部120aにあたり冷気整流部120aに沿って流れているため、部品勘合部に見られる段差や隙間にぶつかることなく吐出口まで流れることが可能となり、送風ロスを最低限に抑えることができる。 Further, since all the cool air guide portions and the cool air rectifying portions 120a are formed integrally with the front partition member 120, the air passage from the cool air rectifying portion 120a to each tip air passage and each discharge port is a single smooth surface. It becomes possible to comprise. Since the cold air discharged from the blower 113 hits the cold air rectification unit 120a and flows along the cold air rectification unit 120a, it becomes possible to flow to the discharge port without hitting a step or a gap seen in the component fitting part, and blowing loss is reduced. It can be minimized.
 左上冷気ガイド部123は前ガイド部123aだけでなく後ガイド部123bも含まれる。ただし、後ガイド部123bは前ガイド部123aよりも内側に収まる形状のため、前仕切部材120表面に沿って流れてきた冷気も左上冷気ガイド部123内に入ることなく、比較的滑らかに流れることができる。冷気の一部が左上冷気ガイド部123内に侵入してしまった際も、前ガイド部123aはガイド凸部123cとガイドリブ123dによって構成されており左上冷気ガイド部123内の空間は小さいため、冷気の乱れを小さく抑え送風効率の低下を抑制することができる。さらに、前仕切部材120と後仕切部材121との両方により左上冷気ガイド部123を構成することで、分配風路122の奥行き寸法が大きい場合でも、それぞれの部品の奥行き寸法を大きくすることなく、冷気ガイド部を構成することが可能となる。そのため、奥行き寸法が大きく送風損失の小さい風路を、安価に加工性を損なうことなく構成することができる。 The upper left cold air guide part 123 includes not only the front guide part 123a but also the rear guide part 123b. However, since the rear guide portion 123b has a shape that fits inside the front guide portion 123a, the cool air flowing along the front partition member 120 surface flows relatively smoothly without entering the upper left cool air guide portion 123. Can do. Even when a part of the cool air enters the upper left cool air guide portion 123, the front guide portion 123a is constituted by the guide convex portion 123c and the guide rib 123d, and the space in the upper left cool air guide portion 123 is small. It is possible to suppress the disturbance of the air flow and suppress the reduction of the blowing efficiency. Furthermore, even if the depth dimension of the distribution air passage 122 is large by configuring the upper left cold air guide portion 123 by both the front partition member 120 and the rear partition member 121, without increasing the depth dimension of each component, It becomes possible to comprise a cold air | gas guide part. Therefore, an air passage having a large depth dimension and a small blowing loss can be configured at low cost without impairing workability.
 このとき、左上冷気ガイド部123は送風機113より吐出された冷気が殆ど直接ぶつかることになるため、送風機113の稼働中は左上冷気ガイド部123内の空気が冷却され、左上冷気ガイド部123内に氷結する恐れがある。しかしながら、左上冷気ガイド部123の下先端部において、ガイドリブ123dと後ガイド部123bとの隙間は2mm程度存在するため、左上冷気ガイド部123内の氷結が溶解した際に隙間より排出される。そのため氷結が成長し左上冷気ガイド部123を変形させる事態を防止することができる。 At this time, since the cool air discharged from the blower 113 almost directly collides with the upper left cool air guide portion 123, the air in the upper left cool air guide portion 123 is cooled while the blower 113 is in operation, and the air flows into the upper left cool air guide portion 123. There is a risk of freezing. However, since there is a gap of about 2 mm between the guide rib 123d and the rear guide portion 123b at the lower front end portion of the upper left cold air guide portion 123, it is discharged from the gap when the icing in the upper left cold air guide portion 123 is melted. Therefore, it is possible to prevent a situation where freezing grows and the upper left cold air guide portion 123 is deformed.
 なお、これらの結露が左上冷気ガイド部123周辺に溜まることを抑制するため、ガイド凸部123cおよびガイドリブ123d、後ガイド部123bの下先端部は、水捌けを促すように傾斜をつけることが望ましい。 It should be noted that in order to prevent these condensation from accumulating around the upper left cold air guide portion 123, it is desirable to incline the lower end portions of the guide convex portion 123c, the guide rib 123d, and the rear guide portion 123b so as to promote water drainage.
 次に除霜時の作用について説明する。冷却中に冷却器112やその周辺に付着した霜や氷を溶かすために、冷蔵庫100は定期的に冷却を中断しラジアント加熱手段114を加熱することで冷却室110内を加熱する。このとき冷却室110内の空気も暖められ冷却室110上方に上り、暖気の一部は送風機113の羽根の間を抜けて分配風路122内へ進入する。分配風路122内に漏れた暖気はさらに上に上昇する。このとき本実施の形態では、左上冷気ガイド部123の下先端部が送風機113の中心点を含む水平面よりも上側に設置されているため、暖気は冷蔵室用風路122aだけでなく製氷室用風路122dにも上ることができる。これにより分配風路122内の暖気が流れ込むことができる容積を大きくでき、分配風路122からさらに貯蔵室へと流れ込む暖気の量を低減することができる。そのため、貯蔵室に保存している貯蔵物の温度上昇を抑えることができユーザの使い勝手を向上することができる。さらに暖気が貯蔵室内で冷却され貯蔵室内に結露や着霜することを低減でき、ユーザの快適性を向上できる。 Next, the action during defrosting will be described. In order to melt frost and ice adhering to the cooler 112 and its periphery during cooling, the refrigerator 100 periodically interrupts cooling and heats the radiant heating means 114 to heat the inside of the cooling chamber 110. At this time, the air in the cooling chamber 110 is also warmed and rises above the cooling chamber 110, and part of the warm air passes through the blades of the blower 113 and enters the distribution air passage 122. The warm air leaking into the distribution air passage 122 rises further upward. At this time, in the present embodiment, since the lower tip portion of the upper left cold air guide portion 123 is installed above the horizontal plane including the center point of the blower 113, the warm air is used not only for the refrigerator compartment air passage 122a but also for the ice making room. It can also go up to the air path 122d. Thereby, the volume in which the warm air in the distribution air path 122 can flow can be increased, and the amount of warm air flowing from the distribution air path 122 further into the storage chamber can be reduced. Therefore, the temperature rise of the stored item stored in the storage room can be suppressed, and user convenience can be improved. Furthermore, it is possible to reduce warm air being cooled in the storage chamber and causing condensation or frost formation in the storage chamber, thereby improving user comfort.
 以上のように、本実施の形態では、分配風路122内に、前仕切部材120により一体に構成される冷気ガイド部を有することにより、冷気整流部120aから下流部までの風路を滑らかな一枚の面によって構成することが可能となる。送風機より吐出された冷気は冷気整流部120aにあたり冷気整流部120aに沿って流れているため、部品勘合部に見られる段差や隙間にぶつかることなく吐出口まで流れることが可能となり、送風ロスを最低限に抑えることができる。さらに、冷気ガイド部を前仕切部材120および後仕切部材121のみで構成することができる。このため、材料費、組立工数が増えないだけでなく、送風効率を低下させる風路断面積はそのままで仕切部材111全体の体積を小さくすることが可能となり、貯蔵空間を増加させることができるためユーザの使い勝手を向上させることができる。さらに、前仕切部材120と後仕切部材121との両方により左上冷気ガイド部123を構成することで、分配風路122の奥行き寸法が大きい場合でも、それぞれの部品の奥行き寸法を大きくすることなく、冷気ガイド部を構成することが可能となる。そのため、奥行き寸法が大きく送風損失の小さい風路を、安価に加工性を損なうことなく構成することができる。 As described above, in the present embodiment, by having the cold air guide portion integrally formed by the front partition member 120 in the distribution air passage 122, the air passage from the cold air rectifying portion 120a to the downstream portion is smooth. It can be configured by a single surface. Since the cold air discharged from the blower hits the cold air rectification unit 120a and flows along the cold air rectification unit 120a, it can flow to the discharge port without hitting a step or a gap seen in the component fitting portion, and the air loss is minimized. To the limit. Furthermore, the cool air guide part can be configured by only the front partition member 120 and the rear partition member 121. For this reason, not only the material cost and the number of assembly steps are not increased, but the volume of the partition member 111 can be reduced while the air passage cross-sectional area that reduces the air blowing efficiency is maintained, and the storage space can be increased. User convenience can be improved. Furthermore, even if the depth dimension of the distribution air passage 122 is large by configuring the upper left cold air guide portion 123 by both the front partition member 120 and the rear partition member 121, without increasing the depth dimension of each component, It becomes possible to comprise a cold air | gas guide part. Therefore, an air passage having a large depth dimension and a small blowing loss can be configured at low cost without impairing workability.
 さらに、分配風路122の下流部は複数の風路に分岐され、複数の貯蔵室に連通する複数の吐出口を有し、冷気ガイド部は送風機113に対向する位置に設けられた第一の面と、第一の面に隣接しない風路に隣接する第二の面とを有する。このことにより、送風機113より吐出された冷気を複数ある貯蔵室へそれぞれ必要な量の冷気を分配し効率よく導くことができるため、送風ロスを増加させることなく各貯蔵室を所定の温度に冷却することが可能となる。 Further, the downstream portion of the distribution air passage 122 is branched into a plurality of air passages, has a plurality of outlets communicating with the plurality of storage chambers, and the cold air guide portion is a first portion provided at a position facing the blower 113. And a second surface adjacent to the air passage that is not adjacent to the first surface. As a result, it is possible to efficiently distribute the necessary amount of cold air discharged from the blower 113 to a plurality of storage chambers, thereby cooling each storage chamber to a predetermined temperature without increasing air blowing loss. It becomes possible to do.
 また、第一の面と第二の面とは、互いに平行でない部分を有することにより、仕切部材111の形に関係なく各貯蔵室へ向かう風路の数や形を決定することができる。このため、送風機113の吐出冷気が渦を作りやすいコーナー部などを廃止することが可能となり、より効率よく各貯蔵室への送風を行うことができる。 In addition, the first surface and the second surface have portions that are not parallel to each other, so that the number and shape of the air passages toward each storage chamber can be determined regardless of the shape of the partition member 111. For this reason, it becomes possible to abolish the corner part etc. in which the discharge cold air of the air blower 113 is easy to make a vortex, and it can blow air to each store room more efficiently.
 前ガイド部123aは前仕切部材120に形成されたガイド凸部123cを有する。このことにより、冷気ガイド部を中空とし材料費を抑えながらも、左上冷気ガイド部123の内部容積を小さくすることで、回りこむ冷気の無駄な流れを抑制することができ、よりスムーズな風路を提供することができる。 The front guide portion 123 a has a guide convex portion 123 c formed on the front partition member 120. This makes it possible to suppress the wasteful flow of cool air by reducing the internal volume of the upper left cool air guide portion 123 while reducing the material cost by making the cool air guide portion hollow, and a smoother air path Can be provided.
 前仕切部材120は、送風機113に対向する面に分配風路122内側に向かって突出した面からなる冷気整流部120aを有する。このことにより、送風機113より吐出された冷気は冷気整流部120aによって放射状に整流され分配風路122内に流れ込む。そのため、送風機113と前仕切部材120との間に発生する渦を抑制することができ、スムーズに冷気を送風することが可能となる。 The front partition member 120 has a cold air rectification unit 120 a formed of a surface protruding toward the inside of the distribution air passage 122 on the surface facing the blower 113. Thus, the cool air discharged from the blower 113 is rectified radially by the cool air rectification unit 120 a and flows into the distribution air passage 122. Therefore, vortices generated between the blower 113 and the front partition member 120 can be suppressed, and cool air can be blown smoothly.
 さらに、冷気整流部120aは略円錐台形状を有し、内側面123eは冷気整流部120aと同じ中心軸周りの略円筒の一部により構成されている。このことにより、送風機113の回転に伴う冷気の回転方向の速度に合わせて冷気ガイド部を構成することが可能となり、冷気を失速させることなく吐出口まで導くことができる。 Furthermore, the cold air rectification part 120a has a substantially truncated cone shape, and the inner side surface 123e is constituted by a part of a substantially cylindrical portion around the same central axis as the cold air rectification part 120a. As a result, it is possible to configure the cold air guide unit in accordance with the speed of the cold air in the rotation direction accompanying the rotation of the blower 113, and the cold air can be guided to the discharge port without stalling.
 冷蔵室用風路122aは冷蔵室接続風路118aに連通し、冷蔵室接続風路118a内には冷気の流量を調節する開口面積を調節できるダンパ119を備える。このことにより、ダンパ119により冷蔵室104および野菜室108への送風量を状況に応じて調整することが可能となるため、冷蔵室104および野菜室108の温度を冷凍温度帯に冷却される他の貯蔵室と独立して制御できるため、より緻密に温度調整ことができる。 The refrigerating room air passage 122a communicates with the refrigerating room connection air passage 118a, and the refrigerating room connection air passage 118a includes a damper 119 capable of adjusting an opening area for adjusting the flow rate of the cold air. This allows the damper 119 to adjust the amount of air blown to the refrigerator compartment 104 and the vegetable compartment 108 according to the situation, so that the temperature of the refrigerator compartment 104 and the vegetable compartment 108 is cooled to the freezing temperature zone. Because the temperature can be controlled independently of the storage room, the temperature can be adjusted more precisely.
 内側面123eと外側面123fの接点である左上冷気ガイド部123の下先端部は、送風機113の中心点を含む水平面よりも上側に設置されている。このことにより、除霜中に送風機113の羽根の間から漏れ出た暖気が上へ上がる際に冷蔵室用風路122aだけでなく製氷室用風路122dにも入ることができるため、分配風路122内により多くの暖気を溜め込むことが可能となり、貯蔵室まで漏れる暖気の量を少なくすることが可能となる。 The lower tip of the upper left cold air guide 123, which is a contact point between the inner surface 123e and the outer surface 123f, is installed above the horizontal plane including the center point of the blower 113. As a result, when the warm air leaking from between the blades of the blower 113 rises during defrosting, it can enter not only the refrigerating chamber air passage 122a but also the ice making chamber air passage 122d. It becomes possible to accumulate more warm air in the path 122, and to reduce the amount of warm air leaking to the storage room.
 (第2の実施の形態)
 図6は本発明の第2の実施の形態における冷蔵庫の仕切部材の正面図である。
(Second Embodiment)
FIG. 6 is a front view of the partition member of the refrigerator in the second embodiment of the present invention.
 なお、第1の実施の形態と同様の構成および同様の技術思想が適用できる部分については、説明を省略するが、不具合がない限り第1の実施の形態の構成に本実施の形態を組み合わせて適用することが可能である。 In addition, although description is abbreviate | omitted about the part which can apply the same structure and the same technical idea as 1st Embodiment, as long as there is no malfunction, combining this Embodiment with the structure of 1st Embodiment. It is possible to apply.
 図6において、仕切部材211は、図2の仕切部材111と同様に、第二の冷凍室105および製氷室106、第一の冷凍室107からなる貯蔵室と冷却室110とを区画する。仕切部材211は、図2の仕切部材111と同様に、貯蔵室側の外殻をなす前仕切部材120と冷却室側の外殻をなす後仕切部材121とから構成され、後仕切部材121は、送風機113を備える。さらに、仕切部材211を構成する前仕切部材120と後仕切部材121との間の空間は各貯蔵室に向けて冷気を分岐させる分配風路222が形成されている。 6, the partition member 211 partitions the storage chamber composed of the second freezing chamber 105, the ice making chamber 106, and the first freezing chamber 107 from the cooling chamber 110, similarly to the partition member 111 in FIG. 2. The partition member 211 includes a front partition member 120 that forms an outer shell on the storage chamber side and a rear partition member 121 that forms an outer shell on the cooling chamber side, similar to the partition member 111 in FIG. The fan 113 is provided. Further, a space between the front partition member 120 and the rear partition member 121 constituting the partition member 211 is formed with a distribution air passage 222 that branches cold air toward each storage chamber.
 分配風路222は、左上冷気ガイド部223、右上冷気ガイド部224、左下冷気ガイド部225、右下冷気ガイド部226により、下流部を4つの風路に分岐する。 The distribution air passage 222 branches the downstream portion into four air passages by the upper left cool air guide portion 223, the upper right cool air guide portion 224, the lower left cool air guide portion 225, and the lower right cool air guide portion 226.
 左上冷気ガイド部223は前仕切部材120に設けられたリブにより構成され、冷蔵室用風路222aの左側壁をなす内側面223e(第一の面)と製氷室用風路222dの右側壁をなす外側面223f(第二の面)を有する。左上冷気ガイド部223は略鉛直方向に伸び前仕切部材120基準面に略垂直に形成された略平面を持つ薄板リブであり、仕切部材211の上端側は冷蔵室用風路222a側に湾曲するように広がるR形状を有する。 The upper left cold air guide portion 223 is configured by a rib provided on the front partition member 120, and includes an inner side surface 223e (first surface) forming the left side wall of the refrigerator compartment air passage 222a and a right side wall of the ice compartment air passage 222d. The outer surface 223f (second surface) is formed. The upper left cold air guide part 223 is a thin plate rib that extends in a substantially vertical direction and has a substantially flat surface that is formed substantially perpendicular to the reference plane of the front partition member 120, and the upper end side of the partition member 211 is curved toward the cold room air passage 222a side. It has a rounded R shape.
 右下冷気ガイド部226は前仕切部材120に設けられた中空リブにより構成され、第二の冷凍室用風路222bの下側壁をなす上面226a(第一の面)と第一の冷凍室用風路222cの右上側壁をなす下面226b(第二の面)を有する。上面226aおよび下面226bは仕切部材211の右側から中心方向へ伸びており、その根元は略平行であるが徐々に近づき先端部にて接続される。 The lower right cool air guide portion 226 is configured by a hollow rib provided in the front partition member 120, and an upper surface 226a (first surface) forming the lower wall of the second freezer compartment air passage 222b and the first freezer compartment. It has a lower surface 226b (second surface) forming the upper right side wall of the air passage 222c. The upper surface 226a and the lower surface 226b extend from the right side of the partition member 211 toward the center, and their roots are substantially parallel but gradually approach and are connected at the tip.
 以上のように構成された本発明の第2の実施の形態における冷蔵庫について、以下その動作を説明する。 The operation of the refrigerator according to the second embodiment of the present invention configured as described above will be described below.
 送風機113により分配風路222に吐出された冷気は、左上冷気ガイド部223により冷蔵室用風路222aおよび製氷室用風路222dに分流される。このとき左上冷気ガイド部223は薄板リブで構成されているため、分岐点には渦などが発生するスペースがないため、スムーズに分留することができる。また、左上冷気ガイド部223の上端はR形状を有しているため冷蔵室用風路222aの上部のコーナー部がなくなり、なだらかな流路を形成する。これにより冷気はスムーズに図3に示す冷蔵室接続風路118aへ導かれるため、送風効率を向上させることができる。 The cold air discharged to the distribution air passage 222 by the blower 113 is diverted to the refrigerating room air passage 222a and the ice making air passage 222d by the upper left cold air guide section 223. At this time, since the upper left cold air guide part 223 is composed of a thin plate rib, there is no space where a vortex or the like is generated at the branch point, and therefore, the fractionation can be performed smoothly. In addition, since the upper end of the upper left cold air guide part 223 has an R shape, the upper corner part of the cooler air passage 222a is eliminated, and a gentle flow path is formed. As a result, the cool air is smoothly guided to the refrigerating room connection air passage 118a shown in FIG. 3, so that the air blowing efficiency can be improved.
 なお、左上冷気ガイド部223の薄板リブは左側に凸の形状を有する弧の形状でも良く、時計回りに旋回する送風機113より吐出される回転成分速度を持つ冷気の流れに沿わせることで、よりスムーズに分留することができる。 In addition, the thin plate rib of the upper left cold air guide part 223 may be an arc shape having a convex shape on the left side, and by following the flow of the cold air having the rotational component speed discharged from the blower 113 swirling clockwise, Smooth fractionation is possible.
 また、分配風路222に吐出された冷気は、右下冷気ガイド部226により第二の冷凍室用風路222bおよび第一の冷凍室用風路222cに分流される。このとき右下冷気ガイド部226の先端部は上面226aおよび下面226bの交線であり右下冷気ガイド部226の幅は徐々に広がるため、冷気は必ずどちらかの風路に分流された後、徐々に方向が修正されるため、冷気の流れを乱しにくく送風効率を向上させることができる。 Further, the cool air discharged to the distribution air passage 222 is divided into the second freezer compartment air passage 222b and the first freezer compartment air passage 222c by the lower right cool air guide section 226. At this time, the tip of the lower right cold air guide part 226 is an intersection line of the upper surface 226a and the lower surface 226b, and the width of the lower right cold air guide part 226 gradually widens, so that the cold air is always diverted to one of the air paths, Since the direction is gradually corrected, it is difficult to disturb the flow of cold air, and the air blowing efficiency can be improved.
 以上のように、本実施の形態では、内側面223eと外側面223fとが互いに平行でなく上部が広がる形状を有することにより、下流部の風路がコーナー部を持たず冷気をスムーズに流すことができるため、送風効率を向上させることが可能となる。 As described above, in the present embodiment, the inner side surface 223e and the outer side surface 223f are not parallel to each other and have a shape in which the upper portion is widened, so that the air passage in the downstream portion does not have a corner portion and allows cool air to flow smoothly. Therefore, it is possible to improve the ventilation efficiency.
 また、右下冷気ガイド部226の先端部は上面226aおよび下面226bの交線であり、右下冷気ガイド部226の幅は徐々に広がることにより、冷気は必ずどちらかの風路に分流された後、徐々に方向が修正されるため、冷気の流れを乱しにくく送風効率を向上させることが可能となる。 Further, the tip of the lower right cool air guide portion 226 is an intersection line of the upper surface 226a and the lower surface 226b, and the width of the lower right cool air guide portion 226 is gradually widened so that the cool air is always diverted to one of the air paths. Thereafter, since the direction is gradually corrected, it is difficult to disturb the flow of the cold air, and the air blowing efficiency can be improved.
 (第3の実施の形態)
 図7は本発明の第3の実施の形態における冷蔵庫の要部拡大正面図である。
(Third embodiment)
FIG. 7 is an enlarged front view of a main part of the refrigerator according to the third embodiment of the present invention.
 なお、第1の実施の形態または第2の実施の形態と同様の構成および同様の技術思想が適用できる部分については、説明を省略するが、不具合がない限り第1の実施の形態の構成に本実施の形態を組み合わせて適用することが可能である。 In addition, although description is abbreviate | omitted about the part which can apply the same structure and the same technical idea as 1st Embodiment or 2nd Embodiment, as long as there is no malfunction, it is set as the structure of 1st Embodiment. It is possible to apply this embodiment in combination.
 図7において、仕切部材311は、図2の仕切部材111と同様に、第二の冷凍室105および製氷室106、第一の冷凍室107からなる貯蔵室と冷却室110とを区画する。仕切部材311は、図2の仕切部材111と同様に、貯蔵室側の外殻をなす前仕切部材120と冷却室側の外殻をなす後仕切部材121とから構成され、後仕切部材121は、送風機113を備える。さらに、仕切部材311を構成する前仕切部材120と後仕切部材121との間の空間は各貯蔵室に向けて冷気を分岐させる分配風路322が形成されている。 7, the partition member 311 partitions the storage chamber composed of the second freezing chamber 105, the ice making chamber 106, and the first freezing chamber 107 from the cooling chamber 110, similarly to the partition member 111 of FIG. 2. The partition member 311 includes a front partition member 120 that forms an outer shell on the storage chamber side and a rear partition member 121 that forms an outer shell on the cooling chamber side, similar to the partition member 111 in FIG. The fan 113 is provided. Further, a space between the front partition member 120 and the rear partition member 121 constituting the partition member 311 is formed with a distribution air passage 322 for branching cool air toward each storage chamber.
 分配風路322は、左上冷気ガイド部323、右上冷気ガイド部324、左下冷気ガイド部325、右下冷気ガイド部326により、下流部を4つの風路に分岐する。 The distribution air passage 322 branches the downstream portion into four air passages by the upper left cool air guide portion 323, the upper right cool air guide portion 324, the lower left cool air guide portion 325, and the lower right cool air guide portion 326.
 左上冷気ガイド部323と右上冷気ガイド部324との間が冷蔵室用風路322a、右上冷気ガイド部324と右下冷気ガイド部326との間が第二の冷凍室用風路322bである。右下冷気ガイド部326と左下冷気ガイド部325との間が第一の冷凍室用風路322c、左下冷気ガイド部325と左上冷気ガイド部323との間が製氷室用風路322dである。 The space between the upper left cold air guide portion 323 and the upper right cold air guide portion 324 is the refrigerator compartment air passage 322a, and the space between the upper right cold air guide portion 324 and the lower right cold air guide portion 326 is the second freezer compartment air passage 322b. Between the lower right cool air guide part 326 and the lower left cool air guide part 325 is a first freezer compartment air path 322c, and between the lower left cool air guide part 325 and the upper left cool air guide part 323 is an ice making room air path 322d.
 冷蔵室用風路322a、第二の冷凍室用風路322b、製氷室用風路322dの最下流部である上端には、それぞれツインダンパ319a、第二の冷凍室用ダンパ319b、製氷室用ダンパ319cを備える。 A twin damper 319a, a second freezer damper 319b, and an ice making chamber are respectively provided at the uppermost ends of the cold room air passage 322a, the second freezer air passage 322b, and the ice making air passage 322d. A damper 319c is provided.
 なお、各ダンパは図2に示す前仕切部材120または後仕切部材121のいずれかに固定すれば良い。さらに、前仕切部材120と後仕切部材121とで挟み込むように固定することで余分な部品が必要ないため、風路抵抗だけでなく部品点数、組立工数ともに最小限に抑えることが可能となる。また、各ダンパと前仕切部材120および後仕切部材121との間にスポンジテープなどの部品を挟むことで、吸音や吸振などの役目を果たし高品位な冷蔵庫100を提供できるだけでなく、ダンパの周辺からの冷気漏れを抑制することができる。 Each damper may be fixed to either the front partition member 120 or the rear partition member 121 shown in FIG. Furthermore, since it is fixed so as to be sandwiched between the front partition member 120 and the rear partition member 121, it is possible to minimize not only the air path resistance but also the number of parts and the number of assembly steps. In addition, by sandwiching parts such as sponge tape between each damper and the front partition member 120 and the rear partition member 121, not only can the sound absorbing and vibration absorbing functions be provided, but a high-quality refrigerator 100 can be provided as well as the periphery of the damper It is possible to suppress cold air leakage from the air.
 仕切部材311を冷蔵庫100に組み付けた状態で、冷蔵室用風路322aの先のツインダンパ319aの一方の開口部である冷蔵室用開口部319dは、仕切壁118に設けられた冷蔵室接続風路318aに連通する。他方の開口部である野菜室用開口部319eは、同じく仕切壁118に設けられた野菜室接続風路318bに連通し、野菜室用吐出口329に連通する。第二の冷凍室用風路322bの先の第二の冷凍室用ダンパ319b及び製氷室用風路322dの先の製氷室用ダンパ319cは、それぞれ仕切壁118と仕切部材311との間に構成される第二の冷凍室用吐出口327および製氷室用吐出口328にそれぞれ連通する。 In a state where the partition member 311 is assembled to the refrigerator 100, the refrigerator compartment opening 319d, which is one opening of the twin damper 319a at the tip of the refrigerator compartment air passage 322a, is connected to the refrigerator compartment connection air provided in the partition wall 118. It communicates with the road 318a. The other opening 319e for the vegetable room communicates with the vegetable room connection air passage 318b similarly provided in the partition wall 118 and communicates with the vegetable room discharge port 329. The second freezer compartment damper 319b ahead of the second freezer compartment air passage 322b and the ice compartment damper 319c ahead of the ice compartment air passage 322d are respectively configured between the partition wall 118 and the partition member 311. The second freezer compartment discharge port 327 and the ice making chamber discharge port 328 communicate with each other.
 以上のように構成された本発明の第3の実施の形態における冷蔵庫について、以下その動作を説明する。 The operation of the refrigerator according to the third embodiment of the present invention configured as described above will be described below.
 送風機113により分配風路322に吐出された冷気は、各冷気ガイド部により分流され各貯蔵室へ向かう風路へと流れる。冷蔵室用風路322aはツインダンパ319aを有し、第二の冷凍室用風路322bは第二の冷凍室用ダンパ319bを有し、製氷室用風路322dは製氷室用ダンパ319cを有する。このため、各ダンパを制御することで図2に示す冷蔵室104、第二の冷凍室105、製氷室106、野菜室108へ流れる冷気の量を調節することができる。このことにより、各貯蔵室の温度を独立して調節することが可能となり、細かい温度調節が可能となる。また、一室だけの貯蔵物が増えた場合など、その貯蔵室だけを冷却することができため消費電力を最小限に抑えることも可能である。 The cold air discharged to the distribution air passage 322 by the blower 113 is diverted by each cold air guide section and flows to the air passage toward each storage chamber. The refrigerating room air passage 322a has a twin damper 319a, the second freezer compartment air passage 322b has a second freezer compartment damper 319b, and the ice making air passage 322d has an ice making room damper 319c. . Therefore, by controlling each damper, the amount of cold air flowing to the refrigerator compartment 104, the second freezer compartment 105, the ice making compartment 106, and the vegetable compartment 108 shown in FIG. 2 can be adjusted. As a result, the temperature of each storage chamber can be adjusted independently, and fine temperature adjustment is possible. In addition, when the amount of stored items in only one room increases, it is possible to cool only that storage room, and thus it is possible to minimize power consumption.
 なお、第一の冷凍室107は最も温度帯が低いため本実施の形態ではダンパを設けていないが、必要に応じて第一の冷凍室用風路322cまたは第一の冷凍室用吐出口120bにダンパを設けることで、更に繊細に温度調節を行うことができる。 Since the first freezer compartment 107 has the lowest temperature zone, no damper is provided in the present embodiment, but the first freezer compartment air passage 322c or the first freezer compartment outlet 120b is used as necessary. By providing a damper on the surface, the temperature can be adjusted more delicately.
 以上のように、本実施の形態では、冷蔵室用風路322aはツインダンパ319aを有し、第二の冷凍室用風路322bは第二の冷凍室用ダンパ319bを有し、製氷室用風路322dは製氷室用ダンパ319cを有する。そして、各ダンパを制御することで冷蔵室104、第二の冷凍室105、製氷室106、野菜室108へ流れる冷気の量を調節することができ、各貯蔵室の温度を独立して調節することが可能となり、細かい温度調節が可能となる。 As described above, in the present embodiment, the refrigerating room air passage 322a has the twin damper 319a, the second freezer compartment air passage 322b has the second freezer compartment damper 319b, and is used for the ice making room. The air passage 322d has an ice making room damper 319c. By controlling each damper, the amount of cold air flowing to the refrigerator compartment 104, the second freezer compartment 105, the ice making compartment 106, and the vegetable compartment 108 can be adjusted, and the temperature of each storage compartment can be adjusted independently. And fine temperature adjustment is possible.
 (第4の実施の形態)
 図8は本発明の第4の実施の形態における冷蔵庫の正面図、図9は図8における9-9断面図、図10は本発明の第4の実施の形態における冷凍拡大室正面図である。図11は図10における11-11断面図、図12は本発明の第4の実施の形態における下段吐出口と下段冷凍室ケースの位置関係を示す断面拡大図である。
(Fourth embodiment)
8 is a front view of a refrigerator according to the fourth embodiment of the present invention, FIG. 9 is a sectional view taken along line 9-9 in FIG. 8, and FIG. 10 is a front view of a freezing expansion chamber according to the fourth embodiment of the present invention. . FIG. 11 is a cross-sectional view taken along line 11-11 in FIG. 10, and FIG. 12 is an enlarged cross-sectional view showing the positional relationship between the lower discharge port and the lower freezer compartment in the fourth embodiment of the present invention.
 図8から図11において、冷蔵庫400の冷蔵庫本体である断熱箱体401は、主に鋼板を用いた外箱402と、ABSなどの樹脂で成型された内箱403と、外箱402と内箱403との間の空間に発泡充填される硬質発泡ウレタンなどの発泡断熱材とで構成され、周囲と断熱され、複数の貯蔵室に区画されている。最上部に第一の貯蔵室としての冷蔵室404、その冷蔵室404の下部に第四の貯蔵室としての第二の冷凍室405と第五の貯蔵室としての製氷室406が横並びに設けられている。その第二の冷凍室405と製氷室406の下部に第二の貯蔵室としての第一の冷凍室407、そして最下部に第三の貯蔵室としての野菜室408が配置される構成となっている。 8 to 11, a heat insulating box 401, which is a refrigerator main body of the refrigerator 400, includes an outer box 402 mainly using a steel plate, an inner box 403 formed of a resin such as ABS, an outer box 402, and an inner box. It is comprised with foam heat insulating materials, such as hard foaming urethane, foam-filled in the space between 403, is heat-insulated with the circumference | surroundings, and is divided into the some storage chamber. A refrigeration room 404 as a first storage room is provided at the top, and a second freezing room 405 as a fourth storage room and an ice making room 406 as a fifth storage room are provided side by side under the refrigeration room 404. ing. A first freezing room 407 as a second storage room is arranged below the second freezing room 405 and the ice making room 406, and a vegetable room 408 as a third storage room is arranged at the bottom. Yes.
 冷蔵室404は、回転扉である冷蔵室右扉404aと冷蔵室左扉404bを備え、内部には、冷蔵室棚404cや冷蔵室ケース404dが適切に配設され、貯蔵空間を整理し易く構成している。一方、その他の貯蔵室は引き出し式扉を有し、第二の冷凍室扉405aに取り付けられたフレームには第二の冷凍室ケース405bが載置され、製氷室扉406aに取り付けられたフレームには製氷室ケース(図示せず)が載置される。また、第一の冷凍室扉407aに取り付けられたフレームには上段冷凍室ケース407bおよび下段冷凍室ケース407cが載置される。野菜室扉408aに取り付けられたフレームには上段野菜室ケース408bおよび下段野菜室ケース408cが載置される。 The refrigerating room 404 includes a refrigerating room right door 404a and a refrigerating room left door 404b, which are rotary doors, and a refrigerating room shelf 404c and a refrigerating room case 404d are appropriately disposed therein, so that the storage space can be easily arranged. is doing. On the other hand, the other storage room has a drawer-type door, and the second freezer compartment case 405b is placed on the frame attached to the second freezer compartment door 405a, and the frame attached to the ice compartment door 406a is attached to the frame. An ice-making chamber case (not shown) is placed. In addition, an upper freezer compartment case 407b and a lower freezer compartment case 407c are placed on a frame attached to the first freezer compartment door 407a. An upper vegetable compartment case 408b and a lower vegetable compartment case 408c are placed on the frame attached to the vegetable compartment door 408a.
 冷蔵室404は冷蔵保存のために凍らない温度である冷蔵温度帯に設定されており、通常1℃から5℃としている。野菜室408は冷蔵室404と同等の冷蔵温度帯もしくは若干高い温度設定の野菜温度帯2℃から7℃としている。第一の冷凍室407は冷凍温度帯に設定されており、冷凍保存のために通常-22℃から-15℃で設定されているが、冷凍保存状態の向上のために、例えば-30℃や-25℃の低温で設定されることもある。 The refrigerated room 404 is set in a refrigerated temperature zone, which is a temperature at which it is not frozen for refrigerated storage, and is usually set to 1 ° C to 5 ° C. The vegetable room 408 has a refrigeration temperature range equivalent to the refrigeration room 404 or a slightly higher temperature set vegetable temperature range of 2 ° C. to 7 ° C. The first freezer compartment 407 is set in a freezing temperature zone, and is usually set at −22 ° C. to −15 ° C. for frozen storage, but for improving the frozen storage state, for example, −30 ° C. It may be set at a low temperature of -25 ° C.
 第二の冷凍室405は、第一の冷凍室407と同等の冷凍温度帯または若干高い温度設定-20℃から-12℃である。製氷室406は、冷蔵室404内の貯水タンク(図示せず)から送られた水で室内上部に設けられた自動製氷機(図示せず)で氷を作り、製氷室ケース(図示せず)に貯蔵する。 The second freezer compartment 405 has the same freezing temperature zone as the first freezer compartment 407 or a slightly higher temperature setting of −20 ° C. to −12 ° C. The ice making chamber 406 makes ice with an automatic ice maker (not shown) provided at the upper part of the room with water sent from a water storage tank (not shown) in the refrigerator compartment 404, and an ice making case (not shown). Store in.
 断熱箱体401の天面部は冷蔵庫の背面方向に向かって階段状に凹みを設けた形状であり、この階段状の凹部に機械室401aを形成している。機械室401aに、圧縮機409、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。すなわち、圧縮機409を配設する機械室401aは、冷蔵室404内の最上部の後方領域に食い込んで形成されることになる。 The top surface portion of the heat insulating box 401 has a stepped recess shape toward the back of the refrigerator, and a machine room 401a is formed in the stepped recess. The machine room 401a accommodates high-pressure components of the refrigeration cycle such as the compressor 409 and a dryer (not shown) for removing moisture. That is, the machine room 401 a in which the compressor 409 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 404.
 このように、手が届きにくくデッドスペースとなっていた断熱箱体401の最上部の貯蔵室後方領域に機械室401aを設けて圧縮機409を配置することにより、従来の冷蔵庫で、使用者が使いやすい断熱箱体401の最下部にあった機械室のスペースを貯蔵室容量として有効に転化することができ、収納性や使い勝手を大きく改善することができる。 Thus, by providing the machine room 401a and arranging the compressor 409 in the rear area of the uppermost storage room of the heat-insulating box 401, which is difficult to reach and is a dead space, the user can use the conventional refrigerator to The space in the machine room at the bottom of the easy-to-use heat insulating box 401 can be effectively converted as the storage room capacity, and the storage performance and usability can be greatly improved.
 冷凍サイクルは、圧縮機409と凝縮器と減圧器であるキャピラリーと冷却器412とを順に備えた一連の冷媒流路から形成されており、冷媒として炭化水素系冷媒である例えばイソブタンが封入されている。 The refrigeration cycle is formed of a series of refrigerant flow paths sequentially including a compressor 409, a condenser, a capillary serving as a decompressor, and a cooler 412. As a refrigerant, for example, isobutane as a hydrocarbon-based refrigerant is enclosed. Yes.
 圧縮機409はピストンがシリンダ内を往復動することで冷媒の圧縮を行う往復動型圧縮機である。断熱箱体401に、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品が機械室401a内に配設されている場合もある。 Compressor 409 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder. In the case of a refrigeration cycle using a three-way valve or a switching valve for the heat insulation box 401, those functional components may be disposed in the machine room 401a.
 また、本実施の形態では冷凍サイクルを構成する減圧器をキャピラリーとしたが、パルスモーターで駆動する冷媒の流量を自由に制御できる電子膨張弁を用いてもよい。 In the present embodiment, the decompressor constituting the refrigeration cycle is a capillary, but an electronic expansion valve that can freely control the flow rate of the refrigerant driven by the pulse motor may be used.
 なお、本実施の形態における、以下に述べる発明の要部に関する事項は、従来一般的であった断熱箱体401の最下部の貯蔵室後方領域に機械室を設けて圧縮機409を配置するタイプの冷蔵庫に適用しても構わない。 In the present embodiment, the matters relating to the main part of the invention described below are the types in which the compressor 409 is arranged by providing a machine room in the rear region of the lowermost storage room of the heat insulating box 401 that has been conventionally general. It may be applied to other refrigerators.
 第一の冷凍室407の背面には冷気を生成する冷却室410が設けられ、第二の冷凍室405および製氷室406、第一の冷凍室407からなる貯蔵室と冷却室410とを区画するために仕切部材411が構成されている。冷却室410内には、冷却器412が配設されており、貯蔵室と熱交換して温められた空気と熱交換し、冷気を生成している。冷却器412の下部空間には冷却時に冷却器412やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアント加熱手段414が設けられ、さらにその下部には除霜時に生じる除霜水を受けるためのドレンパン415、その最深部から庫外に貫通したドレンチューブ416が構成され、その下流側の庫外に蒸発皿417が構成されている。なお、ラジアント加熱手段414の代わりに冷却器412に取り付けたパイプヒータなど他形状の加熱手段を用いたり、ラジアント加熱手段414と他形状の加熱手段を併用したりしても構わない。 A cooling chamber 410 for generating cold air is provided on the back surface of the first freezing chamber 407, and the storage chamber composed of the second freezing chamber 405, the ice making chamber 406, and the first freezing chamber 407 and the cooling chamber 410 are partitioned. Therefore, a partition member 411 is configured. A cooler 412 is disposed in the cooling chamber 410, and heat is exchanged with air warmed by heat exchange with the storage chamber to generate cold air. The lower space of the cooler 412 is provided with a radiant heating means 414 made of glass tube for defrosting the cooler 412 and its surroundings during cooling, and further, the lower part is removed from the defrosting generated during the defrosting. A drain pan 415 for receiving frost water, a drain tube 416 penetrating from the deepest part to the outside of the cabinet are configured, and an evaporating dish 417 is configured outside the downstream side. Instead of the radiant heating means 414, another shape heating means such as a pipe heater attached to the cooler 412 may be used, or the radiant heating means 414 and another shape heating means may be used in combination.
 仕切部材411は、貯蔵室側の外殻をなす前仕切部材420と冷却室側の外殻をなす後仕切部材421とから構成され、後仕切部材421は、送風機413を備える。前仕切部材420と後仕切部材421との間の空間は各貯蔵室に向けて冷気を分岐させる分配風路422である。 The partition member 411 includes a front partition member 420 that forms an outer shell on the storage chamber side and a rear partition member 421 that forms an outer shell on the cooling chamber side, and the rear partition member 421 includes a blower 413. A space between the front partition member 420 and the rear partition member 421 is a distribution air passage 422 that branches cold air toward each storage chamber.
 ここで、送風機413は、吐出面からみて時計回りをする軸流ファンである。以下、冷蔵庫の左右方向の位置を指定する場合、送風機413の回転方向を基準とする。回転方向が反時計回りの送風機を使用する場合は、左右を反転させることで同様の効果を得ることができる。 Here, the blower 413 is an axial fan that rotates clockwise as viewed from the discharge surface. Hereinafter, when specifying the position of the refrigerator in the left-right direction, the rotation direction of the blower 413 is used as a reference. When using a fan with a counterclockwise rotation direction, the same effect can be obtained by reversing the left and right sides.
 送風機413の吐出面は冷蔵庫400の正面に対し角度を持って取り付けられ、冷気は斜め上向きに吹き上げるように配設されている。また、第一の冷凍室407正面より見て、送風機413の中心は、第一の冷凍室407の中心に対し左側に位置し、上段冷凍室ケース407bの奥面上端より上方に位置する。前仕切部材420の送風機413に対向する部分は、送風機413側に突出した冷気整流部420aを構成する。冷気整流部420aは送風機413の回転軸を中心軸とする略円錐台形状をしている。冷気整流部420aの先端は送風機413の吐出面に平行な面で構成され、その径は送風機413のボス径と略同径である。 The discharge surface of the blower 413 is attached with an angle with respect to the front surface of the refrigerator 400, and the cold air is arranged to blow up obliquely upward. Further, when viewed from the front of the first freezer compartment 407, the center of the blower 413 is located on the left side with respect to the center of the first freezer compartment 407, and is located above the upper end of the upper surface of the upper freezer compartment case 407b. The portion of the front partition member 420 that faces the blower 413 constitutes a cool air rectification unit 420 a that protrudes toward the blower 413. The cool air rectification unit 420 a has a substantially truncated cone shape with the rotation axis of the blower 413 as the central axis. The front end of the cool air rectifying unit 420a is formed by a surface parallel to the discharge surface of the blower 413, and the diameter thereof is substantially the same as the boss diameter of the blower 413.
 前仕切部材420は、冷気整流部420aより下方で且つ上段冷凍室ケース407bより上方に上段吐出口420bを有し、下段冷凍室ケース407cと上段冷凍室ケース407bの間に一体または別体で下段風路423を有する。下段風路423はその先端に下段吐出口423aを有する。上段吐出口420bおよび下段吐出口423aは分配風路422と第一の冷凍室407を連通している。下段風路423は前仕切部材420から第一の冷凍室407内部へ突出し、図12に示す通り下段吐出口423aは下段冷凍室ケース407cの後端部フランジよりも前方に設けられる。また、下段風路423の上面の左右両端は5mm以上のRによって面取りを行い、上面の中で両端が最も低い位置となる形状を有している。 The front partition member 420 has an upper discharge port 420b below the cool air rectifying unit 420a and above the upper freezer compartment case 407b, and is integrally or separately provided between the lower freezer compartment case 407c and the upper freezer compartment case 407b. An air passage 423 is provided. The lower air passage 423 has a lower discharge port 423a at its tip. The upper discharge port 420b and the lower discharge port 423a communicate with the distribution air passage 422 and the first freezer compartment 407. The lower air passage 423 projects from the front partition member 420 into the first freezer compartment 407, and the lower outlet 423a is provided in front of the rear end flange of the lower freezer compartment case 407c as shown in FIG. Also, the left and right ends of the upper surface of the lower air passage 423 are chamfered with R of 5 mm or more, and both ends have a shape that is the lowest position in the upper surface.
 上段吐出口420bは、幅が上段冷凍室ケース407bの幅内に分布するように、複数の孔からなる。そのうち少なくとも一つの孔は正面より見て、第一の冷凍室407の中心を通る。下段風路423は、幅が下段冷凍室ケース407cの幅内に分布するように、複数の突出風路からなり、各突出風路の先端に一つまたは複数個の下段吐出口423aを有する。 The upper discharge port 420b includes a plurality of holes so that the width is distributed within the width of the upper freezer compartment case 407b. At least one of the holes passes through the center of the first freezer compartment 407 when viewed from the front. The lower air passage 423 is composed of a plurality of projecting air passages so that the width is distributed within the width of the lower freezer compartment case 407c, and has one or more lower discharge ports 423a at the tip of each projecting air passage.
 なお、上段吐出口420bおよび下段吐出口423aは、上下複数段の孔により構成したり、幅方向に段数を変化させたりしてもよく、それにより収納ケース内の冷気の分布を決定し、より適切に冷却することが可能となる。 The upper discharge port 420b and the lower discharge port 423a may be configured by a plurality of upper and lower holes, or the number of steps may be changed in the width direction, thereby determining the distribution of cool air in the storage case, It becomes possible to cool appropriately.
 また、冷蔵室404とその他の貯蔵室とを断熱区画する仕切壁418と仕切部材411との間には、前仕切部材420と仕切壁418とによって構成された第二の冷凍室風路424と製氷室風路425とを有する。第二の冷凍室風路424は第二の冷凍室吐出口424aを、製氷室風路は製氷室吐出口425aを有し、それぞれ分配風路422と第二の冷凍室405および製氷室406とを連通している。第二の冷凍室吐出口424aおよび製氷室吐出口425aは第二の冷凍室ケース405bおよび製氷器(図示せず)の後端部フランジよりも前方に設けられる。 In addition, a second freezer compartment air passage 424 configured by a front partition member 420 and a partition wall 418 is provided between the partition wall 418 and the partition member 411 that insulate the refrigerator compartment 404 from other storage chambers. And an ice making room air passage 425. The second freezer compartment air passage 424 has a second freezer compartment outlet 424a, and the ice making air passage has an ice making outlet 425a. The distribution air passage 422, the second freezer compartment 405, and the ice making compartment 406, respectively. Is communicated. The second freezer compartment discharge port 424a and the ice making chamber discharge port 425a are provided in front of the second freezer compartment case 405b and the rear end flange of the ice making machine (not shown).
 なお、第二の冷凍室風路424および製氷室風路425は前仕切部材420や仕切壁418と別体に設けたり、分割して一部のみを別体に設けたりしても良い。 The second freezer compartment air passage 424 and the ice making compartment air passage 425 may be provided separately from the front partition member 420 and the partition wall 418, or may be divided and provided only partially.
 前仕切部材420は、上段吐出口420bの上方で冷気整流部420aの右側に右下がりの直線形状の傾斜リブ420cを有する。傾斜リブ420cの右端は上段吐出口420bの右端よりも右側にあり、傾斜リブ420cの上辺と水平面とのなす角は5度以上である。 The front partition member 420 has a straight inclined rib 420c that is downwardly inclined to the right of the cool air rectifying unit 420a above the upper discharge port 420b. The right end of the inclined rib 420c is on the right side of the right end of the upper discharge port 420b, and the angle formed by the upper side of the inclined rib 420c and the horizontal plane is 5 degrees or more.
 さらに、前仕切部材420は、下段風路423の上方に、各孔の上に一つずつ山形の形状をした山形リブ420dを有する。山形リブ420dは下段吐出口423aの孔一つの横幅よりも大きな幅を有し、各辺の水平面とのなす角は5度以上である。 Further, the front partition member 420 has a chevron rib 420d having a chevron shape above each hole above the lower air passage 423. The chevron rib 420d has a width larger than the lateral width of one hole of the lower discharge port 423a, and the angle between each side and the horizontal plane is 5 degrees or more.
 なお、傾斜リブ420cおよび山形リブ420dはそれぞれ弓形やかまぼこ形のような曲線により構成してもよい。 It should be noted that the inclined rib 420c and the chevron rib 420d may each be configured by a curve such as an arc shape or a kamaboko shape.
 また、前仕切部材420は、下段風路423の複数の突出風路の谷間に谷間リブ420eを有する。谷間リブ420eは縦向きの直線形状を有したリブであり、山形リブ420dの端周辺から下段吐出口423aの高さまたはその下までの長さを有する。 Further, the front partition member 420 has valley ribs 420e in the valleys of the plurality of projecting air passages of the lower air passage 423. The valley rib 420e is a rib having a vertical linear shape, and has a length from the periphery of the end of the mountain-shaped rib 420d to the height of the lower discharge port 423a or the length below it.
 また、下段風路423は第一の冷凍室407側に複数の下段リブ423bを有する。下段リブ423bは、下段風路423の上面から始まり下段吐出口423aを縦断し下段風路423の下へ繋がり前仕切部材420と連結する。下段リブ423bの下辺は下段風路423の下面よりも急勾配を有し、水平面となす角は10°以上である。 The lower air passage 423 has a plurality of lower ribs 423b on the first freezing chamber 407 side. The lower rib 423 b starts from the upper surface of the lower air passage 423, passes through the lower discharge port 423 a, is connected to the lower air passage 423, and is connected to the front partition member 420. The lower side of the lower rib 423b has a steeper slope than the lower surface of the lower air passage 423, and the angle formed with the horizontal plane is 10 ° or more.
 同様に、上段吐出口420bは一つまたは複数の上段リブ420fを有する。上段リブ420fは第一の冷凍室407側に突出した縦向きの直線形状を有し、少なくとも上段吐出口420bの送風機413から遠い側の辺に設けられる。 Similarly, the upper discharge port 420b has one or more upper ribs 420f. The upper rib 420f has a vertical straight shape protruding toward the first freezer compartment 407, and is provided at least on the side of the upper discharge port 420b far from the blower 413.
 また、第二の冷凍室風路424は下面に第二の冷凍室リブ424bを有する。第二の冷凍室リブ424bは第二の冷凍室風路424の下面と前仕切部材420を二辺とする略三角形の形状を有し、第二の冷凍室風路424の下面の横幅に亘って複数設けられる。 The second freezer compartment air passage 424 has a second freezer compartment rib 424b on the lower surface. The second freezer compartment rib 424b has a substantially triangular shape having two sides of the lower surface of the second freezer compartment air passage 424 and the front partition member 420, and extends across the width of the lower surface of the second freezer compartment air passage 424. Are provided.
 なお、本実施の形態における、以下に述べる発明の要部に関する事項は、いずれの貯蔵室においても回転扉を有し、内箱403に貯蔵ケースが載置される構造を有するタイプの冷蔵庫に適用しても構わない。 In addition, the matter regarding the main part of the invention described below in this embodiment is applied to a refrigerator of a type having a rotating door in any storage room and having a structure in which a storage case is placed in the inner box 403. It doesn't matter.
 以上のように構成された本実施の形態の冷蔵庫400について、以下その動作、作用を説明する。 The operation and action of the refrigerator 400 of the present embodiment configured as described above will be described below.
 まず、冷凍サイクルの動作について説明する。庫内の設定された温度に応じて制御装置(図示せず)からの信号により冷凍サイクルが動作して冷却運転が行われる。圧縮機409の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)である程度凝縮液化する。さらに、その冷媒は冷蔵庫本体である断熱箱体401の側面や背面、また断熱箱体401の前面間口に配設された冷媒配管(図示せず)などを経由し断熱箱体401の水滴を防止しながら凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、キャピラリーチューブでは圧縮機409への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器412に至る。 First, the operation of the refrigeration cycle will be described. The refrigeration cycle is operated by a signal from a control device (not shown) according to the set temperature in the refrigerator, and the cooling operation is performed. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 409 is condensed to some extent by a condenser (not shown). Further, the refrigerant prevents water droplets on the heat insulating box 401 via the side and back of the heat insulating box 401 that is the main body of the refrigerator, and a refrigerant pipe (not shown) disposed at the front opening of the heat insulating box 401. While condensing into liquid, it reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 409 and becomes a low-temperature and low-pressure liquid refrigerant and reaches the cooler 412.
 ここで、冷却室410では、送風機413の動作により集められた各貯蔵室内の空気が、冷却器412により液冷媒と熱交換され、冷却器412内の冷媒は蒸発気化する。この時、貯蔵室から戻ってきた空気は、冷却室410内で再び各貯蔵室を冷却するための冷気となる。低温の冷気は送風機413から分配風路422を通り、風路やダンパを用いて分流され、冷蔵室404、第二の冷凍室405、製氷室406、第一の冷凍室407、野菜室408をそれぞれの目的温度帯に冷却する。 Here, in the cooling chamber 410, the air in each storage chamber collected by the operation of the blower 413 is heat-exchanged with the liquid refrigerant by the cooler 412, and the refrigerant in the cooler 412 evaporates. At this time, the air returned from the storage chamber becomes cool air for cooling each storage chamber again in the cooling chamber 410. The low-temperature cold air flows from the blower 413 through the distribution air passage 422 and is divided using the air passage and the damper, and passes through the refrigerating room 404, the second freezing room 405, the ice making room 406, the first freezing room 407, and the vegetable room 408. Cool to each target temperature range.
 送風機413は、冷蔵庫400の正面から見て時計回りに回転する軸流ファンであることから、吐出された冷気は時計回りに旋回しながら放射状に広がるように円錐状に流れる。したがって、冷気整流部420aを吐出冷気の流れに合わせた形状にすることで、渦を発生させることなく、冷気を分配風路422にスムーズに送り出すことができる。また、送風機413を構成する軸流ファンの吐出側では、中心に軸流ファンに向かって戻る気流が発生するが、冷気整流部420aの円錐台上面径を軸流ファンのボス径と略同径とすることで、この戻り気流を抑制することができるため、送風機413より冷気に与えられたエネルギを無駄なく送風に生かすことができる。 Since the blower 413 is an axial fan that rotates clockwise when viewed from the front of the refrigerator 400, the discharged cool air flows conically so as to spread radially while turning clockwise. Therefore, by forming the cool air rectifying unit 420a in accordance with the flow of the discharged cool air, the cool air can be smoothly sent to the distribution air path 422 without generating vortices. In addition, on the discharge side of the axial flow fan constituting the blower 413, an air flow returning toward the axial flow fan is generated in the center, but the upper surface diameter of the truncated cone of the cold air rectifying unit 420a is substantially the same as the boss diameter of the axial flow fan. Thus, since this return airflow can be suppressed, the energy given to the cold air from the blower 413 can be utilized for the blown air without waste.
 吐出冷気の作る円錐台面と送風機413の回転軸のなす角は送風機413の送る流量や回転数により異なるため、冷気整流部420aの円錐面の角度を変えることで、設計流量に応じた最適設計を行うことができる。例えば、羽根径が90mmから410mmの送風機413を1200rpmから3000rpm前後で回転させ、0.5m/minから1.0m/minの風量を得る場合について説明する。この条件による実験に因れば、回転軸と冷気整流部420aの円錐面とのなす角は50°から85°が望ましい。半径方向に広がるにつれ徐々に送風機413との距離を大きくすることで、吐出冷気の持つ運動エネルギを圧力エネルギとして効率よく回収することができるため、送風機413の仕事を増やすことなく吐出圧力を高めることができる。本実施の形態のように、貯蔵室が多く、送風回路が多岐にわたり、ダンパのような風路抵抗になる部品を多く必要とする風路では、送風機413の仕事が大きくなるため、冷気整流部420aの果たす役割はより大きいものとなる。 The angle between the conical surface created by the discharged cool air and the rotation axis of the blower 413 differs depending on the flow rate and the number of rotations sent by the blower 413. It can be carried out. For example, a case will be described in which a blower 413 having a blade diameter of 90 mm to 410 mm is rotated around 1200 rpm to 3000 rpm to obtain an air volume of 0.5 m 3 / min to 1.0 m 3 / min. According to the experiment under this condition, the angle formed by the rotating shaft and the conical surface of the cool air rectifying unit 420a is preferably 50 ° to 85 °. By gradually increasing the distance to the blower 413 as it spreads in the radial direction, the kinetic energy of the discharged cold air can be efficiently recovered as pressure energy, so the discharge pressure is increased without increasing the work of the blower 413 Can do. As in this embodiment, in an air passage that has a large number of storage rooms, a wide variety of air blowing circuits, and requires a large number of air flow resistance components such as dampers, the work of the air blower 413 increases, so the cold air rectification unit The role played by 420a is greater.
 冷気整流部420aに沿って広がった冷気の一部は、冷気整流部420a内に設けられた上段吐出口420bより第一の冷凍室407内に吐出される。このとき、冷気にはコアンダ効果により冷気整流部420aに沿うような力が働いている。従って、冷気整流部420a内に設けられた孔から吐出された冷気は送風機413の正面方向に向かってスムーズに吐出される。従って、従来冷気を直接送ることが難しかった送風機413の正面にも冷気を送ることが可能となる。 A part of the cold air that spreads along the cold air rectification unit 420a is discharged into the first freezing chamber 407 from an upper discharge port 420b provided in the cold air rectification unit 420a. At this time, a force along the cold air rectification unit 420a is acting on the cold air due to the Coanda effect. Therefore, the cool air discharged from the holes provided in the cool air rectification unit 420 a is smoothly discharged toward the front of the blower 413. Therefore, it is possible to send cold air to the front of the blower 413, which has conventionally been difficult to send cold air.
 また、第一の冷凍室407の中央に位置する上段吐出口420bの孔には、冷気整流部420aより遠い側の辺に垂直に、貯蔵室に向けて上段リブ420fを有するため、冷気の速度のうち放射状に広がる成分も貯蔵室内部へ向けることができる。このため、上段冷凍室ケース407b内部に向かう冷気を増やすことができ、さらに急速に貯蔵物を冷却することができる。ここで上段リブ420fは、前仕切部材420と一体に成型することで部品点数を増やすことなく形成することが可能であるため、固体による風向のばらつきを小さく抑えることができる。さらに、使用の中で変形や脱落することを抑制できる構造を安価に提供することができる。 Moreover, since the hole of the upper stage discharge port 420b located in the center of the 1st freezer compartment 407 has the upper stage rib 420f perpendicular | vertical to the edge | side far from the cold air rectification | straightening part 420a toward the storage room, the speed of cold air Of these, the radially spreading components can also be directed into the storage chamber. For this reason, the cool air which goes to the upper stage freezer compartment case 407b inside can be increased, and a stored item can be cooled more rapidly. Here, the upper rib 420f can be formed without increasing the number of parts by being molded integrally with the front partition member 420, so that variation in the wind direction due to the solid can be reduced. Furthermore, the structure which can suppress a deformation | transformation and dropping during use can be provided at low cost.
 次に、傾斜リブ420cおよび山形リブ420d、谷間リブ420eの効果について説明する。 Next, effects of the inclined rib 420c, the chevron rib 420d, and the valley rib 420e will be described.
 送風機413より吐出された冷気は、第一の冷凍室407より冷たいため、前仕切部材420の第一の冷凍室407側の表面は温度差により霜や氷が付着することがある。この霜や氷は、ラジアント加熱手段414を用いて冷却室410内を加熱するとき、送風機413の羽根の間を抜けて分配風路422内へ進入した冷却室410内の暖気の一部により溶解する。冷蔵庫400は冷却器412やその周辺に付着した霜や氷を溶かすために、定期的に冷却を中断しラジアント加熱手段414を加熱することで、前仕切部材420の表面の霜や氷も定期的に溶解するため、成長して貯蔵空間を圧迫する心配はない。 Since the cold air discharged from the blower 413 is colder than the first freezer compartment 407, frost or ice may adhere to the surface of the front partition member 420 on the first freezer compartment 407 side due to a temperature difference. When the inside of the cooling chamber 410 is heated using the radiant heating means 414, the frost or ice is dissolved by a part of the warm air in the cooling chamber 410 that has passed through the blades of the blower 413 and entered the distribution air passage 422. To do. The refrigerator 400 periodically stops cooling and heats the radiant heating means 414 in order to melt frost and ice adhering to the cooler 412 and its surroundings, so that the frost and ice on the surface of the front partition member 420 are also periodically There is no worry of growing and squeezing the storage space.
 このようにして、溶解した前仕切部材420表面の水滴は、表面を伝って下へ垂れていく。垂れた水滴は傾斜リブ420cや山形リブ420dの位置まで来ると、各リブの上面に沿って、それぞれ低い方(傾斜リブ420cの場合は右端、山形リブ420dの場合は両端)へ流れるため、リブの真下に流れることはない。つまり、傾斜リブ420cにより水滴は右へ流れるため、傾斜リブ420cの真下にある上段吐出口420bに流れることはない。 In this way, the water droplets on the surface of the front partition member 420 that has been dissolved hang down along the surface. When the dripping water drops reach the positions of the inclined rib 420c and the chevron rib 420d, they flow along the upper surface of each rib toward the lower side (the right end in the case of the inclined rib 420c and the both ends in the case of the chevron rib 420d). It does not flow directly underneath. That is, since the water droplets flow to the right by the inclined rib 420c, they do not flow to the upper discharge port 420b immediately below the inclined rib 420c.
 上段吐出口420bは前仕切部材420に開いた孔であり、第一の冷凍室407を冷却する際は冷気が通るため、上段吐出口420bに水滴が垂れると、上段吐出口420bに水滴が孔に溜まり、冷却時に氷となって孔を塞ぐことで冷却能力が低下する恐れがある。従って傾斜リブ420cを設けることで安定して貯蔵室を冷却できる高品質を実現することができる。 The upper discharge port 420b is a hole opened in the front partition member 420, and cold air passes when the first freezing chamber 407 is cooled. Therefore, when a water droplet falls on the upper discharge port 420b, a water droplet is formed in the upper discharge port 420b. And the cooling capacity may be reduced by blocking the holes by forming ice during cooling. Therefore, by providing the inclined rib 420c, it is possible to realize a high quality capable of stably cooling the storage chamber.
 同様に山形リブ420dにより、水滴は山形リブ420dの両端から下へ流れる。山形リブ420dの幅は下段風路423の幅よりも大きいため、山形リブ420dの両端より下へ流れた水滴は下段風路423の両脇を通過し下へ流れる。従って、下段冷凍室ケース407cの内側に突出している下段風路423上に水が垂れ、下段冷凍室ケース407cに滴下することを防止することができる。 Similarly, the mountain-shaped rib 420d causes water droplets to flow downward from both ends of the mountain-shaped rib 420d. Since the width of the chevron rib 420d is larger than the width of the lower air passage 423, water droplets flowing downward from both ends of the chevron rib 420d pass through both sides of the lower air passage 423 and flow downward. Accordingly, it is possible to prevent water from dripping onto the lower air passage 423 protruding inside the lower freezer compartment case 407c and dripping into the lower freezer compartment case 407c.
 下段冷凍室ケース407cは貯蔵物収納容器であり底部に孔を持たないため、もし、下段冷凍室ケース407cに滴下すると、水は下段冷凍室ケース407c内部に溜まり、冷却時には氷結するため氷は成長し続け、貯蔵物が氷によりケースに固着することにより、ユーザの使い勝手を損ない不快感を与えることになる。 Since the lower freezer compartment case 407c is a storage container and does not have a hole at the bottom, if it drops into the lower freezer compartment case 407c, water accumulates inside the lower freezer compartment case 407c and freezes during cooling, so that ice grows. In addition, the stored item is fixed to the case with ice, so that the user's convenience is impaired and unpleasant feeling is given.
 なお、本実施の形態において前仕切部材420表面を下へ流れた水滴は、前仕切部材420の下端から第一の冷凍室407の底面に落下した後、更に低いドレンパン415へと流れドレンチューブ416を通り庫外へ排出される仕組みとなっている。しかし、前仕切部材420に水滴を回収する機構を設け直接にドレンパン415へ落とす仕組みとすることで、貯蔵空間である第一の冷凍室407の底面に水滴が滴下することがなくなり、さらに高品位な冷蔵庫を提供することができる。 In the present embodiment, the water droplets flowing down the surface of the front partition member 420 flow from the lower end of the front partition member 420 to the bottom surface of the first freezing chamber 407 and then flow to the lower drain pan 415 and the drain tube 416. It is structured to be discharged outside the warehouse. However, by providing a mechanism for collecting the water droplets in the front partition member 420 and dropping it directly to the drain pan 415, the water droplets do not drop on the bottom surface of the first freezing chamber 407, which is a storage space, and the quality is further improved. A refrigerator can be provided.
 また、下段風路423の谷間には、谷間リブ420eが存在するため、山形リブ420dから流れ落ちた水はその表面張力により積極的に谷間リブ420eへ引き寄せられる。そのため、山形リブ420dから流れ落ちた水が下段風路423へ流れる危険性を更に低減することができる。 Moreover, since the valley rib 420e exists in the valley of the lower air passage 423, the water flowing down from the mountain-shaped rib 420d is actively attracted to the valley rib 420e by the surface tension. Therefore, it is possible to further reduce the risk of water flowing down from the mountain-shaped rib 420d flowing into the lower air passage 423.
 なお、谷間リブ420eは、リブでなくても水を引き寄せる作用を持つ形状や物質であれば良いため、同形状の凹みや親水面などに置き換えてもよく、別部品を嵌め込んで構成することもできる。 The valley rib 420e may be a shape or substance having an action of attracting water even if it is not a rib, and may be replaced with a recess or a hydrophilic surface of the same shape, or may be configured by fitting another part. You can also.
 上述の通り、傾斜リブ420c、山形リブ420d、谷間リブ420eの効果により、上段吐出口420bおよび下段風路423には水滴が流れ込まない構造である。しかし、万が一流れた場合や、上段吐出口420bの直上や下段風路423表面に水滴が発生した場合にも、水滴が吐出口内で氷結することや貯蔵ケース内に滴下することを防止する必要がある。 As described above, due to the effects of the inclined rib 420c, the mountain-shaped rib 420d, and the valley rib 420e, the water droplet does not flow into the upper discharge port 420b and the lower air passage 423. However, in the unlikely event that it flows, or when water droplets are generated immediately above the upper discharge port 420b or on the surface of the lower air passage 423, it is necessary to prevent the water droplets from icing in the discharge ports or dropping into the storage case. is there.
 ここで、上段吐出口420bは上段リブ420fを有するため、温度差により上段吐出口420bに水滴が生じたり、上段吐出口420bより上で発生した水滴が流れ落ちたりした際も、上段リブ420fを伝って上段吐出口420bの下まで流すことができる。従って、上段吐出口420b内に水滴が溜まることを防止し、品質の良い冷蔵庫を提供することができる。もし、上段リブ420fが水平に構成されていれば、水滴が流れ落ちず吐出される冷気により冷やされ氷となる現象を繰り返し、上段吐出口420bを塞ぐ恐れがある。 Here, since the upper discharge port 420b has the upper rib 420f, even when water droplets are generated at the upper discharge port 420b due to a temperature difference or water droplets generated above the upper discharge port 420b flow down, the upper discharge port 420b travels along the upper rib 420f. Then, it can flow to below the upper discharge port 420b. Therefore, it is possible to prevent water droplets from accumulating in the upper discharge port 420b and provide a high-quality refrigerator. If the upper rib 420f is configured horizontally, the water droplets do not flow down, and the phenomenon of being cooled by the discharged cool air and becoming ice may be repeated, and the upper discharge port 420b may be blocked.
 また、下段風路423は下段リブ423bを有する。下段風路423の上面または下段吐出口423a周辺に発生したり流れ落ちたりした水滴は、下段リブ423bを伝って下段風路423の下の前仕切部材420表面まで到達することができる。このとき、下段リブ423bの下辺は下段風路423の下面よりも急勾配であるため、水は下段風路423表面よりも下段リブ423bを優先的に流れるため、下段風路423を伝って下段冷凍室ケース407c内に滴下する危険性を更に低くすることができる。ここで、下段リブ423bの下辺と水平面とのなす角を10°以上にすることで、水をより確実に引き付けて導くことが可能となる。さらに、下段リブ423bの設置間隔は狭すぎると冷気の風路抵抗が増加し送風効率を低減させ消費電力を増加させ、広過ぎると下段リブ423bの隙間から水滴が垂れる可能性が高くなるため、循環させる冷気の風速や風量、貯蔵室の温度帯によって適切に設定する必要があるが、一般的に10mm~20mmが望ましい。 Also, the lower air passage 423 has a lower rib 423b. Water droplets generated or flowed down on the upper surface of the lower air passage 423 or around the lower discharge port 423a can reach the surface of the front partition member 420 below the lower air passage 423 through the lower rib 423b. At this time, since the lower side of the lower rib 423b is steeper than the lower surface of the lower air path 423, water flows preferentially through the lower rib 423b over the surface of the lower air path 423. The risk of dropping into the freezer compartment 407c can be further reduced. Here, when the angle formed by the lower side of the lower rib 423b and the horizontal plane is 10 ° or more, it becomes possible to attract and guide water more reliably. Furthermore, if the installation interval of the lower ribs 423b is too narrow, the wind path resistance of the cold air increases to reduce the air blowing efficiency and increase the power consumption, and if it is too wide, the possibility of water drops dripping from the gaps of the lower ribs 423b increases. Although it is necessary to set appropriately according to the wind speed and air volume of the chilled air to be circulated, and the temperature range of the storage room, generally 10 mm to 20 mm is desirable.
 さらに、下段風路423の上面左右両端は大きなRによって面取りが行われているため、下段風路423上に載った水滴は下段吐出口423a側ではなく下段風路423の両脇へ流れやすくなる。従って、山形リブ420dから下段風路423上に水滴が流れ落ちた際や、山形リブ420dから下段吐出口423aまでの間で水滴が発生した際も、水滴は下段吐出口423aから下段冷凍室ケース407cに滴下することを抑制し、下段風路423の両脇から前仕切部材420の表面へ導くことができる。 Further, since the left and right ends of the upper surface of the lower air passage 423 are chamfered by a large R, water droplets placed on the lower air passage 423 easily flow to both sides of the lower air passage 423 instead of the lower air outlet 423a side. . Therefore, when water droplets flow down from the chevron rib 420d onto the lower air passage 423, or when water droplets are generated between the chevron rib 420d and the lower discharge port 423a, the water droplets are transferred from the lower discharge port 423a to the lower freezer compartment case 407c. And can be guided from both sides of the lower air passage 423 to the surface of the front partition member 420.
 最後に、第二の冷凍室リブ424bについて説明する。第二の冷凍室リブ424bは第二の冷凍室風路424の下面に発生した水滴を前仕切部材420表面まで誘導することで第二の冷凍室ケース405b内に滴下するのを防止することができる。第二の冷凍室リブ424bは第二の冷凍室風路424の下面を一辺とする略三角形の形状であるため、下辺は第二の冷凍室風路424の下面よりも急勾配であるため、水滴は第二の冷凍室風路424よりも優先的に第二の冷凍室リブ424bを流れる。なお、第二の冷凍室リブ424bは第二の冷凍室風路424の下面と前仕切部材420を2辺とする形状であれば略三角形でなく台形など他の形状でも良いが、その他の辺は三角形のときの様に第二の冷凍室風路424の下面よりも急勾配を持つ方が望ましい。さらに、第二の冷凍室リブ424bの設置間隔は狭すぎると逆に水滴を保持し易く、広過ぎると第二の冷凍室リブ424bの隙間から水滴が垂れる可能性が高くなるため一般的に10mm~20mmが望ましい。 Finally, the second freezer compartment rib 424b will be described. The second freezer compartment rib 424b guides water droplets generated on the lower surface of the second freezer compartment air passage 424 to the surface of the front partition member 420, thereby preventing the second freezer compartment rib 424b from dropping into the second freezer compartment case 405b. it can. Since the second freezer compartment rib 424b has a substantially triangular shape with the lower surface of the second freezer compartment air passage 424 as one side, the lower side is steeper than the lower surface of the second freezer compartment air passage 424. Water droplets flow through the second freezer compartment rib 424b preferentially over the second freezer compartment air passage 424. The second freezer compartment rib 424b may have other shapes such as a trapezoidal shape instead of a substantially triangular shape as long as the lower surface of the second freezer compartment air passage 424 and the front partition member 420 have two sides. It is desirable to have a steeper slope than the lower surface of the second freezer compartment air passage 424 as in the case of a triangle. Furthermore, if the interval between the second freezer compartment ribs 424b is too narrow, it is easy to hold water droplets, and if it is too wide, there is a high possibility that waterdrops will drip from the gap between the second freezer compartment ribs 424b. ~ 20 mm is desirable.
 第二の冷凍室風路424は送風機413よりも上方にあるため、除霜運転中に送風機413より漏れ出た冷却室410内の暖気がさらに上段吐出口420bより貯蔵空間に漏れたとき、暖気は上昇し第二の冷凍室風路424にぶつかることになる。暖気は第二の冷凍室風路424の壁面により冷やされ、風路表面に結露するため、第二の冷凍室風路424の下面は水滴がつき易いため、第二の冷凍室リブ424bの効果は非常に大きいものであるといえる。 Since the second freezer compartment air passage 424 is above the blower 413, the warm air in the cooling chamber 410 leaked from the blower 413 during the defrosting operation further leaks into the storage space from the upper discharge port 420b. Rises and hits the second freezer compartment air passage 424. The warm air is cooled by the wall surface of the second freezer compartment air passage 424 and is condensed on the surface of the air passage, so that the lower surface of the second freezer compartment air passage 424 is liable to have water droplets, so that the effect of the second freezer compartment rib 424b is achieved. Can be said to be very large.
 なお、傾斜リブ420c、山形リブ420d、谷間リブ420e、上段リブ420f、下段リブ423b、第二の冷凍室リブ等の水切り構造は、冷凍温度帯である第二の冷凍室405、製氷室406、第一の冷凍室407だけでなく、温度差が発生し易いその他の貯蔵室の冷気吐出口付近にも有効である。必要に応じて、冷蔵室404の吐出口や野菜室408の吐出口にもリブを設けることで、冷蔵室棚404cや冷蔵室ケース404d、上段野菜室ケース408bなどに水滴が溜まり、貯蔵物を濡らすことを防止することができる。 It should be noted that the draining structure such as the inclined rib 420c, the chevron rib 420d, the valley rib 420e, the upper rib 420f, the lower rib 423b, the second freezer compartment rib, etc. has a second freezing compartment 405, an ice making compartment 406, This is effective not only in the first freezing chamber 407 but also in the vicinity of the cold air outlet of other storage chambers where a temperature difference is likely to occur. If necessary, by providing ribs in the outlet of the refrigerator compartment 404 and the outlet of the vegetable compartment 408, water droplets accumulate in the refrigerator compartment shelf 404c, refrigerator compartment case 404d, upper vegetable compartment case 408b, etc. Wetting can be prevented.
 以上のように、本実施の形態では、上段吐出口420bおよび下段吐出口423a、第二の冷凍室吐出口424aは周辺に水垂れを防止する傾斜リブ420c、山形リブ420d、谷間リブ420e、上段リブ420f、下段リブ423b、第二の冷凍室リブによる水きり構造を備える。このことにより、吐出口周辺に発生した水滴または吐出口上方より流れてきた水滴を、吐出口を回避して吐出口の下まで流れるように導くことができるため、吐出口での滞留と載置部材への滴下を防止する高品位な冷蔵庫を提供することが可能となる。 As described above, in this embodiment, the upper discharge port 420b, the lower discharge port 423a, and the second freezer compartment discharge port 424a are inclined ribs 420c, chevron ribs 420d, valley ribs 420e, It has a draining structure with ribs 420f, lower ribs 423b, and second freezer compartment ribs. As a result, water droplets generated around the discharge port or water droplets flowing from above the discharge port can be guided so as to flow below the discharge port while avoiding the discharge port. It is possible to provide a high-quality refrigerator that prevents dripping on the member.
 さらに、山形リブ420dは下段吐出口423aの幅よりも大きい幅を有することにより、下段吐出口423aの上方にできた水滴が、山形リブ420dを伝って下段風路を左右に回避して下に流れ落ちる。従って、下段風路423から下段冷凍室ケースに落ちることを抑制するため、貯蔵物を載置する下段冷凍室ケースに溜まることなく、高品位な冷蔵庫を提供することが可能となる。このとき、山形リブ420dは下段吐出口423aから離れており冷気の流れの緩やかな位置に設けられているため、風路抵抗になり送風効率を損なうことを防止し消費電力の増加を抑制できる。 Further, since the chevron rib 420d has a width larger than the width of the lower discharge port 423a, the water droplets formed above the lower discharge port 423a travel along the chevron rib 420d to avoid the lower air path from side to side. run down. Therefore, in order to suppress falling from the lower air passage 423 to the lower freezer compartment case, it is possible to provide a high-quality refrigerator without accumulating in the lower freezer compartment case on which stored items are placed. At this time, since the chevron rib 420d is separated from the lower discharge port 423a and is provided at a position where the flow of cool air is gentle, it prevents air flow resistance and impairs the blowing efficiency, and suppresses an increase in power consumption.
 さらに、傾斜リブ420cの上面は右端が最も低い右下がりの直線形状をしており、山形リブ420dの上面は、左右両端が最も低い山形状を有する。このことにより、上段吐出口420bおよび下段吐出口423aの上方に生成した水滴は各リブまで流れ落ちた後、各リブに溜まることなくすぐさま低い方へ流れ、前仕切部材420表面に沿って更に下へ流れ落ちる。そのため、水滴が各リブに溜まり各リブを乗り越えて正面から冷気吐出口へ落下することを防止することができ、氷結により上段吐出口420bを閉塞したり下段冷凍室ケース内に水滴が溜まったりする危険性をより低くすることが可能となる。 Furthermore, the upper surface of the inclined rib 420c has a straight line shape with the right end being the lowest, and the upper surface of the chevron rib 420d has a mountain shape having the lowest left and right ends. As a result, the water droplets generated above the upper discharge port 420b and the lower discharge port 423a flow down to the ribs and then immediately flow to the lower side without accumulating on the ribs, and further downward along the surface of the front partition member 420. run down. Therefore, it is possible to prevent water droplets from collecting on the ribs and falling over the ribs and dropping from the front to the cold air discharge port. The upper discharge port 420b is blocked by icing, or water droplets collect in the lower freezer compartment case. The risk can be further reduced.
 この効果は、各リブの上面が、水平面に対し5°以上の角度を有することにより、さらに流れをスムーズにし高めることが可能となる。 This effect makes it possible to make the flow smoother and higher when the upper surface of each rib has an angle of 5 ° or more with respect to the horizontal plane.
 また、上段吐出口420b、下段吐出口423a、第二の冷凍室吐出口424aがその周辺に、水の流れを誘導する上段リブ420f、下段リブ423b、谷間リブ420e、第二の冷凍室リブ424bを有する。このことにより、吐出口周辺に発生したまたは流れてきた水滴は、吐出口ではなく各リブに引き寄せられ各リブを伝って更に下へ流れていく。そのため、水滴が吐出口に溜まったり吐出口から載置部材に落ちたりすることを抑制するため、高品位な冷蔵庫を提供することが可能となる。 In addition, an upper discharge port 420b, a lower discharge port 423a, and a second freezer compartment discharge port 424a have an upper rib 420f, a lower rib 423b, a valley rib 420e, and a second freezer compartment rib 424b that guide water flow therearound. Have As a result, water droplets generated or flowing around the discharge port are attracted not to the discharge port but to each rib and flow further down along each rib. Therefore, it is possible to provide a high-quality refrigerator in order to prevent water droplets from collecting at the discharge port or falling from the discharge port to the mounting member.
 更に、谷間リブ420eは、山形リブ420dの両端の下方周辺に設けられている。このことにより、下段風路423を左右方向に回避して山形リブ420dの両端から流れ落ちた水滴は、たとえ上方の水滴が集められその量が多い場合や勢いが強い場合も、谷間リブ420eに引き寄せられるため谷間リブ420e沿って流れる。そのため、山形リブ420dから離れた水滴が再び下段風路423へ流れる危険性を最小限に抑えることができる。 Furthermore, the valley rib 420e is provided in the lower periphery of both ends of the mountain-shaped rib 420d. As a result, the water droplets that flow down from both ends of the mountain-shaped rib 420d while avoiding the lower air passage 423 in the left-right direction are attracted to the valley rib 420e even when the upper water droplets are collected and the amount is high or the momentum is strong. Therefore, it flows along the valley rib 420e. Therefore, it is possible to minimize the risk that water droplets away from the mountain-shaped rib 420d will flow again into the lower air passage 423.
 また、谷間リブ420eは前仕切部材420と一体に成型されたリブである。このことにより、部品点数を増やすことなく確実に水滴を吐出口の下まで導くことができるため、谷間リブ420eが冷蔵庫400の使用中に変形や脱落することが少ない。そのため、品位の高い状態を使用期間中保つことができる高品質な冷蔵庫を安価に提供することができる。 Further, the valley rib 420e is a rib formed integrally with the front partition member 420. As a result, water drops can be reliably guided to the bottom of the discharge port without increasing the number of parts, and therefore the valley rib 420e is less likely to be deformed or dropped during use of the refrigerator 400. Therefore, a high-quality refrigerator that can maintain a high-quality state during the period of use can be provided at low cost.
 上段リブ420fおよび下段リブ423bは、上段吐出口420bおよび下段吐出口423aの上辺と下辺とに接するリブである。このことにより、吐出口に流れ落ちた水滴は、吐出口に溜まったり、その上辺から離れ下段冷凍室ケース407cに落ちたりすることなく、各リブを伝って吐出口の下まで導かれる。そのため、氷結により上段吐出口420bを閉塞したり下段冷凍室ケース内に水滴が溜まったりする危険性をより低くする高品位な冷蔵庫を提供することが可能となる。 The upper rib 420f and the lower rib 423b are ribs in contact with the upper side and the lower side of the upper discharge port 420b and the lower discharge port 423a. As a result, the water droplets that have flowed down to the discharge port are guided to the bottom of the discharge port through the ribs without accumulating at the discharge port or falling off the upper side and falling into the lower freezer compartment case 407c. Therefore, it is possible to provide a high-quality refrigerator that further reduces the risk of blocking the upper discharge port 420b due to icing or the accumulation of water droplets in the lower freezer compartment case.
 また、下段風路423および第二の冷凍室風路424が、それぞれ下面に下段リブ423bと第二の冷凍室リブ424bを有する。このことにより、風路の下面まで流れ落ちた水滴は、リブを伝い冷気吐出風路の先端から根元まで誘導される。そのため、吐出口周辺の冷気吐出風路先端部から下段冷凍室ケース407cや第二の冷凍室ケース405bに滴下することを防止でき、高品位の冷蔵庫を提供することができる。 Also, the lower air passage 423 and the second freezer compartment air passage 424 each have a lower rib 423b and a second freezer compartment rib 424b on the lower surface. As a result, water drops that have flowed down to the lower surface of the air passage are guided from the tip of the cool air discharge air passage to the base through the rib. Therefore, it can prevent dripping from the front-end | tip part of the cool air discharge air path around a discharge outlet to the lower freezer compartment case 407c and the 2nd freezer compartment case 405b, and can provide a high quality refrigerator.
 さらに下段リブ423bと第二の冷凍室リブ424bの下辺が、下段風路423および第二の冷凍室風路424の下面よりも水平面に対し大きな角度をなす。このことにより、流れてくる水滴は、風路下面よりもリブの下辺に沿って流れようとするため、ガイド部によって確実に水滴を導くことができる。 Furthermore, the lower ribs 423b and the lower sides of the second freezer compartment ribs 424b form a larger angle with respect to the horizontal plane than the lower surfaces of the lower airflow passage 423 and the second freezer compartment air passage 424. As a result, the flowing water droplets tend to flow along the lower side of the rib rather than the lower surface of the air passage, so that the water droplets can be reliably guided by the guide portion.
 このとき、下段リブ423bと第二の冷凍室リブ424bの下辺と水平面とのなす角は10°以上であることより、流れてくる水滴をよりスムーズにガイド部に沿わせて導くことが可能となる。そのため、下段冷凍室ケース407cや第二の冷凍室ケース405bへの滴下をさらに抑制することができる。 At this time, the angle between the lower rib 423b and the lower side of the second freezer compartment rib 424b and the horizontal plane is 10 ° or more, so that it is possible to guide the flowing water droplets along the guide portion more smoothly. Become. Therefore, dripping to the lower freezer compartment case 407c and the second freezer compartment case 405b can be further suppressed.
 (第5の実施の形態)
 図13は本発明の第5の実施の形態における冷蔵庫の仕切部材正面図である。
(Fifth embodiment)
FIG. 13: is a partition member front view of the refrigerator in the 5th Embodiment of this invention.
 なお、第4の実施の形態と同様の構成および同様の技術思想が適用できる部分については、説明を省略するが、不具合がない限り第4の実施の形態の構成に本実施の形態を組み合わせて適用することが可能である。 In addition, although description is abbreviate | omitted about the part which can apply the same structure and the same technical idea as 4th Embodiment, this embodiment is combined with the structure of 4th Embodiment as long as there is no malfunction. It is possible to apply.
 図13において、前仕切部材520は図9の前仕切部材420と同様にして、第二の冷凍室405および製氷室406、第一の冷凍室407からなる貯蔵室と分配風路422とを区画する。前仕切部材520は、下段冷凍室ケース407cと上段冷凍室ケース407bの間に一体または別体で下段風路523を有し、下段風路523はその先端に下段吐出口523aを有する。 In FIG. 13, the front partition member 520 divides the storage chamber composed of the second freezing chamber 405, the ice making chamber 406, and the first freezing chamber 407 from the distribution air passage 422 in the same manner as the front partition member 420 of FIG. 9. To do. The front partition member 520 has a lower air passage 523 integrally or separately between the lower freezer compartment case 407c and the upper freezer compartment case 407b, and the lower air passage 523 has a lower outlet 523a at the tip thereof.
 また、前仕切部材520は、下段風路523の上方から側方にかけて雁垂れリブ520dを有する。雁垂れリブは下段風路523と同数設けられ、上面は中央部が最も高い山形形状を有し、上面の左端から伸びた側面は略垂直でその下端は下段風路523の下面より下に達する。また、雁垂れリブ520d上面のうち側面を持たない右端は右隣の雁垂れリブ520dの上面の上方に位置する。雁垂れリブ520d右端と右隣の雁垂れリブ520dの左上面との隙は、水滴が流れ易いように5mm以上空けることが望ましい。 Further, the front partition member 520 has a hanging rib 520d from the upper side of the lower air passage 523 to the side. The number of drooping ribs is the same as the number of lower air passages 523, the upper surface has the highest mountain shape at the center, the side surface extending from the left end of the upper surface is substantially vertical, and the lower end reaches below the lower surface of the lower air passage 523. . The right end of the upper surface of the drooping rib 520d that does not have a side surface is located above the upper surface of the drooping rib 520d adjacent to the right. The gap between the right end of the drooping rib 520d and the left upper surface of the drooping rib 520d adjacent to the right is preferably 5 mm or more so that water drops can easily flow.
 なお、側辺は上辺の右側に設けてもよく、また第4の実施の形態の山形リブ420dと併用しても良い。 In addition, the side may be provided on the right side of the upper side, or may be used in combination with the chevron rib 420d of the fourth embodiment.
 以上のように構成された本発明の第5の実施の形態における冷蔵庫について、以下その動作を説明する。 The operation of the refrigerator according to the fifth embodiment of the present invention configured as described above will be described below.
 雁垂れリブ520dより上方で発生した水滴は、前仕切部材520の表面を伝って雁垂れリブ520dまで流れてくる。雁垂れリブ520dに到達した水滴は雁垂れリブ520dの上面の傾斜によって下方へ分かれて流れる。このとき、左方向へ流れた水滴はそのまま雁垂れリブ520dの側面に沿って下段風路523よりも下まで誘導される。逆に右方向へ流れた水滴は雁垂れリブ520dの上面右端より雁垂れリブ520dから離れ、前仕切部材520表面を伝って下へ流れる。ここで、雁垂れリブ520d右端は右隣の雁垂れリブ520dの左上面上方に位置する。このため、雁垂れリブ520dの右端から流れた水滴は右隣の雁垂れリブ520dの左上面によって受け止められ、左方向へ流れた水滴と同様にして側面に沿って下段風路523よりも下まで誘導される。 Water droplets generated above the drooping rib 520d flow along the surface of the front partition member 520 to the drooping rib 520d. The water droplets that have reached the drooping rib 520d are divided and flow downward by the inclination of the upper surface of the drooping rib 520d. At this time, the water droplets flowing in the left direction are directly guided to the lower side of the lower air passage 523 along the side surface of the drooping rib 520d. Conversely, the water droplets flowing in the right direction are separated from the drooping rib 520d from the right end of the upper surface of the drooping rib 520d, and flow downward along the surface of the front partition member 520. Here, the right end of the drooping rib 520d is located above the upper left surface of the drooping rib 520d adjacent to the right. For this reason, the water droplets flowing from the right end of the drooping rib 520d are received by the upper left surface of the drooping rib 520d adjacent to the right, and in the same way as the water droplets flowing leftward, below the lower air path 523 along the side surface. Be guided.
 ここで、雁垂れリブ520dは上面と側面が繋がっているため、下段風路523の上方で受け取った水滴を離すことなく下段風路523の下まで導くことができる。従って、受け取った水滴をより確実に下段風路523、下段吐出口523aから遠ざけることができる。このように水滴を受ける部分と導く部分とを組み合わせて構成することで、更に効果を高めることができる。 Here, since the drooping rib 520d is connected to the upper surface and the side surface, it is possible to guide the water drop received above the lower air passage 523 to the lower air passage 523 without releasing it. Therefore, the received water droplet can be more reliably moved away from the lower air passage 523 and the lower outlet 523a. Thus, the effect can be further enhanced by combining the portion for receiving the water droplet and the portion for guiding the water droplet.
 なお、最右の雁垂れリブ520dの右端の下方には実施の形態1の谷間リブ420eを設けることで、右端から流れた水滴を下段風路523の下まで誘導できる。 In addition, by providing the valley rib 420e of the first embodiment below the right end of the rightmost drooping rib 520d, water droplets flowing from the right end can be guided to the bottom of the lower air passage 523.
 以上のように、本実施の形態では、雁垂れリブ520d上面は下段吐出口523aの幅よりも大きい幅を有することにより、下段吐出口523aの上方にできた水滴が、雁垂れリブ520dを伝って下段風路を左右に回避して下に流れ落ちる。従って、水滴が下段風路523から下段冷凍室ケースに落ちることを抑制するため、貯蔵物を載置する下段冷凍室ケースに溜まることなく、高品位な冷蔵庫を提供することが可能となる。 As described above, in the present embodiment, the upper surface of the drooping rib 520d has a width larger than the width of the lower discharge port 523a, so that water droplets formed above the lower discharge port 523a travel along the drooping rib 520d. Then, it flows down, avoiding the lower air path to the left and right. Therefore, in order to prevent water droplets from falling from the lower air passage 523 to the lower freezer compartment case, it is possible to provide a high-quality refrigerator without accumulating in the lower freezer compartment case on which stored items are placed.
 雁垂れリブ520dの上面は、左右両端が最も低い山形状を有することにより、下段吐出口523aの上方に生成した水滴は雁垂れリブ520dまで流れ落ちた後、溜まることなくすぐさま下へ流れ落ちる。そのため、溜まった水滴が雁垂れリブを乗り越えて正面から下段吐出口523aへ落下することを防止することが可能となる。 The upper surface of the drooping rib 520d has the lowest mountain shape at the left and right ends, so that water droplets generated above the lower discharge port 523a flow down to the drooping rib 520d and immediately flow down without collecting. Therefore, it is possible to prevent the accumulated water droplets from dripping over the ribs and falling from the front to the lower discharge port 523a.
 また、雁垂れリブ520dはその側面が下段風路523の側方を通り、下段風路523の下まで伸びていることにより、雁垂れリブ520dの上面で受けた水滴は離れることなく下段風路523の下まで確実に導くことができる。 Further, since the drooping rib 520d has a side surface passing through the side of the lower air passage 523 and extending below the lower air passage 523, water drops received on the upper surface of the drooping rib 520d are not separated from the lower air passage. It can be reliably guided to below 523.
 以上のように、本発明は、複数の貯蔵室と、貯蔵室を冷却する冷気を生成する冷却器と、冷却器で生成された冷気を強制的に貯蔵室に送風する送風機とを備える。加えて、送風機から吐出された冷気を貯蔵室それぞれへ分配する分配風路と、分配風路と貯蔵室との間に位置する前仕切部材と、分配風路と冷却器との間に位置する後仕切部材とを備える。そして、分配風路内に、前仕切部材と後仕切部材の少なくともどちらか一方により構成される冷気ガイド部を有する。 As described above, the present invention includes a plurality of storage chambers, a cooler that generates cool air for cooling the storage chamber, and a blower that forcibly blows the cool air generated by the cooler into the storage chamber. In addition, a distribution air passage that distributes the cool air discharged from the blower to each of the storage chambers, a front partition member that is positioned between the distribution air passage and the storage chamber, and a space between the distribution air passage and the cooler. And a rear partition member. And it has the cool air guide part comprised by at least any one of a front partition member and a rear partition member in a distribution air path.
 これにより、分配風路の外殻を構成する前仕切部材および後仕切部材が冷気の流れを決定するガイドの役割も果たすため、風路を構成する部品点数を最小限に抑えることができる。そして、冷気がスムーズに流れる非常に滑らかな分配風路内を構成することができ、送風効率を向上させることにより消費電力を低減することが可能となる。また、前仕切部材および後仕切部材のみで構成することができるため、材料費、加工工数が増えないだけでなく、送風効率を低下させる風路断面積の小型化を行うことなく仕切部材全体の体積を小さくすることが可能となる。そのため、貯蔵空間を増加させることができるためユーザの使い勝手を向上させることができる。 Thereby, since the front partition member and the rear partition member constituting the outer shell of the distribution air passage also serve as a guide for determining the flow of the cold air, the number of parts constituting the air passage can be minimized. And the inside of the very smooth distribution wind path through which cool air flows smoothly can be comprised, and it becomes possible to reduce power consumption by improving ventilation efficiency. In addition, since it can be configured only by the front partition member and the rear partition member, not only the material cost and the processing man-hour are not increased, but also the entire partition member is reduced without reducing the air passage cross-sectional area that reduces the air blowing efficiency. The volume can be reduced. Therefore, since the storage space can be increased, user convenience can be improved.
 また、本発明は、分配風路の下流部は複数の風路に分岐され、複数の貯蔵室に連通する複数の吐出口を有し、冷気ガイド部は、送風機に対向する位置に設けられた第一の面と、第一の面に隣接しない風路に隣接する第二の面とを有する。これにより、送風機より吐出された冷気を複数ある貯蔵室へそれぞれ必要な量の冷気を分配し効率よく導くことができるため、送風ロスを増加させることなく各貯蔵室を所定の温度に冷却することが可能となる。 Further, according to the present invention, the downstream portion of the distribution air passage is branched into a plurality of air passages, has a plurality of discharge ports communicating with the plurality of storage chambers, and the cold air guide portion is provided at a position facing the blower. A first surface and a second surface adjacent to the air passage not adjacent to the first surface; As a result, it is possible to efficiently distribute the necessary amount of cool air discharged from the blower to a plurality of storage chambers, and to cool each storage chamber to a predetermined temperature without increasing the air loss. Is possible.
 また、本発明は、第一の面と第二の面とが鋭角を構成する。これにより、送風機の吐出冷気が渦を作りやすいコーナー部などを廃止することが可能となるため、より効率よく各貯蔵室への送風を行うことができる冷蔵庫を提供することができる。 In the present invention, the first surface and the second surface form an acute angle. Thereby, since it becomes possible to abolish a corner part etc. in which the discharge cold air of a blower tends to make a vortex, the refrigerator which can blow air to each storage room more efficiently can be provided.
 また、本発明は、第一の面と第二の面とが連続した面で構成される。これにより、分配風路下流部の分岐点が一本の線となるため、面により冷気を分岐させることがなくなり、送風機から吐出された冷気は確実にどちらかの先端風路へと導かれることにより、よどみや渦など送風効率を低下させる減少を防止することができる。 Further, the present invention is constituted by a surface in which the first surface and the second surface are continuous. As a result, the branch point downstream of the distribution air passage becomes a single line, so that the cold air is not branched by the surface, and the cold air discharged from the blower is reliably guided to one of the front air passages. Therefore, it is possible to prevent a decrease in air blowing efficiency such as stagnation and vortex.
 また、本発明は、第一の面と第二の面が、前仕切部材または後仕切部材の少なくともどちらか一方に形成されたリブにより構成され。これにより、冷気ガイド部の中を中空とすることが可能となり、さらに材料費を抑えることが可能となる。また、仕切部材を整形する金型の設計変更を容易に行うことができるため、貯蔵室のレイアウト変更に伴う風路の改良や、風路の修正や調整の際のコストを下げることができる。 In the present invention, the first surface and the second surface are constituted by ribs formed on at least one of the front partition member and the rear partition member. As a result, the inside of the cold air guide portion can be made hollow, and the material cost can be further reduced. Moreover, since the design change of the metal mold | die which shapes a partition member can be performed easily, the cost at the time of the improvement of an air path accompanying the layout change of a storage chamber, and correction and adjustment of an air path can be reduced.
 また、本発明は、第一の面と第二の面が、前仕切部材または後仕切部材の少なくともどちらか一方に形成された凹凸部により構成される。これにより、冷気ガイド部を中空とし材料費を抑えながらも、冷気ガイド部内に回りこむ冷気の無駄な流れを防止することができるため、よりスムーズな風路を提供することができる。 Further, in the present invention, the first surface and the second surface are constituted by uneven portions formed on at least one of the front partition member and the rear partition member. This makes it possible to prevent a wasteful flow of cool air flowing into the cool air guide portion while reducing the material cost by making the cool air guide portion hollow, thereby providing a smoother air path.
 また、本発明は、凹凸部が、一体で形成される前仕切部材または後仕切部材の基準面に対し、冷蔵庫本体前後方向について分配風路の内側に突出している。これにより、分配風路内の無効空間に冷気が流れることを防止することができるため、より効率的な送風が可能となる。また、風路内に突出させることで、分配風路の外側への突出を最小限に抑えることができ、仕切部材全体の占める容積を小さくすることが可能となり、貯蔵室容積をより大きくすることができる。 Further, in the present invention, the concavo-convex portion protrudes inside the distribution air passage in the front-rear direction of the refrigerator main body with respect to the reference surface of the front partition member or the rear partition member formed integrally. Thereby, since it is possible to prevent the cool air from flowing into the invalid space in the distribution air passage, more efficient air blowing is possible. Further, by projecting into the air passage, the outward projection of the distribution air passage can be minimized, the volume occupied by the entire partition member can be reduced, and the storage chamber volume can be increased. Can do.
 また、本発明は、冷気ガイド部が、前仕切部材および後仕切部材の両方により構成される。これにより、単一の仕切部材の奥行き寸法を小さくすることが可能となり、加工性を向上させることができる。 Further, in the present invention, the cold air guide portion is constituted by both the front partition member and the rear partition member. Thereby, it becomes possible to make the depth dimension of a single partition member small, and it can improve workability.
 また、本発明は、前仕切部材が、送風機に対向する面に分配風路内側に向かって突出した面からなる冷気整流部を有する。これにより、送風機より吐出された冷気は冷気整流部によって放射状に整流され分配風路内に流れ込むため、送風機と前仕切部材との間に発生する渦を抑制することができ、よりスムーズに冷気を送風することが可能となる。 Further, according to the present invention, the front partition member has a cold air rectification unit including a surface protruding toward the inside of the distribution air passage on a surface facing the blower. As a result, the cold air discharged from the blower is rectified radially by the cold air rectification unit and flows into the distribution air passage, so that vortices generated between the blower and the front partition member can be suppressed, and the cold air can be more smoothly discharged. It is possible to blow.
 また、本発明は、冷気整流部が略円形を有し、第一の面は冷気整流部と略同心円となる曲線を有する。これにより、送風機の回転に伴う冷気の旋回方向の速度に合わせて冷気ガイド部を構成することが可能となり、冷気を失速させることなく吐出口まで導くことができる。 Further, according to the present invention, the cold air rectification portion has a substantially circular shape, and the first surface has a curve that is substantially concentric with the cold air rectification portion. Accordingly, it is possible to configure the cool air guide unit in accordance with the speed of the cool air in the swirling direction accompanying the rotation of the blower, and it is possible to guide the cool air to the discharge port without stalling.
 また、本発明は、複数の貯蔵室へ冷気を送る風路内に、開口面積を調節できるダンパを備える。これにより、ダンパにより所定の貯蔵室への送風量を状況に応じて調整することが可能となるため、各貯蔵室の温度を独立して制御できるため、より緻密に温度調整ことができる。 Further, the present invention includes a damper capable of adjusting the opening area in an air passage that sends cold air to a plurality of storage rooms. Thereby, since it becomes possible to adjust the ventilation volume to a predetermined | prescribed storage room according to a condition with a damper, since the temperature of each storage room can be controlled independently, temperature adjustment can be carried out more precisely.
 また、本発明は、第一の面と第二の面の接点が、送風機の中心点を含む水平面よりも上側に位置する。これにより、除霜中に送風機よりもれ出た暖気が上へ上がる際に複数の先端風路に入ることができるため、分配風路内により多くの暖気を溜め込むことが可能となり、貯蔵室まで漏れる暖気の量を少なくすることが可能となる。 In the present invention, the contact point between the first surface and the second surface is located above the horizontal plane including the center point of the blower. As a result, the warm air leaked from the blower during defrosting can enter a plurality of tip air passages when it rises, so it becomes possible to store more warm air in the distribution air passage, It is possible to reduce the amount of warm air that leaks.
 また、本発明は、貯蔵室と、貯蔵室を冷却する冷気を生成する冷却室と、冷却室に設けられ冷却器と、冷却器で生成された冷気を強制的に貯蔵室に送風する送風機とを備える。加えて、貯蔵室と冷却室とを区画する仕切部材と、仕切部材に設けられ貯蔵室に冷気を吐出する吐出口と、貯蔵室に設けられて貯蔵物を載置する載置部材とを備え、吐出口が載置部材の後端部より前方に位置する。そして、吐出口の周辺に、載置部材内への水垂れを防止する水きり構造を備える。これにより、吐出口周辺に発生した水滴または吐出口上方より流れてきた水滴を、吐出口を回避して吐出口の下まで流れるように導くことができるため、吐出口での滞留と載置部材への滴下を防止する高品位な冷蔵庫を提供することが可能となる。 The present invention also includes a storage chamber, a cooling chamber that generates cool air for cooling the storage chamber, a cooler provided in the cooling chamber, and a blower that forcibly blows the cool air generated by the cooler to the storage chamber. Is provided. In addition, a partition member that divides the storage chamber and the cooling chamber, a discharge port that is provided in the partition member and discharges cold air to the storage chamber, and a mounting member that is provided in the storage chamber and mounts stored items are provided. The discharge port is located in front of the rear end portion of the mounting member. And the drainage structure which prevents the dripping of water in a mounting member is provided in the periphery of a discharge outlet. As a result, water droplets generated around the discharge port or water droplets flowing from above the discharge port can be guided so as to flow under the discharge port while avoiding the discharge port. It becomes possible to provide a high-quality refrigerator that prevents dripping.
 また、本発明は、水切り構造を、吐出口より上方に吐出口の幅よりも大きい幅を有する突起部で構成する。これにより、吐出口の上方にできた水滴は、突起部により受け止められ冷気吐出風路を左右に回避して吐出口の両側より下に流れ落ちる。従って、吐出口での滞留と載置部材への滴下を防止する高品位な冷蔵庫を提供することが可能となる。 Further, according to the present invention, the draining structure is constituted by a protrusion having a width larger than the width of the discharge port above the discharge port. As a result, the water droplets formed above the discharge port are received by the protrusions and flow downward from both sides of the discharge port while avoiding the cold air discharge air passage from side to side. Therefore, it is possible to provide a high-quality refrigerator that prevents staying at the discharge port and dripping onto the mounting member.
 また、本発明は、突起部上面を、左右両端の少なくともどちらか一方が最も低い位置で構成する。これにより、吐出口の上方に生成した水滴は突起部まで流れ落ちた後、突起部に溜まることなくすぐさま低い位置に流れ落ちるため、より確実に吐出口での滞留と載置部材にも滴下を防止することが可能となる。 Further, in the present invention, the upper surface of the protrusion is configured at a position where at least one of the left and right ends is the lowest. As a result, the water droplets generated above the discharge port flow down to the protrusion and then immediately flow down to a lower position without accumulating in the protrusion, thus more reliably preventing the stay at the discharge port and dripping on the mounting member. It becomes possible.
 また、本発明は、突起部上面が、水平面に対し5°以上の角度を有する。これにより、突起部に落ちてきた水はよりスムーズに低い位置へ流れることが可能となる。 In the present invention, the upper surface of the protrusion has an angle of 5 ° or more with respect to the horizontal plane. Thereby, the water that has fallen on the protrusion can flow to a lower position more smoothly.
 また、本発明は、水切り構造を、吐出口周辺に鉛直方向に構成されたガイド部で構成する。これにより、吐出口周辺に発生した水滴または吐出口上方より流れてきた水滴は、吐出口ではなくガイド部に引き寄せられガイド部を伝って更に下へ流れていくため、吐出口での滞留と載置部材への滴下を防止する高品位な冷蔵庫を提供することが可能となる。 Further, according to the present invention, the draining structure is constituted by a guide portion configured in the vertical direction around the discharge port. As a result, the water droplets generated around the discharge port or the water droplets flowing from above the discharge port are attracted not to the discharge port but to the guide unit and flow further down the guide unit. It is possible to provide a high-quality refrigerator that prevents dripping on the mounting member.
 また、本発明は、水切り構造を、吐出口より上方に吐出口の幅よりも大きい幅を有する突起部と、吐出口周辺に鉛直方向に構成されたガイド部とで構成し、ガイド部を、突起部の左右両端の少なくともどちらか一方の下方周辺に設ける。これにより、冷気吐出風路を左右方向に回避して突起部の両端から流れ落ちた水滴は、ガイド部に沿って流れるため、突起部から離れた水滴が再び吐出口へ流れる危険性を最小限に抑えることができる。 Further, the present invention comprises a draining structure comprising a protrusion having a width larger than the width of the discharge port above the discharge port, and a guide portion configured in the vertical direction around the discharge port, Provided at the lower periphery of at least one of the left and right ends of the protrusion. As a result, water drops that have flowed down from both ends of the protrusion while avoiding the cool air discharge air passage in the left-right direction flow along the guide part, thus minimizing the risk of water drops away from the protrusion to the discharge port again. Can be suppressed.
 また、本発明は、ガイド部を、吐出口の側方に設けられたリブ形状とする。これにより、部品点数を増やすことなく水滴を吐出口の下まで誘導することができるため、ガイド部が使用の中で変形や脱落することを低減し、出口での滞留と載置部材への滴下を防止する機能を使用期間中保つことができる高品質な冷蔵庫を安価に提供することができる。 Further, according to the present invention, the guide portion has a rib shape provided on the side of the discharge port. As a result, water droplets can be guided to the bottom of the discharge port without increasing the number of parts, so that the guide part is reduced from being deformed or dropped during use, and staying at the outlet and dripping onto the mounting member It is possible to provide a high-quality refrigerator that can keep the function of preventing the use during the period of use at low cost.
 また、本発明は、ガイド部を、吐出口の上辺と下辺とに接するリブ形状とする。これにより、水滴はガイド部を伝って吐出口の下まで導かれるため、吐出口での滞留と載置部材への滴下を防止する高品位な冷蔵庫を提供することが可能となる。 Further, in the present invention, the guide portion has a rib shape in contact with the upper side and the lower side of the discharge port. Accordingly, since the water droplets are guided to the bottom of the discharge port through the guide portion, it is possible to provide a high-quality refrigerator that prevents staying at the discharge port and dripping onto the mounting member.
 また、本発明は、ガイド部を、吐出口へ冷気を導く吐出風路の下面に突出したリブとする。これにより、吐出口の下に流れ落ちた水滴は、リブを伝い冷気吐出風路の先端から根元まで誘導されるため、吐出口周辺の冷気吐出風路先端部から載置部材に滴下することを防止でき、高品位の冷蔵庫を提供することができる。 Further, in the present invention, the guide portion is a rib protruding from the lower surface of the discharge air passage that guides cold air to the discharge port. As a result, the water droplets that have flowed down under the discharge port are guided from the tip of the cool air discharge air passage to the root through the rib, so that it is prevented from dripping onto the mounting member from the front end of the cold air discharge air passage around the discharge port. And a high-quality refrigerator can be provided.
 また、本発明は、ガイド部を、吐出口へ冷気を導く吐出風路の上面に突出したリブとする。これにより、吐出風路の上面に流れ落ちた水滴は、リブに引き寄せられ誘導されるため、吐出口周辺の冷気吐出風路先端部から載置部材に滴下することを防止でき、高品位の冷蔵庫を提供することができる。 Also, in the present invention, the guide portion is a rib protruding from the upper surface of the discharge air passage that guides cold air to the discharge port. As a result, the water droplets that have flowed down to the upper surface of the discharge air passage are attracted to and guided by the ribs, so that they can be prevented from dripping onto the mounting member from the front end of the cold air discharge air passage around the discharge port, and a high-quality refrigerator can be installed. Can be provided.
 また、本発明は、ガイド部の下辺と水平面のなす角を、冷気吐出風路の下面と水平面のなす角より大きくする。これにより、流れてくる水滴は、冷気吐出風路下面よりもガイド部の下辺に沿って流れようとするため、ガイド部によって確実に水滴を導くことができる。 Further, according to the present invention, the angle formed between the lower side of the guide portion and the horizontal plane is made larger than the angle formed between the lower surface of the cool air discharge air passage and the horizontal plane. Thereby, since the flowing water droplet tends to flow along the lower side of the guide portion from the lower surface of the cool air discharge air passage, the water droplet can be reliably guided by the guide portion.
 また、本発明は、ガイド部の下辺と水平面とのなす角を10°以上とする。これにより、流れてくる水滴をよりスムーズにガイド部に沿わせて導くことが可能となるため、さらに載置部材への滴下を抑制することができる。 Further, according to the present invention, the angle formed by the lower side of the guide portion and the horizontal plane is 10 ° or more. Thereby, since it becomes possible to guide the flowing water droplets along the guide portion more smoothly, dripping onto the mounting member can be further suppressed.
 以上のように、本発明にかかる冷蔵庫は、送風機より吐出された冷気を効率よく複数の貯蔵室へ提供しそれぞれの温度に冷却することができる冷蔵庫を安価に提供することができるので、ショーケースなど送風技術を利用した冷却器等の商品にも適用できる。 As described above, the refrigerator according to the present invention can provide the refrigerator that can efficiently cool the air discharged from the blower to the plurality of storage rooms and cool it to the respective temperatures. It can also be applied to products such as coolers using air blowing technology.
 1 仕切部材
 1a 前仕切板
 1b 断熱材
 2,62 冷却器室
 3,34 冷凍室
 4 ダンパ装置
 5,63 送風機
 6 後仕切板
 7 冷蔵室用風路
 8 冷凍室用風路
 8a 冷凍室冷却口
 30 冷蔵庫本体
 31 冷凍温度室
 32 急速冷凍室
 33,106,406 製氷室(貯蔵室)
 36,104,404 冷蔵室(貯蔵室)
 37,108,408 野菜室(貯蔵室)
 41 急速冷凍容器
 42 上段容器
 42c,43c,44c 容器フランジ部後壁
 43 中段容器
 44 下段容器
 50 仕切部材
 50a 冷気通路
 52,53,54 冷気吐出風路
 52a,53a,54a 吐出口
 61 冷却器
 100,400 冷蔵庫
 101,401 断熱箱体
 101a,401a 機械室
 102,402 外箱
 103,403 内箱
 104a,404a 冷蔵室右扉
 104b,404b 冷蔵室左扉
 104c,404c 冷蔵室棚
 104d,404d 冷蔵室ケース
 105,405 第二の冷凍室(貯蔵室)
 105a,405a 第二の冷凍室扉
 105b,405b 第二の冷凍室ケース
 106a,406a 製氷室扉
 107,407 第一の冷凍室(貯蔵室)
 107a,407a 第一の冷凍室扉
 107b,407b 上段冷凍室ケース
 107c,407c 下段冷凍室ケース
 108a,408a 野菜室扉
 108b,408b 上段野菜室ケース
 108c,408c 下段野菜室ケース
 109,409 圧縮機
 110,410 冷却室
 111,211,311,411 仕切部材
 112,412 冷却器
 113,413 送風機
 114,414 ラジアント加熱手段
 115,415 ドレンパン
 116,416 ドレンチューブ
 117,417 蒸発皿
 118,418 仕切壁
 118a,318a 冷蔵室接続風路
 118b,318b 野菜室接続風路
 119 ダンパ
 120,420,520 前仕切部材
 120a,420a 冷気整流部
 120b 第一の冷凍室用吐出口
 121,421 後仕切部材
 122,222,322,422 分配風路
 122a,222a,322a 冷蔵室用風路
 122b,222b,322b 第二の冷凍室用風路
 122c,222c,322c 第一の冷凍室用風路
 122d,222d,322d 製氷室用風路
 123,223,323 左上冷気ガイド部
 123a 前ガイド部
 123b 後ガイド部
 123c ガイド凸部
 123d ガイドリブ
 123e,223e 内側面(第一の面)
 123f,223f 外側面(第二の面)
 124,224,324 右上冷気ガイド部
 125,225,325 左下冷気ガイド部
 126,226,326 右下冷気ガイド部
 126a,226a 上面(第一の面)
 126b,226b 下面(第二の面)
 127,327 第二の冷凍室用吐出口
 128,328 製氷室用吐出口
 129,329 野菜室用吐出口
 319a ツインダンパ
 319b 第二の冷凍室用ダンパ
 319c 製氷室用ダンパ
 319d 冷蔵室用開口部
 319e 野菜室用開口部
 420b 上段吐出口
 420c 傾斜リブ
 420d 山形リブ
 420e 谷間リブ
 420f 上段リブ
 423,523 下段風路
 423a,523a 下段吐出口
 423b 下段リブ
 424 冷凍室風路
 424a 第二の冷凍室吐出口
 424b 第二の冷凍室リブ
 425 製氷室風路
 425a 製氷室吐出口
 520d 雁垂れリブ
DESCRIPTION OF SYMBOLS 1 Partition member 1a Front partition plate 1b Heat insulating material 2,62 Cooler room 3,34 Freezer room 4 Damper device 5,63 Blower 6 Rear partition plate 7 Air path for refrigerator compartment 8 Air path for freezer compartment 8a Freezer compartment cooling port 30 Refrigerator body 31 Freezing temperature room 32 Quick freezing room 33, 106, 406 Ice making room (storage room)
36, 104, 404 Refrigerated room (storage room)
37,108,408 Vegetable room (storage room)
41 Quick-frozen container 42 Upper container 42c, 43c, 44c Container flange rear wall 43 Middle container 44 Lower container 50 Partition member 50a Cold air passage 52, 53, 54 Cold air discharge air passage 52a, 53a, 54a Discharge port 61 Cooler 100, 400 Refrigerator 101, 401 Heat insulation box 101a, 401a Machine room 102, 402 Outer box 103, 403 Inner box 104a, 404a Refrigeration room right door 104b, 404b Refrigeration room left door 104c, 404c Refrigeration room shelf 104d, 404d Refrigeration room case 105 405 Second freezer compartment (storage room)
105a, 405a Second freezer compartment door 105b, 405b Second freezer compartment case 106a, 406a Ice making door 107, 407 First freezer compartment (storage room)
107a, 407a First freezer compartment door 107b, 407b Upper freezer compartment case 107c, 407c Lower freezer compartment case 108a, 408a Vegetable compartment door 108b, 408b Upper vegetable compartment case 108c, 408c Lower vegetable compartment case 109, 409 Compressor 110, 410 Cooling chamber 111, 211, 311, 411 Partition member 112, 412 Cooler 113, 413 Blower 114, 414 Radiant heating means 115, 415 Drain pan 116, 416 Drain tube 117, 417 Evaporating dish 118, 418 Partition wall 118a, 318a Refrigeration Room connection air path 118b, 318b Vegetable room connection air path 119 Damper 120, 420, 520 Front partition member 120a, 420a Cold air rectification unit 120b First freezer compartment outlet 121, 421 Rear partition member 122, 22 2,322,422 Distributing air passages 122a, 222a, 322a Refrigerating room air passages 122b, 222b, 322b Second freezer compartment air passages 122c, 222c, 322c First freezer compartment air passages 122d, 222d, 322d Ice making Room air passage 123, 223, 323 Upper left cold air guide part 123a Front guide part 123b Rear guide part 123c Guide convex part 123d Guide ribs 123e, 223e Inner side surface (first surface)
123f, 223f Outside surface (second surface)
124, 224, 324 Upper right cool air guide part 125, 225, 325 Lower left cool air guide part 126, 226, 326 Right lower cool air guide part 126a, 226a Upper surface (first surface)
126b, 226b Lower surface (second surface)
127,327 Second freezer discharge port 128,328 Ice chamber discharge port 129,329 Vegetable room discharge port 319a Twin damper 319b Second freezer damper 319c Ice chamber damper 319d Refrigeration chamber opening 319e Vegetable room opening 420b Upper discharge port 420c Inclined rib 420d Angle rib 420e Valley rib 420f Upper rib 423,523 Lower air passage 423a, 523a Lower air discharge port 423b Lower air rib 424 Freezer compartment air passage 424a Second freezer compartment discharge port 424b Second freezer compartment rib 425 Icemaker air channel 425a Icemaker outlet 520d Drooping rib

Claims (24)

  1. 複数の貯蔵室と、前記貯蔵室を冷却する冷気を生成する冷却器と、前記冷却器で生成された冷気を強制的に前記貯蔵室に送風する送風機と、前記送風機から吐出された冷気を前記貯蔵室それぞれへ分配する分配風路と、前記分配風路と前記貯蔵室との間に位置する前仕切部材と、前記分配風路と前記冷却器との間に位置する後仕切部材とを備え、前記分配風路内に、前記前仕切部材と前記後仕切部材の少なくともどちらか一方により構成される冷気ガイド部を有する冷蔵庫。 A plurality of storage chambers; a cooler that generates cool air for cooling the storage chamber; a blower that forcibly blows the cool air generated by the cooler to the storage chamber; and the cool air discharged from the blower A distribution air passage for distributing to each of the storage chambers, a front partition member positioned between the distribution air passage and the storage chamber, and a rear partition member positioned between the distribution air passage and the cooler. A refrigerator having a cold air guide portion configured by at least one of the front partition member and the rear partition member in the distribution air passage.
  2.  前記分配風路の下流部は複数の風路に分岐され、前記複数の貯蔵室に連通する複数の吐出口を有し、前記冷気ガイド部は、前記送風機に対向する位置に設けられた第一の面と、前記第一の面に隣接しない風路に隣接する第二の面とを有する請求項1に記載の冷蔵庫。 A downstream portion of the distribution air passage is branched into a plurality of air passages, has a plurality of outlets communicating with the plurality of storage chambers, and the cold air guide portion is provided at a position facing the blower. The refrigerator according to claim 1, having a second surface and a second surface adjacent to the air passage not adjacent to the first surface.
  3.  前記第一の面と前記第二の面とが鋭角を構成する請求項2に記載の冷蔵庫。 The refrigerator according to claim 2, wherein the first surface and the second surface form an acute angle.
  4.  前記第一の面と前記第二の面とが連続した面で構成された請求項2または3のいずれかに記載の冷蔵庫。 The refrigerator according to claim 2 or 3, wherein the first surface and the second surface are continuous surfaces.
  5.  前記第一の面と前記第二の面は、前記前仕切部材または前記後仕切部材の少なくともどちらか一方に形成されたリブにより構成された請求項2または3のいずれかに記載の冷蔵庫。 The refrigerator according to claim 2 or 3, wherein the first surface and the second surface are configured by ribs formed on at least one of the front partition member and the rear partition member.
  6.  前記第一の面と前記第二の面は、前記前仕切部材または前記後仕切部材の少なくともどちらか一方に形成された凹凸部により構成された請求項2または3のいずれかに記載の冷蔵庫。 The refrigerator according to any one of claims 2 and 3, wherein the first surface and the second surface are constituted by uneven portions formed on at least one of the front partition member and the rear partition member.
  7.  前記凹凸部は、一体で形成される前記前仕切部材または前記後仕切部材の基準面に対し、冷蔵庫本体前後方向について前記分配風路の内側に突出している請求項6に記載の冷蔵庫。 The refrigerator according to claim 6, wherein the concavo-convex portion protrudes inside the distribution air passage in the front-rear direction of the refrigerator body with respect to a reference surface of the front partition member or the rear partition member formed integrally.
  8.  前記冷気ガイド部は、前記前仕切部材および前記後仕切部材の両方により構成されたことを特徴とする請求項1から3のいずれかに記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the cold air guide portion is configured by both the front partition member and the rear partition member.
  9.  前記前仕切部材は、前記送風機に対向する面に前記分配風路内側に向かって突出した面からなる冷気整流部を有する請求項1から3のいずれかに記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the front partitioning member has a cold air rectification unit including a surface protruding toward the inside of the distribution air passage on a surface facing the blower.
  10.  前記冷気整流部は円形を有し、前記第一の面は前記冷気整流部と同心円となる曲線を有する請求項9に記載の冷蔵庫。 The refrigerator according to claim 9, wherein the cold air rectification unit has a circular shape, and the first surface has a curve that is concentric with the cold air rectification unit.
  11.  前記複数の貯蔵室へ冷気を送る風路内に、開口面積を調節できるダンパを備えた請求項1から3のいずれかに記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, further comprising a damper capable of adjusting an opening area in an air passage for sending cold air to the plurality of storage rooms.
  12.  前記第一の面と前記第二の面の接点は、前記送風機の中心点を含む水平面よりも上側に位置することを特徴とする請求項2または3のいずれかに記載の冷蔵庫。 4. The refrigerator according to claim 2, wherein the contact point between the first surface and the second surface is located above a horizontal plane including a center point of the blower.
  13. 貯蔵室と、前記貯蔵室を冷却する冷気を生成する冷却室と、前記冷却室に設けられ冷却器と、前記冷却器で生成された冷気を強制的に前記貯蔵室に送風する送風機と、前記貯蔵室と前記冷却室とを区画する仕切部材と、前記仕切部材に設けられ前記貯蔵室に冷気を吐出する吐出口と、前記貯蔵室に設けられて貯蔵物を載置する載置部材とを備え、前記吐出口が前記載置部材の後端部より前方に位置し、前記吐出口の周辺に、前記載置部材内への水垂れを防止する水切り構造を備えた冷蔵庫。 A storage chamber, a cooling chamber that generates cool air for cooling the storage chamber, a cooler provided in the cooling chamber, a blower that forcibly blows the cool air generated by the cooler to the storage chamber, and A partition member that partitions the storage chamber and the cooling chamber; a discharge port that is provided in the partition member and that discharges cool air to the storage chamber; and a mounting member that is provided in the storage chamber and on which stored items are placed. A refrigerator provided with a draining structure in which the discharge port is positioned in front of the rear end portion of the mounting member and prevents dripping into the mounting member around the discharge port.
  14. 前記水切り構造は、前記吐出口より上方に前記吐出口の幅よりも大きい幅を有する突起部で構成された請求項13に記載の冷蔵庫。 The refrigerator according to claim 13, wherein the draining structure is configured by a protrusion having a width larger than the width of the discharge port above the discharge port.
  15. 前記突起部の上面は、左右両端の少なくともどちらか一方が前記突起部の最も低い位置とした請求項14に記載の冷蔵庫。 The refrigerator according to claim 14, wherein at least one of the left and right ends of the upper surface of the protrusion is at the lowest position of the protrusion.
  16. 前記突起部上面は、水平面に対し5°以上の角度を有する請求項14または15のいずれかに記載の冷蔵庫。 The refrigerator according to claim 14, wherein the upper surface of the protrusion has an angle of 5 ° or more with respect to a horizontal plane.
  17. 前記水切り構造は、前記吐出口周辺に鉛直方向に構成されたガイド部で構成された請求項13に記載の冷蔵庫。 The refrigerator according to claim 13, wherein the draining structure is configured by a guide portion configured in a vertical direction around the discharge port.
  18. 前記水切り構造は、前記吐出口より上方に前記吐出口の幅よりも大きい幅を有する突起部と前記吐出口周辺に鉛直方向に構成されたガイド部とで構成し、前記ガイド部は、前記突起部の左右両端の少なくともどちらか一方の下方周辺に設けられた請求項13に記載の冷蔵庫。 The draining structure includes a protrusion having a width larger than the width of the discharge port above the discharge port and a guide portion configured in a vertical direction around the discharge port, and the guide portion includes the protrusion. The refrigerator of Claim 13 provided in the downward periphery of at least any one of the left-right both ends of a part.
  19. 前記ガイド部は、前記吐出口の側方に設けられたリブである請求項17または18のいずれかに記載の冷蔵庫。 The refrigerator according to claim 17 or 18, wherein the guide part is a rib provided on a side of the discharge port.
  20. 前記ガイド部は、前記吐出口の上辺と下辺とに接するリブ形状である請求項17に記載の冷蔵庫。 The refrigerator according to claim 17, wherein the guide portion has a rib shape in contact with an upper side and a lower side of the discharge port.
  21. 前記ガイド部は、前記吐出口へ冷気を導く吐出風路の下面に突出したリブである請求項17または20のいずれかに記載の冷蔵庫。 The refrigerator according to any one of claims 17 and 20, wherein the guide portion is a rib protruding on a lower surface of a discharge air passage that guides cool air to the discharge port.
  22. 前記ガイド部は、前記吐出口へ冷気を導く吐出風路の上面に突出したリブである請求項17または20のいずれかに記載の冷蔵庫。 The refrigerator according to any one of claims 17 and 20, wherein the guide portion is a rib protruding on an upper surface of a discharge air passage that guides cold air to the discharge port.
  23. 前記ガイド部の下辺と水平面のなす角は、前記吐出風路の下面と水平面のなす角より大きい請求項21に記載の冷蔵庫。 The refrigerator according to claim 21, wherein an angle formed between a lower side of the guide portion and a horizontal plane is larger than an angle formed between a lower surface of the discharge air passage and a horizontal plane.
  24. 前記ガイド部の下辺と水平面とのなす角は10°以上であることを特徴とする請求項21に記載の冷蔵庫。 The refrigerator according to claim 21, wherein an angle formed between a lower side of the guide portion and a horizontal plane is 10 ° or more.
PCT/JP2013/001149 2012-03-06 2013-02-27 Refrigerator WO2013132785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380012768.4A CN104160226B (en) 2012-03-06 2013-02-27 Freezer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-048751 2012-03-06
JP2012048751A JP6145684B2 (en) 2012-03-06 2012-03-06 refrigerator
JP2012-055564 2012-03-13
JP2012055564A JP6028216B2 (en) 2012-03-13 2012-03-13 refrigerator

Publications (1)

Publication Number Publication Date
WO2013132785A1 true WO2013132785A1 (en) 2013-09-12

Family

ID=49116281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001149 WO2013132785A1 (en) 2012-03-06 2013-02-27 Refrigerator

Country Status (2)

Country Link
CN (1) CN104160226B (en)
WO (1) WO2013132785A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116499183A (en) * 2022-01-18 2023-07-28 青岛海尔电冰箱有限公司 Air guide hole structure for refrigeration and freezing device and refrigeration and freezing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325691A (en) * 1997-11-07 1999-11-26 Mitsubishi Electric Corp Refrigerator and manufacture thereof
JP2006078053A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Refrigerator
JP2007071496A (en) * 2005-09-09 2007-03-22 Hitachi Appliances Inc Refrigerator
JP2009139088A (en) * 2009-02-20 2009-06-25 Hitachi Appliances Inc Refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3631316B2 (en) * 1996-01-30 2005-03-23 三菱電機株式会社 refrigerator
KR100222942B1 (en) * 1997-07-31 1999-10-01 윤종용 Refrigerator having air distribution apparatus
TW422332U (en) * 1997-11-07 2001-02-11 Mitsubishi Electric Corp Refrigerator
CN1627006A (en) * 2003-12-12 2005-06-15 乐金电子(天津)电器有限公司 Cold air supplying device in refrigerator
CN2757058Y (en) * 2004-10-10 2006-02-08 广东科龙电器股份有限公司 Wind cooling refrigerator air transport duct
KR20110015792A (en) * 2009-08-10 2011-02-17 주식회사 대우일렉트로닉스 Cool air flow structure for refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325691A (en) * 1997-11-07 1999-11-26 Mitsubishi Electric Corp Refrigerator and manufacture thereof
JP2006078053A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Refrigerator
JP2007071496A (en) * 2005-09-09 2007-03-22 Hitachi Appliances Inc Refrigerator
JP2009139088A (en) * 2009-02-20 2009-06-25 Hitachi Appliances Inc Refrigerator

Also Published As

Publication number Publication date
CN104160226A (en) 2014-11-19
CN104160226B (en) 2016-08-24

Similar Documents

Publication Publication Date Title
KR101631904B1 (en) Refrigerator
KR101260277B1 (en) Refrigerator
JP5838300B2 (en) refrigerator
JP3688892B2 (en) Freezer refrigerator
US8966929B2 (en) Cooled air recirculation in a refrigerator
EP2778577B1 (en) Refrigerator
JP4739926B2 (en) refrigerator
CN101614461A (en) Condensed water collecting device
TWI716636B (en) refrigerator
JP6145684B2 (en) refrigerator
CN109708377A (en) Refrigerator
JP2000018800A (en) Structure of evaporation pan of refrigerator
WO2013132785A1 (en) Refrigerator
JP6028216B2 (en) refrigerator
JP2012237520A (en) Refrigerator
CN100520244C (en) Refrigerator
JP2009036451A (en) Refrigerator
JP2008292140A (en) Refrigerator
CN215002489U (en) Air duct plate assembly of refrigeration equipment and refrigeration equipment with same
CN111886461A (en) Refrigerator with a door
KR0155971B1 (en) Evaporator cover of refrigerators
KR100597292B1 (en) Refrigerator
JP4203662B2 (en) refrigerator
JP6955348B2 (en) refrigerator
KR20010047667A (en) Refrigerator with multiple cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758586

Country of ref document: EP

Kind code of ref document: A1