JP6144030B2 - Reinforcing structure of planar structure and reinforcing method of planar structure - Google Patents

Reinforcing structure of planar structure and reinforcing method of planar structure Download PDF

Info

Publication number
JP6144030B2
JP6144030B2 JP2012236647A JP2012236647A JP6144030B2 JP 6144030 B2 JP6144030 B2 JP 6144030B2 JP 2012236647 A JP2012236647 A JP 2012236647A JP 2012236647 A JP2012236647 A JP 2012236647A JP 6144030 B2 JP6144030 B2 JP 6144030B2
Authority
JP
Japan
Prior art keywords
string
planar structure
ceiling
finishing material
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012236647A
Other languages
Japanese (ja)
Other versions
JP2013177795A (en
Inventor
川口 健一
健一 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012236647A priority Critical patent/JP6144030B2/en
Publication of JP2013177795A publication Critical patent/JP2013177795A/en
Application granted granted Critical
Publication of JP6144030B2 publication Critical patent/JP6144030B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、面状構造体の補強構造及び面状構造体の補強方法に関する。さらに、詳しくは、構造躯体を介して設けられ、内側に空間を形成する面状構造体の補強構造及び面状構造体の補強方法に関する。   The present invention relates to a reinforcing structure for a planar structure and a reinforcing method for the planar structure. More specifically, the present invention relates to a reinforcing structure of a planar structure that is provided via a structural housing and forms a space inside, and a reinforcing method of the planar structure.

従来、例えば天井を含む大面積の仕上材の補強方法として、例えば特許文献1に記載の如きものが知られている。この補強方法では、ワイヤーを天井下地材(野縁や野縁受け)に連結させるため、天井の下面側からの施工が煩雑となっていた。   Conventionally, for example, a method disclosed in Patent Document 1 is known as a method for reinforcing a finishing material having a large area including a ceiling. In this reinforcing method, since the wire is connected to the ceiling base material (field edge or field edge receiver), the construction from the lower surface side of the ceiling is complicated.

特開2008−121371号公報JP 2008-121371 A

かかる従来の実情に鑑みて、本発明は、簡素な構造でありながら施工性に優れ且つ地震や自重等に対する強度を向上させることの可能な面状構造体の補強構造及び面状構造体の補強方法を提供することを目的とする。   In view of such conventional circumstances, the present invention provides a reinforcing structure for a planar structure and a reinforcement for the planar structure, which have a simple structure but are excellent in workability and can improve the strength against an earthquake or dead weight. It aims to provide a method.

上記目的を達成するため、本発明に係る面状構造体の補強構造の特徴は、構造躯体を介して設けられ、内側に空間を形成する面状構造体を補強する構成において、前記面状構造体は、天井スラブに吊材により支持された天井下地材に設けた天井仕上材であり、前記空間は、前記天井仕上材の下部に形成される室内空間であり、端部が前記構造躯体に接続される紐状部材と、前記天井仕上材の前記室内空間側の表面に固定され、前記紐状部材を前記天井仕上材の前記表面に保持する保持部材とを備え、前記紐状部材を前記保持部材を介して前記表面に這わせて非直線形状に配置すると共に前記紐状部材をその紐状部材の軸方向に摺動可能に前記保持部材で保持し、地震時に前記天井仕上材に作用する水平力の荷重を前記保持部材に分散させることにある。ここで「非直線形状」とは、放物線、円弧、楕円弧、サイン曲線、双曲線、懸垂線など、およびこれらに実質的に近似する多角形をいう。   In order to achieve the above object, the feature of the reinforcing structure of the planar structure according to the present invention is that the planar structure is provided via a structural housing and reinforces the planar structure that forms a space inside. The body is a ceiling finishing material provided on a ceiling base material supported by a ceiling slab with a suspension material, and the space is an indoor space formed in a lower portion of the ceiling finishing material, and an end portion is formed on the structural housing. A string member to be connected; and a holding member that is fixed to the surface of the ceiling finishing material on the indoor space side and holds the string member on the surface of the ceiling finishing material; and It is arranged in a non-linear shape over the surface through a holding member, and the string-like member is held by the holding member so as to be slidable in the axial direction of the string-like member, and acts on the ceiling finishing material during an earthquake. To distribute the horizontal force load to the holding member. Located in. Here, the “non-linear shape” refers to a parabola, an arc, an elliptical arc, a sine curve, a hyperbola, a catenary line, and the like, and a polygon that substantially approximates these.

上記構成によれば、補強の対象となる前記面状構造体は、天井スラブ(天井面)に吊材により支持された天井下地材に設けた天井仕上材である。そして、端部を構造躯体に固定した紐状部材を面状構造体の空間側表面に保持部材を介して配置すればよく、施工が極めて容易である。しかも、この紐状部材を面状構造体の空間側の表面で非直線形状に配置することで、紐状部材の端部を結ぶ軸に直交する方向に対し高い剛性を有し、地震や自重に対する強度を向上させることが可能となる。しかも、紐状部材をその紐状部材の軸方向に摺動可能に保持部材により面構造体下面へ密着するように保持したので、弾性剛性と幾何剛性の両方が発現し、紐状部材全体で荷重を支え、負担荷重を分散させることができる。よって、大きな荷重に対しても耐えることができ、補強強度(耐震性)を向上させることができる。   According to the said structure, the said planar structure used as the object of reinforcement is the ceiling finishing material provided in the ceiling base material supported by the suspension material on the ceiling slab (ceiling surface). And the string-like member which fixed the edge part to the structure housing should just be arranged on the space side surface of a planar structure via a holding member, and construction is very easy. In addition, by arranging the string-like member in a non-linear shape on the surface of the planar structure on the space side, the string-like member has high rigidity with respect to the direction perpendicular to the axis connecting the ends of the string-like member. It is possible to improve the strength against. In addition, since the string-like member is held by the holding member so as to be slidable in the axial direction of the string-like member, both elastic rigidity and geometric rigidity are expressed, and the entire string-like member The load can be supported and the burden load can be dispersed. Therefore, it can endure a large load, and the reinforcement strength (seismic resistance) can be improved.

上記構成において、前記紐状部材は、弛みを除去した状態で前記構造躯体間に張設されているとよい。初期張力を導入することで、面状構造体の水平剛性を向上させて応答変位を減少させることができる。その結果、部材の変形や周辺部材との衝突による損傷を回避し、耐震性等の補強強度を向上させることができる。ここで、紐状部材の初期張力は、例えば、0Nより大で且つ1000N以下に設定される。初期張力の大きさで剛性の大きさを調整できる。   The said structure WHEREIN: The said string-like member is good to be stretched between the said structural bodies in the state which removed the slack. By introducing the initial tension, the horizontal rigidity of the planar structure can be improved and the response displacement can be reduced. As a result, it is possible to avoid damage due to deformation of the member or collision with the peripheral member, and to improve the reinforcement strength such as earthquake resistance. Here, the initial tension of the string-like member is set to be greater than 0N and 1000N or less, for example. The stiffness can be adjusted by the initial tension.

また、前記紐状部材には初期張力が付与されていてもよい。弛みなく配置することで、紐状部材の引っ張り方向に変位を拘束することができる。   An initial tension may be applied to the string-like member. By arranging without slack, displacement can be constrained in the pulling direction of the string-like member.

前記非直線形状としては、放物線状であるとよい。当該形状により、面状構造体の平面に生じる荷重を紐状部材の全長にわたって均等に支えることができ、面状構造体の負担荷重を低減することができ、より強度を向上させることができる。係る場合、前記紐状部材のサグ深さは、前記構造躯体間の距離の1/4であることが好ましい。   The non-linear shape is preferably a parabolic shape. With this shape, the load generated on the plane of the planar structure can be uniformly supported over the entire length of the string-like member, the burden load on the planar structure can be reduced, and the strength can be further improved. In this case, the sag depth of the string-like member is preferably ¼ of the distance between the structural bodies.

前記保持部材は、等間隔に複数設けるとよい。これにより保持部材1個当たりの荷重負担を均等にすることができ、強度が向上する。   A plurality of the holding members may be provided at equal intervals. Thereby, the load burden per holding member can be equalized, and the strength is improved.

前記保持部材は、前記面状構造体の前記表面と密着する側の面の中央に、前記紐状部材を受け入れる凹部を有する構成にするとよい。これにより、地震時に紐状部材にテンションが掛かった場合に該紐状部材が面状構造体表面と保持部材との間に潜り込むことを防止することができ、より水平耐力を向上させることができる。   The holding member may be configured to have a recess that receives the string-like member at the center of the surface of the planar structure that is in close contact with the surface. Thereby, when tension is applied to the string-like member during an earthquake, the string-like member can be prevented from entering between the surface of the planar structure body and the holding member, and the horizontal proof stress can be further improved. .

上記いずれかに記載の特徴構成は、例えば、前記構造躯体は柱である。   In any one of the characteristic configurations described above, for example, the structural casing is a pillar.

上記目的を達成するため、本発明に係る面状構造体の補強方法の特徴は、構造躯体を介して設けられ、内側に空間を形成する面状構造体を補強する方法において、前記面状構造体は、天井スラブに吊材により支持された天井下地材に設けた天井仕上材であり、前記空間は、前記天井仕上材の下部に形成される室内空間であり、前記天井仕上材の前記室内空間側の表面に保持部材を固定して紐状部材を前記保持部材を介して前記表面に這わせて非直線形状に配置すると共に前記紐状部材の端部を前記構造躯体に接続し、前記紐状部材をその紐状部材の軸方向に摺動可能に前記保持部材で保持し、地震時に前記天井仕上材に作用する水平力の荷重を前記保持部材に分散させることにある。
In order to achieve the above object, the planar structure reinforcing method according to the present invention is characterized in that in the method of reinforcing a planar structure that is provided via a structural housing and forms a space inside, the planar structure is provided. The body is a ceiling finishing material provided on a ceiling base material supported by a suspension material on a ceiling slab, and the space is an indoor space formed in a lower portion of the ceiling finishing material, and the room of the ceiling finishing material A holding member is fixed to the surface on the space side, and a string-like member is arranged in a non-linear shape over the surface via the holding member, and an end portion of the string-like member is connected to the structural housing, The string-like member is held by the holding member so as to be slidable in the axial direction of the string-like member, and a load of a horizontal force acting on the ceiling finishing material at the time of an earthquake is distributed to the holding member.

上記本発明に係る面状構造体の補強構造及び面状構造体の補強方法の特徴によれば、簡素な構造でありながら施工性に優れ且つ地震や自重等に対する強度を向上させることが可能となった。   According to the features of the reinforcing structure of a planar structure and the reinforcing method of the planar structure according to the present invention, it is possible to improve the workability and improve the strength against earthquakes, dead weight, etc. while having a simple structure. became.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

本発明に係る面状構造体の補強構造を天井に適用した例を示す斜視図である。It is a perspective view which shows the example which applied the reinforcement structure of the planar structure which concerns on this invention to the ceiling. 保持部材近傍の一例を示す斜視図である。It is a perspective view which shows an example of a holding member vicinity. 図1に示す天井の見上げ図である。It is a top view of the ceiling shown in FIG. 押さえ金具の正面図であり、(a)は凹部がコの字形状の押さえ部材、(b)は凹部が略V字形状の他の押さえ部材、(c)は(b)の金具においてワイヤーが潜り込んだ状態を模式的に示す図である。It is a front view of a holding metal fitting, (a) is a pressing member having a U-shaped concave portion, (b) is another pressing member having a substantially V-shaped concave portion, and (c) is a wire in the metal fitting of (b). It is a figure which shows typically the state which went under. 押さえ金具の平面図である。It is a top view of a holding metal fitting. 押さえ金具近傍の天井の断面図である。It is sectional drawing of the ceiling of a pressing metal vicinity. ワイヤー端部近傍の模式図である。It is a schematic diagram of wire end part vicinity. ダンパーの一例を示す図であり、(a)は斜視図、(b)は正面図である。It is a figure which shows an example of a damper, (a) is a perspective view, (b) is a front view. 接続部材の一例を示す図であり、(a)は斜視図、(b)は正面図である。It is a figure which shows an example of a connection member, (a) is a perspective view, (b) is a front view. ワイヤー端部の連結部分の一例を示す図である。It is a figure which shows an example of the connection part of a wire edge part. 構造躯体の固定金物の一例を示す図であり、(a)は平面図、(b)は正面図である。It is a figure which shows an example of the fixed metal fitting of a structure housing, (a) is a top view, (b) is a front view. ワイヤーに対する集中荷重を説明する図である。It is a figure explaining the concentrated load with respect to a wire. ワイヤーに対する自重型荷重を説明する図である。It is a figure explaining the self-weight type load with respect to a wire. ワイヤーに対する等分布荷重を説明する図である。It is a figure explaining the equally distributed load with respect to a wire. ワイヤーの放物線形状を説明する図であり、(a)はy方向等分布荷重と釣り合う紐状部材との関係を示す図、(b)は微小ケーブル要素の釣り合いを示す図である。It is a figure explaining the parabolic shape of a wire, (a) is a figure which shows the relationship with the string-like member which balances a y direction equal distribution load, (b) is a figure which shows the balance of a micro cable element. 放物線形状におけるサグを説明する図である。It is a figure explaining the sag in a parabola shape. ワイヤーの配置形状による差異を説明する図であり、(a)は直線状配置、(b)は放物線状配置を示す。It is a figure explaining the difference by the arrangement | positioning shape of a wire, (a) shows linear arrangement | positioning, (b) shows parabolic arrangement | positioning. 地震時に、天井仕上材に作用する地震力と、この地震力を負担するワイヤーの端部に加わる張力と分力の大きさの関係を示す説明図である。It is explanatory drawing which shows the relationship between the magnitude | size of the seismic force which acts on a ceiling finishing material at the time of an earthquake, the tension | tensile_strength applied to the edge part of the wire which bears this seismic force, and a component force. ワイヤーに掛ける初期張力と、各押さえ金具における初期張力の方向変化およびその分力の大きさの変化を示す説明図である。It is explanatory drawing which shows the initial tension applied to a wire, the direction change of the initial tension in each pressing metal fitting, and the change of the magnitude of the component force. ワイヤーの配置形状のバリエーションの例を示す図である。It is a figure which shows the example of the variation of the arrangement | positioning shape of a wire. ワイヤーの他の配置形状の一例を示す図である。It is a figure which shows an example of the other arrangement | positioning shape of a wire. ワイヤーのさらに他の配置形状の例を示す図である。It is a figure which shows the example of the other arrangement | positioning shape of a wire. 放物線の対称軸Xと変位の最大方向Xd1、又は、加速度の最大方向Xd2との関係を示し、(a)は平面的な天井の場合、(b)は斜めの勾配が付与された天井の場合である。The relationship between the parabolic symmetry axis X and the maximum displacement direction Xd1 or the maximum acceleration direction Xd2 is shown. (A) is a flat ceiling, (b) is a ceiling with an oblique gradient. It is.

次に、適宜添付図面を参照しながら、本発明の実施形態をさらに詳しく説明する。以下、本実施形態において、構造躯体を介して設けられ、その内部に空間を形成する面状構造体の補強構造として、天井の耐震補強構造を例に説明する。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings as appropriate. Hereinafter, in the present embodiment, a ceiling earthquake-resistant reinforcing structure will be described as an example of a reinforcing structure of a planar structure that is provided via a structural housing and forms a space therein.

本実施形態に係る天井の耐震補強構造1は、大略、図示省略する天井スラブ(天井面)と一体で該天井スラブを下支えする「構造躯体」としての柱6と、天井スラブとの間に天井裏空間を画成する天井下地材としての野縁受け2及び野縁3と、野縁3の下面に取り付けられた「面状構造体」としての天井仕上材4と、この天井仕上材4の下部に形成される室内空間に面する空間側表面(下面)4aに配置される「紐状部材」としてのワイヤー5と、天井仕上材4の表面4aに間隔を開けて止着されワイヤー5が天井仕上材4の表面4aに非直線形状に配置されるように該ワイヤー5を保持する「保持部材」としての複数の押さえ金具10とからなる。ワイヤー5の両端部は、構造躯体としての柱6に固定されている。非直線形状とは、ワイヤー5の両端を結ぶ直線に関して1山の曲線形状(放物線、円弧、楕円弧、サイン曲線、双曲線、懸垂線など)またはこの曲線形状と実質的に同等の多角形状であって、ワイヤー5の両端を結ぶ直線に対する垂直2等分線に軸対称である曲線形状または多角形状であればよい。この実施形態の図示例では、ワイヤー5は、大略放物線状を呈する多角形状に配置される。なお、この天井は、天井下地材としての野縁受け2及び野縁3が図示省略する天井スラブから吊材により吊持された吊り天井である。   The seismic reinforcement structure 1 for a ceiling according to the present embodiment is roughly provided between a ceiling slab and a column 6 as a “structural frame” integrally supporting a ceiling slab (ceiling surface) (not shown) and supporting the ceiling slab. The field edge receiver 2 and the field edge 3 as the ceiling foundation material that defines the back space, the ceiling finishing material 4 as the “planar structure” attached to the lower surface of the field edge 3, and the ceiling finishing material 4 The wire 5 as a “string-like member” disposed on the space side surface (lower surface) 4a facing the indoor space formed in the lower part and the surface 4a of the ceiling finishing material 4 are secured with a gap therebetween, and the wire 5 is It comprises a plurality of presser fittings 10 as “holding members” for holding the wires 5 so as to be arranged in a non-linear shape on the surface 4 a of the ceiling finishing material 4. Both ends of the wire 5 are fixed to pillars 6 as a structural housing. The non-linear shape is a single curve shape (parabola, arc, elliptical arc, sine curve, hyperbola, catenary, etc.) or a polygonal shape substantially equivalent to this curve shape connecting the ends of the wire 5. Any curved shape or polygonal shape that is axially symmetric with respect to a perpendicular bisector with respect to a straight line connecting both ends of the wire 5 may be used. In the example of illustration of this embodiment, the wire 5 is arrange | positioned at the polygonal shape which exhibits substantially parabolic shape. Note that this ceiling is a suspended ceiling in which the field edge receiver 2 and the field edge 3 as the ceiling base material are suspended from a ceiling slab (not shown) by a suspension material.

ここで、野縁受け2及び野縁3には、例えばCチャンネル等が用いられる。また、本実施形態において、天井仕上材4には、石膏ボード(PB)41及び岩綿吸音板42とが用いられている。また、本実施形態において、ワイヤー5の径は6mmのものを用いる。   Here, for example, a C channel is used for the field edge receiver 2 and the field edge 3. In the present embodiment, a gypsum board (PB) 41 and a rock wool sound absorbing plate 42 are used for the ceiling finishing material 4. In the present embodiment, the wire 5 having a diameter of 6 mm is used.

押さえ金具10は、図4,5に示すように、天井仕上材4の下面4a(前記室内空間側の表面)と密着する平坦部11と、この平坦部11の中央にワイヤー5を配置する凹部12とを備え、平坦部11には、凹部12の両側に取付金具10を天井仕上材4の下面4aに固定するための固定部材としてのビス13を貫通させる貫通孔14が複数設けられている。   As shown in FIGS. 4 and 5, the presser fitting 10 includes a flat portion 11 that is in close contact with the lower surface 4 a (the surface on the indoor space side) of the ceiling finishing material 4, and a concave portion in which the wire 5 is disposed at the center of the flat portion 11. The flat portion 11 is provided with a plurality of through-holes 14 through which screws 13 as fixing members for fixing the mounting bracket 10 to the lower surface 4 a of the ceiling finishing material 4 are formed on both sides of the recess 12. .

ワイヤー5は、凹部12内に配置されるに過ぎず、押さえ金具10によって天井材4及び押さえ金具10に対し固定されていない。すなわち、ワイヤー5は、天井材4に対しワイヤー5の軸方向へ摺動可能に配置されている。   The wire 5 is merely disposed in the recess 12 and is not fixed to the ceiling material 4 and the pressing metal 10 by the pressing metal 10. That is, the wire 5 is disposed so as to be slidable in the axial direction of the wire 5 with respect to the ceiling material 4.

ここで、保持部材としての押さえ金具10は、面状構造体としての天井仕上材4の表面4aと密着する側の面の中央に、紐状部材としてのワイヤー5を受け入れる凹部12を有するように構成してある。すなわち、凹部12の幅W1及び深さD1はワイヤーの径とほぼ同寸法とし、凹部12の断面形状は略方形を呈する。これにより、図1,2,6に示す如く、ワイヤー5を天井仕上材4に配置した状態において、ワイヤー5の軸方向に直交する水平方向及び鉛直方向への移動が制限される。よって、振動した際にワイヤー5の移動による金具10の変形が防止され、地震時に紐状部材(ワイヤー5)にテンションが掛かった場合に該紐状部材(ワイヤー5)が面状構造体表面(天井仕上材4の下面4a)と保持部材(押さえ金具10)との間に潜り込むことを防止することができ、より水平耐力を向上させることができる。なお、ほぼ同寸法とは、ワイヤー5がその軸方向(凹部長手方向)に摺動可能な程度のクリアランスを有するものも含まれる。   Here, the presser fitting 10 as the holding member has a recess 12 for receiving the wire 5 as the string-like member at the center of the surface in close contact with the surface 4a of the ceiling finishing material 4 as the planar structure. It is configured. That is, the width W1 and the depth D1 of the recess 12 are approximately the same as the diameter of the wire, and the cross-sectional shape of the recess 12 is substantially square. Thereby, in the state which has arrange | positioned the wire 5 in the ceiling finishing material 4, as shown to FIG.1, 2,6, the movement to the horizontal direction and the perpendicular direction orthogonal to the axial direction of the wire 5 is restrict | limited. Therefore, the deformation of the metal fitting 10 due to the movement of the wire 5 is prevented when vibrating, and when a tension is applied to the string-like member (wire 5) during an earthquake, the string-like member (wire 5) becomes a surface of the planar structure ( It is possible to prevent a dive between the lower surface 4a) of the ceiling finishing material 4 and the holding member (holding metal fitting 10), and the horizontal proof stress can be further improved. In addition, what has the clearance of the grade which the wire 5 can slide to the axial direction (concave longitudinal direction) is included with substantially the same dimension.

また、押さえ金具10の凹部12の形状は、図4(a)に示す如き、略コの字形状が好ましい。発明者らの実験によれば、同図(b)に示す略V字形状の凹部12’と比較し、略コの字形状の凹部12の方が、より最大水平耐力が大きいことが判明した。略V字形状の凹部12’の場合、同図(c)に示すように、ワイヤー5に水平荷重が掛かると、ワイヤー5が天井仕上材4の表面4aと金具10との間に潜り込んでしまう場合があるためと考えられる。   Further, the shape of the concave portion 12 of the presser fitting 10 is preferably substantially U-shaped as shown in FIG. According to the experiments by the inventors, it has been found that the substantially horizontal U-shaped recess 12 has a larger maximum horizontal proof stress compared to the substantially V-shaped recess 12 ′ shown in FIG. . In the case of the substantially V-shaped recess 12 ′, as shown in FIG. 5C, when a horizontal load is applied to the wire 5, the wire 5 sinks between the surface 4 a of the ceiling finishing material 4 and the metal fitting 10. It may be because there are cases.

また、凹部12内には、図6に一点鎖線で示す如く、底部に緩衝材としてゴム製プレート15を設けてもよい。これにより、凹部12内のワイヤー5の鉛直方向Zへの暴れやそれに伴う振動音の発生を防止する。   Further, a rubber plate 15 may be provided in the recess 12 as a cushioning material at the bottom, as indicated by a one-dot chain line in FIG. This prevents the wire 5 in the recess 12 from moving in the vertical direction Z and the accompanying vibration noise.

図7に示すように、ワイヤー5の両端部は、大略、ターンバックル51とダンパー52よりなる連結部材50及び固定金物60を介して「構造躯体」としての柱6に接続固定されている。ワイヤー5の端部は、グリップル53aやシンブル53b等の接続部材53を介してターンバックル51の一端と接続している。同図の例では、ダンパー52に油圧式のものを用いている。   As shown in FIG. 7, both end portions of the wire 5 are connected and fixed to a column 6 as a “structural frame” through a connecting member 50 and a fixed hardware 60 each including a turnbuckle 51 and a damper 52. The end of the wire 5 is connected to one end of the turnbuckle 51 via a connecting member 53 such as a griple 53a or a thimble 53b. In the example of the figure, the damper 52 is a hydraulic type.

なお、ダンパー52には、油圧系のものに限らず、例えば図8,9に示す如き高減衰ゴムを用いたダンパーと、その両端にアイナットを取り付け、図10に示す如く構成しても構わない。さらに、油圧系とスプリングとを並列にする、空気バネとダンパーを併用する、粘弾性ダンパーを使う、塑性ダンパーを使用するなど、種々の方法がある。   The damper 52 is not limited to a hydraulic system, and may be configured as shown in FIG. 10 by attaching dampers using high damping rubber as shown in FIGS. 8 and 9 and eye nuts at both ends thereof, for example. . Furthermore, there are various methods such as using a hydraulic system and a spring in parallel, using an air spring and a damper together, using a viscoelastic damper, and using a plastic damper.

ターンバックル52の他端は、ダンパー52を介して固定金物60に接続されている。図11に示すように、固定金物60は、大略、取付板61と、略コの字状のボルト62よりなり、柱に固定されている。これにより、ワイヤー5は、柱6に連結固定される。   The other end of the turnbuckle 52 is connected to the fixed hardware 60 via the damper 52. As shown in FIG. 11, the fixed hardware 60 is generally composed of a mounting plate 61 and a substantially U-shaped bolt 62, and is fixed to a column. Thereby, the wire 5 is connected and fixed to the column 6.

次に、多角形状の配置形状による地震に対する効果について、説明する。
本補強方法は、室内側の天井仕上材4の表面4aにワイヤー5を放物線上に沿わせながら金具10でワイヤー5を天井仕上材4に留め付け、ワイヤー5の端部を柱にアンカーすることで、地震力が入力された際ワイヤー5が天井全体の水平挙動を抑制する効果を狙うものである。
Next, the effect of the polygonal arrangement shape on the earthquake will be described.
In this reinforcing method, the wire 5 is fastened to the ceiling finishing material 4 with the metal fitting 10 while keeping the wire 5 along the parabola on the surface 4a of the ceiling finishing material 4 on the indoor side, and the end of the wire 5 is anchored to the column. Therefore, when the seismic force is input, the wire 5 aims at the effect of suppressing the horizontal behavior of the entire ceiling.

放物線というケーブル形状の意義について、図12〜14を参照しながら説明する。ワイヤー5等の紐状部材は圧縮力や曲げに対する抵抗力はないため、負担する力や分布によって紐状部材の形状を変えながら引張り力だけで支点に力を伝える。集中荷重と分布荷重において紐状部材が自然に力を支えているとき、どのような形状になるのか、その例を図12〜14に示す。   The significance of the parabolic cable shape will be described with reference to FIGS. Since the string-like member such as the wire 5 has no compressive force or resistance to bending, the force is transmitted to the fulcrum only by the pulling force while changing the shape of the string-like member according to the force or distribution to be borne. Examples of the shape when the string-like member naturally supports the force in the concentrated load and the distributed load are shown in FIGS.

図12に示す如き集中荷重では、当然、荷重の作用する一点で折れ曲がるような直線を描く。他方、分布荷重では、紐状部材を垂れ下げたときの自重のような紐状部材に沿った単位長さ当たりの等分布荷重が作用した場合と、吊り橋を支える紐状部材のように水平面に対して等分布な荷重が作用した場合とでその形状は異なる。前者は図13に示す如きカテナリー(懸垂線)となり、後者は図14に示す如き放物線となる。   In the concentrated load as shown in FIG. 12, naturally, a straight line that bends at one point where the load acts is drawn. On the other hand, in the distributed load, when a uniform distributed load per unit length along the string-like member such as its own weight when the string-like member is hung is applied, and on the horizontal surface like the string-like member supporting the suspension bridge. On the other hand, the shape differs depending on when a load with equal distribution is applied. The former is a catenary as shown in FIG. 13 and the latter is a parabola as shown in FIG.

紐状部材によって天井を補強する際、地震によって生じる天井面の水平力は留め付け金具を介して紐状部材に伝わる。そのため、偏った力の分布が発生すると一つの金具に応力が集中し金具が外れてしまう可能性もある。そのため紐状部材全長にわたって荷重を均等に支え、負担荷重を分散させる必要がある。また、均等に分散された荷重を紐状部材の引張り力で支えたとき、その形状は放物線を描くのが最も自然な形であるということは上述した通りである(図14)。   When the ceiling is reinforced by the string-like member, the horizontal force on the ceiling surface caused by the earthquake is transmitted to the string-like member via the fastening bracket. For this reason, when an uneven distribution of force occurs, stress may concentrate on one metal fitting and the metal fitting may come off. Therefore, it is necessary to support the load evenly over the entire length of the string-like member and distribute the burden load. Further, as described above, when the load evenly distributed is supported by the tensile force of the string-like member, it is most natural to draw a parabola in the shape (FIG. 14).

図15及び(1)〜(6)式に示すように、水平方向に等分布の荷重を自然に支えている時のケーブルの形状を検討すると、放物線形状が水平方向に等分布の荷重を支持している。   As shown in Fig. 15 and (1) to (6), when considering the shape of the cable when the load of equal distribution is naturally supported in the horizontal direction, the parabola shape supports the load of equal distribution in the horizontal direction. doing.

x方向の釣り合いより、下記(1)(2)式が成り立つ。なお、Hは、水平方向張力成分(水平反力H)を示し、一定値である。また、Tは、ワイヤー5の軸方向の張力を示す。   From the balance in the x direction, the following equations (1) and (2) are established. H represents a horizontal tension component (horizontal reaction force H), which is a constant value. T indicates the axial tension of the wire 5.

x方向の釣り合いより、

Figure 0006144030
(Hは、水平方向張力成分を示し、一定値) From the balance in the x direction,
Figure 0006144030
(H represents the horizontal tension component and is a constant value)

y方向の釣り合いより、(3)〜(6)式が成り立つ。よって、ワイヤー5は放物線形状に配置するとよいことが分かる。なお、qは、y方向等分布荷重(水平反力Hと支えている等分布荷重)を示す。   From the balance in the y direction, equations (3) to (6) are established. Therefore, it turns out that the wire 5 should arrange | position in a parabolic shape. In addition, q shows the y direction equal distribution load (the horizontal distribution force H and the equal distribution load supported).

Figure 0006144030
よって、放物線となる。
Figure 0006144030
Therefore, it becomes a parabola.

例えば、図16に示す如く、部屋(空間)のスパンの両端にある柱で45°の角度で柱に交わる放物線は、(7)〜(10)式により、サグ深さSが柱間距離Lの四分の1となることが分かる。   For example, as shown in FIG. 16, the parabola that intersects the pillars at an angle of 45 ° at the pillars at both ends of the span of the room (space), the sag depth S is the distance L between the pillars according to the equations (7) to (10). It turns out that it becomes 1/4 of.

ここで、押さえ金具10は、上述のワイヤー5の放物線配置に対して、部屋のスパンに等間隔に配置されることが望ましい。この場合、部屋のスパンに直交する方向の地震力Fを受けると、各押さえ金具10はqL’(L’は金具10ひとつあたりの負担幅)の等しい力を受ける。金具10の水平許容耐力Uからqの上限値U/L’が決まる。一方、(7)式よりx=L/2でのq=2H/Ly’の関係について考えると、qが一定なら、y’が大きいほど水平反力Hが小さくて済む。即ち、深い放物線ほど境界構造の負担が少ない。さらに(2)式より、q=2T/LsinθよりT=qL/(2sinθ)でqの上限値を代入すると、張力Tの上限値が分かる。   Here, it is desirable that the presser fittings 10 are arranged at equal intervals in the span of the room with respect to the parabolic arrangement of the wire 5 described above. In this case, when the seismic force F in the direction perpendicular to the span of the room is received, each pressing metal fitting 10 receives a force equal to qL ′ (L ′ is a burden width per metal fitting 10). The upper limit value U / L ′ of q is determined from the horizontal allowable strength U of the metal fitting 10. On the other hand, considering the relationship of q = 2H / Ly 'when x = L / 2 from Equation (7), if q is constant, the horizontal reaction force H can be reduced as y' increases. That is, the deeper parabola has less burden on the boundary structure. Further, from the equation (2), the upper limit value of the tension T can be obtained by substituting the upper limit value of q from T = 2q / (2sin θ) from q = 2T / Lsinθ.

x=L/2で、y’=1より、

Figure 0006144030
(8)は、水平反力Hと支えている等分布荷重の関係を示す。
(10)より、サグがL/4。 When x = L / 2 and y ′ = 1,
Figure 0006144030
(8) shows the relationship between the horizontal reaction force H and the uniformly distributed load that is supported.
From (10), the sag is L / 4.

ここで、例えば直線状の配置形状では、図17(a)に示すように、ほとんどの荷重は両端のケーブルのみが負担することとなる。他方、図17(b)に示すように、放物線形状の場合、ケーブル全長にわたって均等に支えるため、天井の負担荷重を均等に減らすことができ、地震荷重に対する天井の補強支持状況として好ましい状況となる。   Here, for example, in a linear arrangement, as shown in FIG. 17A, most of the load is borne only by the cables at both ends. On the other hand, as shown in FIG. 17 (b), in the case of a parabolic shape, since the cable is supported uniformly over the entire length of the cable, the burden load on the ceiling can be reduced evenly, which is a favorable situation as a reinforcement support situation of the ceiling against an earthquake load. .

直線ケーブルで天井を補強した場合、両端の金具より内側に位置するケーブルには、地震力と直交する方向への軸力が働いているため、その部分の金具にはほとんど荷重はかかっていない(図17(a))。そのため天井の水平挙動を抑えるための荷重は、そのほとんどを両端の金具が負担することになる。一部の金具に荷重が集中することで金具が外れてしまった場合、連鎖的に次々と金具が外れていくことも考えられる。金具が外れることでケーブルによる補強効果はなくなり、また金具の落下による被害の可能性も発生する。こういったことは避けなければならない。   When the ceiling is reinforced with a straight cable, the cable located inside the brackets at both ends is subjected to an axial force in the direction perpendicular to the seismic force, so almost no load is applied to the brackets at that part ( FIG. 17 (a)). Therefore, most of the load for suppressing the horizontal behavior of the ceiling is borne by the metal fittings at both ends. If the metal parts are removed due to the concentration of the load on some metal parts, the metal parts may be removed one after another in a chain. When the bracket is removed, the reinforcing effect of the cable is lost, and there is a possibility of damage due to the fall of the bracket. This must be avoided.

一方、放物線形状にケーブルを這わせることで、ケーブル全長にわたって均等に支える為、金具一つひとつの負担荷重を均等に分散させることができる(図17(b))。また、そのことにより、金具の水平耐力をあらかじめ明らかにしておくことで、入力される水平力に対し、金具一つの負担荷重が水平耐力以下となるための、金具の個数の算出も可能になる。   On the other hand, since the cables are arranged in a parabolic shape, they are uniformly supported over the entire length of the cable, so that the burden load of each metal fitting can be evenly distributed (FIG. 17B). This also makes it possible to calculate the number of brackets because the horizontal load capacity of the bracket is less than the horizontal bearing strength with respect to the input horizontal force by clarifying the horizontal bearing strength of the bracket in advance. .

ここで、ケーブル補強を施す前に行った静的載荷実験、スイープ加振実験、自由振動実験により、補強前の状態の天井の振動特性を把握した。その後、ケーブルを用いて補強を行った天井に対し、ケーブル導入張力をパラメータとし、スイープ加振実験、自由振動実験を行った。以下に、スイープ加振実験より得られた最大応答変位に関して、導入張力との関係を考察する。   Here, the vibration characteristics of the ceiling before the reinforcement were grasped by the static loading experiment, the sweep excitation experiment, and the free vibration experiment conducted before the cable reinforcement. After that, sweep excitation experiment and free vibration experiment were conducted on the ceiling reinforced with cable using the cable introduction tension as a parameter. In the following, the relationship between the introduced tension and the maximum response displacement obtained from the sweep excitation experiment will be discussed.

図18は、紐状部材5が放物線となるように設けられていて、地震時に、天井仕上材4に作用する地震力と、この地震力を負担する、ワイヤー5の両端に加わる張力T、紐状部材5の各端部においてワイヤー5の両端間を結ぶ線に垂直方向の分力V及び前記結ぶ線方向に沿った分力Hの大きさの関係を示す説明図である。
紐状部材5の放物線形状を示す式は、次の(11)式で示される。
FIG. 18 shows that the string-like member 5 is provided as a parabola, the seismic force acting on the ceiling finishing material 4 during an earthquake, the tension T applied to both ends of the wire 5 that bears this seismic force, and the string It is explanatory drawing which shows the relationship between the magnitude of the component force V of the perpendicular direction to the line which connects between the both ends of the wire 5 in each edge part of the shaped member 5, and the component force H along the said line direction.
The formula indicating the parabolic shape of the string-like member 5 is expressed by the following formula (11).

y=ax2…(11)
(11)式を微分すると、(12)式となる。
y = ax 2 (11)
When the equation (11) is differentiated, the equation (12) is obtained.

y’=2ax…(12)
(12)式のaの値は、x=L/2で、y=Dであるので(Dはサグの大きさ)、(13)式が求められる。
y ′ = 2ax (12)
Since the value of a in equation (12) is x = L / 2 and y = D (D is the size of the sag), equation (13) is obtained.

D=a・(L/2)2=aL2/4 …(13)
∴a=4D/L2
ここで、ワイヤー5に作用する力を算出する。
ワイヤー5によって負担する天井部分の単位長さ当たりで負担する力の大きさをρ、地震時の加速度をαとした場合、(14)式となる。
D = a · (L / 2 ) 2 = aL 2/4 ... (13)
∴a = 4D / L 2
Here, the force acting on the wire 5 is calculated.
When the magnitude of the force to be borne by the unit length of the ceiling portion borne by the wire 5 is ρ and the acceleration at the time of the earthquake is α, the equation (14) is obtained.

V=α・ρ・L/2…(14)
この式は、V=y’(x=L/2)・Hと等値でき、これにより、次の(15)(16)式が求められる。
V = α · ρ · L / 2 (14)
This equation can be equivalent to V = y ′ (x = L / 2) · H, and the following equations (15) and (16) are obtained.

H=V/(y’(x=L/2))=(α・ρ・L/2)(1/(2a/(L/2))
=αρ/2a=αρL2/8D…(15)
H = V / (y ′ (x = L / 2)) = (α · ρ · L / 2) (1 / (2a / (L / 2))
= Αρ / 2a = αρL 2 / 8D (15)

T=(V2+H21/2=((α・ρ・L/4)2+(αρL2/8D)21/2…(16) T = (V 2 + H 2 ) 1/2 = ((α · ρ · L / 4) 2 + (αρL 2 / 8D) 2 ) 1/2 (16)

図19は、ワイヤー5に掛ける初期張力Tと、この初期張力Tがワイヤー5に伝わり、各押さえ金具10において作用する初期張力Tの方向変化と、この方向変化した初期張力Tの分力VとHの大きさの変化を示す説明図である。V,H,Tは、上記式(14)〜(16)により求められる。弾性剛性については、ワイヤーが伸び縮みすることで発生し、ワイヤーのヤング係数と断面積を増やすことによって向上する。水平方向分力Hは軸対照的で打ち消しあい、垂直分力Vはy方向に移動するに従がって増大する。この結果、垂直方向の耐久力が向上することとなる。また、幾何剛性について考察すると、初期張力Tを加えることで向上し、ワイヤーが伸縮方向と異なる方向に変位した時に発生する。   FIG. 19 shows the initial tension T applied to the wire 5, the initial tension T transmitted to the wire 5, the direction change of the initial tension T acting on each press fitting 10, and the component force V of the initial tension T changed in this direction. It is explanatory drawing which shows the change of the magnitude | size of H. V, H, and T are obtained by the above formulas (14) to (16). The elastic rigidity is generated when the wire expands and contracts, and is improved by increasing the Young's modulus and cross-sectional area of the wire. The horizontal component force H is axisymmetric and cancels out, and the vertical component force V increases as it moves in the y direction. As a result, the durability in the vertical direction is improved. Further, considering geometric rigidity, it is improved by applying an initial tension T, and occurs when the wire is displaced in a direction different from the expansion and contraction direction.

最後に、本発明の他の実施形態の可能性について言及する。なお、上述の実施形態と同様の部材には同一の符号を附してある。
上述の放物線の形状、方向、本数等は、上記実施形態の態様に限られるものではない。例えば、図20に示すように、様々な組み合わせが可能である。図20に列挙した配置形状もバリエーションの一例に過ぎず、天井構造や寸法等に応じて適宜選択される。また、図21に示すように、放物線形状の配置に他の配置形状のものを組み合わせることも可能である。さらに、例えば、図22に示すように、天井長手側にて端部を固定したワイヤーによる放物線と、天井短手側にて端部を固定したワイヤーによる放物線とを交差させた配置(略格子状)も可能である。このように、放物線の組み合わせ(重ね合わせ)は全て可能である。なお、図20〜22中、記号○は柱などの構造躯体の位置を示す。
Finally, reference is made to the possibilities of other embodiments of the invention. In addition, the same code | symbol is attached | subjected to the member similar to the above-mentioned embodiment.
The shape, direction, number, and the like of the parabola described above are not limited to the above-described embodiments. For example, as shown in FIG. 20, various combinations are possible. The arrangement shapes listed in FIG. 20 are only examples of variations, and are appropriately selected according to the ceiling structure, dimensions, and the like. Moreover, as shown in FIG. 21, it is also possible to combine the thing of another arrangement shape with the arrangement of a parabola shape. Further, for example, as shown in FIG. 22, an arrangement in which a parabola formed by a wire whose end is fixed on the ceiling long side and a parabola formed by a wire whose end is fixed on the short side of the ceiling intersect (a substantially lattice shape) ) Is also possible. In this way, all combinations (superposition) of parabolas are possible. In addition, in FIG. 20-22, symbol (circle) shows the position of structural enclosures, such as a pillar.

天井の平面形状が非対称の場合は、その非対称な面内荷重につりあうよう放物線を変換した非対称のワイヤー形状が存在し、そのような形状にワイヤーを施工することで、対称な平面形状の天井の場合と同じ効果を得ることが可能である。   When the plane shape of the ceiling is asymmetrical, there is an asymmetrical wire shape in which a parabola is converted to balance the asymmetrical in-plane load. The same effect as in the case can be obtained.

上記実施形態において、天井仕上材4に石膏ボード(PB)41と岩綿吸音板42とからなる積層体を用いた。しかし、天井仕上材の材料や構造はこれにかぎられるものではない。   In the above embodiment, a laminate made of gypsum board (PB) 41 and rock wool sound absorbing plate 42 is used for the ceiling finishing material 4. However, the material and structure of the ceiling finishing material is not limited to this.

上記実施形態において、ワイヤー5の径をφ6としたが、これに限られない。また、紐状部材としてワイヤー5を用いているが、ロープや綱等の引っ張り・圧縮強度を備えたものであればよい。   In the said embodiment, although the diameter of the wire 5 was set to (phi) 6, it is not restricted to this. Moreover, although the wire 5 is used as a string-like member, what is necessary is just provided with tensile and compressive strength, such as a rope and a rope.

上記実施形態において、湾曲部の深さ(サグ深さS)を躯体間距離の1/4とした。但し、形状が直線に近似してくると、上記効果が薄くなる。他方上限は、天井材4に収まるものであればよい。   In the said embodiment, the depth (sag depth S) of the curved part was made into 1/4 of the distance between housings. However, when the shape approximates a straight line, the above effect becomes thin. On the other hand, the upper limit only needs to be within the ceiling material 4.

また、上記実施形態において、ワイヤー5にテンションを必ずしも掛ける必要はない。テンションを掛けずに配置した場合、地震時にのみワイヤー端部に応力が発生し、設計上は短期負荷となり、長期荷重の1.5倍までの荷重を負担させることができる。   In the above embodiment, it is not always necessary to apply tension to the wire 5. When it is arranged without applying tension, stress is generated at the end of the wire only during an earthquake, resulting in a short-term load in design, and a load up to 1.5 times the long-term load can be borne.

紐状部材5が弛みを除去した状態で構造躯体6間に張設される場合は、例えば100N程度の張力が加えられる。   When the string-like member 5 is stretched between the structural housings 6 with the slack removed, a tension of about 100 N is applied, for example.

紐状部材5に初期張力が付与される場合は、図18,19の結果より、100〜300N程度の初期張力が付与されることが望ましい。さらに、300〜1000Nを加えてもよい。但し、これらの数値は、ワイヤー5張設部分のスパンが9m、天井のスパンが6mの天井部を用いた結果に基づく。天井スパンが広がれば、その天井スパンと初期張力とが正比例する関係、または、天井スパンの二乗に比例する関係にあると予想される。比例関係は、この天井スパンに直交する方向で、どの程度のピッチでワイヤーを設けるか、金物の数をどの程度にするかにもよって変動する。   When the initial tension is applied to the string-like member 5, it is desirable to apply an initial tension of about 100 to 300N from the results of FIGS. Furthermore, you may add 300-1000N. However, these numerical values are based on the result of using a ceiling portion in which the span of the wire 5 extending portion is 9 m and the span of the ceiling is 6 m. If the ceiling span is widened, it is expected that the ceiling span and the initial tension are directly proportional to each other or proportional to the square of the ceiling span. The proportional relationship varies depending on the pitch at which the wires are provided and the number of hardware in the direction orthogonal to the ceiling span.

本発明の構成によれば、天井の大きな揺れ(変位)を防ぐことができる。したがって、天井の固有周波数がより高い値となる。また、変位による加速度が大となる方向に対する抑制効果も有している。一方、形状的には、ワイヤーを張設する放物線の対称軸方向が最も抑制効果が高い。
これらの効果より、放物線の対称軸Xは、図23に示すように、変位の最大方向Xd1、又は、加速度の最大方向Xd2に配向することが望ましい。なお、変位の最大方向Xd1と加速度の最大方向Xd2とは、同一となる場合と、異なる場合とが存在する。
According to the configuration of the present invention, large shaking (displacement) of the ceiling can be prevented. Therefore, the natural frequency of the ceiling becomes a higher value. In addition, it has a suppressing effect on the direction in which the acceleration due to displacement increases. On the other hand, in terms of shape, the direction of symmetry of the parabola that stretches the wire has the highest suppression effect.
From these effects, it is desirable that the parabolic symmetry axis X is oriented in the maximum displacement direction Xd1 or the maximum acceleration direction Xd2, as shown in FIG. The maximum displacement direction Xd1 and the maximum acceleration direction Xd2 may be the same or different.

また、上記実施形態では、面状構造体として天井を例に説明した。しかし、面状構造体の設置方向は水平方向に限らず、垂直方向であってもよく、例えば面状構造体としての壁面にも適用可能である。さらに、図23のような斜めの勾配が付与された天井にも適用可能である。   Moreover, in the said embodiment, the ceiling was demonstrated to the example as a planar structure. However, the installation direction of the planar structure is not limited to the horizontal direction, and may be a vertical direction. For example, the planar structure can be applied to a wall surface as a planar structure. Furthermore, the present invention can also be applied to a ceiling with an oblique gradient as shown in FIG.

上記実施形態において、ワイヤー5の両端部を構造躯体としての柱6に固定した。しかし、上記態様に限られるものではなく、柱6の他、梁や壁等の構造体に固定しても構わない。   In the said embodiment, the both ends of the wire 5 were fixed to the pillar 6 as a structural housing. However, the present invention is not limited to the above embodiment, and may be fixed to a structure such as a beam or a wall in addition to the pillar 6.

本発明は、例えば、吊り天井の耐震補強方法及び吊り天井の耐震補強構造として利用することができる。また、天井以外の大面積の仕上材の補強構造及び補強方法としても利用することができ、壁面にも適用可能である。さらに、本方法及び構造は長周期の地震に対する耐久性も優れているが、耐震に限らず常時の重力に対しても有効である。   The present invention can be used, for example, as a seismic reinforcement method for a suspended ceiling and a seismic reinforcement structure for a suspended ceiling. Moreover, it can utilize also as a reinforcement structure and reinforcement method of finishing materials of large areas other than a ceiling, and can also apply to a wall surface. Furthermore, the present method and structure have excellent durability against long-period earthquakes, but are effective not only for earthquake resistance but also for normal gravity.

1:補強構造、2:野縁受け、3:野縁、4:天井仕上材(面状構造体)、4a:下面(空間側表面)、5:ワイヤー(紐状部材)、6:柱(構造躯体)、10:押さえ金具、11:平坦部、12:凹部、13:ビス(固定部材)、14:貫通孔、15:ゴム製プレート(緩衝材)、41:石膏ボード(プラスターボード、PB)、42:岩綿吸音板、50:連結部材、51:ターンバックル、52:ダンパー、53:接続部材、53a:グリップル、53b:シンブル、60:固定金物、61:取付板、62:ボルト、F:地震力 1: Reinforcement structure, 2: Field edge receiver, 3: Field edge, 4: Ceiling finishing material (planar structure), 4a: Lower surface (space side surface), 5: Wire (string-shaped member), 6: Column ( (Structural housing) 10: Presser bracket, 11: Flat part, 12: Recessed part, 13: Screw (fixing member), 14: Through hole, 15: Rubber plate (buffer material), 41: Gypsum board (plaster board, PB) 42: Rock wool sound absorbing board, 50: connecting member, 51: turn buckle, 52: damper, 53: connecting member, 53a: griple, 53b: thimble, 60: fixed hardware, 61: mounting plate, 62: bolt, F : Seismic force

Claims (9)

構造躯体を介して設けられ、内側に空間を形成する面状構造体を補強する面状構造体の補強構造であって、
前記面状構造体は、天井スラブに吊材により支持された天井下地材に設けた天井仕上材であり、
前記空間は、前記天井仕上材の下部に形成される室内空間であり、
端部が前記構造躯体に接続される紐状部材と、
前記天井仕上材の前記室内空間側の表面に固定され、前記紐状部材を前記天井仕上材の前記表面に保持する保持部材とを備え、
前記紐状部材を前記保持部材を介して前記表面に這わせて非直線形状に配置すると共に前記紐状部材をその紐状部材の軸方向に摺動可能に前記保持部材で保持し、
地震時に前記天井仕上材に作用する水平力の荷重を前記保持部材に分散させる面状構造体の補強構造。
A reinforcing structure of a planar structure that reinforces a planar structure that is provided via a structural housing and forms a space inside,
The planar structure is a ceiling finishing material provided on a ceiling base material supported by a suspension material on a ceiling slab,
The space is an indoor space formed in a lower part of the ceiling finishing material,
A string-like member whose end is connected to the structural housing;
A fixing member fixed to the surface of the ceiling finishing material on the indoor space side and holding the string-like member on the surface of the ceiling finishing material;
The string-like member is placed on the surface via the holding member and arranged in a non-linear shape, and the string-like member is held by the holding member so as to be slidable in the axial direction of the string-like member,
A reinforcing structure of a planar structure that distributes a load of a horizontal force acting on the ceiling finishing material to the holding member during an earthquake.
前記紐状部材は、弛みを除去した状態で前記構造躯体間に張設されている請求項1記載の面状構造体の補強構造。 The reinforcing structure for a planar structure according to claim 1, wherein the string-like member is stretched between the structural housings in a state where slack is removed. 前記紐状部材には初期張力が付与されている請求項1記載の面状構造体の補強構造。 The reinforcing structure for a planar structure according to claim 1, wherein an initial tension is applied to the string-like member. 前記非直線形状は、放物線状である請求項1〜3のいずれかに記載の面状構造体の補強構造。 The reinforcing structure for a planar structure according to claim 1, wherein the non-linear shape is a parabolic shape. 前記紐状部材のサグ深さは、前記構造躯体間の距離の1/4である請求項4記載の面状構造体の補強構造。 The reinforcing structure for a planar structure according to claim 4, wherein a sag depth of the string-like member is 1/4 of a distance between the structural housings. 前記保持部材は、等間隔に複数設けられている請求項1〜5のいずれかに記載の面状構造体の補強構造。 The reinforcing structure for a planar structure according to any one of claims 1 to 5, wherein a plurality of the holding members are provided at equal intervals. 前記保持部材は、前記面状構造体の前記表面と密着する側の面の中央に、前記紐状部材を受け入れる凹部を有する請求項1〜6のいずれかに記載の面状構造体の補強構造。 The reinforcing structure for a planar structure according to any one of claims 1 to 6, wherein the holding member has a recess for receiving the string-like member at the center of the surface of the planar structure that is in close contact with the surface. . 前記構造躯体は柱である請求項1〜7のいずれかに記載の面状構造体の補強構造。 The reinforcing structure for a planar structure according to any one of claims 1 to 7, wherein the structural casing is a pillar. 構造躯体を介して設けられ、内側に空間を形成する面状構造体を補強する面状構造体の補強方法であって、
前記面状構造体は、天井スラブに吊材により支持された天井下地材に設けた天井仕上材であり、
前記空間は、前記天井仕上材の下部に形成される室内空間であり、
前記天井仕上材の前記室内空間側の表面に保持部材を固定して紐状部材を前記保持部材を介して前記表面に這わせて非直線形状に配置すると共に前記紐状部材の端部を前記構造躯体に接続し、前記紐状部材をその紐状部材の軸方向に摺動可能に前記保持部材で保持し、地震時に前記天井仕上材に作用する水平力の荷重を前記保持部材に分散させる面状構造体の補強方法。
A method of reinforcing a planar structure that reinforces a planar structure that is provided via a structural housing and forms a space inside,
The planar structure is a ceiling finishing material provided on a ceiling base material supported by a suspension material on a ceiling slab,
The space is an indoor space formed in a lower part of the ceiling finishing material,
A holding member is fixed to the surface of the ceiling finishing material on the indoor space side, and a string-like member is arranged in a non-linear shape over the surface via the holding member, and the end of the string-like member is Connected to the structural frame, the string-like member is held by the holding member so as to be slidable in the axial direction of the string-like member, and the load of horizontal force acting on the ceiling finishing material in the event of an earthquake is distributed to the holding member A method for reinforcing a planar structure.
JP2012236647A 2011-10-28 2012-10-26 Reinforcing structure of planar structure and reinforcing method of planar structure Expired - Fee Related JP6144030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012236647A JP6144030B2 (en) 2011-10-28 2012-10-26 Reinforcing structure of planar structure and reinforcing method of planar structure

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011238051 2011-10-28
JP2011238051 2011-10-28
JP2012024496 2012-02-07
JP2012024496 2012-02-07
JP2012236647A JP6144030B2 (en) 2011-10-28 2012-10-26 Reinforcing structure of planar structure and reinforcing method of planar structure

Publications (2)

Publication Number Publication Date
JP2013177795A JP2013177795A (en) 2013-09-09
JP6144030B2 true JP6144030B2 (en) 2017-06-07

Family

ID=49269666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012236647A Expired - Fee Related JP6144030B2 (en) 2011-10-28 2012-10-26 Reinforcing structure of planar structure and reinforcing method of planar structure

Country Status (1)

Country Link
JP (1) JP6144030B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164447B2 (en) * 2012-01-31 2017-07-19 清水建設株式会社 Suspended ceiling structure and seismic retrofitting method for suspended ceiling structure
JP6218112B2 (en) * 2013-12-27 2017-10-25 株式会社大林組 Ceiling material fall prevention structure and construction method thereof
JP6430277B2 (en) * 2015-02-06 2018-11-28 構造品質保証研究所株式会社 Method for preventing collapse of ceiling-side non-structural material in structure and its structure
JP6629171B2 (en) * 2016-11-28 2020-01-15 公益財団法人鉄道総合技術研究所 Floor structure of moving object
JP6928383B2 (en) * 2017-10-23 2021-09-01 株式会社サック Protective net upholstery structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3686654B2 (en) * 2002-12-17 2005-08-24 株式会社白石 Seismic strengthening method and seismic strengthening structure of existing concrete container structure
JP4143016B2 (en) * 2003-10-29 2008-09-03 都市基盤整備公団 Slab reinforcement method
JP2008121371A (en) * 2006-11-15 2008-05-29 Shimizu Corp Ceiling vibration reducing structure

Also Published As

Publication number Publication date
JP2013177795A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
JP6144030B2 (en) Reinforcing structure of planar structure and reinforcing method of planar structure
JP5146757B2 (en) Beam vibration reduction mechanism
JPH10504088A (en) Tuning mass damper
JP5104764B2 (en) Building ceiling structure
KR101297416B1 (en) Damping system and construction method of that
JP6382738B2 (en) Building ceiling structure
JP2007162263A (en) Vibration control device for building
WO2016084371A1 (en) Support structure
JP5953147B2 (en) Multiple ceiling structure
JP2008002684A (en) Vibration damper
JP7203368B2 (en) ceiling damping system
JP4102767B2 (en) Damping damper
JPH1181735A (en) Vibration control unit and vibration control damper
KR102222979B1 (en) Vibration suppression device
JP2020012560A (en) Vibration controller for structure
JP6610968B2 (en) Brace connecting bracket for suspended ceiling and suspended ceiling structure provided with the same
KR101399397B1 (en) A Tuned Pendulum Slab Damper system for seismic structure and the method of using this system
JP2008121400A (en) Foundation-pile vibration-damping device
KR20140022250A (en) Circular steel pipe damper
JP3511045B2 (en) Steel bar vibration control device for buildings
JP2007285526A (en) Vibration damper
JP2008082452A (en) Damping device, and road bridge and pedestrian bridge with superior damping performance
JP2014114548A (en) Ceiling structure
JP7083525B2 (en) Seismic isolation structure
JP2017145614A (en) Suspended ceiling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170510

R150 Certificate of patent or registration of utility model

Ref document number: 6144030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees