JP6143351B2 - Wire electric discharge machine - Google Patents

Wire electric discharge machine Download PDF

Info

Publication number
JP6143351B2
JP6143351B2 JP2013199847A JP2013199847A JP6143351B2 JP 6143351 B2 JP6143351 B2 JP 6143351B2 JP 2013199847 A JP2013199847 A JP 2013199847A JP 2013199847 A JP2013199847 A JP 2013199847A JP 6143351 B2 JP6143351 B2 JP 6143351B2
Authority
JP
Japan
Prior art keywords
machining
wire
workpiece
wire electrode
wire guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013199847A
Other languages
Japanese (ja)
Other versions
JP2014079876A (en
Inventor
哲也 上ノ町
哲也 上ノ町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2013199847A priority Critical patent/JP6143351B2/en
Publication of JP2014079876A publication Critical patent/JP2014079876A/en
Application granted granted Critical
Publication of JP6143351B2 publication Critical patent/JP6143351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

本発明は、中子の任意の領域にワイヤ電極の成分を付着させ、ワークの落下を防止することができるワイヤ放電加工機に関する。 The present invention relates to a wire electric discharge machine capable of attaching a wire electrode component to an arbitrary region of a core and preventing a workpiece from falling.

加工電極とワークとの間に形成される極間に放電を発生させて行う放電加工を、板状等のワークに対するワイヤ電極による糸鋸状の切断加工に適用したワイヤ放電加工は広く知られ普及してきている。このワイヤ放電加工では、加工中において、加工溝により切り離されるワークの内側部分をなす中子の落下を防止すべく、中子の任意の領域にワイヤ電極の成分を付着させる技術が採用されており、このような技術は例えば特許文献1および特許文献2に開示されている。 Wire electric discharge machining, in which electric discharge machining performed by generating an electric discharge between electrodes formed between a machining electrode and a workpiece, is applied to a saw blade-like cutting process using a wire electrode for a plate-like workpiece, has been widely known and has become widespread. ing. In this wire electric discharge machining, a technology that adheres wire electrode components to any area of the core is used to prevent the core that forms the inner part of the work cut off by the machining groove during machining. Such a technique is disclosed in Patent Document 1 and Patent Document 2, for example.

特公昭61−041690号公報Japanese Examined Patent Publication No. 61-041690 特開昭62−218024号公報JP-A-62-218024

ところで、上述の如きワイヤ電極の成分の付着は、従来は中子の上部側または下部側のいずれか片側のみで行っていた。しかしながら、成分の付着を中子の片側のみで行っていたのでは、十分な付着力が得られず、加工中に中子が落下することがある等、加工に支障を来たすことがあった。   By the way, the adhesion of the wire electrode components as described above has been conventionally performed only on one side of the upper side or the lower side of the core. However, if the components are attached only on one side of the core, sufficient adhesion cannot be obtained, and the core may fall during processing, which may hinder processing.

本発明は、上記課題に鑑みてなされたものであり、加工中においてワークに中子を確実に保持することができるワイヤ放電加工機を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a wire electric discharge machine capable of reliably holding a core on a workpiece during machining.

上記目的を達成するために、ワイヤ放電加工機に係る請求項1の発明は、ワークテーブルに載置されたワークを加工するワイヤ電極を、ワークを介して上側に配置される上側ワイヤガイドと下側に配置される下側ワイヤガイドによりガイドしながら上方から下方に繰り出して加工経路に沿って移動させワークに加工溝を形成するとともに、加工溝により切り離されたワークの内側部分をなす中子の任意の領域にワイヤ電極の成分を付着させ、ワークの落下を防止する構成を備えたワイヤ放電加工機であって、ワークとワイヤ電極との間に形成される極間に前記ワークが負電位となりワイヤ電極が正電位となる逆極性の電圧を印加し、上側ワイヤガイドおよび下側ワイヤガイドの水平方向の位置を同一としてワイヤ電極を垂直に設定した状態から、加工経路に沿って下側ワイヤガイドを上側ワイヤガイドに対して相対的に前進させ、ワイヤ電極を傾斜させて放電加工を行った後、下側ワイヤガイドを停止させて加工経路に沿って上側ワイヤガイドを下側ワイヤガイドに対して相対的に前進させ、ワイヤ電極が垂直に戻るまで放電加工を行うことにより、中子の上部側および下部側のいずれにもワイヤ電極の成分を付着させた後、極間に前記ワークが正電位となりワイヤ電極が負電位となる正極性の電圧を印加するように極性を反転させることを特徴とする。 In order to achieve the above object, a wire electric discharge machine according to claim 1 is characterized in that a wire electrode for processing a work placed on a work table is provided with an upper wire guide and a lower wire electrode disposed above the work. While being guided by the lower wire guide arranged on the side, it is drawn out from the upper side and moved along the machining path to form a machining groove on the workpiece, and the core forming the inner part of the workpiece separated by the machining groove A wire electric discharge machine having a configuration in which a component of a wire electrode is attached to an arbitrary region to prevent the workpiece from falling, and the workpiece has a negative potential between the poles formed between the workpiece and the wire electrode. Whether the wire electrode is set vertically, with the reverse polarity voltage applied to the wire electrode being positive and the horizontal position of the upper and lower wire guides being the same. The lower wire guide is moved forward relative to the upper wire guide along the machining path, the electric discharge machining is performed by inclining the wire electrode, and then the lower wire guide is stopped to move upward along the machining path. The wire electrode component was attached to both the upper and lower sides of the core by advancing the wire guide relative to the lower wire guide and performing electric discharge machining until the wire electrode returned to vertical. after, it characterized Rukoto to reverse the polarity so that the workpiece in the machining gap the wire electrode becomes a positive potential is applied to positive voltage as the negative potential.

本発明では、ワークとワイヤ電極との間に形成される極間にワークが負電位となりワイヤ電極が正電位となる逆極性の電圧を印加し、上側ワイヤガイドおよび下側ワイヤガイドの水平方向の位置を同一としてワイヤ電極を垂直に設定した状態から、加工経路に沿って下側ワイヤガイドを上側ワイヤガイドに対して相対的に前進させ、ワイヤ電極を傾斜させて放電加工を行った後、下側ワイヤガイドを停止させて加工経路に沿って上側ワイヤガイドを下側ワイヤガイドに対して相対的に前進させ、ワイヤ電極が垂直に戻るまで放電加工を行うことにより、中子の上部側および下部側のいずれにもワイヤ電極の成分を付着させた後、極間に前記ワークが正電位となりワイヤ電極が負電位となる正極性の電圧を印加するように極性を反転させる。これにより、加工中においてワークに中子を確実に保持させることができる。 In the present invention , a reverse polarity voltage is applied between the electrode formed between the workpiece and the wire electrode so that the workpiece has a negative potential and the wire electrode has a positive potential, and the horizontal direction of the upper wire guide and the lower wire guide is From the state where the wire electrode is set vertically with the same position, the lower wire guide is advanced relative to the upper wire guide along the machining path, and the wire electrode is inclined to perform electric discharge machining. By stopping the side wire guide and moving the upper wire guide relative to the lower wire guide along the machining path and performing electric discharge machining until the wire electrode returns to the vertical, the upper side and lower side of the core After the wire electrode component is attached to either side, the polarity is reversed so that a positive voltage is applied between the electrodes so that the workpiece has a positive potential and the wire electrode has a negative potential. Thereby, a core can be reliably hold | maintained to a workpiece | work during a process.

本発明によれば、加工中においてワークに中子を確実に保持することができる。 According to the present invention, the core can be reliably held on the workpiece during machining.

本発明の第1実施形態に係るワイヤ放電加工機における全体構成の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the whole structure in the wire electric discharge machine which concerns on 1st Embodiment of this invention. 同ワイヤ放電加工機における電源装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the power supply device in the wire electric discharge machine. 非付着領域の加工を行う際(極間に正極性の電圧を印加したとき)の電源装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the power supply device at the time of processing a non-adhesion area | region (when a positive voltage is applied between poles). 付着領域の加工を行う際(極間に逆極性の電圧を印加したとき)の電源装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the power supply device at the time of processing an adhesion area | region (when a reverse polarity voltage is applied between poles). 本発明における中子に対するワイヤ電極の真鍮成分の付着方法を説明するための平面図である。It is a top view for demonstrating the adhesion method of the brass component of the wire electrode with respect to the core in this invention. 中子に対するワイヤ電極の真鍮成分の付着方法を説明するための図5の一部を拡大して示す平面図である。It is a top view which expands and shows a part of FIG. 5 for demonstrating the adhesion method of the brass component of the wire electrode with respect to a core. 中子に対するワイヤ電極の真鍮成分の付着方法を説明するための図5の一部を拡大して示す正面図である。It is a front view which expands and shows a part of FIG. 5 for demonstrating the adhesion method of the brass component of the wire electrode with respect to a core. 中子に対するワイヤ電極の真鍮成分の付着方法を説明するための図5の一部を拡大して示す別の側面図である。It is another side view which expands and shows a part of FIG. 5 for demonstrating the adhesion method of the brass component of the wire electrode with respect to a core. ワイヤ放電加工機におけるNC制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of NC control apparatus in a wire electric discharge machine. NC制御装置による真鍮成分の付着方法を説明するためのフローチャートである It is a flowchart for demonstrating the adhesion method of the brass component by NC control apparatus .

以下、本発明の実施の形態について図面を参照して詳細に説明する。図1は本発明の第1実施形態を示すワイヤ放電加工機1の全体構成の概略を示す図である。同図を参照してワイヤ放電加工機1の概要を説明すると、ワイヤ放電加工機1は、上側ワイヤガイド2と下側ワイヤガイド3との間に工具電極としての黄銅製のワイヤ電極Eを連続的に供給しながら、加工槽4内においてワークWを水系加工液(以下、水系加工液を単に加工液とする)に浸漬した状態でワークWの放電加工を行う。ワイヤ放電加工機1は、ワークWをワークテーブル5に載置して行い、電源装置10によりワイヤ電極EとワークWとの間の極間7に所定の電圧を印加して行う。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing an outline of the entire configuration of a wire electric discharge machine 1 showing a first embodiment of the present invention. The outline of the wire electric discharge machine 1 will be described with reference to FIG. 1. The wire electric discharge machine 1 continuously connects a wire electrode E made of brass as a tool electrode between an upper wire guide 2 and a lower wire guide 3. While being supplied, the workpiece W is subjected to electric discharge machining in a state where the workpiece W is immersed in an aqueous machining fluid (hereinafter, the aqueous machining fluid is simply referred to as machining fluid). The wire electric discharge machine 1 is performed by placing the workpiece W on the workpiece table 5 and applying a predetermined voltage to the gap 7 between the wire electrode E and the workpiece W by the power supply device 10.

図2に示すように、電源装置10は、加工用直流電源11とスイッチング回路12を備えている。スイッチング回路12は4つのスイッチングトランジスタ12A乃至12Dが図示の如くブリッジ接続されており、スイッチングトランジスタ12Bとスイッチングトランジスタ12Dとの接続点Jは加工用直流電源11のマイナス側に接続され、スイッチングトランジスタ12Aとスイッチングトランジスタ12Cとの接続点Kは加工用直流電源11のプラス側に接続されている。そして、スイッチングトランジスタ12Aとスイッチングトランジスタ12Bとの接続点Lは通電素子2a、3aを介してワイヤ電極Eと電気的に接続され、スイッチングトランジスタ12Cとスイッチングトランジスタ12Dとの接続点MはワークWと電気的に接続されている。   As shown in FIG. 2, the power supply device 10 includes a processing DC power supply 11 and a switching circuit 12. In the switching circuit 12, four switching transistors 12A to 12D are bridge-connected as shown in the figure, and a connection point J between the switching transistor 12B and the switching transistor 12D is connected to the negative side of the processing DC power source 11, and the switching transistor 12A The connection point K with the switching transistor 12C is connected to the plus side of the processing DC power supply 11. A connection point L between the switching transistor 12A and the switching transistor 12B is electrically connected to the wire electrode E through the energization elements 2a and 3a, and a connection point M between the switching transistor 12C and the switching transistor 12D is electrically connected to the work W. Connected.

図3に示すように、スイッチングトランジスタ12B、12Cがオンで、スイッチングトランジスタ12A、12Dがオフとされると、加工用直流電源11のプラス側とワークWとが電気的に接続されるとともに、加工用直流電源11のマイナス側とワイヤ電極Eとが電気的に接続され、ワークWが正電位でワイヤ電極Eが負電位となる正極性の矩形波パルス電圧が加工中に極間7に印加される。 As shown in FIG. 3, when the switching transistors 12B and 12C are turned on and the switching transistors 12A and 12D are turned off, the plus side of the machining DC power supply 11 and the workpiece W are electrically connected, and machining is performed. The negative side of the direct current power source 11 is electrically connected to the wire electrode E, and a positive rectangular wave pulse voltage in which the workpiece W is at a positive potential and the wire electrode E is at a negative potential is applied to the gap 7 during machining. The

図4に示すように、スイッチングトランジスタ12A、12Dがオンでスイッチングトランジスタ12B、12Cがオフとされると、加工用直流電源11のマイナス側とワークWとが電気的に接続されるとともに、加工用直流電源11のプラス側とワイヤ電極Eとが電気的に接続され、ワークWが負電位でワイヤ電極Eが正電位となる逆極性の矩形波パルス電圧が加工中に極間7に印加される。 As shown in FIG. 4, when the switching transistors 12A and 12D are turned on and the switching transistors 12B and 12C are turned off, the negative side of the machining DC power supply 11 and the workpiece W are electrically connected, and machining is performed. The positive side of the DC power supply 11 and the wire electrode E are electrically connected, and a reverse polarity rectangular wave pulse voltage in which the workpiece W is a negative potential and the wire electrode E is a positive potential is applied to the gap 7 during machining. .

スイッチングトランジスタ12A、12Dおよびスイッチングトランジスタ12B,12Cのオンオフ動作を交互に行うことで正極性および逆極性の両極性を有する矩形波パルス電圧の出力を高周波で交互に繰り返す高周波両極性矩形波パルス電圧を極間7に印加することができる。更に、ワイヤ放電加工機1は、各移動軸の駆動機構をなす各軸モータ6により極間7の距離を所定に設定しながら行う。 By switching on and off the switching transistors 12A and 12D and the switching transistors 12B and 12C alternately, a high-frequency bipolar rectangular-wave pulse voltage that alternately repeats the output of a rectangular-wave pulse voltage having both positive and reverse polarities at a high frequency It can be applied to the gap 7. Furthermore, the wire electric discharge machine 1 is performed while setting the distance between the poles 7 to a predetermined value by each axis motor 6 that forms the drive mechanism of each moving axis.

本発明においては、移動軸として、U軸、V軸、X軸、Y軸、およびZ軸が設定されている。U軸は上側ワイヤガイド2の水平方向の移動軸をなし、V軸はU軸と水平方向に沿って直交する移動軸をなし、X軸は下側ワイヤガイド3の水平方向の移動軸をなし、Y軸はX軸と水平方向に沿って直交する移動軸をなし、Z軸は鉛直軸方向の移動軸をなしている。ワイヤ放電加工機1は、上側ワイヤガイド2のU軸およびV軸に沿った移動方向と下側ワイヤガイド3のX軸およびY軸に沿った移動方向とが相互に反対方向となるように設定してワイヤ電極Eに傾斜を付与し、ワークWのテーパ加工を行うことができる。 In the present invention, the U axis, V axis, X axis, Y axis, and Z axis are set as the movement axes. The U axis is the horizontal movement axis of the upper wire guide 2, the V axis is the movement axis orthogonal to the U axis along the horizontal direction, and the X axis is the horizontal movement axis of the lower wire guide 3. , The Y axis is a movement axis orthogonal to the X axis along the horizontal direction, and the Z axis is a movement axis in the vertical axis direction. The wire electric discharge machine 1 is set so that the moving direction of the upper wire guide 2 along the U axis and the V axis is opposite to the moving direction of the lower wire guide 3 along the X axis and the Y axis. Then, the wire electrode E can be inclined and the workpiece W can be tapered.

ワイヤ放電加工機1は更にNC制御装置20を備えており、このNC制御装置20により加工プログラムを解読しつつ所定の制御信号が生成される。すなわち、ワイヤ放電加工機1は、NC制御装置20が生成した制御信号に基づいて各軸モータ6および電源装置10を動作させ、中子の任意の箇所にワイヤ電極Eの真鍮成分を付着させながら放電加工を行うことができる。 The wire electric discharge machine 1 further includes an NC control device 20, and the NC control device 20 generates a predetermined control signal while decoding the machining program. That is, the wire electric discharge machine 1 operates each shaft motor 6 and the power supply device 10 on the basis of the control signal generated by the NC control device 20, and attaches the brass component of the wire electrode E to an arbitrary portion of the core. Electric discharge machining can be performed.

このワイヤ放電加工機1による中子に対する真鍮成分の付着方法を説明すると次のようになる。すなわち、図5に示すように、まずワークWにおいて加工経路Bを設定するとともに、加工経路B上にワイヤ電極Eの真鍮成分の付着領域Cを設定しその他の加工経路Bを非付着領域Dとしつつ、各軸モータ6を動作させて加工溝Fを形成しながらワイヤ電極Eを加工経路B上に沿って移動させる。 A method of attaching the brass component to the core by the wire electric discharge machine 1 will be described as follows. That is, as shown in FIG. 5, first, the machining path B is set in the workpiece W, the adhesion region C of the brass component of the wire electrode E is set on the machining path B, and the other machining path B is set as the non-adhesion area D. Meanwhile, each wire motor 6 is operated to move the wire electrode E along the machining path B while forming the machining groove F.

つまり、図6および図7に示すように、非付着領域Dでは上側ワイヤガイド2および下側ワイヤガイド3を水平方向の位置を同一としてワイヤ電極Eを垂直に設定する。そして、非付着領域Dではスイッチング回路12を図3の状態として極間7に正極性の電圧を印加し通常の加工条件で加工溝Fの形成のみを行う。 That is, as shown in FIGS. 6 and 7, in the non-attachment region D, the upper wire guide 2 and the lower wire guide 3 are set at the same horizontal position, and the wire electrode E is set vertically. In the non-attachment region D, the switching circuit 12 is in the state shown in FIG.

一方、付着領域Cでは、図6に示すように、スイッチング回路12を図4の状態とし極間7に逆極性の電圧を印加する。そして、付着領域Cでは、図8(a)に示すように、上側ワイヤガイド2および下側ワイヤガイド3を水平方向の位置を同一としてワイヤ電極Eを垂直に設定した状態から、図8(b)に示すように、下側ワイヤガイド3のみを加工経路Bの進行方向に沿って(以下、「加工経路Bの進行方向に沿って」は単に「加工経路Bに沿って」とする)前進させることにより、下側ワイヤガイド3を、上側ワイヤガイド2よりも先に加工経路Bに沿って前進させ、ワイヤ電極Eの傾斜を、加工経路Bに沿って付与し、中子Aの下部側のみ加工溝Fの形成と同時にワイヤ電極Eの真鍮成分の付着を行う。そして、図8(c)に示すように、下側ワイヤガイド3を停止させた状態としながら上側ワイヤガイド2を前進させ、上側ワイヤガイド2および下側ワイヤガイド3の水平方向の位置を同一としてワイヤ電極Eを垂直に設定しつつ、中子Aの上部側においても加工溝Fの形成と同時にワイヤ電極Eの真鍮成分の付着を行い、以後一定の時間間隔で付着領域Cの終端に達するまで図8(b)および図8(c)の動作を繰り返し行う。これにより、中子Aの上部側および下部側のいずれにもワイヤ電極Eの真鍮成分を付着させることができる。 On the other hand, in the adhesion region C, as shown in FIG. 6, the switching circuit 12 is in the state shown in FIG. Then, in the adhesion region C, as shown in FIG. 8A, the upper wire guide 2 and the lower wire guide 3 are set at the same horizontal position, and the wire electrode E is set vertically. ), Only the lower wire guide 3 is advanced along the traveling direction of the machining path B (hereinafter, “along the traveling direction of the machining path B” is simply referred to as “along the machining path B”). As a result, the lower wire guide 3 is advanced along the processing path B before the upper wire guide 2, and the inclination of the wire electrode E is applied along the processing path B, and the lower side of the core A At the same time as the formation of the processed groove F, the brass component of the wire electrode E is adhered. Then, as shown in FIG. 8C, the upper wire guide 2 is advanced while the lower wire guide 3 is stopped, and the horizontal positions of the upper wire guide 2 and the lower wire guide 3 are made the same. While the wire electrode E is set vertically, the brass component of the wire electrode E is attached simultaneously with the formation of the processing groove F on the upper side of the core A until the end of the attachment region C is reached after a certain time interval. The operations of FIG. 8B and FIG. 8C are repeated. Thereby, the brass component of the wire electrode E can be adhered to both the upper side and the lower side of the core A.

本発明においては、このような中子Aの真鍮成分の付着制御が可能なようにNC制御装置20を備えている。NC制御装置20は、図9に示すように、入力手段30、記憶手段40、および処理手段50からなり、これら各手段30乃至50が機能することにより制御信号を生成して、上述の如く中子Aの上部側および下部側のいずれにもワイヤ電極Eの真鍮成分を付着させることができる。 In the present invention, the NC control device 20 is provided so that the adhesion control of the brass component of the core A can be performed. As shown in FIG. 9, the NC control device 20 comprises an input means 30, a storage means 40, and a processing means 50, and these means 30 to 50 function to generate a control signal. The brass component of the wire electrode E can be attached to both the upper side and the lower side of the child A.

入力手段30は、例えば、キーボード、マウス、或いはタッチパネル等で構成されており、入力手段30から処理手段50における各種処理に必要な情報が入力される。入力手段30からは、記憶手段40に記憶された加工プログラムを読み出すための情報が入力される。なお、入力手段30は、USBおよびLANを介して他の装置から各種情報を入力する構成も含む。 The input unit 30 includes, for example, a keyboard, a mouse, a touch panel, or the like, and information necessary for various processes in the processing unit 50 is input from the input unit 30. Information for reading out the machining program stored in the storage unit 40 is input from the input unit 30. The input unit 30 includes a configuration for inputting various information from other devices via USB and LAN.

記憶手段40は、ワイヤ放電加工を実行するための加工プログラムが記憶されている。加工プログラムには、極間7に正極性の電圧を印加し通常のワイヤ放電加工を行うための第1の加工条件、加工経路B、極間7に逆極性の電圧を印加し真鍮成分の付着を行うための第2の加工条件をなす付着加工条件、および付着領域Cのそれぞれに関するデータが含まれる。なお、加工経路Bのうち付着領域C以外の領域が非付着領域Dとなる。 The storage means 40 stores a machining program for executing wire electric discharge machining. The machining program applies a positive voltage to the gap 7 and applies a reverse polarity voltage to the first machining condition B, the gap 7 for normal wire electric discharge machining, and adhesion of the brass component Data relating to each of the adhesion processing conditions forming the second processing conditions for performing the adhesion and the adhesion region C are included. A region other than the adhesion region C in the processing path B is a non-adhesion region D.

処理手段50は、入力手段30から入力された各種情報と記憶手段40に記憶された加工プログラムに基づいて、真鍮成分の付着を行いつつワイヤ放電加工を実行すべく、設定手段51、付着領域加工制御手段52、非付着領域加工制御手段53、および領域判断手段54として機能する。 Based on the various information input from the input unit 30 and the machining program stored in the storage unit 40, the processing unit 50 sets the setting unit 51 and the adhesion region machining to perform wire electric discharge machining while attaching the brass component. It functions as the control means 52, the non-attached area processing control means 53, and the area determination means 54.

設定手段51は、入力手段30から入力された情報に基づいて記憶手段40から加工プログラムを読み出して、加工経路B、第1の加工条件、第2の加工条件、付着領域C、および非付着領域Dを設定する機能を有している。   The setting unit 51 reads the machining program from the storage unit 40 based on the information input from the input unit 30, and processes the machining path B, the first machining condition, the second machining condition, the adhesion region C, and the non-adhesion region. A function for setting D is provided.

付着領域加工制御手段52は、所定の制御信号を生成して各軸モータ6および電源装置10を動作させ、設定手段51により設定された付着領域Cにおいて、第2の加工条件で、図8に示すように、下側ワイヤガイド3を、上側ワイヤガイド2よりも先に加工経路Bに沿って前進させ、ワイヤ電極Eの傾斜を、加工経路Bに沿って付与し中子Aの下部側のみ加工溝Fの形成と同時にワイヤ電極Eの真鍮成分の付着を行う。そして、同じく図8に示すように、下側ワイヤガイド3を停止させた状態としながら上側ワイヤガイド2を前進させ、中子Aの上部側においても加工溝Fの形成と同時にワイヤ電極Eの真鍮成分の付着を行い、以後一定の時間間隔で付着領域Cの終端に達するまでこれらの動作を繰り返し行い、中子Aの上部側および下部側のいずれにもワイヤ電極Eの真鍮成分を付着させる機能を有している。 The adhesion region machining control means 52 generates a predetermined control signal to operate each shaft motor 6 and the power supply device 10, and in the adhesion region C set by the setting means 51, under the second machining condition, FIG. As shown, the lower wire guide 3 is advanced along the machining path B before the upper wire guide 2, and the inclination of the wire electrode E is applied along the machining path B, and only the lower side of the core A is shown. Simultaneously with the formation of the processing groove F, the brass component of the wire electrode E is adhered. Similarly, as shown in FIG. 8, the upper wire guide 2 is advanced while the lower wire guide 3 is stopped, and the brass of the wire electrode E is formed simultaneously with the formation of the machining groove F on the upper side of the core A. The function of attaching the components and then repeating these operations until reaching the end of the attachment region C at regular time intervals to attach the brass component of the wire electrode E to both the upper side and the lower side of the core A have.

非付着領域加工制御手段53は、所定の制御信号を生成して各軸モータ6および電源装置10を動作させ、設定手段51により設定された非付着領域Dにおいて、加工経路Bに沿ってワイヤ電極Eを移動させつつ第1の加工条件に基づいてワークWの通常の放電加工を実行つまりワイヤ電極Eの真鍮成分の付着を行わず加工溝Fの形成のみを行う機能を有している。   The non-adhesion area machining control means 53 generates a predetermined control signal to operate each motor 6 and the power supply device 10, and the wire electrode along the machining path B in the non-adhesion area D set by the setting means 51. It has a function of performing normal electric discharge machining of the workpiece W based on the first machining condition while moving E, that is, forming only the machining groove F without attaching the brass component of the wire electrode E.

領域判断手段54は、ワイヤ放電加工の実行中に加工経路B上のワイヤ電極Eの位置を所要に検出し、ワイヤ電極Eの位置が付着領域Cおよび非付着領域Dのいずれにあるかの判断を行う機能を有している。 The area determination means 54 detects the position of the wire electrode E on the machining path B as necessary during execution of the wire electric discharge machining, and determines whether the position of the wire electrode E is in the attached area C or the non-attached area D. It has a function to perform.

次に、NC制御装置20によるワイヤ電極Eの真鍮成分の付着方法について図10のフローチャートに基づいて詳細に説明する。
まず、ステップS10において、作業者から入力手段30を介して入力した所定の情報に基づいて、設定手段51が記憶手段40から加工プログラムを読み出しつつ、第1の加工条件、加工経路B、第2の加工条件、付着領域C、および非付着領域Dを設定し、ワークWのワイヤ放電加工の実行を開始する。
Next, a method of attaching the brass component of the wire electrode E by the NC control device 20 will be described in detail based on the flowchart of FIG.
First, in step S10, the setting means 51 reads the machining program from the storage means 40 based on the predetermined information input from the operator via the input means 30, and the first machining condition, machining path B, second The machining conditions, the adhesion region C, and the non-adhesion region D are set, and the execution of wire electric discharge machining of the workpiece W is started.

次いで、ステップS20において、領域判断手段54が加工経路B上のワイヤ電極Eの位置を所要に検出し、ワイヤ電極Eの位置が付着領域C上にあるか否かの判断を行い、付着領域C上にあると判断した場合は、ステップS30において、付着領域加工制御手段52が制御信号を生成して各軸モータ6および電源装置10を動作させて、付着領域Cにおいて、第2の加工条件で、下側ワイヤガイド3を、上側ワイヤガイド2よりも先に加工経路Bに沿って前進させ、ワイヤ電極Eの傾斜を、加工経路Bに沿って付与し中子Aの下部側のみ加工溝Fの形成と同時にワイヤ電極Eの真鍮成分の付着を行う。そして、下側ワイヤガイド3を停止させた状態としながら上側ワイヤガイド2を前進させ、中子Aの上部側においても加工溝Fの形成と同時にワイヤ電極Eの真鍮成分の付着を行い、以後一定の時間間隔で付着領域Cの終端に達するまでこれらの動作を繰り返し行う。これにより、中子Aの上部側および下部側のいずれにもワイヤ電極Eの真鍮成分を付着させる。 Next, in step S20, the region determination means 54 detects the position of the wire electrode E on the processing path B as necessary, determines whether the position of the wire electrode E is on the adhesion region C, and the adhesion region C. If determined to be above, in step S30, the adhesion region machining control means 52 generates a control signal to operate each shaft motor 6 and the power supply device 10, and in the adhesion region C, under the second machining condition. The lower wire guide 3 is advanced along the machining path B before the upper wire guide 2, and the inclination of the wire electrode E is applied along the machining path B so that the machining groove F is formed only on the lower side of the core A. At the same time as forming, the brass component of the wire electrode E is adhered. Then, the upper wire guide 2 is advanced while the lower wire guide 3 is stopped, and the brass component of the wire electrode E is attached simultaneously with the formation of the processing groove F on the upper side of the core A. These operations are repeated until the end of the adhesion region C is reached at a time interval of. As a result, the brass component of the wire electrode E is attached to both the upper side and the lower side of the core A.

一方、ステップS20において、領域判断手段54が加工経路B上のワイヤ電極Eの位置が付着領域C上にないと判断した場合つまりワイヤ電極Eの位置が非付着領域D上にあると判断した場合は、ステップS40において、非付着領域加工制御手段53が制御信号を生成して各軸モータ6および電源装置10を動作させ、非付着領域Dにおいて、加工経路Bに沿ってワイヤ電極Eを移動させつつ第1の加工条件に基づいてワークWの通常の放電加工を実行し、以後、ステップS50において、NC制御装置20がワイヤ放電加工の終了を確認するまでステップS30乃至ステップS40の動作を行う。 On the other hand, in step S20, when the region determining means 54 determines that the position of the wire electrode E on the processing path B is not on the attached region C, that is, when the position of the wire electrode E is determined to be on the non-attached region D. In step S40, the non-attachment area machining control means 53 generates a control signal to operate each axis motor 6 and the power supply device 10, and moves the wire electrode E along the machining path B in the non-attachment area D. On the other hand, normal electric discharge machining of the workpiece W is executed based on the first machining condition, and thereafter, in step S50, the operations in steps S30 to S40 are performed until the NC controller 20 confirms the end of the wire electric discharge machining.

なお、本発明は上述した実施形態に限定されるものではなく、必要に応じて種々の応用実施または変形実施が可能であることは勿論である。すなわち、例えば、上述した実施形態にあっては、加工液を水系加工液としているが、油系加工液としても本発明の真鍮付着方法を実施することができる。 In addition, this invention is not limited to embodiment mentioned above, Of course, various application implementation or deformation | transformation implementation is possible as needed. That is, for example, in the embodiment described above, the machining fluid is an aqueous machining fluid, but the brass adhesion method of the present invention can also be implemented as an oil-based machining fluid.

また、上述した実施形態にあっては、上側ワイヤガイド2と下側ワイヤガイド3をそれぞれU軸およびV軸とX軸およびY軸に沿って水平方向に移動させることによりワイヤ電極Eに傾斜を付与して中子Aの上部側および下部側のいずれにもワイヤ電極Eの真鍮成分の付着を行うこととしているが、ワークテーブル5をX軸およびY軸に沿って水平方向に移動させることにより真鍮成分の付着を行うこととしてもよい。 In the embodiment described above, the wire electrode E is inclined by moving the upper wire guide 2 and the lower wire guide 3 in the horizontal direction along the U axis, the V axis, the X axis, and the Y axis, respectively. The brass component of the wire electrode E is attached to both the upper side and the lower side of the core A, but the work table 5 is moved in the horizontal direction along the X axis and the Y axis. It is good also as attaching a brass component.

すなわち、例えば、ワイヤ電極Eの傾斜を、加工経路Bに沿って付与する場合においては、上側ワイヤガイド2および下側ワイヤガイド3を水平方向の位置を同一としてワイヤ電極Eを垂直に設定した状態から、図13(a)に示すように、下側ワイヤガイド3のみを加工経路Bに沿って前進させることにより、下側ワイヤガイド3を、上側ワイヤガイド2よりも先に加工経路Bに沿ってワークWとワイヤ電極Eが接触する直前の位置まで前進させ、ワイヤ電極Eの傾斜を、加工経路Bに沿って付与し、続いて、図13(b)に示すように、ワークWをワイヤ電極Eと接触するようにワークテーブル5を水平方向に移動させ、中子Aの下部側のみ加工溝Fの形成と同時にワイヤ電極Eの真鍮成分の付着を行った後、図13(c)に示すように、下側ワイヤガイド3を停止させた状態としながら上側ワイヤガイド2を前進させ、中子Aの上部側においても加工溝Fの形成と同時にワイヤ電極Eの真鍮成分の付着を行い、これを繰り返すことにより中子Aの上部側および下部側のいずれにもワイヤ電極Eの真鍮成分を付着させることができる。 That is, for example, when the inclination of the wire electrode E is given along the processing path B, the wire electrode E is set vertically with the upper wire guide 2 and the lower wire guide 3 set at the same horizontal position. 13 (a), the lower wire guide 3 is moved along the machining path B before the upper wire guide 2 by advancing only the lower wire guide 3 along the machining path B. The workpiece W and the wire electrode E are advanced to a position just before the contact, and the inclination of the wire electrode E is given along the machining path B. Subsequently, as shown in FIG. After the work table 5 is moved in the horizontal direction so as to be in contact with the electrode E, the brass component of the wire electrode E is attached simultaneously with the formation of the machining groove F only on the lower side of the core A, and then, as shown in FIG. As shown While the lower wire guide 3 is in a stopped state, the upper wire guide 2 is advanced, and the brass component of the wire electrode E is attached simultaneously with the formation of the processing groove F on the upper side of the core A, and this is repeated. Thus, the brass component of the wire electrode E can be attached to both the upper side and the lower side of the core A.

本発明のワイヤ放電加工機は、加工中に中子の落下を防止することができ、加工効率の飛躍的な向上に貢献する。 The wire electric discharge machine of the present invention can prevent the core from dropping during machining, and contributes to a dramatic improvement in machining efficiency.

A:中子
B:加工経路
C:付着領域
D:非付着領域
E:ワイヤ電極
F:加工溝
H:ワークの厚み方向の中央位置
I:交点
J,K,L,M:接続点
1:ワイヤ放電加工機
2:上側ワイヤガイド
2a:通電素子
3:下側ワイヤガイド
3a:通電素子
4:加工槽
5:ワークスタンド
6:各軸モータ
7:極間
10:電源装置
11:加工用直流電源
12:スイッチング回路
12A乃至12D:スイッチングトランジスタ
20:NC制御装置
30:入力手段
40:記憶手段
50:処理手段
51:設定手段
52:付着領域加工制御手段
53:非付着領域加工制御手段
54:領域判断手段
A: Core B: Processing path C: Adhering region D: Non-adhering region E: Wire electrode F: Processing groove H: Center position in the thickness direction of the workpiece I: Intersections J, K, L, M: Connection point 1: Wire Electric discharge machine 2: upper wire guide 2a: energizing element 3: lower wire guide 3a: energizing element 4: machining tank 5: work stand 6: motor for each axis 7: distance 10: power supply 11: DC power supply 12 for machining : Switching circuits 12A to 12D: switching transistor 20: NC control device 30: input means 40: storage means 50: processing means 51: setting means 52: adhesion area machining control means 53: non-attachment area machining control means 54: area judgment means

Claims (1)

ワークテーブルに載置されたワークを加工するワイヤ電極を、前記ワークを介して上側に配置される上側ワイヤガイドと下側に配置される下側ワイヤガイドによりガイドしながら上方から下方に繰り出して加工経路に沿って移動させ前記ワークに加工溝を形成するとともに、前記加工溝により切り離された前記ワークの内側部分をなす中子の任意の領域に前記ワイヤ電極の成分を付着させ、前記ワークの落下を防止する構成を備えたワイヤ放電加工機であって、
前記ワークと前記ワイヤ電極との間に形成される極間に前記ワークが負電位となり前記ワイヤ電極が正電位となる逆極性の電圧を印加し、前記上側ワイヤガイドおよび前記下側ワイヤガイドの水平方向の位置を同一として前記ワイヤ電極を垂直に設定した状態から、前記加工経路に沿って前記下側ワイヤガイドを前記上側ワイヤガイドに対して相対的に前進させ、前記ワイヤ電極を傾斜させて放電加工を行った後、前記下側ワイヤガイドを停止させて前記加工経路に沿って前記上側ワイヤガイドを前記下側ワイヤガイドに対して相対的に前進させ、前記ワイヤ電極が垂直に戻るまで放電加工を行うことにより、前記中子の上部側および下部側のいずれにも前記ワイヤ電極の成分を付着させた後、前記極間に前記ワークが正電位となり前記ワイヤ電極が負電位となる正極性の電圧を印加するように極性を反転させることを特徴とするワイヤ放電加工機。
The wire electrode for processing the workpiece placed on the work table is drawn out from above while being guided by the upper wire guide arranged on the upper side and the lower wire guide arranged on the lower side through the workpiece. The workpiece is moved along a path to form a machining groove in the workpiece, and the wire electrode component is attached to an arbitrary region of the core forming the inner part of the workpiece separated by the machining groove, so that the workpiece falls. A wire electric discharge machine with a structure for preventing
A reverse polarity voltage is applied across the pole formed between the workpiece and the wire electrode so that the workpiece has a negative potential and the wire electrode has a positive potential, and the upper wire guide and the lower wire guide are horizontal. From a state in which the position of the direction is the same and the wire electrode is set vertically, the lower wire guide is moved forward relative to the upper wire guide along the machining path, and the wire electrode is inclined to discharge. After machining, the lower wire guide is stopped, the upper wire guide is advanced relative to the lower wire guide along the machining path, and electric discharge machining is performed until the wire electrode returns to the vertical direction. After the wire electrode components are attached to both the upper side and the lower side of the core, the workpiece becomes positive potential between the poles. Wire electric discharge machine according to claim Rukoto to reverse the polarity so as to apply a positive voltage to the electrode has a negative potential.
JP2013199847A 2012-09-28 2013-09-26 Wire electric discharge machine Active JP6143351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013199847A JP6143351B2 (en) 2012-09-28 2013-09-26 Wire electric discharge machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012217389 2012-09-28
JP2012217389 2012-09-28
JP2013199847A JP6143351B2 (en) 2012-09-28 2013-09-26 Wire electric discharge machine

Publications (2)

Publication Number Publication Date
JP2014079876A JP2014079876A (en) 2014-05-08
JP6143351B2 true JP6143351B2 (en) 2017-06-07

Family

ID=50784559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013199847A Active JP6143351B2 (en) 2012-09-28 2013-09-26 Wire electric discharge machine

Country Status (1)

Country Link
JP (1) JP6143351B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972935B2 (en) 2014-07-04 2016-08-17 ファナック株式会社 Wire electrical discharge machine using adhesion of wire electrode components
EP3287223B1 (en) * 2016-07-28 2021-01-13 Fanuc Corporation Wire electrical discharge machining method
JP6487497B2 (en) * 2016-07-28 2019-03-20 ファナック株式会社 Wire electric discharge machine and wire electric discharge machining method
JP6585676B2 (en) * 2017-10-05 2019-10-02 ファナック株式会社 Program generating apparatus and program generating method
CN108581103B (en) * 2018-04-08 2019-09-27 清华大学 A kind of five axis four-axle linkage wire cutting motion control method of slow wire feeding

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163024A (en) * 1981-03-31 1982-10-07 Matsushita Electric Works Ltd Wire cut electric discharge machine
JPH0673777B2 (en) * 1986-01-08 1994-09-21 三菱電機株式会社 Wire cut electric discharge machine
JPH11320266A (en) * 1998-05-20 1999-11-24 Makino Milling Mach Co Ltd Wire electric discharge machining method and device
JP2000280124A (en) * 1999-03-29 2000-10-10 Seibu Electric & Mach Co Ltd Wire discharge working method
WO2013187201A1 (en) * 2012-06-13 2013-12-19 西部電機株式会社 Method for welding processed material during wire electric discharge machining

Also Published As

Publication number Publication date
JP2014079876A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP6143351B2 (en) Wire electric discharge machine
CN102615364B (en) Three-dimensional ultrasonic synergetic modulation micro electrospark wire-electrode cutting machining device
US10532430B2 (en) Laser machining apparatus
JP2013144335A (en) Processing program forming device of wire electric discharge machine
CN1270860C (en) Metal wire electro-discharge machining apparatus and metal wire electro-discharge machining method
JP2014024132A (en) Processing program editing method and processing program editing system for wire electric discharge machine
JP2004066393A (en) Wire contact/non-contact boundary position detecting device of wire cut electric discharge machine
JP2009226504A (en) Wire electric discharge machining device
JP5155418B2 (en) EDM machine
KR101717609B1 (en) Electric discharge machining apparatus
JP5972935B2 (en) Wire electrical discharge machine using adhesion of wire electrode components
WO2002102538A1 (en) Wire electric-discharge machining method and device
KR101392982B1 (en) Apparatus and method for controlling scanner
JP5780110B2 (en) Electric discharge machining apparatus and control method thereof
JP2007168056A (en) Wire cut electric discharge processing machine
JP4135612B2 (en) Wire electric discharge machine and method for determining machining reference position of wire electric discharge machine
JP2000343334A (en) Deburring device
JP2559799B2 (en) Power supply for electrical discharge machining
JPH089125B2 (en) Power supply for electrical discharge machining
JP2593187B2 (en) Power supply unit for electric discharge machining
JP2019025505A (en) Laser beam machining apparatus and laser beam machining method
JP2000354914A (en) Electrical discharge machine
JP5672724B2 (en) Static test equipment
JP2008062303A (en) Control method for wire electric discharge machine
ATE305529T1 (en) METHOD AND DEVICE FOR ELECTROCHEMICALLY MATERIAL REMOVING WORKPIECE PROCESSING

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R150 Certificate of patent or registration of utility model

Ref document number: 6143351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250