JP6142152B2 - Oil content measuring apparatus and oil content measuring method - Google Patents

Oil content measuring apparatus and oil content measuring method Download PDF

Info

Publication number
JP6142152B2
JP6142152B2 JP2012208181A JP2012208181A JP6142152B2 JP 6142152 B2 JP6142152 B2 JP 6142152B2 JP 2012208181 A JP2012208181 A JP 2012208181A JP 2012208181 A JP2012208181 A JP 2012208181A JP 6142152 B2 JP6142152 B2 JP 6142152B2
Authority
JP
Japan
Prior art keywords
oil
adsorbent
oil content
ammonia
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012208181A
Other languages
Japanese (ja)
Other versions
JP2014062815A (en
Inventor
孝 島田
孝 島田
登 武政
登 武政
義雄 山下
義雄 山下
竜規 田山
竜規 田山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2012208181A priority Critical patent/JP6142152B2/en
Publication of JP2014062815A publication Critical patent/JP2014062815A/en
Application granted granted Critical
Publication of JP6142152B2 publication Critical patent/JP6142152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、アンモニアガスに含まれる油分の量を測定する油分測定装置及び油分測定方法に関する。   The present invention relates to an oil content measuring apparatus and an oil content measuring method for measuring the amount of oil content contained in ammonia gas.

半導体製造工程等に用いられるガスの中に不純物が含まれると半導体の品質等に悪影響を与えるので、これらのガスには高い純度が要求され、不純物は一定濃度以下となるように測定及び管理される必要がある。不純物として測定及び管理される物質は様々であるが、その一つに油分がある。ここで油分とは、分子量200〜400の炭化水素のことを指すのが一般的である。油分は、ガスを容器に加圧充填するとき等に用いられるコンプレッサのオイルに由来することが多く、多くのガス中に不純物として存在している。ガス中の油分を測定する方法としては、例えば、油分を含むガスを、粉末を充填した管内に導入し、該ガス中の油分を前記粉末に吸収させた後、該管内に溶媒を導入して前記粉末に吸収されている油分を抽出し、次いで、該溶媒に溶解した油分を分析することを特徴とするガス中の油分測定方法が開示されている(特許文献1)。   If impurities are included in gases used in semiconductor manufacturing processes, etc., the quality of the semiconductor will be adversely affected. Therefore, high purity is required for these gases, and the impurities are measured and controlled so that they are below a certain concentration. It is necessary to There are various substances that are measured and controlled as impurities, one of which is oil. Here, the oil component generally refers to a hydrocarbon having a molecular weight of 200 to 400. Oil is often derived from compressor oil used when filling a container with gas under pressure, and is present as an impurity in many gases. As a method for measuring the oil content in the gas, for example, a gas containing oil is introduced into a tube filled with powder, and after the oil in the gas is absorbed into the powder, a solvent is introduced into the tube. There is disclosed a method for measuring an oil content in a gas, wherein the oil content absorbed in the powder is extracted and then the oil content dissolved in the solvent is analyzed (Patent Document 1).

一方、アンモニアガスは半導体製造工程に用いられるガスの一つであり、特にIII族窒化物半導体の製造工程における窒素源として多用されている。III族窒化物半導体は、青色若しくは紫外LED又は青色若しくは紫外レーザーダイオードの材料として用いられ、化学的気相成長(CVD)等の方法により、シリコン(Si)、サファイア(Al)又は窒化ガリウム(GaN)等の基板上に成長される。III族窒化物半導体の気相成長において、油分に由来する炭素等が半導体膜中に混入すると、半導体の品質が悪化するので、アンモニアガス中の油分は一定濃度以下となるように測定及び管理される必要がある。
特開平5−126695号公報
On the other hand, ammonia gas is one of the gases used in the semiconductor manufacturing process, and is often used particularly as a nitrogen source in the manufacturing process of group III nitride semiconductors. A group III nitride semiconductor is used as a material for a blue or ultraviolet LED or a blue or ultraviolet laser diode, and is formed by silicon (Si), sapphire (Al 2 O 3 ) or nitridation by a method such as chemical vapor deposition (CVD). It is grown on a substrate such as gallium (GaN). In vapor phase growth of Group III nitride semiconductors, if carbon or the like derived from oil is mixed into the semiconductor film, the quality of the semiconductor deteriorates. Therefore, the oil in ammonia gas is measured and controlled so that it is below a certain concentration. It is necessary to
JP-A-5-126695

特許文献1に記載されているような従来の油分捕集方法及び油分捕集装置では、粉末に吸収させた油分を溶媒で抽出して該溶媒に溶解した油分を分析することによりガス中の油分が定量されるが、繰り返し測定を行う際には、測定の度に油分捕集管を交換する必要があるため、作業が煩雑になるという問題の他に、油分捕集管交換時の工具の油分等の外部からの不純物の影響から、正確で高感度な測定が困難であるという問題もあった。従って、本発明の課題は、作業が容易で正確かつ高感度な測定が可能な油分測定装置及び油分測定方法を提供することである。   In the conventional oil collecting method and oil collecting apparatus described in Patent Document 1, the oil contained in the gas is obtained by extracting the oil absorbed in the powder with a solvent and analyzing the oil dissolved in the solvent. However, when performing repeated measurements, it is necessary to replace the oil collection tube every time it is measured. There was also a problem that accurate and highly sensitive measurement was difficult due to the influence of external impurities such as oil. Accordingly, an object of the present invention is to provide an oil content measuring apparatus and an oil content measuring method which are easy to work and can perform accurate and highly sensitive measurement.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、アンモニアガスに含まれる油分の量を測定する油分測定装置に、前記油分を吸着する吸着剤と、該吸着剤から脱着した油分を分析する分析部を、外部から密閉して備えることにより、繰り返し測定を行う際に、作業が容易になるだけでなく、外部からの不純物の混入が抑制されるので、油分の量の正確で高感度な測定が可能になることを見出し、本発明の油分測定装置及び油分測定方法に到達した。   As a result of diligent studies to solve these problems, the present inventors have determined that an oil content measuring device that measures the amount of oil contained in ammonia gas has an adsorbent that adsorbs the oil and an oil content that is desorbed from the adsorbent. By providing an analysis unit that is sealed from the outside, not only is the work easier when performing repeated measurements, but also contamination from outside is suppressed, so the amount of oil is accurate. The inventors have found that highly sensitive measurement is possible, and have reached the oil content measuring apparatus and the oil content measuring method of the present invention.

すなわち本発明は、アンモニアガスに含まれる油分の量を測定する油分測定装置であって、前記油分の吸着剤を充填する吸着筒と、該吸着剤から脱着した油分を分析する分析部を備えてなることを特徴とする油分測定装置である。
また、本発明は、アンモニアガスに含まれる油分の量を測定する油分測定方法であって、アンモニアガスを吸着剤に接触させて該アンモニアガスに含まれる油分を該吸着剤に吸着する段階と、前記吸着剤が吸着した油分を脱着する段階と、前記脱着した油分を分析する段階を含んでなることを特徴とする油分測定方法である。
That is, the present invention is an oil content measuring apparatus for measuring the amount of oil contained in ammonia gas, comprising an adsorption cylinder filled with the oil adsorbent and an analysis unit for analyzing the oil desorbed from the adsorbent. This is an oil content measuring device.
Further, the present invention is an oil content measuring method for measuring the amount of oil contained in ammonia gas, the step of bringing ammonia gas into contact with an adsorbent and adsorbing the oil contained in the ammonia gas onto the adsorbent; An oil content measuring method comprising the steps of desorbing an oil component adsorbed by the adsorbent and analyzing the desorbed oil component.

本発明の油分測定装置及び油分測定方法においては、繰り返し測定を行う際にも吸着剤を交換する必要がないため、作業が容易になり、外部からの不純物の混入が抑制されて正確で高感度な測定が可能になるだけでなく、配管を流通するアンモニアに含まれる油分を連続的または断続的に測定することもできる。
また、油分は通常、炭素数等が異なる多様な炭化水素の混合物であるため、油分の量を測定するためには、これらを分離してから定量するか、多数の分析信号を解析して定量しなければならない。しかし、本発明における分析手段として水素炎イオン化検出器(FID)を用いることにより、多様な炭化水素の混合物である油分はFIDで分解されてから分析され、前述のような煩雑な作業を必要とせず、アンモニアガスに含まれる油分の量をメタン換算で精度よく容易に定量することができる。
本発明の油分測定装置及び油分測定方法により、例えば0.1volppm(メタン換算)の量でアンモニア中に含まれる油分を測定することが可能である。
In the oil content measuring apparatus and the oil content measuring method of the present invention, since it is not necessary to exchange the adsorbent even when performing repeated measurement, the work is facilitated, and contamination with external impurities is suppressed and accurate and highly sensitive. In addition to making it possible to measure the oil content, it is possible to continuously or intermittently measure the oil content contained in the ammonia flowing through the piping.
In addition, oil is usually a mixture of various hydrocarbons with different numbers of carbons. Therefore, in order to measure the amount of oil, the oil is separated and then quantified or analyzed by analyzing many analysis signals. Must. However, by using a flame ionization detector (FID) as an analysis means in the present invention, the oil component, which is a mixture of various hydrocarbons, is analyzed after being decomposed by FID, requiring the above-mentioned complicated work. Therefore, the amount of oil contained in ammonia gas can be quantified easily and accurately in terms of methane.
With the oil content measuring apparatus and the oil content measuring method of the present invention, it is possible to measure the oil content contained in ammonia in an amount of 0.1 vol ppm (methane conversion), for example.

本発明は、アンモニアガスに含まれる油分の量を測定する油分測定装置及び油分測定方法に適用される。以下、本発明の油分測定装置及び油分測定方法を、図1、図2に基づいて詳細に説明するが、本発明がこれらにより限定されるものではない。尚、図1は、本発明の油分測定装置の一例を示す構成図であり、図2は、本発明の油分測定装置を用いた気相成長システムの一例を示す構成図である。   The present invention is applied to an oil content measuring apparatus and an oil content measuring method for measuring the amount of oil contained in ammonia gas. Hereinafter, although the oil content measuring apparatus and oil content measuring method of this invention are demonstrated in detail based on FIG. 1, FIG. 2, this invention is not limited by these. FIG. 1 is a block diagram showing an example of an oil content measuring apparatus of the present invention, and FIG. 2 is a block diagram showing an example of a vapor phase growth system using the oil content measuring apparatus of the present invention.

本発明は、図1に示すように、アンモニアガスに含まれる油分の量を測定する油分測定装置であって、前記油分の吸着剤7を充填する吸着筒6と、該吸着剤7から脱着した油分を分析する分析部10を備えてなる油分測定装置である。
また、本発明は、アンモニアガスを吸着剤に接触させて該アンモニアガスに含まれる油分を該吸着剤に吸着する段階(吸着段階)と、前記吸着剤が吸着した油分を脱着する段階(脱着段階)と、前記脱着した油分を分析する段階(分析段階)を含んでなる油分測定方法である。
As shown in FIG. 1, the present invention is an oil content measuring apparatus for measuring the amount of oil contained in ammonia gas, an adsorption cylinder 6 filled with the oil adsorbent 7, and desorbed from the adsorbent 7. It is an oil content measuring apparatus provided with the analysis part 10 which analyzes oil content.
The present invention also includes a step of bringing ammonia gas into contact with an adsorbent and adsorbing oil contained in the ammonia gas to the adsorbent (adsorption step), and a step of desorbing oil adsorbed by the adsorbent (desorption step). And a step (analysis step) of analyzing the desorbed oil component.

本発明に用いられる吸着剤は、アンモニアによる腐食等の悪影響を受けず、油分を吸着可能な吸着剤であれば特に限定されることはないが、活性アルミナ、珪藻土、モレキュラーシーブ、活性炭等の無機系吸着剤、TENAX(登録商標)等のポリマー系吸着剤を例示することができる。本発明に用いられる吸着剤には、TENAX(登録商標)を用いることが特に好ましいが、TENAX(登録商標)に限定されることはない。本発明に用いられる吸着剤は、図1に示すように、吸着筒に充填されて用いられることが好ましい。吸着剤が充填される吸着筒は、円筒形を有することが好ましく、ステンレス等の耐熱性及び耐腐食性に優れた材質で構成されることが好ましいが、このような形状及び材質に限定されることはない。   The adsorbent used in the present invention is not particularly limited as long as it is an adsorbent that does not suffer from adverse effects such as corrosion by ammonia and can adsorb oil, but is not limited to inorganic substances such as activated alumina, diatomaceous earth, molecular sieve, activated carbon and the like. Examples thereof include polymer adsorbents such as a system adsorbent and TENAX (registered trademark). As the adsorbent used in the present invention, TENAX (registered trademark) is particularly preferably used, but is not limited to TENAX (registered trademark). As shown in FIG. 1, the adsorbent used in the present invention is preferably used by being filled in an adsorption cylinder. The adsorption cylinder filled with the adsorbent preferably has a cylindrical shape, and is preferably made of a material having excellent heat resistance and corrosion resistance, such as stainless steel, but is limited to such a shape and material. There is nothing.

本発明における吸着段階では、吸着剤の温度は20〜30℃であることが好ましく、常温であることが特に好ましいが、このような温度に限定されることはない。吸着剤に流通されるアンモニアガスの流量は、25〜500ml/minであることが好ましく、吸着筒に流通されるアンモニアガスの空筒線速度(LV)は、5〜120cm/secであることが好ましいが、このような流量及びLVに限定されることはない。測定1回あたりの流通時間は0.01〜20minであることが好ましいが、このような流通時間に限定されることはない。吸着剤としてTENAX(登録商標)を用いる際に、使用されるTENAX(登録商標)の量は0.3〜0.5gであることが好ましいが、このような量に限定されることはない。   In the adsorption step in the present invention, the temperature of the adsorbent is preferably 20 to 30 ° C. and particularly preferably room temperature, but is not limited to such a temperature. The flow rate of ammonia gas circulated through the adsorbent is preferably 25 to 500 ml / min, and the empty cylinder linear velocity (LV) of the ammonia gas circulated through the adsorption cylinder is 5 to 120 cm / sec. Although preferred, it is not limited to such flow rates and LVs. The circulation time per measurement is preferably 0.01 to 20 minutes, but is not limited to such a circulation time. When TENAX (registered trademark) is used as the adsorbent, the amount of TENAX (registered trademark) used is preferably 0.3 to 0.5 g, but is not limited to such an amount.

本発明において、吸着段階から脱着段階に移行する時に、吸着剤に吸着されたアンモニアの少なくとも一部を脱着させて除去するアンモニア除去と、該アンモニア除去により油分が吸着剤から脱着することなく吸着剤に保持されていることを確認する油分保持確認を行うことが好ましい。   In the present invention, when shifting from the adsorption stage to the desorption stage, ammonia removal by desorbing and removing at least a part of the ammonia adsorbed on the adsorbent, and the adsorbent without desorbing oil from the adsorbent by the ammonia removal It is preferable to perform oil content retention confirmation to confirm that the oil content is retained.

このようなアンモニア除去を行うことにより、高濃度のアンモニアによる腐食等の、分析段階における分析手段への悪影響を防止することができる。特に、分析手段としてFIDを用いる際には、高濃度のアンモニアがFIDに導入されると、アンモニアが分解して生じる水素によってFIDのベースラインが不安定になるので、前述のようなアンモニア除去によりベースラインの不安定化を防止することができる。このアンモニア除去は、キャリアガスを吸着剤に流通させ、脱着したアンモニアを同伴したキャリアガスを外部に排出することにより行われることが好ましい。アンモニア除去時の吸着剤の温度は、吸着剤から油分が脱着されることなく、アンモニアが脱着できるように適宜設定され、吸着剤にTENAX(登録商標)を使用した際には、20〜30℃であることが好ましく、常温であることが特に好ましい。また、吸着剤に流通されるキャリアガスの流量は、30〜60ml/minであることが好ましく、吸着筒に流通されるキャリアガスのLVは、7〜15cm/secであることが好ましいが、このような流量及びLVに限定されることはない。   By performing such ammonia removal, it is possible to prevent adverse effects on the analysis means in the analysis stage, such as corrosion by high-concentration ammonia. In particular, when FID is used as an analysis means, if high-concentration ammonia is introduced into the FID, the baseline of the FID becomes unstable due to hydrogen generated by the decomposition of the ammonia. Baseline instability can be prevented. This ammonia removal is preferably performed by circulating a carrier gas through the adsorbent and discharging the carrier gas accompanied by the desorbed ammonia to the outside. The temperature of the adsorbent at the time of ammonia removal is set as appropriate so that ammonia can be desorbed without desorbing oil from the adsorbent. When TENAX (registered trademark) is used as the adsorbent, the temperature is 20 to 30 ° C. It is preferable that it is normal temperature. The flow rate of the carrier gas circulated through the adsorbent is preferably 30 to 60 ml / min, and the LV of the carrier gas circulated through the adsorption cylinder is preferably 7 to 15 cm / sec. It is not limited to such a flow rate and LV.

また、前述のアンモニア除去の後に、該アンモニア除去により油分が吸着剤から脱着することなく吸着剤に保持されていることを確認することにより、より正確で高感度な油分の測定が可能になる。該油分保持確認は、キャリアガスを吸着剤に流通させた時に、油分の量を測定する分析手段が、キャリアガスに同伴される油分を検出しないことの確認によって行われることが好ましい。油分保持確認時の吸着剤の温度は、前述のアンモニア除去と同じ温度であることが好ましい。また、吸着剤に流通されるキャリアガスの流量は、前述のアンモニア除去と同じ流量及びLVであることが好ましいが、このような流量及びLVに限定されることはない。   In addition, after the above-described ammonia removal, it is possible to measure the oil content more accurately and with high sensitivity by confirming that the oil content is retained on the adsorbent without desorbing from the adsorbent by the ammonia removal. The oil content retention check is preferably performed by confirming that the analysis means for measuring the oil content does not detect the oil content accompanying the carrier gas when the carrier gas is passed through the adsorbent. It is preferable that the temperature of the adsorbent at the time of confirming oil retention is the same temperature as the above-mentioned ammonia removal. In addition, the flow rate of the carrier gas flowing through the adsorbent is preferably the same flow rate and LV as the above-described ammonia removal, but is not limited to such a flow rate and LV.

本発明において、吸着剤が吸着した油分を脱着する手段は、ヒータ等の加熱手段であることが好ましい。例えば図1の油分測定装置においては、吸着筒6の外部に設けられたヒータ8により吸着筒6を介して吸着剤7が加熱され、吸着剤7に吸着された油分が脱着される。また、油分の脱着時には、キャリアガスを吸着剤に流通させることが好ましく、脱着した油分を同伴したキャリアガスを分析部に導入することにより、脱着段階及び分析段階を連続的に行うことが可能になる。キャリアガスは、窒素、ヘリウム、アルゴン等の不活性ガス等から適宜選択されてよいが、アルゴンが特に好ましい。   In the present invention, the means for desorbing the oil adsorbed by the adsorbent is preferably a heating means such as a heater. For example, in the oil content measuring apparatus of FIG. 1, the adsorbent 7 is heated through the adsorption cylinder 6 by the heater 8 provided outside the adsorption cylinder 6, and the oil adsorbed on the adsorbent 7 is desorbed. In addition, when desorbing oil, it is preferable to circulate the carrier gas through the adsorbent. By introducing the carrier gas accompanied by the desorbed oil into the analyzer, the desorption and analysis steps can be performed continuously. Become. The carrier gas may be appropriately selected from inert gases such as nitrogen, helium, and argon, but argon is particularly preferable.

本発明における脱着段階では、吸着剤の温度は、吸着剤の耐熱性や油分の脱着温度を考慮して適宜設定され、吸着剤にTENAX(登録商標)を使用した際には、250〜350℃であることが好ましい。また、吸着剤に流通されるキャリアガスの流量は、30〜60ml/minであることが好ましく、吸着筒に流通されるキャリアガスの空筒線速度(LV)は、7〜15cm/secであることが好ましいが、このような流量及びLVに限定されることはない。   In the desorption stage in the present invention, the temperature of the adsorbent is appropriately set in consideration of the heat resistance of the adsorbent and the desorption temperature of the oil. When TENAX (registered trademark) is used as the adsorbent, the temperature is 250 to 350 ° C. It is preferable that Further, the flow rate of the carrier gas circulated through the adsorbent is preferably 30 to 60 ml / min, and the empty cylinder linear velocity (LV) of the carrier gas circulated through the adsorption cylinder is 7 to 15 cm / sec. However, it is not limited to such a flow rate and LV.

本発明において、吸着剤から脱着した油分を分析する手段は、油分に対して感度を有し、アンモニアに対して実質的に感度を有しない分析手段であることが好ましく、例えばFIDであることが好ましい。吸着剤からの油分の脱着時には油分の他に微量のアンモニアも脱着するが、このような分析手段を用いることにより、油分のみを分析部で定量することができる。また、脱着した油分が同伴されたキャリアガスを分析部に導入し、分析部で油分が検出されなくなるまで脱着を継続することにより、吸着剤に吸着された油分の量をメタン換算で定量することができる。本発明においては、分析段階で測定された油分の量と、吸着剤へのアンモニアガスの流通量から、アンモニアガスに含まれる油分の量を算出することができ、このようにして算出される油分の量はメタン換算の濃度値である。その際の計算式は、例えば、(アンモニア中の油分の濃度[volppm])={(分析部で検出された油分の量[ml])/(吸着筒へのアンモニア流通量[ml])}×1,000,000[volppm]である。   In the present invention, the means for analyzing the oil desorbed from the adsorbent is preferably an analysis means having sensitivity to the oil and having substantially no sensitivity to ammonia, for example, FID. preferable. At the time of desorption of the oil from the adsorbent, a small amount of ammonia is also desorbed in addition to the oil. By using such an analysis means, only the oil can be quantified by the analysis unit. In addition, the amount of oil adsorbed by the adsorbent is quantified in terms of methane by introducing carrier gas accompanied by desorbed oil into the analyzer and continuing desorption until no oil is detected in the analyzer. Can do. In the present invention, the amount of oil contained in ammonia gas can be calculated from the amount of oil measured in the analysis stage and the amount of ammonia gas flowing to the adsorbent, and the oil content thus calculated is calculated. Is the concentration value in terms of methane. The calculation formula at that time is, for example, (concentration of oil in ammonia [volppm]) = {(amount of oil detected in analysis unit [ml]) / (amount of ammonia flowing into the adsorption cylinder [ml])} × 1,000,000 [volppm].

図1の油分測定装置を用いた油分測定は、例えば以下のように行われる。まず、吸着段階では、高濃度のアンモニアによる腐食等の悪影響を防止するために、バルブ(5、9)を操作して、アンモニアガスを吸着剤7に通して吸着段階を行った後、分析部10を通さずにガス出口11から外部へ排気する。この間、バルブ4を操作して、キャリアガスを吸着剤7及び分析部10を通さずにガス出口11から外部へ排気しておいてもよい。その後、バルブ(4、5、9)を操作して、アンモニアガスを、吸着剤7及び分析部10を通さずにガス出口11から外部へ排気すると共に、キャリアガスを吸着剤7に通して分析部10を通さずにガス出口11から外部へ排気することによりアンモニア除去を行った後、バルブ(5、9)を操作して、吸着剤7を通したキャリアガスを分析部に導き、分析部10が油分を検出しないことを確認する。次に、脱着段階及び分析段階においては、バルブ(4、5、9)を操作して、アンモニアガスを、吸着剤7及び分析部10を通さずにガス出口11から外部へ排気すると共に、キャリアガスを、吸着剤7及び分析部10を通して、吸着剤7に吸着された油分の脱着及び分析を行った後、ガス出口11から外部へ排気する。尚、吸着剤7は、吸着段階の他に、前述のアンモニア除去及び油分保持確認において、ヒータ8を作動させずに常温等の所定の吸着温度に維持され、脱着段階及び分析段階において、ヒータ8を作動させて所定の脱着温度に加熱されてよい。また、いずれの段階における圧力も特に制限はないが、通常は常圧下で行なわれる。   The oil content measurement using the oil content measuring apparatus of FIG. 1 is performed as follows, for example. First, in the adsorption stage, in order to prevent adverse effects such as corrosion due to high-concentration ammonia, the valves (5, 9) are operated, the ammonia gas is passed through the adsorbent 7, the adsorption stage is performed, and then the analysis unit Exhaust from the gas outlet 11 to the outside without passing through 10. During this time, the valve 4 may be operated to exhaust the carrier gas from the gas outlet 11 to the outside without passing through the adsorbent 7 and the analysis unit 10. Thereafter, by operating the valves (4, 5, 9), the ammonia gas is exhausted from the gas outlet 11 without passing through the adsorbent 7 and the analysis unit 10, and the carrier gas is passed through the adsorbent 7 for analysis. After removing ammonia by exhausting from the gas outlet 11 to the outside without passing through the part 10, the valves (5, 9) are operated to guide the carrier gas that has passed through the adsorbent 7 to the analysis part. Confirm that 10 does not detect oil. Next, in the desorption stage and the analysis stage, the valves (4, 5, 9) are operated to exhaust the ammonia gas from the gas outlet 11 to the outside without passing through the adsorbent 7 and the analysis unit 10, and the carrier. The gas is desorbed and analyzed through the adsorbent 7 and the analysis unit 10 and then exhausted from the gas outlet 11 to the outside. In addition to the adsorption stage, the adsorbent 7 is maintained at a predetermined adsorption temperature such as normal temperature without operating the heater 8 in the above-described ammonia removal and oil retention check, and in the desorption stage and the analysis stage, the heater 8 is maintained. May be heated to a predetermined desorption temperature. The pressure at any stage is not particularly limited, but it is usually carried out under normal pressure.

このような操作を繰り返すことにより、配管を流通するアンモニアガスに含まれる油分の量を連続的または断続的に測定することができる。また、本発明の油分測定装置を、例えば、図2のような気相成長システムに組み込み、前述のような操作を繰り返すことにより、気相成長装置に供給されるアンモニアガスに含まれる油分の量を連続的に測定することができる。   By repeating such an operation, the amount of oil contained in the ammonia gas flowing through the piping can be measured continuously or intermittently. Further, the amount of oil contained in the ammonia gas supplied to the vapor phase growth apparatus can be obtained by incorporating the oil content measurement apparatus of the present invention into the vapor phase growth system as shown in FIG. 2 and repeating the above-described operation. Can be measured continuously.

本発明は、アンモニアを使用するCVD等の気相成長による半導体製造工程での使用に好適であり、III族窒化物半導体の製造工程のように不純物としてアンモニア中の油分濃度を測定及び管理することを要する半導体製造工程に特に好適である。また、本発明は、工業用アンモニアのように、安価であるが半導体製造工程に使用可能な程度には精製処理が行われていないアンモニアガスに含まれる油分の測定に有用である。本発明の油分測定装置は、例えば図2に示すように、半導体を形成する気相成長反応が行われる気相成長装置とその上流に設けられたアンモニア供給源の間、あるいは気相成長装置とその上流に設けられた油分除去手段(図示しない)の間に設けられ、アンモニア供給源と気相成長装置の間の配管を流れるアンモニアガスに含まれる油分の量を連続的または断続的に測定することができる。   The present invention is suitable for use in a semiconductor manufacturing process by vapor phase growth such as CVD using ammonia, and measures and controls the oil concentration in ammonia as an impurity as in the manufacturing process of a group III nitride semiconductor. It is particularly suitable for a semiconductor manufacturing process that requires a large amount. In addition, the present invention is useful for measuring oil contained in ammonia gas that is inexpensive but not subjected to purification treatment to the extent that it can be used in a semiconductor manufacturing process, such as industrial ammonia. For example, as shown in FIG. 2, the oil content measuring apparatus of the present invention is provided between a vapor phase growth apparatus in which a vapor phase growth reaction for forming a semiconductor is performed and an ammonia supply source provided upstream thereof, or a vapor phase growth apparatus. It is provided between oil removing means (not shown) provided upstream thereof, and continuously or intermittently measures the amount of oil contained in the ammonia gas flowing through the pipe between the ammonia supply source and the vapor phase growth apparatus. be able to.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

[実施例1]
(油分測定装置及び気相成長システムの製作)
図1に示すような油分測定装置を、以下のようにして製作した。まず、内径3mm、長さ200mmの円筒形を有するステンレス製の吸着筒6に、吸着剤7としてTENAX(登録商標)0.4g(充填長150mm)を充填し、吸着筒6にヒータ8を装着した。これらにFIDからなる分析部10を接続し、図1の油分測定装置を製作した。
次に、アンモニアガスの供給源12、排ガス処理装置19等が接続された気相成長装置18を含む、III族窒化物半導体の気相成長システムに、前述のようにして製作した図1の油分測定装置を組み込み、図2のような気相成長システムを完成させた。尚、アンモニアガスの供給源としては、工業用アンモニアが充填されたボンベを用いた。
[Example 1]
(Production of oil content measuring device and vapor phase growth system)
An oil content measuring apparatus as shown in FIG. 1 was manufactured as follows. First, a stainless steel adsorption cylinder 6 having an inner diameter of 3 mm and a length of 200 mm is filled with 0.4 g of TENAX (registered trademark) (filling length 150 mm) as an adsorbent 7, and a heater 8 is attached to the adsorption cylinder 6. did. An analysis unit 10 made of FID was connected to these, and the oil content measuring apparatus of FIG.
Next, the oil content of FIG. 1 manufactured as described above is applied to a group III nitride semiconductor vapor phase growth system including a vapor phase growth device 18 to which an ammonia gas supply source 12, an exhaust gas treatment device 19 and the like are connected. A measurement apparatus was incorporated to complete the vapor phase growth system as shown in FIG. As a supply source of ammonia gas, a cylinder filled with industrial ammonia was used.

(油分測定実験)
このようにして製作した油分測定装置(図1)及び気相成長システム(図2)を用い、常圧下で油分測定実験を行った。まず、バルブ4を操作して30ml/minのキャリアガス(アルゴン)を吸着剤7及び分析部10を通さずにガス出口11から外部に排気した。そして、バルブ14を操作してアンモニア精製装置13を通っていない未精製の工業用アンモニアガス50ml/min(LV:12cm/sec)を、流量制御器16を用いて1minの間サンプリングし、バルブ(5、9)を操作して、アンモニアガス入口2から常温の吸着剤7に通した後、分析部10を通さずにガス出口11から外部に排気し、排気されたアンモニアガスを排ガス処理装置19により浄化した。
(Oil content measurement experiment)
Using the oil content measuring apparatus (FIG. 1) and the vapor phase growth system (FIG. 2) thus manufactured, an oil content measurement experiment was performed under normal pressure. First, the valve 4 was operated to exhaust 30 ml / min of carrier gas (argon) from the gas outlet 11 without passing through the adsorbent 7 and the analysis unit 10. Then, by operating the valve 14, unpurified industrial ammonia gas 50 ml / min (LV: 12 cm / sec) that has not passed through the ammonia purifier 13 is sampled for 1 min using the flow controller 16, and the valve ( 5 and 9), after passing the ammonia gas inlet 2 through the adsorbent 7 at normal temperature, the gas is discharged outside from the gas outlet 11 without passing through the analyzer 10, and the exhausted ammonia gas is discharged to the exhaust gas treatment device 19 Purified by.

その後、バルブ(4、5、9)を操作して、アンモニアガスを、吸着剤7及び分析部10を通さずにガス出口11から外部へ排気すると共に、キャリアガス30ml/min(LV:7cm/sec)を吸着剤7に通して分析部10を通さずにガス出口11から外部へ排気することによりアンモニア除去を行った後、バルブ(5、9)を操作して、吸着剤7を通したキャリアガス30ml/min(LV:7cm/sec)を分析部10に導き、分析部10が油分を検出しないことを確認した。   Thereafter, by operating the valves (4, 5, 9), the ammonia gas is exhausted from the gas outlet 11 without passing through the adsorbent 7 and the analyzer 10, and the carrier gas is 30 ml / min (LV: 7 cm / min). sec) was passed through the adsorbent 7 and exhausted to the outside from the gas outlet 11 without passing through the analyzer 10, and then the valves (5, 9) were operated to pass through the adsorbent 7. A carrier gas of 30 ml / min (LV: 7 cm / sec) was introduced to the analysis unit 10, and it was confirmed that the analysis unit 10 did not detect oil.

次に、ヒータ8を用いて吸着剤7を300℃に加熱した。その後、バルブ(4、5、9)を操作して、アンモニアガスを吸着剤7及び分析部10を通さずにガス出口11から外部へ排気すると共に、キャリアガス30ml/min(LV:7cm/sec)を300℃に維持された吸着剤7及び分析部10を通して、ガス出口11から外部へ排気した。排気されたアンモニアガスは排ガス処理装置19により浄化した。分析部10のFIDが油分を検出しなくなるまで分析を継続し、分析部10のFIDで定量された油分の量と、アンモニアガスのサンプリング流量にサンプリング時間に基づいて求めたアンモニアガスの流通量から、アンモニアガス中の油分の量を算出したところ、メタン換算値で0.27volppmであった。   Next, the adsorbent 7 was heated to 300 ° C. using the heater 8. Thereafter, by operating the valves (4, 5, 9), the ammonia gas is exhausted from the gas outlet 11 without passing through the adsorbent 7 and the analysis unit 10, and the carrier gas is 30 ml / min (LV: 7 cm / sec). ) Was exhausted from the gas outlet 11 to the outside through the adsorbent 7 and the analysis unit 10 maintained at 300 ° C. The exhausted ammonia gas was purified by the exhaust gas treatment device 19. The analysis is continued until the FID of the analysis unit 10 no longer detects oil, and the amount of oil determined by the FID of the analysis unit 10 and the flow rate of ammonia gas determined based on the sampling time based on the sampling flow rate of ammonia gas. When the amount of oil in ammonia gas was calculated, it was 0.27 volppm in terms of methane.

本発明は、アンモニアを使用するCVD等の気相成長による半導体製造工程での使用に好適であり、III族窒化物半導体の製造工程のように不純物としてアンモニア中の油分濃度を測定及び管理することを要する半導体製造工程に特に好適である。   The present invention is suitable for use in a semiconductor manufacturing process by vapor phase growth such as CVD using ammonia, and measures and controls the oil concentration in ammonia as an impurity as in the manufacturing process of a group III nitride semiconductor. It is particularly suitable for a semiconductor manufacturing process that requires a large amount.

本発明の油分測定装置の一例を示す構成図である。It is a block diagram which shows an example of the oil content measuring apparatus of this invention. 本発明の油分測定装置を用いた気相成長システムの一例を示す構成図である。It is a block diagram which shows an example of the vapor phase growth system using the oil content measuring apparatus of this invention.

1 油分測定装置
2 アンモニアガス入口
3 キャリアガス入口
4,5,9,14 バルブ
6 吸着筒
7 吸着剤
8 ヒータ
10 分析部
11 ガス出口
12 アンモニアガスの供給源
13 アンモニア精製装置
15 キャリアガスの供給源
16,17 流量制御器
18 気相成長装置
19 排ガス処理装置
20 排出ライン
DESCRIPTION OF SYMBOLS 1 Oil content measuring device 2 Ammonia gas inlet 3 Carrier gas inlet 4, 5, 9, 14 Valve 6 Adsorption cylinder 7 Adsorbent 8 Heater 10 Analysis part 11 Gas outlet 12 Supply source of ammonia gas 13 Ammonia purification device 15 Supply source of carrier gas 16, 17 Flow rate controller 18 Vapor phase growth apparatus 19 Exhaust gas treatment apparatus 20 Discharge line

Claims (4)

アンモニアガスに含まれる油分の量を測定する油分測定方法であって、アンモニアガスを吸着剤に接触させて該アンモニアガスに含まれる油分を該吸着剤に吸着する段階と、キャリアガスを前記吸着剤に流通させて、前記吸着剤が吸着した油分を加熱手段により加熱して脱着する段階と、前記脱着した油分を分析する段階を含んでなることを特徴とする油分測定方法。 An oil content measuring method for measuring the amount of oil contained in ammonia gas, the step of bringing ammonia gas into contact with an adsorbent to adsorb the oil contained in the ammonia gas onto the adsorbent, and a carrier gas as the adsorbent. oil measurement method by circulation, the adsorbent is characterized by comprising the steps of desorbing heated by the heating means of oil adsorbed, the step of analyzing the oil that the desorbed. 配管を流通するアンモニアガスに含まれる油分の量を連続的または断続的に測定する請求項に記載の油分測定方法。 The oil content measuring method according to claim 1 , wherein the amount of oil content contained in the ammonia gas flowing through the pipe is continuously or intermittently measured. 脱着した油分を分析する段階で測定された油分の量と、吸着剤へのアンモニアガスの流通量から、アンモニアガスに含まれる油分の濃度を算出する請求項に記載の油分測定方法。 2. The oil content measuring method according to claim 1 , wherein the concentration of the oil content contained in the ammonia gas is calculated from the amount of the oil content measured in the stage of analyzing the desorbed oil content and the flow rate of the ammonia gas to the adsorbent. 工業用アンモニアガスに含まれる油分のを測定する請求項に記載の油分測定方法。 Oil measuring method according to claim 1 for measuring the amount of oil contained in industrial ammonia gas.
JP2012208181A 2012-09-21 2012-09-21 Oil content measuring apparatus and oil content measuring method Active JP6142152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012208181A JP6142152B2 (en) 2012-09-21 2012-09-21 Oil content measuring apparatus and oil content measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012208181A JP6142152B2 (en) 2012-09-21 2012-09-21 Oil content measuring apparatus and oil content measuring method

Publications (2)

Publication Number Publication Date
JP2014062815A JP2014062815A (en) 2014-04-10
JP6142152B2 true JP6142152B2 (en) 2017-06-07

Family

ID=50618184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012208181A Active JP6142152B2 (en) 2012-09-21 2012-09-21 Oil content measuring apparatus and oil content measuring method

Country Status (1)

Country Link
JP (1) JP6142152B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216313A (en) 2015-05-22 2016-12-22 日本パイオニクス株式会社 Oil removal device and ammonia purifier using same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181942A (en) * 1990-12-13 1993-01-26 The Boc Group, Inc. Continuous method for removing oil vapor from feed gases containing water vapor
JPH05126695A (en) * 1991-11-07 1993-05-21 Nippon Sanso Kk Oil content measuring method in oil and oil content collecting tube
US7297181B2 (en) * 2004-07-07 2007-11-20 Air Liquide America L.P. Purification and transfilling of ammonia
US8017405B2 (en) * 2005-08-08 2011-09-13 The Boc Group, Inc. Gas analysis method
JP4744336B2 (en) * 2006-03-30 2011-08-10 大陽日酸株式会社 Liquefied gas concentration analyzer
JP5738900B2 (en) * 2011-01-25 2015-06-24 住友精化株式会社 Ammonia purification system and ammonia purification method
JP6082914B2 (en) * 2012-08-16 2017-02-22 日本パイオニクス株式会社 Ammonia purification method

Also Published As

Publication number Publication date
JP2014062815A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
US7377982B2 (en) Method for the removal of airborne molecular contaminants using water gas mixtures
CN106380372B (en) A kind of purification process and purification devices of octafluoropropane
KR20100138792A (en) Processes for purification of acetylene
WO2003047731A1 (en) Gas supplying method and system
JP2003311148A (en) Adsorbent, and method and apparatus for purifying gas
JP5824318B2 (en) Apparatus and method for producing purified hydrogen gas by pressure swing adsorption treatment
JP2014059204A (en) Gas sampling device
JP6142152B2 (en) Oil content measuring apparatus and oil content measuring method
KR20180132051A (en) Filter, method of manufacturing the same, dry etching apparatus and dry etching method
KR101755108B1 (en) Apparatus for refining nitron fluorine three and method of continuously refining nitron fluorine three using the apparatus
JP2005529730A (en) Method for rapid activation or preconditioning of porous gas purification substrates
JP4828443B2 (en) Method for separating organic halogens, measuring method for low-volatile organic halogens, and measuring method for dioxins
KR102154019B1 (en) Apparatus for treating N2O gas without using reducing agent and method for treating N2O gas using the same
JP2004339187A (en) Method for purification and film-forming of perfluoro-compound
JP3051231B2 (en) Method and apparatus for analyzing oxygen in hydride gas-containing gas
JP2005021891A (en) Method and apparatus for gas refining
JP2001353420A (en) Recovery of specific material gas for semiconductor from exhaust gas generated from apparatus for producing compound semiconductor
JP2004161503A (en) Gas purification method
Ma et al. Moisture drydown in ultra-high-purity oxygen systems
JP2014095610A (en) Method and system for quantitatively analyzing sulfur compound in gas
JP3708980B2 (en) How to remove moisture from gas
JP2006088001A (en) Concentration method of volatile organic gas and volatile organic gas concentration device
WO2023063300A1 (en) Method and device for measuring concentration of trace gas component in water
JP2012153632A (en) Propylene gas separation/recovery method
JP2651610B2 (en) High-purity gas purification method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170310

R150 Certificate of patent or registration of utility model

Ref document number: 6142152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250