JP6141342B2 - Back junction solar cell - Google Patents

Back junction solar cell Download PDF

Info

Publication number
JP6141342B2
JP6141342B2 JP2015021476A JP2015021476A JP6141342B2 JP 6141342 B2 JP6141342 B2 JP 6141342B2 JP 2015021476 A JP2015021476 A JP 2015021476A JP 2015021476 A JP2015021476 A JP 2015021476A JP 6141342 B2 JP6141342 B2 JP 6141342B2
Authority
JP
Japan
Prior art keywords
substrate
single crystal
crystal silicon
silicon substrate
type single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015021476A
Other languages
Japanese (ja)
Other versions
JP2016143868A (en
Inventor
力 森
力 森
渡部 武紀
武紀 渡部
大塚 寛之
寛之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2015021476A priority Critical patent/JP6141342B2/en
Priority to PCT/JP2016/000138 priority patent/WO2016125430A1/en
Priority to TW105103578A priority patent/TW201644062A/en
Publication of JP2016143868A publication Critical patent/JP2016143868A/en
Application granted granted Critical
Publication of JP6141342B2 publication Critical patent/JP6141342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Description

本発明は、裏面接合型太陽電池に関する。   The present invention relates to a back junction solar cell.

裏面接合型太陽電池は、受光面に電極がない構造であるため(例えば、特許文献1を参照)、入射光の損失が低減でき、変換効率の向上が期待されている。   Since the back junction solar cell has a structure without an electrode on the light receiving surface (see, for example, Patent Document 1), the loss of incident light can be reduced, and improvement in conversion efficiency is expected.

このような裏面接合型太陽電池の光電変換特性は、バルク領域内での電子とホールの再結合の影響を受けやすいために、裏面接合型太陽電池では、一般的に、基板の厚さを薄くして変換効率を向上させている。   Since the photoelectric conversion characteristics of such back junction solar cells are easily affected by recombination of electrons and holes in the bulk region, the thickness of the substrate is generally reduced in back junction solar cells. The conversion efficiency is improved.

特開2008−066316号公報JP 2008-066316 A

しかしながら、変換効率を向上させるために基板の厚さを薄くすると、基板が割れやすくなるために、製造時の歩留まりが低下するという問題があった。   However, if the thickness of the substrate is reduced in order to improve the conversion efficiency, the substrate is likely to be cracked, so that there is a problem in that the yield during manufacturing decreases.

本発明は、上記問題点に鑑みてなされたものであって、製造時の歩留まりを向上させるとともに、受光面から入射した光のエネルギーの変換効率を向上させることができる裏面接合型太陽電池を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a back junction solar cell that can improve the yield during manufacturing and improve the conversion efficiency of the energy of light incident from the light receiving surface. The purpose is to do.

上記目的を達成するために、本発明は、p型単結晶シリコン基板の非受光面の少なくとも一部にn型領域を有する裏面接合型太陽電池であって、前記p型単結晶シリコン基板がガリウムドープされたものであり、前記p型単結晶シリコン基板の厚さが250μm以上1000μm以下であることを特徴とする裏面接合型太陽電池を提供する。   To achieve the above object, the present invention provides a back junction solar cell having an n-type region in at least a part of a non-light-receiving surface of a p-type single crystal silicon substrate, wherein the p-type single crystal silicon substrate is gallium. Provided is a back junction solar cell which is doped and has a thickness of the p-type single crystal silicon substrate of 250 μm or more and 1000 μm or less.

p型単結晶シリコン基板をガリウムドープされたものとすることで、基板のバルクライフタイムを高くすることができ、それによりバルク領域内での再結合の影響を受けにくくすることができる。そのため、基板を割れにくくするために基板を厚くしても変換効率の低下を抑制することができる。また、p型単結晶シリコン基板の厚さを上記の範囲とすることで、基板の割れ等が発生し難くなり、製造時の歩留まりの低下を抑制しつつ、変換効率を向上させることができる。   By making the p-type single crystal silicon substrate gallium-doped, the bulk lifetime of the substrate can be increased, thereby making it less susceptible to recombination in the bulk region. Therefore, even if the substrate is thickened to make it difficult to break the substrate, it is possible to suppress a decrease in conversion efficiency. In addition, by setting the thickness of the p-type single crystal silicon substrate in the above range, cracks of the substrate are less likely to occur, and conversion efficiency can be improved while suppressing a decrease in yield during manufacturing.

このとき、前記p型単結晶シリコン基板の受光面上にCVD酸化珪素膜からなるパッシベーション膜が設けられ、前記p型単結晶シリコン基板の前記非受光面上にパッシベーション膜が設けられていないことがコスト面で好ましい。   At this time, a passivation film made of a CVD silicon oxide film is provided on the light-receiving surface of the p-type single crystal silicon substrate, and no passivation film is provided on the non-light-receiving surface of the p-type single crystal silicon substrate. It is preferable in terms of cost.

このように、p型単結晶シリコン基板の前記非受光面上にパッシベーション膜が設けられていないことで、製造コストを削減することができる。また、受光面上のパッシベーション膜に熱酸化膜を用いていないので、受光面近傍のガリウム濃度が薄くなることを防止することができ、変換効率の低下を防止することができる。   Thus, the manufacturing cost can be reduced because the passivation film is not provided on the non-light-receiving surface of the p-type single crystal silicon substrate. Further, since a thermal oxide film is not used for the passivation film on the light receiving surface, it is possible to prevent the gallium concentration in the vicinity of the light receiving surface from being reduced, and to prevent a decrease in conversion efficiency.

このとき、前記p型単結晶シリコン基板の酸素濃度が1×1016atoms/cm以下であり、前記p型単結晶シリコン基板のガリウム濃度が1×1016atoms/cm以下であることが好ましい。 At this time, the oxygen concentration of the p-type single crystal silicon substrate is 1 × 10 16 atoms / cm 3 or less, and the gallium concentration of the p-type single crystal silicon substrate is 1 × 10 16 atoms / cm 3 or less. preferable.

p型単結晶シリコン基板の酸素濃度が上記の範囲であれば、基板のバルクライフタイムをより高くすることができ、p型単結晶シリコン基板を厚くしても変換効率の低下をより効果的に抑制することができる。また、p型単結晶シリコン基板のガリウム濃度が上記の範囲であれば、基板のバルクライフタイムをより高くすることができ、p型単結晶シリコン基板を厚くしても変換効率の低下をより効果的に抑制することができる。   If the oxygen concentration of the p-type single crystal silicon substrate is in the above range, the bulk lifetime of the substrate can be increased, and the conversion efficiency can be more effectively reduced even if the p-type single crystal silicon substrate is thickened. Can be suppressed. Further, if the gallium concentration of the p-type single crystal silicon substrate is in the above range, the bulk lifetime of the substrate can be further increased, and even if the p-type single crystal silicon substrate is thickened, the conversion efficiency is more effectively reduced. Can be suppressed.

このとき、前記p型単結晶シリコン基板の前記非受光面上に、複数の第1フィンガー電極と、複数の第2フィンガー電極とが設けられ、前記p型単結晶シリコン基板の前記非受光面上に、前記複数の第1フィンガー電極のそれぞれを電気的に接続する第1バスバー電極と、前記複数の第2フィンガー電極のそれぞれを電気的に接続する第2バスバー電極とがさらに設けられ、前記第1バスバー電極と前記第2バスバー電極の対が、3対以上設けられていることが好ましい。   At this time, a plurality of first finger electrodes and a plurality of second finger electrodes are provided on the non-light-receiving surface of the p-type single crystal silicon substrate, and on the non-light-receiving surface of the p-type single crystal silicon substrate Further, a first bus bar electrode that electrically connects each of the plurality of first finger electrodes and a second bus bar electrode that electrically connects each of the plurality of second finger electrodes are further provided, It is preferable that three or more pairs of one bus bar electrode and the second bus bar electrode are provided.

このような電極構成であれば、フィンガー電極の抵抗による電力損失を減少させることができ、変換効率をより効率的に向上させることができる。また、p型単結晶シリコン基板の厚さが上記の範囲にあるので、バスバー電極の対の数が増えても、製造時の歩留まりの低下を抑制することができる。   With such an electrode configuration, power loss due to the resistance of the finger electrode can be reduced, and the conversion efficiency can be improved more efficiently. In addition, since the thickness of the p-type single crystal silicon substrate is in the above range, even if the number of bus bar electrode pairs increases, it is possible to suppress a decrease in yield during manufacturing.

以上のように、本発明の裏面接合型太陽電池であれば、製造時の歩留まりを向上させるとともに、変換効率を向上させることができる。   As described above, the back junction solar cell of the present invention can improve the yield during production and improve the conversion efficiency.

本発明の裏面接合型太陽電池の実施態様の一例を示す断面図である。It is sectional drawing which shows an example of the embodiment of the back junction type solar cell of this invention. 本発明の裏面接合型太陽電池のフィンガー電極の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the finger electrode of the back junction type solar cell of this invention. 本発明の裏面接合型太陽電池のバスバー電極の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the bus-bar electrode of the back junction type solar cell of this invention. 基板の厚さと、変換効率及び歩留まりの関係を示す図である。It is a figure which shows the relationship between the thickness of a board | substrate, conversion efficiency, and a yield. バスバー電極対の数と、変換効率及び歩留まりとの関係を示す図である。It is a figure which shows the relationship between the number of bus-bar electrode pairs, conversion efficiency, and a yield. 実施例3及び実施例7における外部量子効率の波長特性を示す図である。It is a figure which shows the wavelength characteristic of the external quantum efficiency in Example 3 and Example 7 . 基板中のガリウム濃度と変換効率との関係を示す図である。It is a figure which shows the relationship between the gallium density | concentration in a board | substrate, and conversion efficiency. 基板の両面に熱酸化膜を形成した場合について説明するための図である。It is a figure for demonstrating the case where a thermal oxide film is formed in both surfaces of a board | substrate.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.

前述のように、従来の裏面接合型太陽電池においては、変換効率を向上させるために基板の厚さを薄くすると、割れやすくなるために、製造時の歩留まりが低下するという問題があった。   As described above, in the conventional back junction solar cell, when the thickness of the substrate is reduced in order to improve the conversion efficiency, there is a problem that the yield at the time of manufacture decreases because the substrate is easily broken.

そこで、発明者らは、製造時の歩留まりの低下を抑制しつつ、受光面から入射した光のエネルギーの変換効率を向上させることができる裏面接合型太陽電池について鋭意検討を重ねた。その結果、p型単結晶シリコン基板をガリウムドープされたものとすることにより、基板のバルクライフタイムを高くすることができること、それによりバルク領域内での再結合の影響を受けにくくすることができること、そのため、基板を厚くしても変換効率の低下を抑制することができること、また、p型単結晶シリコン基板の厚さを上記の範囲とすることで、製造時の歩留まりを向上させるとともに、変換効率を向上させることができることを見出し、本発明をなすに至った。   Thus, the inventors have made extensive studies on a back junction solar cell capable of improving the energy conversion efficiency of light incident from the light receiving surface while suppressing a decrease in yield during manufacture. As a result, it is possible to increase the bulk lifetime of the substrate by making the p-type single crystal silicon substrate doped with gallium, thereby making it less susceptible to recombination in the bulk region. Therefore, reduction in conversion efficiency can be suppressed even if the substrate is thickened, and the thickness of the p-type single crystal silicon substrate is within the above range, thereby improving the manufacturing yield and conversion. It has been found that the efficiency can be improved, and the present invention has been made.

以下、図1−3を参照しながら、本発明の裏面接合型太陽電池の一実施形態を説明する。   Hereinafter, an embodiment of the back junction solar cell of the present invention will be described with reference to FIGS.

図1の裏面接合型太陽電池10は、ガリウムがドーピングされたp型単結晶シリコン基板11と、p型単結晶シリコン基板11の非受光面11bに設けられたn型領域(エミッタ)13とを有している。p型単結晶シリコン基板11の厚さは、250μm以上1000μm以下であり、より好ましくは500μm以上800μm以下である。   1 has a p-type single crystal silicon substrate 11 doped with gallium and an n-type region (emitter) 13 provided on a non-light-receiving surface 11b of the p-type single crystal silicon substrate 11. Have. The thickness of the p-type single crystal silicon substrate 11 is 250 μm or more and 1000 μm or less, more preferably 500 μm or more and 800 μm or less.

裏面接合型太陽電池10はまた、p型単結晶シリコン基板11の受光面11aに設けられた第1p型領域(FSF)12と、p型単結晶シリコン基板11の非受光面11bに設けられた第2p型領域(BSF)14と、p型単結晶シリコン基板11の受光面11a上に設けられたパッシベーション膜15と、パッシベーション膜15上に設けられた反射防止膜16とを有することができる。ここで、パッシベーション膜15は、例えば、酸化珪素膜とすることができ、反射防止膜16は、例えば、窒化珪素膜とすることができる。第1p型領域12及び第2p型領域14は、p型単結晶シリコン基板11よりもドーパント濃度が高く、すなわち、低抵抗である。そのため、図1中に示したように、p型単結晶シリコン基板11はpと表され、第1p型領域12はp+と表され、第2p型領域14はp++と表されることがある。同様に、n型領域13はn+と表されることがある。 The back junction solar cell 10 is also provided on the first p-type region (FSF) 12 provided on the light-receiving surface 11 a of the p-type single crystal silicon substrate 11 and on the non-light-receiving surface 11 b of the p-type single crystal silicon substrate 11. A second p-type region (BSF) 14, a passivation film 15 provided on the light-receiving surface 11 a of the p-type single crystal silicon substrate 11, and an antireflection film 16 provided on the passivation film 15 can be included. Here, the passivation film 15 can be a silicon oxide film, for example, and the antireflection film 16 can be a silicon nitride film, for example. The first p-type region 12 and the second p-type region 14 have a higher dopant concentration than the p-type single crystal silicon substrate 11, that is, have a low resistance. Therefore, as shown in FIG. 1, the p-type single crystal silicon substrate 11 may be represented as p , the first p-type region 12 may be represented as p +, and the second p-type region 14 may be represented as p ++. . Similarly, the n-type region 13 may be represented as n +.

p型単結晶シリコン基板11をガリウムドープされたものとすることで、基板のバルクライフタイムを高くすることができる。それにより基板のバルク領域内での再結合の影響を受けにくくすることができるので、基板を厚くしても変換効率の低下を抑制することができる。また、p型単結晶シリコン基板11の厚さを上記の範囲とすることで、製造時の歩留まりを向上させるとともに、変換効率を向上させることができる。すなわち、250μm以上とすることで、基板強度が向上し、製造時に割れの発生が抑制される。一方、1000μm以下とすることで必要以上に厚くすることによるコスト高を回避することができるとともに、バルク再結合が増加して変換効率が下がることを抑制できる。本発明において、p型単結晶シリコン基板11をガリウムドープ基板とするが、第1p型領域12及び第2p型領域14はボロンを拡散させたものでもよい。この場合、第1p型領域12及び第2p型領域14はガリウムとボロンの両ドーパントを含むことになる。   By making the p-type single crystal silicon substrate 11 doped with gallium, the bulk lifetime of the substrate can be increased. As a result, it is possible to make it less susceptible to recombination within the bulk region of the substrate, so that a reduction in conversion efficiency can be suppressed even if the substrate is thickened. Moreover, by making the thickness of the p-type single crystal silicon substrate 11 in the above range, the yield at the time of manufacture can be improved and the conversion efficiency can be improved. That is, by setting it as 250 micrometers or more, board | substrate intensity | strength improves and generation | occurrence | production of a crack is suppressed at the time of manufacture. On the other hand, when the thickness is 1000 μm or less, it is possible to avoid an increase in cost due to an unnecessarily large thickness, and it is possible to suppress a decrease in conversion efficiency due to an increase in bulk recombination. In the present invention, the p-type single crystal silicon substrate 11 is a gallium-doped substrate, but the first p-type region 12 and the second p-type region 14 may be formed by diffusing boron. In this case, the first p-type region 12 and the second p-type region 14 contain both gallium and boron dopants.

この場合、p型単結晶シリコン基板11の受光面11a上にCVD酸化珪素膜からなるパッシベーション膜15が設けられ、p型単結晶シリコン基板11の非受光面11b上にパッシベーション膜が設けられていないことが好ましい。   In this case, a passivation film 15 made of a CVD silicon oxide film is provided on the light receiving surface 11 a of the p-type single crystal silicon substrate 11, and no passivation film is provided on the non-light receiving surface 11 b of the p-type single crystal silicon substrate 11. It is preferable.

このように、p型単結晶シリコン基板11の非受光面11b上にパッシベーション膜が設けられていないことで、太陽電池の製造工程を簡略化できる。特に、電極とn型領域(エミッタ)13又は第2p型領域(BSF)14との電気的接続のための開孔を行う必要がなくなるので、非受光面11b上の電極形成工程を簡略化できる場合がある。また、受光面11a上のパッシベーション膜にCVD酸化膜を用いれば熱酸化膜を用いていないので、受光面11a近傍のガリウム濃度が薄くなることを防止することができ、変換効率の低下を防止することができる。なお、パッシベーション膜に熱酸化膜を用いた場合には、図8に示すように、熱酸化工程において、ガリウムの偏析係数が小さいために熱酸化膜104、104’側にガリウムが移動してしまい、p型単結晶シリコン基板101表面近傍のガリウム濃度が低下すること(ガリウムのデプレッション)が知られている。ここで、図8において、裏面接合型太陽電池100は、p型単結晶シリコン基板101と、p型単結晶シリコン基板101の受光面101a上に設けられた熱酸化膜(パッシベーション膜)104と、p型単結晶シリコン基板101の非受光面101b上に設けられた熱酸化膜(パッシベーション膜)104’と、p型単結晶シリコン基板101の非受光面101bに設けられたn型領域(エミッタ)102及びp型領域(BSF)103とを有している。   Thus, since the passivation film is not provided on the non-light-receiving surface 11b of the p-type single crystal silicon substrate 11, the manufacturing process of the solar cell can be simplified. In particular, since it is not necessary to make an opening for electrical connection between the electrode and the n-type region (emitter) 13 or the second p-type region (BSF) 14, the electrode forming process on the non-light-receiving surface 11b can be simplified. There is a case. Further, if a CVD oxide film is used as the passivation film on the light receiving surface 11a, a thermal oxide film is not used. Therefore, it is possible to prevent the gallium concentration in the vicinity of the light receiving surface 11a from being reduced and to prevent a decrease in conversion efficiency. be able to. When a thermal oxide film is used for the passivation film, as shown in FIG. 8, gallium moves to the thermal oxide films 104 and 104 ′ side in the thermal oxidation process because the segregation coefficient of gallium is small. It is known that the gallium concentration near the surface of the p-type single crystal silicon substrate 101 decreases (gallium depletion). Here, in FIG. 8, the back junction solar cell 100 includes a p-type single crystal silicon substrate 101, a thermal oxide film (passivation film) 104 provided on the light receiving surface 101a of the p-type single crystal silicon substrate 101, A thermal oxide film (passivation film) 104 ′ provided on the non-light-receiving surface 101 b of the p-type single crystal silicon substrate 101 and an n-type region (emitter) provided on the non-light-receiving surface 101 b of the p-type single crystal silicon substrate 101. 102 and a p-type region (BSF) 103.

本発明において、p型単結晶シリコン基板11の酸素濃度は1×1016atoms/cm以下であり、p型単結晶シリコン基板11のガリウム濃度は1×1016atoms/cm以下であることが好ましい。 In the present invention, the oxygen concentration of the p-type single crystal silicon substrate 11 is 1 × 10 16 atoms / cm 3 or less, and the gallium concentration of the p-type single crystal silicon substrate 11 is 1 × 10 16 atoms / cm 3 or less. Is preferred.

p型単結晶シリコン基板11の酸素濃度が上記の範囲であれば、基板のバルクライフタイムをより高くすることができ、p型単結晶シリコン基板11を厚くしても変換効率の低下をより効果的に抑制することができる。また、p型単結晶シリコン基板11のガリウム濃度が上記の範囲であれば、基板のバルクライフタイムをより高くすることができ、p型単結晶シリコン基板を厚くしても変換効率の低下をより効果的に抑制することができる。図7に基板中のガリウム濃度と変換効率の関係について、基板の厚さを250μm、500μm、1000μmに変化させたときのグラフを示した。ここで、測定に用いたサンプルは、ガリウム濃度、基板の厚さ以外は、後述する実施例1と同じ条件で作製されたものである。   If the oxygen concentration of the p-type single crystal silicon substrate 11 is in the above range, the bulk lifetime of the substrate can be further increased, and even if the p-type single crystal silicon substrate 11 is thickened, the conversion efficiency is further reduced. Can be suppressed. Further, if the gallium concentration of the p-type single crystal silicon substrate 11 is in the above range, the bulk lifetime of the substrate can be further increased, and the conversion efficiency is further reduced even if the p-type single crystal silicon substrate is thickened. It can be effectively suppressed. FIG. 7 shows a graph of the relationship between the gallium concentration in the substrate and the conversion efficiency when the thickness of the substrate is changed to 250 μm, 500 μm, and 1000 μm. Here, the sample used for the measurement was prepared under the same conditions as in Example 1 described later, except for the gallium concentration and the thickness of the substrate.

裏面接合型太陽電池10はまた、p型単結晶シリコン基板11の非受光面11b上に設けられたn型領域13と電気的に接続された第1フィンガー電極17、及び、第2p型領域14と電気的に接続された第2フィンガー電極18を有することができる。図2は、第1フィンガー電極17及び第2フィンガー電極18の配置例を示したものである。図2は、裏面接合型太陽電池10を非受光面11b側から見た平面図であり、後述するバスバー電極を省略したものである。図2において、第1フィンガー電極17及び第2フィンガー電極18はそれぞれ、一方向に延在するように設けられ、第1フィンガー電極17と第2フィンガー電極18とが交互に配列されるように配置されている。第1フィンガー電極17及び第2フィンガー電極18上にはそれぞれ、後述するバスバー電極とバスバー電極と反対の極性のフィンガー電極とが電気的に接続されないように、部分的に絶縁膜19が設けられている。絶縁膜19は、例えば、ポリイミド膜とすることができる。   The back junction solar cell 10 also includes a first finger electrode 17 and a second p-type region 14 that are electrically connected to an n-type region 13 provided on the non-light-receiving surface 11 b of the p-type single crystal silicon substrate 11. A second finger electrode 18 electrically connected to the second finger electrode 18. FIG. 2 shows an arrangement example of the first finger electrode 17 and the second finger electrode 18. FIG. 2 is a plan view of the back junction solar cell 10 as viewed from the non-light-receiving surface 11b side, and a bus bar electrode described later is omitted. In FIG. 2, the first finger electrodes 17 and the second finger electrodes 18 are provided so as to extend in one direction, and are arranged so that the first finger electrodes 17 and the second finger electrodes 18 are alternately arranged. Has been. An insulating film 19 is partially provided on the first finger electrode 17 and the second finger electrode 18 so that a bus bar electrode, which will be described later, and a finger electrode having a polarity opposite to that of the bus bar electrode are not electrically connected. Yes. The insulating film 19 can be a polyimide film, for example.

図3に示すように、裏面接合型太陽電池10はまた、p型単結晶シリコン基板11の非受光面11b上に設けられた複数の第1フィンガー電極17のそれぞれを電気的に接続する第1バスバー電極20、及び、複数の第2フィンガー電極18のそれぞれを電気的に接続する第2バスバー電極21を有することができる。図3は、第1バスバー電極20及び第2バスバー電極21の配置例を示したものである。図3は、裏面接合型太陽電池10を非受光面11b側から見た平面図である。図3において、第1バスバー電極20及び第2バスバー電極21はそれぞれ、第1フィンガー電極17及び第2フィンガー電極18が延在する方向と垂直な方向に延在するように設けられ、第1バスバー電極20と第2バスバー電極21とが交互に配列されるように配置されている。第1フィンガー電極17及び第2フィンガー電極18上には、第1フィンガー電極17と第2バスバー電極21、及び、第2フィンガー電極18と第1バスバー電極20が電気的に絶縁されるように部分的に絶縁膜19が設けられている。第1バスバー電極20と第2バスバー電極21の対が3対以上設けられていることが好ましい。   As shown in FIG. 3, the back junction solar cell 10 also includes a first electrode that electrically connects each of the plurality of first finger electrodes 17 provided on the non-light-receiving surface 11 b of the p-type single crystal silicon substrate 11. The bus bar electrode 20 and the second bus bar electrode 21 that electrically connects each of the plurality of second finger electrodes 18 can be provided. FIG. 3 shows an arrangement example of the first bus bar electrode 20 and the second bus bar electrode 21. FIG. 3 is a plan view of the back junction solar cell 10 viewed from the non-light-receiving surface 11b side. In FIG. 3, the first bus bar electrode 20 and the second bus bar electrode 21 are provided so as to extend in a direction perpendicular to the direction in which the first finger electrode 17 and the second finger electrode 18 extend, respectively. The electrodes 20 and the second bus bar electrodes 21 are arranged so as to be alternately arranged. A portion on the first finger electrode 17 and the second finger electrode 18 so that the first finger electrode 17 and the second bus bar electrode 21 and the second finger electrode 18 and the first bus bar electrode 20 are electrically insulated. Insulating film 19 is provided. It is preferable that three or more pairs of the first bus bar electrode 20 and the second bus bar electrode 21 are provided.

第1バスバー電極20と前記第2バスバー電極21の対が3対以上であれば、フィンガー電極の抵抗による電力損失を減少することができ、変換効率を向上させることができる。また、バスバー電極の対の数を増やすと、基板と電極の接触面が増加し、基板と電極の熱収縮の違いによる応力が増加するために、製造時の歩留まりが低下するが、p型単結晶シリコン基板11の厚さが上記の範囲にあれば、バスバー電極の対の数が増えても、製造時の歩留まりの低下を抑制することができる。   If there are three or more pairs of the first bus bar electrode 20 and the second bus bar electrode 21, power loss due to the resistance of the finger electrodes can be reduced, and conversion efficiency can be improved. Further, when the number of bus bar electrode pairs is increased, the contact surface between the substrate and the electrode is increased, and the stress due to the difference in thermal contraction between the substrate and the electrode is increased. If the thickness of the crystalline silicon substrate 11 is in the above range, even if the number of bus bar electrode pairs increases, it is possible to suppress a decrease in yield during manufacturing.

以下、実施例、比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.

(実施例1)
以下に示す製造方法を用いて、図1に示す裏面接合型太陽電池10を作製した。
Example 1
The back junction solar cell 10 shown in FIG. 1 was produced using the manufacturing method shown below.

まず、半導体基板として、縦横の長さ156mm×156mm、厚さ250μm、酸素濃度5×1015atoms/cm、比抵抗3Ω・cm(ガリウム濃度5×1015atoms/cm)のガリウムドープ{100}p型アズカット単結晶シリコン基板100枚を準備し、加熱した水酸化カリウム水溶液によりこの基板のダメージ層を除去した。次に、水酸化カリウム・2−プロパノール水溶液中に浸漬し、テクスチャと呼ばれる微細な凹凸の形成を行った。その後、80℃に保った1%の塩酸と1%の過酸化水素の水溶液中に5分浸漬し、純水で5分リンス後、クリーンオーブンにて乾燥させた。 First, as a semiconductor substrate, gallium-doped {156 mm × 156 mm in length and width, thickness 250 μm, oxygen concentration 5 × 10 15 atoms / cm 3 , specific resistance 3Ω · cm (gallium concentration 5 × 10 15 atoms / cm 3 ) { 100 100 p-type as-cut single crystal silicon substrates were prepared, and the damaged layer of the substrate was removed with a heated aqueous potassium hydroxide solution. Next, it was immersed in an aqueous solution of potassium hydroxide and 2-propanol to form fine irregularities called texture. Then, it was immersed in an aqueous solution of 1% hydrochloric acid and 1% hydrogen peroxide maintained at 80 ° C. for 5 minutes, rinsed with pure water for 5 minutes, and then dried in a clean oven.

次に、乾燥させた基板の非受光面11bに、n型領域(エミッタ)13と、基板よりもドーパント濃度が高濃度の第2p型領域(BSF)14を形成した。n型領域13及び第2p型領域14は交互に帯状に形成し、n型領域13の幅は3mm、第2p型領域14の幅は0.6mmとした。   Next, an n-type region (emitter) 13 and a second p-type region (BSF) 14 having a higher dopant concentration than the substrate were formed on the non-light-receiving surface 11b of the dried substrate. The n-type region 13 and the second p-type region 14 are alternately formed in a strip shape, the width of the n-type region 13 is 3 mm, and the width of the second p-type region 14 is 0.6 mm.

n型領域(エミッタ)13の形成は以下のようにして行った。
まず、プラズマCVDにより、基板の両面に拡散マスクとして酸化珪素膜を150nm形成し、基板の非受光面11bにリン酸を含有するエッチングペーストを用いて長さ150mm、幅3mmの線を3.6μmおきに平行に41本印刷し、加熱処理を行ないエッチングした。その後、加熱処理を施した基板を、洗剤を含んだ超音波水洗で5分間、純水のみの超音波洗浄で5分間、流水洗浄で5分間の順に洗浄し、エッチングペーストの増粘剤などの残渣を除去し、拡散マスクの窓開けを行なった。次に、基板の非受光面11bにリン酸、シリカゲルおよび有機溶媒等を含む拡散ペーストを印刷によって塗布し、基板2枚を受光面11a同士で重ねあわせ状態で、窒素中に酸素を1体積%混合させたガス雰囲気の中に配置し、900℃で30分熱処理を行った。続いて、基板の表面に形成されたリンガラスおよび酸化珪素膜をふっ酸で除去した。
The n-type region (emitter) 13 was formed as follows.
First, a silicon oxide film having a thickness of 150 nm is formed as a diffusion mask on both surfaces of the substrate by plasma CVD, and a non-light-receiving surface 11b of the substrate is formed with a 3.6 mm thick line having a length of 150 mm and a width of 3 mm using an etching paste containing phosphoric acid. Every other 41 pieces were printed in parallel, heat-treated and etched. Thereafter, the substrate subjected to the heat treatment is cleaned in order of 5 minutes by ultrasonic cleaning with detergent, 5 minutes by ultrasonic cleaning with pure water, and 5 minutes by running water cleaning. The residue was removed and the diffusion mask window was opened. Next, a diffusion paste containing phosphoric acid, silica gel, an organic solvent, etc. is applied to the non-light-receiving surface 11b of the substrate by printing, and oxygen is contained in 1% by volume of nitrogen in a state where the two substrates are overlapped with each other. It arrange | positioned in the mixed gas atmosphere and heat-processed at 900 degreeC for 30 minutes. Subsequently, the phosphorus glass and silicon oxide film formed on the surface of the substrate were removed with hydrofluoric acid.

第2p型領域(BSF)14の形成は以下のようにして行った。
まず、プラズマCVDにより、n型領域(エミッタ)13の形成を行った基板の両面に拡散マスクとして酸化珪素膜を150nm形成し、基板の非受光面11bにリン酸を含有するエッチングペーストを用いて長さ150mm、幅0.6mmの線を3.6μmおきに平行に42本印刷し、加熱処理を行ないエッチングした。その後、加熱処理を施した基板を、洗剤を含んだ超音波水洗で5分間、純水のみの超音波洗浄で5分間、流水洗浄で5分間の順に洗浄し、エッチングペーストの増粘剤などの残渣を除去し、拡散マスクの窓開けを行なった。次に、基板の非受光面11bにホウ酸、シリカゲルおよび有機溶媒等を含む拡散ペーストを印刷によって塗布し、基板2枚を受光面11a同士で重ねあわせ状態で、窒素中に酸素を1体積%混合させたガス雰囲気の中に配置し、950℃で30分熱処理を行った。続いて、基板の表面に形成されたボロンガラスおよび酸化珪素膜をふっ酸で除去した。
The formation of the second p-type region (BSF) 14 was performed as follows.
First, a silicon oxide film having a thickness of 150 nm is formed as a diffusion mask on both surfaces of the substrate on which the n-type region (emitter) 13 is formed by plasma CVD, and an etching paste containing phosphoric acid is used on the non-light-receiving surface 11b of the substrate. Forty-two lines having a length of 150 mm and a width of 0.6 mm were printed in parallel every 3.6 μm, heat-treated, and etched. Thereafter, the substrate subjected to the heat treatment is cleaned in order of 5 minutes by ultrasonic cleaning with detergent, 5 minutes by ultrasonic cleaning with pure water, and 5 minutes by running water cleaning. The residue was removed and the diffusion mask window was opened. Next, a diffusion paste containing boric acid, silica gel, an organic solvent, and the like is applied to the non-light-receiving surface 11b of the substrate by printing, and oxygen is contained in 1% by volume of nitrogen in a state where the two substrates are overlapped with each other. It arrange | positioned in the mixed gas atmosphere and heat-processed at 950 degreeC for 30 minutes. Subsequently, the boron glass and silicon oxide film formed on the surface of the substrate were removed with hydrofluoric acid.

次に、基板の受光面11aに、基板よりも高濃度の第1p型領域(FSF)12を形成した。第1p型領域(FSF)12は基板の受光面11aの全面に形成した。   Next, a first p-type region (FSF) 12 having a higher concentration than the substrate was formed on the light receiving surface 11a of the substrate. The first p-type region (FSF) 12 was formed on the entire light receiving surface 11a of the substrate.

第1p型領域(FSF)12の形成は以下のようにして行った。
まず、プラズマCVDにより、n型領域(エミッタ)13と、第2p型領域(BSF)14とを形成した基板の非受光面11bに全面拡散マスクとして酸化珪素膜を150nm形成した。次に、ホウ酸、シリカゲルおよび有機溶媒等を含む拡散ペーストを基板の受光面11aに印刷によって塗布し、基板2枚を非受光面同士で重ねあわせた状態で窒素中に酸素を1体積%混合させたガス雰囲気の中に配置し、900℃で5分熱処理を行った。続いて、基板の表面に形成されたボロンガラスおよび酸化珪素膜をふっ酸で除去した。その後、80℃に保った1%の塩酸と1%の過酸化水素の水溶液中に5分浸漬し、純水で5分リンス後、クリーンオーブンにて乾燥させた。
The first p-type region (FSF) 12 was formed as follows.
First, a silicon oxide film having a thickness of 150 nm was formed on the non-light-receiving surface 11b of the substrate on which the n-type region (emitter) 13 and the second p-type region (BSF) 14 were formed by plasma CVD. Next, a diffusion paste containing boric acid, silica gel, an organic solvent, and the like is applied to the light receiving surface 11a of the substrate by printing. The sample was placed in a gas atmosphere and heat-treated at 900 ° C. for 5 minutes. Subsequently, the boron glass and silicon oxide film formed on the surface of the substrate were removed with hydrofluoric acid. Then, it was immersed in an aqueous solution of 1% hydrochloric acid and 1% hydrogen peroxide maintained at 80 ° C. for 5 minutes, rinsed with pure water for 5 minutes, and then dried in a clean oven.

次に、プラズマCVDにより、乾燥させた基板の受光面11a上にパッシベーション膜15として酸化珪素膜を20nm形成した。引き続き、酸化珪素膜上に、反射防止膜16として膜厚80nm、屈折率2.0の窒化珪素膜を成膜した。窒化珪素膜の成膜にもプラズマCVDを用い、反応ガスとしてはモノシランとアンモニアとの混合ガスを用いた。   Next, a 20 nm thick silicon oxide film was formed as a passivation film 15 on the light-receiving surface 11a of the dried substrate by plasma CVD. Subsequently, a silicon nitride film having a thickness of 80 nm and a refractive index of 2.0 was formed as an antireflection film 16 on the silicon oxide film. Plasma CVD was also used to form the silicon nitride film, and a mixed gas of monosilane and ammonia was used as the reaction gas.

次に、基板の非受光面11bにライン状の平行なパターンで銀ペーストをスクリーン印刷し、乾燥した。この銀ペーストは、粒径が数nm〜数十nmの銀微粒子を有機溶媒中に分散させたものである。引き続き、800℃の空気雰囲気下で10秒程度熱処理し、銀を焼結させ、n型領域(エミッタ)13に電気的に接続される第1フィンガー電極17、及び、第2p型領域(BSF)14に電気的に接続される第2フィンガー電極18を形成した。   Next, a silver paste was screen-printed in a line-like parallel pattern on the non-light-receiving surface 11b of the substrate and dried. This silver paste is obtained by dispersing silver fine particles having a particle size of several nm to several tens of nm in an organic solvent. Subsequently, heat treatment is performed in an air atmosphere at 800 ° C. for about 10 seconds, silver is sintered, and the first finger electrode 17 electrically connected to the n-type region (emitter) 13 and the second p-type region (BSF) The 2nd finger electrode 18 electrically connected to 14 was formed.

第1バスバー電極20及び第2バスバー電極21の対(バスバー電極対)を形成するために、図2に示すようにバスバー電極と反対極性のフィンガー電極とが交差する箇所に、絶縁膜19としてポリイミドをスクリーン印刷により形成し、300℃の空気雰囲気下で5分程度熱処理し、乾燥させた。その後、図3に示すように絶縁膜19が形成された第1フィンガー電極17及び第2フィンガー電極18上に3対のバスバー電極を銀ペーストを用いてライン状にスクリーン印刷し、300℃の空気雰囲気下で10分程度熱処理し、乾燥させ、100枚の太陽電池セルを完成させた。   In order to form a pair of first bus bar electrode 20 and second bus bar electrode 21 (a bus bar electrode pair), polyimide is used as an insulating film 19 at a location where the bus bar electrode and the finger electrode having the opposite polarity intersect as shown in FIG. Was formed by screen printing, heat-treated in an air atmosphere at 300 ° C. for about 5 minutes, and dried. Thereafter, as shown in FIG. 3, three pairs of bus bar electrodes are screen-printed in a line using silver paste on the first finger electrode 17 and the second finger electrode 18 on which the insulating film 19 is formed, and air at 300 ° C. Heat treatment was performed for about 10 minutes in an atmosphere, followed by drying to complete 100 solar cells.

(実施例2)
実施例1と同様にして、100枚の太陽電池セルを作製した。ただし、基板の厚さは500μmとした。
(Example 2)
In the same manner as in Example 1, 100 solar cells were produced. However, the thickness of the substrate was 500 μm.

(実施例3)
実施例1と同様にして、100枚の太陽電池セルを作製した。ただし、基板の厚さは800μmとした。
(Example 3)
In the same manner as in Example 1, 100 solar cells were produced. However, the thickness of the substrate was 800 μm.

(実施例4)
実施例1と同様にして、100枚の太陽電池セルを作製した。ただし、基板の厚さは1000μmとした。
Example 4
In the same manner as in Example 1, 100 solar cells were produced. However, the thickness of the substrate was 1000 μm.

(実施例5)
実施例1と同様にして、100枚の太陽電池セルを作製した。ただし、バスバー電極は4対とした。
(Example 5)
In the same manner as in Example 1, 100 solar cells were produced. However, four pairs of bus bar electrodes were used.

(比較例1)
実施例1と同様にして、100枚の太陽電池セルを作製した。ただし、基板の厚さは200μmとした。
(Comparative Example 1)
In the same manner as in Example 1, 100 solar cells were produced. However, the thickness of the substrate was 200 μm.

(比較例2)
実施例1と同様にして、100枚の太陽電池セルを作製した。ただし、基板の厚さは1200μmとした。
(Comparative Example 2)
In the same manner as in Example 1, 100 solar cells were produced. However, the thickness of the substrate was 1200 μm.

(比較例3)
実施例1と同様にして、100枚の太陽電池セルを作製した。ただし、基板の厚さは200μmとし、半導体基板としてボロンドープ基板を用いた。
(Comparative Example 3)
In the same manner as in Example 1, 100 solar cells were produced. However, the thickness of the substrate was 200 μm, and a boron-doped substrate was used as the semiconductor substrate.

(比較例4)
比較例3と同様にして、100枚の太陽電池セルを作製した。ただし、基板の厚さは250μmとした。
(Comparative Example 4)
In the same manner as in Comparative Example 3, 100 solar cells were produced. However, the thickness of the substrate was 250 μm.

(比較例5)
比較例3と同様にして、100枚の太陽電池セルを作製した。ただし、基板の厚さは500μmとした。
(Comparative Example 5)
In the same manner as in Comparative Example 3, 100 solar cells were produced. However, the thickness of the substrate was 500 μm.

(比較例6)
比較例3と同様にして、100枚の太陽電池セルを作製した。ただし、基板の厚さは800μmとした。
(Comparative Example 6)
In the same manner as in Comparative Example 3, 100 solar cells were produced. However, the thickness of the substrate was 800 μm.

(比較例7)
比較例3と同様にして、100枚の太陽電池セルを作製した。ただし、基板の厚さは1000μmとした。
(Comparative Example 7)
In the same manner as in Comparative Example 3, 100 solar cells were produced. However, the thickness of the substrate was 1000 μm.

(実施例6)
実施例1と同様にして、100枚の太陽電池セルを作製した。ただし、バスバー電極は2対とした。
(Example 6)
In the same manner as in Example 1, 100 solar cells were produced. However, two pairs of bus bar electrodes were used.

(比較例8)
実施例1と同様にして、100枚の太陽電池セルを作製した。ただし、基板の厚さは200μmとし、バスバー電極は2対とした。
(Comparative Example 8)
In the same manner as in Example 1, 100 solar cells were produced. However, the thickness of the substrate was 200 μm, and the bus bar electrodes were two pairs.

(比較例9)
実施例1と同様にして、100枚の太陽電池セルを作製した。ただし、基板の厚さは200μmとし、バスバー電極は4対とした。
(Comparative Example 9)
In the same manner as in Example 1, 100 solar cells were produced. However, the thickness of the substrate was 200 μm, and the bus bar electrodes were 4 pairs.

(実施例7)
実施例3と同様にして、100枚の太陽電池セルを作製した。ただし、基板の両面にパッシベーション膜として熱酸化により酸化珪素膜を20nm形成した。
(Example 7)
In the same manner as in Example 3, 100 solar cells were produced. However, a silicon oxide film having a thickness of 20 nm was formed on both surfaces of the substrate by thermal oxidation as a passivation film.

(太陽電池特性の評価)
以上のようにして作製した実施例1−7、比較例1−9の太陽電池セルについて、山下電装社製ソーラーシミュレータを用いてAM1.5スペクトル、照射強度100mW/cm、25℃の条件下で、太陽電池特性(短絡電流、開放電圧、形状因子変換効率)を測定した。ここで、短絡電流は、太陽電池に接続される抵抗器の抵抗が0Ωの時の電流値であり、開放電圧は、太陽電池に接続される抵抗器の抵抗が非常に大きい時の電圧値であり、形状因子(フィルファクター)は、最大発電電力/(短絡電流×開放電圧)×100であり、変換効率は、(太陽電池からの出力/太陽電池に入った太陽エネルギー)×100である。
(Evaluation of solar cell characteristics)
About the solar cell of Example 1-7 produced as mentioned above and Comparative Example 1-9, conditions using AM1.5 spectrum, irradiation intensity of 100 mW / cm 2 and 25 ° C. using a solar simulator manufactured by Yamashita Denso Co., Ltd. The solar cell characteristics (short circuit current, open circuit voltage, form factor conversion efficiency) were measured. Here, the short circuit current is the current value when the resistance of the resistor connected to the solar cell is 0Ω, and the open circuit voltage is the voltage value when the resistance of the resistor connected to the solar cell is very large. Yes, the form factor (fill factor) is maximum generated power / (short circuit current × open circuit voltage) × 100, and the conversion efficiency is (output from the solar cell / solar energy entering the solar cell) × 100.

(歩留まりの評価)
また、実施例1−7、比較例1−9の太陽電池セルについて、割れずにセル化された基板枚数をセル作製工程に投入したアズスライス基板枚数(100枚)で除した数を歩留まり(%)とした。
(Evaluation of yield)
Moreover, about the photovoltaic cell of Example 1-7 and Comparative Example 1-9, the yield (the number obtained by dividing the number of substrates formed into cells without cracking by the number of as-sliced substrates (100) input into the cell manufacturing process) %).

上記のようにして得られた太陽電池特性の平均値と歩留まりを表1に示す。また、図4に変換効率及び歩留まりと基板の厚さとの関係を示し、図5に変換効率及び歩留まりとバスバー電極対の数との関係を示す。なお、図5において、基板はガリウムドープ基板である。   Table 1 shows the average value and yield of the solar cell characteristics obtained as described above. FIG. 4 shows the relationship between the conversion efficiency and yield and the substrate thickness, and FIG. 5 shows the relationship between the conversion efficiency and yield and the number of bus bar electrode pairs. In FIG. 5, the substrate is a gallium doped substrate.

Figure 0006141342
Figure 0006141342

図4は、実施例1−4、比較例1−7における基板の厚さと変換効率の関係、及び、基板の厚さと歩留まりの関係をプロットしたものである。比較例1のようにガリウムドープ基板の厚さが200μmであると、歩留まりが大きく低下してしまうが(図4を参照)、ガリウムドープ基板の厚さを250μm以上とすることで大幅に改善することができた(実施例1−4、比較例2、図4を参照)。このとき、比較例3−7のようにボロンドープ基板を用いると、基板の厚さの増加による変換効率の低下が顕著であるが(図4を参照)、実施例1−4のようにガリウムドープ基板を用いると高い変換効率を維持できる(図4を参照)。しかしながら、比較例2のように基板の厚さが1200μmとなると、変換効率の低下を抑制することができない(図4を参照)。   FIG. 4 is a plot of the relationship between substrate thickness and conversion efficiency and the relationship between substrate thickness and yield in Examples 1-4 and Comparative Examples 1-7. When the thickness of the gallium-doped substrate is 200 μm as in Comparative Example 1, the yield is greatly reduced (see FIG. 4), but the thickness is significantly improved by setting the thickness of the gallium-doped substrate to 250 μm or more. (See Example 1-4, Comparative Example 2, and FIG. 4). At this time, when a boron-doped substrate is used as in Comparative Example 3-7, a decrease in conversion efficiency due to an increase in the thickness of the substrate is significant (see FIG. 4), but gallium-doped as in Example 1-4. When the substrate is used, high conversion efficiency can be maintained (see FIG. 4). However, when the thickness of the substrate is 1200 μm as in Comparative Example 2, a decrease in conversion efficiency cannot be suppressed (see FIG. 4).

図5は、実施例1、5−6、比較例1、8−9におけるバスバー電極対の数と変換効率の関係、及び、バスバー電極対の数と歩留まりの関係をプロットしたものである。図5からわかるように、バスバー電極の対の数が3対以上であれば、ガリウムドープ基板の厚さが250μmである場合に、製造時の歩留まり低下を抑制しつつ、変換効率を向上させることができる。   FIG. 5 is a plot of the relationship between the number of bus bar electrode pairs and conversion efficiency and the relationship between the number of bus bar electrode pairs and yield in Examples 1 and 5-6 and Comparative Examples 1 and 8-9. As can be seen from FIG. 5, if the number of bus bar electrode pairs is 3 or more, the conversion efficiency can be improved while suppressing the yield reduction during manufacturing when the thickness of the gallium doped substrate is 250 μm. Can do.

実施例7のように基板の両面に熱酸化によりパッシベーションを形成した場合(図8を参照)と比べ、実施例3では基板の受光面のみにプラズマCVDによりパッシベーションを形成しているため、ガリウムのデプレッションを抑制することができ、図6に示すように長波長光(波長が900nm〜1100nm程度の光)の電流ロスを少なくすることができ、変換効率を改善することができる。図6は、実施例3、7において、太陽電池の受光面に入射する光の波長と、外部量子効率との関係を測定することにより得られたものである。ここで、図6において、外部量子効率は、「毎秒発生した電子数/毎秒吸収された光子数」で定義されるものである。   Compared to the case where passivation is formed on both surfaces of the substrate as in Example 7 (see FIG. 8), in Example 3, the passivation is formed only on the light-receiving surface of the substrate by plasma CVD. Depletion can be suppressed, current loss of long wavelength light (light having a wavelength of about 900 nm to 1100 nm) can be reduced as shown in FIG. 6, and conversion efficiency can be improved. FIG. 6 is obtained by measuring the relationship between the wavelength of light incident on the light receiving surface of the solar cell and the external quantum efficiency in Examples 3 and 7. Here, in FIG. 6, the external quantum efficiency is defined as “number of electrons generated per second / number of photons absorbed per second”.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

10…裏面接合型太陽電池、 11…p型単結晶シリコン基板、 11a…受光面、
11b…非受光面、 12…第1p型領域(FSF)、
13…n型領域(エミッタ)、 14…第2p型領域(BSF)、
15…パッシベーション膜、 16…反射防止膜、 17…第1フィンガー電極、
18…第2フィンガー電極、 19…絶縁膜、 20…第1バスバー電極、
21…第2バスバー電極、
100…裏面接合型太陽電池、 101…p型単結晶シリコン基板、
101a…受光面、 101b…非受光面、 102…n型領域(エミッタ)、
103…p型領域(BSF)、
104、104’…熱酸化膜(パッシベーション膜)。
10 ... back junction solar cell, 11 ... p-type single crystal silicon substrate, 11a ... light receiving surface,
11b ... non-light-receiving surface, 12 ... first p-type region (FSF),
13 ... n-type region (emitter), 14 ... second p-type region (BSF),
15 ... Passivation film, 16 ... Antireflection film, 17 ... First finger electrode,
18 ... second finger electrode, 19 ... insulating film, 20 ... first bus bar electrode,
21 ... second bus bar electrode,
100 ... back junction solar cell, 101 ... p-type single crystal silicon substrate,
101a ... light-receiving surface, 101b ... non-light-receiving surface, 102 ... n-type region (emitter),
103 ... p-type region (BSF),
104, 104 ′... Thermal oxide film (passivation film).

Claims (1)

p型単結晶シリコン基板の非受光面の少なくとも一部にn型領域を有する裏面接合型太陽電池であって、
前記p型単結晶シリコン基板がガリウムドープされたものであり、
前記p型単結晶シリコン基板の厚さが500μm以上1000μm以下であり、
前記p型単結晶シリコン基板の平坦な非受光面上に前記n型領域に電気的に接続された電極が設けられており、
前記p型単結晶シリコン基板の受光面上にCVD酸化珪素膜からなるパッシベーション膜が設けられ、
前記p型単結晶シリコン基板の前記非受光面上にパッシベーション膜が設けられておらず、
前記p型単結晶シリコン基板の酸素濃度が1×10 16 atoms/cm 以下であり、
前記p型単結晶シリコン基板のガリウム濃度が1×10 16 atoms/cm 以下であり、
前記p型単結晶シリコン基板の前記非受光面上に、複数の第1フィンガー電極と、複数の第2フィンガー電極とが設けられ、
前記p型単結晶シリコン基板の前記非受光面上に、前記複数の第1フィンガー電極のそれぞれを電気的に接続する第1バスバー電極と、前記複数の第2フィンガー電極のそれぞれを電気的に接続する第2バスバー電極とがさらに設けられ、
前記第1バスバー電極と前記第2バスバー電極の対が、3対以上設けられていることを特徴とする裏面接合型太陽電池。
A back junction solar cell having an n-type region in at least a part of a non-light-receiving surface of a p-type single crystal silicon substrate,
The p-type single crystal silicon substrate is doped with gallium;
The p-type single crystal silicon substrate has a thickness of 500 μm or more and 1000 μm or less,
An electrode electrically connected to the n-type region is provided on a flat non-light-receiving surface of the p-type single crystal silicon substrate ;
A passivation film made of a CVD silicon oxide film is provided on the light-receiving surface of the p-type single crystal silicon substrate;
No passivation film is provided on the non-light-receiving surface of the p-type single crystal silicon substrate,
The oxygen concentration of the p-type single crystal silicon substrate is 1 × 10 16 atoms / cm 3 or less,
The p-type single crystal silicon substrate has a gallium concentration of 1 × 10 16 atoms / cm 3 or less,
A plurality of first finger electrodes and a plurality of second finger electrodes are provided on the non-light-receiving surface of the p-type single crystal silicon substrate,
A first bus bar electrode that electrically connects each of the plurality of first finger electrodes and each of the plurality of second finger electrodes are electrically connected to the non-light-receiving surface of the p-type single crystal silicon substrate. A second bus bar electrode is provided,
3 or more pairs of said 1st bus-bar electrode and said 2nd bus-bar electrode are provided, The back junction type solar cell characterized by the above-mentioned .
JP2015021476A 2015-02-05 2015-02-05 Back junction solar cell Active JP6141342B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015021476A JP6141342B2 (en) 2015-02-05 2015-02-05 Back junction solar cell
PCT/JP2016/000138 WO2016125430A1 (en) 2015-02-05 2016-01-13 Back-junction solar cell
TW105103578A TW201644062A (en) 2015-02-05 2016-02-03 Back-junction solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021476A JP6141342B2 (en) 2015-02-05 2015-02-05 Back junction solar cell

Publications (2)

Publication Number Publication Date
JP2016143868A JP2016143868A (en) 2016-08-08
JP6141342B2 true JP6141342B2 (en) 2017-06-07

Family

ID=56563787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021476A Active JP6141342B2 (en) 2015-02-05 2015-02-05 Back junction solar cell

Country Status (3)

Country Link
JP (1) JP6141342B2 (en)
TW (1) TW201644062A (en)
WO (1) WO2016125430A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102626554B1 (en) * 2016-10-25 2024-01-18 신에쓰 가가꾸 고교 가부시끼가이샤 High photoelectric conversion efficiency solar cell and manufacturing method of high photoelectric conversion efficiency solar cell
US10236397B2 (en) * 2016-11-07 2019-03-19 Shin-Etsu Chemical Co., Ltd. Method for producing high-efficiency solar cell
WO2018092172A1 (en) * 2016-11-15 2018-05-24 信越化学工業株式会社 High efficiency solar cell and method for manufacturing high efficiency solar cell
CN106816486B (en) * 2017-04-01 2018-12-25 泰州中来光电科技有限公司 Battery strings of a kind of N-type IBC solar battery patch connection and preparation method thereof, component and system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658279A (en) * 1979-10-17 1981-05-21 Seiko Epson Corp Panel for solar cell
US4478879A (en) * 1983-02-10 1984-10-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Screen printed interdigitated back contact solar cell
JPH11330517A (en) * 1998-05-12 1999-11-30 Hitachi Cable Ltd Solar battery and solar battery module
JP2001267610A (en) * 2000-03-17 2001-09-28 Hitachi Ltd Solar battery
JP2002076400A (en) * 2000-08-30 2002-03-15 Shin Etsu Handotai Co Ltd Solar cell and manufacturing method thereof
JP4723071B2 (en) * 2000-10-24 2011-07-13 信越半導体株式会社 Silicon crystal, silicon crystal wafer, and manufacturing method thereof
JP4334455B2 (en) * 2004-10-22 2009-09-30 シャープ株式会社 Solar cell module
JP2007281168A (en) * 2006-04-06 2007-10-25 Kyocera Corp Process for producing crystal silicon particle
US20080000522A1 (en) * 2006-06-30 2008-01-03 General Electric Company Photovoltaic device which includes all-back-contact configuration; and related processes
JP5152858B2 (en) * 2008-08-22 2013-02-27 シャープ株式会社 Solar cell module and manufacturing method thereof
JP2012041211A (en) * 2010-08-16 2012-03-01 Sumco Corp Polycrystalline silicon wafer and method for casting the same
KR20120090449A (en) * 2011-02-08 2012-08-17 삼성전자주식회사 Solar cell and method of manufacturing the same
JP2013172126A (en) * 2012-02-23 2013-09-02 Sharp Corp Photoelectric conversion element and method for manufacturing the same
JP5349664B2 (en) * 2012-09-14 2013-11-20 シャープ株式会社 Solar cell module and method for manufacturing solar cell module
JP2014110256A (en) * 2012-11-30 2014-06-12 Sharp Corp Method of manufacturing solar cell, and solar cell

Also Published As

Publication number Publication date
JP2016143868A (en) 2016-08-08
TW201644062A (en) 2016-12-16
WO2016125430A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
JP4980494B2 (en) Solar cell and manufacturing method thereof
US9171975B2 (en) Solar cell element and process for production thereof
KR20130092494A (en) Solar cell and method of manufacturing the same
JP6141342B2 (en) Back junction solar cell
JPWO2011024264A1 (en) Solar cell and manufacturing method thereof
JP2013048126A (en) Photovoltaic device and manufacturing method thereof
TWI649884B (en) Solar cell with high photoelectric conversion efficiency and manufacturing method of solar cell with high photoelectric conversion efficiency
KR102646477B1 (en) High photoelectric conversion efficiency solar cell and manufacturing method of high photoelectric conversion efficiency solar cell
JP6114171B2 (en) Manufacturing method of solar cell
KR102581702B1 (en) High photoelectric conversion efficiency solar cell and manufacturing method of high photoelectric conversion efficiency solar cell
TWI415272B (en) Method of fabricating rear surface point contact of solar cells
JP6405292B2 (en) Solar cell manufacturing method and solar cell
JPWO2018083722A1 (en) High photoelectric conversion efficiency solar cell and method for producing high photoelectric conversion efficiency solar cell
JP2010263012A (en) Method of manufacturing solar cell
JP6792465B2 (en) Manufacturing method of high photoelectric conversion efficiency solar cell
JP6153885B2 (en) Back junction solar cell
JP2011018748A (en) Method of manufacturing solar battery cell
KR101223055B1 (en) Method of preparing solar cell and solar cell prepared by the same
JP6564081B2 (en) High photoelectric conversion efficiency solar cell and method for producing high photoelectric conversion efficiency solar cell
JP6371883B2 (en) Manufacturing method of back junction solar cell
JP5848417B1 (en) Solar cell and method for manufacturing solar cell
JP6121891B2 (en) Solar cell and method for manufacturing solar cell
JP2012023227A (en) Method of manufacturing solar cell
JP2015062251A (en) Solar cell and method for manufacturing the same
JP2013149815A (en) Solar battery and method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170502

R150 Certificate of patent or registration of utility model

Ref document number: 6141342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150