JP6138900B2 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP6138900B2
JP6138900B2 JP2015253247A JP2015253247A JP6138900B2 JP 6138900 B2 JP6138900 B2 JP 6138900B2 JP 2015253247 A JP2015253247 A JP 2015253247A JP 2015253247 A JP2015253247 A JP 2015253247A JP 6138900 B2 JP6138900 B2 JP 6138900B2
Authority
JP
Japan
Prior art keywords
electrode
liquid crystal
wall structure
wall
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015253247A
Other languages
Japanese (ja)
Other versions
JP2016040639A (en
Inventor
伊東 理
理 伊東
崇人 平塚
崇人 平塚
昌直 山本
昌直 山本
利昌 石垣
利昌 石垣
園田 大介
大介 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Display Inc filed Critical Japan Display Inc
Priority to JP2015253247A priority Critical patent/JP6138900B2/en
Publication of JP2016040639A publication Critical patent/JP2016040639A/en
Application granted granted Critical
Publication of JP6138900B2 publication Critical patent/JP6138900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は、壁電極方式の液晶表示装置に関し、特に、壁構造と電極の平面分布を最適化した液晶表示装置に関する。   The present invention relates to a wall electrode type liquid crystal display device, and more particularly to a liquid crystal display device in which a wall structure and a planar distribution of electrodes are optimized.

液晶表示装置は、表示品質が高く、かつ薄型軽量、低消費電力などの特徴を備えていることから、小型の携帯端末から大型テレビに至るまで広く用いられている。   Liquid crystal display devices are widely used from small portable terminals to large televisions because of their high display quality and features such as thin and light weight and low power consumption.

一方、液晶表示装置においては、視野角特性が問題であり、広視野角を実現するために、IPS( In-Plane Switching )方式の液晶表示装置が提案されている。IPS方式では、ホモジニアス配向とした液晶層において、基板と平行な方向の電界を印加して液晶ダイレクタを液晶層平面内で回転させることで、バックライトの光量を制御して画像を表示する。   On the other hand, in the liquid crystal display device, viewing angle characteristics are a problem, and in order to realize a wide viewing angle, an IPS (In-Plane Switching) type liquid crystal display device has been proposed. In the IPS system, an image is displayed by controlling the amount of light of the backlight by applying an electric field in a direction parallel to the substrate and rotating the liquid crystal director in the plane of the liquid crystal layer in a homogeneously oriented liquid crystal layer.

特許文献1には、m×n個のマトリクス状の画素と、画素内のアクティブ素子と、所定電圧波形を印加する駆動手段と、画素内に上下基板間のギャップを一定に保つ電極対を有し、かつ前記電極対間に基板面に平行な電界を印加することにより液晶分子の配向状態を制御し光を変調し得る所定構造を有する液晶表示装置、が開示されている(要約参照)。   Patent Document 1 has m × n matrix pixels, active elements in the pixels, driving means for applying a predetermined voltage waveform, and electrode pairs in the pixels that keep the gap between the upper and lower substrates constant. In addition, there is disclosed a liquid crystal display device having a predetermined structure capable of controlling the alignment state of liquid crystal molecules and modulating light by applying an electric field parallel to the substrate surface between the electrode pairs (see summary).

また、特許文献2には、少なくとも一方が透明な一対の基板と、前記一対の基板間に配置される液晶層を有し、前記一対の基板のうちいずれか一方の基板上には基板面に平行方向に主成分を有する電界を形成し得る画素電極及びコモン電極が設けられ、前記画素電極及びコモン電極は所定の高さを有する壁上に設けられ、前記壁は補助容量電極及び前記補助容量電極を被覆する絶縁体よりなる横方向電界駆動方式の液晶電気光学装置、が開示されている(要約参照)。   Further, Patent Document 2 includes a pair of substrates at least one of which is transparent and a liquid crystal layer disposed between the pair of substrates, and the substrate surface is disposed on any one of the pair of substrates. A pixel electrode and a common electrode capable of forming an electric field having a main component in a parallel direction are provided, the pixel electrode and the common electrode are provided on a wall having a predetermined height, and the wall is an auxiliary capacitance electrode and the auxiliary capacitance. A lateral electric field drive type liquid crystal electro-optical device comprising an insulator covering an electrode is disclosed (see abstract).

特開平6−214244号公報JP-A-6-214244 特開平9−211477号公報Japanese Patent Laid-Open No. 9-211477

液晶層に理想的な横電界を印加して、現状のIPS方式を上回る透過率を実現する壁電極方式のIPSを検討した。壁電極方式IPSの壁構造の高さは液晶層厚と同等で、例えば4μm程度である。その作成において、透明電極(ITO電極)のフォト工程が問題となった。2つの透明電極の境界となるスリットが壁構造頂部と平坦部上の両方に分布していれば、これを一括加工する際に壁構造頂部と平坦部でレジストの膜厚や露光機の焦点の合い方が異なる。そのため、壁構造頂部ではオーバーエッチになり易く、平坦部ではアンダーエッチになり易い。これに対処するには、例えばマスク上のスリット幅を壁構造頂部では完成寸法よりも狭くし、平坦部では広くすることが考えられる。しかし、スリットが壁構造を乗り越えていれば乗り越え部近傍のスリット幅をどう決めるかが課題になる。仮に、乗り越え部近傍まで含めてマスクを完璧に描画しても、壁構造と電極に位置合わせずれが生じれば効果が得られない。このように、壁電極方式のIPSには、壁構造と電極の平面分布の最適化という課題がある。   A wall electrode type IPS was studied in which an ideal lateral electric field was applied to the liquid crystal layer to achieve a transmittance higher than that of the current IPS method. The height of the wall structure of the wall electrode type IPS is equal to the thickness of the liquid crystal layer, for example, about 4 μm. In the production, the photo process of the transparent electrode (ITO electrode) became a problem. If the slits that serve as the boundary between the two transparent electrodes are distributed both on the top of the wall structure and on the flat part, the thickness of the resist and the focus of the exposure machine at the top and the flat part of the wall structure are collectively processed. The way of matching is different. Therefore, overetching tends to occur at the top of the wall structure, and underetching tends to occur at the flat portion. In order to cope with this, for example, it is conceivable that the slit width on the mask is made narrower than the finished dimension at the top of the wall structure and wider at the flat part. However, if the slit crosses the wall structure, how to determine the slit width in the vicinity of the crossing portion becomes a problem. Even if the mask is completely drawn including the vicinity of the overpass portion, the effect cannot be obtained if misalignment occurs between the wall structure and the electrode. Thus, the wall electrode type IPS has a problem of optimizing the planar structure of the wall structure and the electrodes.

特許文献1および特許文献2には、壁構造の両壁面に独立して制御される電極を有する液晶表示装置が記載されているが、壁構造と電極の平面分布の最適化については記載されていない。   Patent Document 1 and Patent Document 2 describe a liquid crystal display device having electrodes that are independently controlled on both wall surfaces of the wall structure, but do not describe optimization of the planar distribution of the wall structure and the electrodes. Absent.

本発明は、壁電極方式のIPSにおいて、壁構造と電極の平面分布を最適化し、歩留まりを向上することを目的とする。   It is an object of the present invention to optimize the wall structure and the planar distribution of electrodes in a wall electrode type IPS and improve the yield.

上記の課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。   In order to solve the above problems, for example, the configuration described in the claims is adopted.

本発明の液晶表示装置の一例を挙げるならば、マトリクス状に複数の画素が配置され、各画素は、画素境界に形成された絶縁体の壁構造と、前記画素境界の壁構造の側面に形成した壁電極、および当該壁電極と連続し、壁電極が基板に接する位置から平面方向に伸びる平面電極から成るソース電極と、画素の両側のソース電極間に設けられ、絶縁層を介して前記平面電極と一部が重畳することにより保持容量を形成する第一のコモン電極と、前記画素の両側の壁電極間に設けられた第二のコモン電極とを有する液晶表示装置において、隣接する二つの画素の壁電極の境界となるスリットを前記壁構造の頂部に選択的に配置したものである。   To give an example of the liquid crystal display device of the present invention, a plurality of pixels are arranged in a matrix, and each pixel is formed on the side wall of the insulator wall structure formed at the pixel boundary and the wall structure at the pixel boundary. And a source electrode composed of a planar electrode continuous with the wall electrode and extending in a planar direction from a position where the wall electrode is in contact with the substrate, and the source electrode on both sides of the pixel, and the plane electrode via the insulating layer. In a liquid crystal display device having a first common electrode that forms a storage capacitor by partially overlapping with an electrode, and a second common electrode provided between wall electrodes on both sides of the pixel, two adjacent electrodes A slit serving as a boundary between pixel wall electrodes is selectively disposed at the top of the wall structure.

また、本発明の液晶表示装置の製造方法の一例を挙げるならば、マトリクス状に複数の画素が配置され、各画素は、画素境界に形成された絶縁体の壁構造と、前記画素境界の壁構造の側面から上面にかけて形成した壁電極、および当該壁電極と連続し、壁電極が基板に接する位置から平面方向に伸びる平面電極から成るソース電極と、画素の両側のソース電極間に設けられ、絶縁層を介して前記平面電極と一部が重畳することにより保持容量を形成する第一のコモン電極と、前記画素の両側の壁電極間に設けられた第二のコモン電極とを有する液晶表示装置の製造方法であって、前記壁構造上であって、TFT側の基板上の全面に、透明電極を形成するステップと、前記透明電極上にレジストを塗布するステップと、前記壁構造の頂部に隣接する二つの画素の壁電極の境界となるスリットを配置するようなマスクを用いて、前記レジストを露光し、前記壁構造上の透明電極を露出するステップと、前記露出した壁構造上の透明電極を除去することにより、前記壁構造の頂部に隣接する二つの画素の壁電極の境界となるスリットを配置する壁電極を形成するステップとを含むものである。   Further, if an example of the method of manufacturing the liquid crystal display device of the present invention is given, a plurality of pixels are arranged in a matrix, and each pixel has an insulator wall structure formed at the pixel boundary and a wall of the pixel boundary. A wall electrode formed from the side surface to the upper surface of the structure, and a source electrode composed of a planar electrode continuous with the wall electrode and extending in a planar direction from a position where the wall electrode is in contact with the substrate, and a source electrode on both sides of the pixel, A liquid crystal display having a first common electrode that forms a storage capacitor by partially overlapping the planar electrode via an insulating layer, and a second common electrode provided between the wall electrodes on both sides of the pixel A method of manufacturing an apparatus, comprising: forming a transparent electrode on the entire surface of the TFT-side substrate on the wall structure; applying a resist on the transparent electrode; and a top of the wall structure Adjacent to A step of exposing the resist to expose the transparent electrode on the wall structure by using a mask that disposes a slit serving as a boundary between the wall electrodes of the two pixels, and the transparent electrode on the exposed wall structure. Forming a wall electrode in which a slit serving as a boundary between the wall electrodes of two pixels adjacent to the top of the wall structure is disposed.

また、本発明の液晶表示装置の製造方法の他の一例を挙げるならば、マトリクス状に複数の画素が配置され、各画素は、画素境界に形成された絶縁体の壁構造と、前記画素境界の壁構造の側面に形成した壁電極、および当該壁電極と連続し、壁電極が基板に接する位置から平面方向に伸びる平面電極から成るソース電極と、画素の両側のソース電極間に設けられ、絶縁層を介して前記平面電極と一部が重畳することにより保持容量を形成する第一のコモン電極と、前記画素の両側の壁電極間に設けられた第二のコモン電極とを有する液晶表示装置の製造方法であって、前記壁構造上であって、TFT側の基板上の全面に、透明電極を形成するステップと、前記透明電極上にレジストを塗布するステップと、前記レジストをアッシングすることにより、前記壁構造上の透明電極を露出するステップと、前記露出した壁構造上の透明電極を除去することにより、前記壁構造の側面に壁電極を形成するステップとを含むものである。   In another example of the method for manufacturing a liquid crystal display device according to the present invention, a plurality of pixels are arranged in a matrix, and each pixel includes an insulator wall structure formed at a pixel boundary and the pixel boundary. A wall electrode formed on a side surface of the wall structure, and a source electrode composed of a planar electrode continuous with the wall electrode and extending in a planar direction from a position where the wall electrode is in contact with the substrate, and a source electrode on both sides of the pixel, A liquid crystal display having a first common electrode that forms a storage capacitor by partially overlapping the planar electrode via an insulating layer, and a second common electrode provided between the wall electrodes on both sides of the pixel A method of manufacturing an apparatus, comprising: forming a transparent electrode on the entire surface of the TFT-side substrate on the wall structure; applying a resist on the transparent electrode; and ashing the resist about More, the method comprising exposing the transparent electrode on the wall structure, by removing the transparent electrode on the exposed wall structure, is intended to include a step of forming a wall electrode on the side surfaces of the wall structure.

本発明によれば、隣接する二つの画素の透明電極の境界となるスリットが存在する部分の高さが一定となるため、その加工条件も一義的に定まり、壁電極方式IPSの歩留まりが向上する。そして、現状のIPS方式を上回る透過率の壁電極方式IPSを安定的に供給することができる。   According to the present invention, the height of the portion where the slit serving as the boundary between the transparent electrodes of two adjacent pixels is constant, the processing conditions are uniquely determined, and the yield of the wall electrode type IPS is improved. . And the wall electrode system IPS of the transmittance | permeability exceeding the present IPS system can be supplied stably.

本発明の実施例1の液晶表示装置の画素の平面構造を示す図である。It is a figure which shows the planar structure of the pixel of the liquid crystal display device of Example 1 of this invention. 本発明の実施例1の液晶表示装置の画素の断面構造を示す図である。It is a figure which shows the cross-section of the pixel of the liquid crystal display device of Example 1 of this invention. 本発明の実施例1のコモン電極とソース電極の間に形成される等電位面を示す図である。It is a figure which shows the equipotential surface formed between the common electrode and source electrode of Example 1 of this invention. 壁構造頂部のソース電極をパターニングする方法を説明する図である。It is a figure explaining the method of patterning the source electrode of a wall structure top part. 本発明の実施例2の液晶表示装置の画素の平面構造を示す図である。It is a figure which shows the planar structure of the pixel of the liquid crystal display device of Example 2 of this invention. 本発明の実施例3の液晶表示装置の画素の平面構造を示す図である。It is a figure which shows the planar structure of the pixel of the liquid crystal display device of Example 3 of this invention. 本発明の実施例3の液晶表示装置の画素の断面構造を示す図である。It is a figure which shows the cross-section of the pixel of the liquid crystal display device of Example 3 of this invention. 本発明の実施例3のマスク露光によるパターニングを説明する図である。It is a figure explaining the patterning by the mask exposure of Example 3 of this invention. 比較例1の液晶表示装置の画素の平面構造を示す図である。6 is a diagram illustrating a planar structure of a pixel of a liquid crystal display device of Comparative Example 1. FIG. スリットが壁構造頂部と平坦部間で連続して分布する場合を説明する図である。It is a figure explaining the case where a slit distributes continuously between a wall structure top part and a flat part. 比較例1のマスク露光によるパターニングを説明する図である。It is a figure explaining the patterning by the mask exposure of the comparative example 1. FIG. 比較例2のマスク露光によるパターニングを説明する図である。It is a figure explaining the patterning by the mask exposure of the comparative example 2. FIG. 比較例2のマスク露光によるパターニングを説明する図である。It is a figure explaining the patterning by the mask exposure of the comparative example 2. FIG. 本発明が適用される液晶表示装置の等化回路の一例を示す図である。It is a figure which shows an example of the equalization circuit of the liquid crystal display device with which this invention is applied.

以下、本発明の実施の形態を図面に基づいて説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted.

先ず、図14に、本発明が適用される液晶表示装置の等価回路の一例を示す。基板102上に走査線104と信号線103がマトリクス状に配線され、走査線104と信号線103の各交点にはTFT(Thin Film Transistor )素子110を介して画素106が接続されている。走査線104と信号線103には、それぞれ走査駆動回路108および信号駆動回路107が接続され、走査線104および信号線103に電圧を印加する。基板102上には信号線103に平行にコモン線105を配設し、全ての画素にコモン電圧発生回路109からコモン電圧を印加できるようになっている。基板102と基板101との間には液晶組成物が封入されており、全体として液晶表示装置を構成している。   First, FIG. 14 shows an example of an equivalent circuit of a liquid crystal display device to which the present invention is applied. A scanning line 104 and a signal line 103 are wired in a matrix on the substrate 102, and a pixel 106 is connected to each intersection of the scanning line 104 and the signal line 103 via a TFT (Thin Film Transistor) element 110. A scanning driving circuit 108 and a signal driving circuit 107 are connected to the scanning line 104 and the signal line 103, respectively, and a voltage is applied to the scanning line 104 and the signal line 103. A common line 105 is disposed on the substrate 102 in parallel with the signal line 103 so that a common voltage can be applied to all pixels from a common voltage generation circuit 109. A liquid crystal composition is sealed between the substrate 102 and the substrate 101 to constitute a liquid crystal display device as a whole.

図1に本発明の実施例1に係わる一つの画素の平面構造を示し、図2に一つの画素の断面構造を示す。図1は、一つの画素の全体とこれに隣接する画素の一部を含んでいる。また、図2は、図1のA−A’面の断面構造を示すものである。   FIG. 1 shows a planar structure of one pixel according to Embodiment 1 of the present invention, and FIG. 2 shows a sectional structure of one pixel. FIG. 1 includes an entire pixel and a part of a pixel adjacent to the pixel. FIG. 2 shows a cross-sectional structure of the A-A ′ plane of FIG. 1.

図2において第一の基板20上には、第一の絶縁層21を介して、信号配線15および第一のコモン電極12を配置し、その上に第二の絶縁層22を形成する。そして、画素の両側の画素境界には絶縁体の壁構造10を設ける。壁構造は、例えば有機膜で形成される。画素両側に配置した壁構造10には、その側面に壁電極111を形成するとともに、壁電極に連続して、壁電極が基板に接する位置から平面方向に伸びる平面電極112を形成する。本実施例では、この壁電極111と平面電極112とが一つのソース電極11となる。第一のコモン電極12とソース電極11の平面電極112とは、第二の絶縁層22を介して、一部が重畳しており、重畳部分が保持容量を形成する。ソース電極11の上層には第三の絶縁層23が設けられ、第三の絶縁層23上であって、壁構造10に設けた両ソース電極11の壁電極111の間に、第二のコモン電極13が配置される。第二のコモン電極13や壁構造10を覆って、第一の配向膜24が形成される。また、第一の基板20の反対側には第一の偏光板25が形成される。そして、これらによりTFT側基板が構成される。   In FIG. 2, the signal wiring 15 and the first common electrode 12 are disposed on the first substrate 20 via the first insulating layer 21, and the second insulating layer 22 is formed thereon. An insulating wall structure 10 is provided at the pixel boundary on both sides of the pixel. The wall structure is formed of, for example, an organic film. A wall electrode 111 is formed on the side surface of the wall structure 10 arranged on both sides of the pixel, and a planar electrode 112 extending in a planar direction from a position where the wall electrode is in contact with the substrate is formed continuously with the wall electrode. In the present embodiment, the wall electrode 111 and the planar electrode 112 form one source electrode 11. The first common electrode 12 and the planar electrode 112 of the source electrode 11 partially overlap with each other via the second insulating layer 22, and the overlapped portion forms a storage capacitor. A third insulating layer 23 is provided on the upper layer of the source electrode 11, and is disposed on the third insulating layer 23 between the wall electrodes 111 of both source electrodes 11 provided on the wall structure 10. An electrode 13 is disposed. A first alignment film 24 is formed to cover the second common electrode 13 and the wall structure 10. A first polarizing plate 25 is formed on the opposite side of the first substrate 20. And these constitute a TFT side substrate.

もう一方で、第二の基板30上に、ブラックマトリクス(BM:Black Matrix)31、カラーフィルタ(CF)32、保護膜(OC:Over Coat)33を形成する。そして、保護膜33上であって、壁構造に設けた両ソース電極11の間に第三のコモン電極14を配置し、第二の配向膜34を形成することにより、CF側基板が構成される。
そして、TFT側基板とCF側基板とが貼り合わせられ、両基板間に液晶分子29を含む液晶層28が封入される。
On the other hand, a black matrix (BM) 31, a color filter (CF) 32, and a protective film (OC: Over Coat) 33 are formed on the second substrate 30. Then, the third common electrode 14 is disposed between the source electrodes 11 provided on the wall structure on the protective film 33, and the second alignment film 34 is formed, whereby the CF side substrate is configured. The
Then, the TFT side substrate and the CF side substrate are bonded together, and a liquid crystal layer 28 containing liquid crystal molecules 29 is sealed between the two substrates.

図1において、壁構造10は、一点鎖線で示すように、画素の両側で長手方向に配置している。そして、壁構造10に沿うように信号配線15が配置され、これと交差するようにゲート配線16が配置されている。壁構造10の側面などにはソース電極11が配置されるとともに、両ソース電極の間には第一のコモン電極12、第二のコモン電極13、第三のコモン電極14が配置されている。第一のコモン電極12とソース電極11の重畳部を斜線で示す。第一のコモン電極12とソース電極11の重畳部は、保持容量として機能する。ゲート配線16上にはポリシリコン層17が配置され、TFTを構成している。符号17は第一のコンタクトホールを、符号18は第二のコンタクトホールを示す。   In FIG. 1, the wall structure 10 is arranged in the longitudinal direction on both sides of the pixel as indicated by a one-dot chain line. And the signal wiring 15 is arrange | positioned along the wall structure 10, and the gate wiring 16 is arrange | positioned so that this may be crossed. A source electrode 11 is disposed on the side surface of the wall structure 10, and a first common electrode 12, a second common electrode 13, and a third common electrode 14 are disposed between the source electrodes. The overlapping portion of the first common electrode 12 and the source electrode 11 is indicated by hatching. The overlapping portion of the first common electrode 12 and the source electrode 11 functions as a storage capacitor. A polysilicon layer 17 is disposed on the gate wiring 16 to constitute a TFT. Reference numeral 17 denotes a first contact hole, and reference numeral 18 denotes a second contact hole.

本実施例において、図2に示したように壁構造10は画素境界をなすBM31の下に分布しており、壁構造10の両壁面にソース電極11を有する。壁構造頂部のスリット26で両壁面のソース電極11は分離されており、両壁面のソース電極11はそれぞれ別の画素に属する。図1に示すように壁構造10はソース電極11を隔てるスリットと重畳し、なおかつスリットよりも長く分布させている。その結果、スリットは壁構造頂部にのみ配置される。   In the present embodiment, as shown in FIG. 2, the wall structure 10 is distributed under the BM 31 forming the pixel boundary, and has the source electrode 11 on both wall surfaces of the wall structure 10. The source electrodes 11 on both wall surfaces are separated by the slit 26 at the top of the wall structure, and the source electrodes 11 on both wall surfaces belong to different pixels. As shown in FIG. 1, the wall structure 10 overlaps with a slit separating the source electrode 11 and is distributed longer than the slit. As a result, the slit is located only at the top of the wall structure.

図3は、図2においてコモン電極とソース電極の間に形成される等電位面36を破線で併記した模式図である。第三のコモン電極14と第二のコモン電極13を画素中央の上下基板に対向して配置しており、更にその下方に第一のコモン電極12を配置している。図3に破線で示したように、等電位面36の一部は第三のコモン電極14と第二のコモン電極13を囲うように形成されるため、第三のコモン電極14と第二のコモン電極13は壁電極のような性質を示す。画素両側の壁構造頂部にソース電極11を配置し、画素中央に一対のコモン電極13,14を配置したことにより壁電極間の実効的な距離は画素幅の半分になり、例えば画素幅が30μmの場合でも従来のIPS−Pro方式と同等の電圧で駆動することが可能になる。   FIG. 3 is a schematic diagram in which the equipotential surface 36 formed between the common electrode and the source electrode in FIG. A third common electrode 14 and a second common electrode 13 are arranged to face the upper and lower substrates in the center of the pixel, and further, the first common electrode 12 is arranged therebelow. As shown by a broken line in FIG. 3, a part of the equipotential surface 36 is formed so as to surround the third common electrode 14 and the second common electrode 13. The common electrode 13 exhibits properties like a wall electrode. Since the source electrode 11 is arranged on the top of the wall structure on both sides of the pixel and the pair of common electrodes 13 and 14 are arranged in the center of the pixel, the effective distance between the wall electrodes is half the pixel width. For example, the pixel width is 30 μm. Even in this case, it is possible to drive with the same voltage as the conventional IPS-Pro system.

画素の平面形状は図1に示したように開いたV字状であり、壁構造10は画素の上半分では左側に傾いており、画素の下半分では右側に傾いている。液晶配向方向ADは縦方向としており、画素の上半分では液晶ダイレクタが電圧印加時に時計回りに回転し、下半分では反時計回りに回転する。また、画素の上半分と下半分のいずれにおいても壁構造10の伸長方向と液晶配向方向ADの成す角は5度である。一画素内に液晶配向の異なる2つの部分が形成されるマルチドメイン構造であり、個々のドメインの有する着色の視角依存性が相殺されるため、より無着色な視角特性が得られる。壁構造10の壁面は約85度の傾斜角を有し、このような急峻な傾斜角を有する壁面に配向処理を施すには光配向法が好適である。なお、ここで液晶ダイレクタとは、液晶層内の微小な領域における液晶分子の平均配向方向である。   The planar shape of the pixel is an open V shape as shown in FIG. 1, and the wall structure 10 is inclined to the left in the upper half of the pixel, and is inclined to the right in the lower half of the pixel. The liquid crystal alignment direction AD is the vertical direction, and the liquid crystal director rotates clockwise when a voltage is applied in the upper half of the pixel, and rotates counterclockwise in the lower half. In both the upper half and the lower half of the pixel, the angle formed by the extension direction of the wall structure 10 and the liquid crystal alignment direction AD is 5 degrees. This is a multi-domain structure in which two portions having different liquid crystal alignments are formed in one pixel, and the viewing angle dependence of the coloring of each domain is offset, so that a more uncolored viewing angle characteristic can be obtained. The wall surface of the wall structure 10 has an inclination angle of about 85 degrees, and the photo-alignment method is suitable for performing an alignment treatment on the wall surface having such a steep inclination angle. Here, the liquid crystal director is an average alignment direction of liquid crystal molecules in a minute region in the liquid crystal layer.

また、図1に示したように、壁構造10は画素端部において寸断した平面分布とした。例えば液晶層を真空封入法で形成する場合、液晶は主に壁構造10に沿って流動する。壁構造の寸断部では隣の壁構造に移動することも出来るので、真空封入法による液晶層の形成が容易になる。   Further, as shown in FIG. 1, the wall structure 10 has a planar distribution cut off at the pixel end. For example, when the liquid crystal layer is formed by a vacuum sealing method, the liquid crystal mainly flows along the wall structure 10. Since it is possible to move to the adjacent wall structure at the cut portion of the wall structure, it becomes easy to form a liquid crystal layer by a vacuum sealing method.

図4(a)は、壁構造10頂部のソース電極11をパターンニングする際にレジスト41を塗布した状態の断面図であり、レジスト41は壁構造頂部でより薄く、平坦部でより厚くなっている。このようなレジスト厚の分布は、液晶層厚と同等以上の高さの壁構造上に塗布した後に、レジストが壁構造頂部から壁構造間に流動することにより生じる。レジストはスピンコートや印刷等の手段で容易に成膜を可能にするため、一般的にこのような流動性を有する。   FIG. 4A is a cross-sectional view of a state in which a resist 41 is applied when patterning the source electrode 11 at the top of the wall structure 10. The resist 41 is thinner at the top of the wall structure and thicker at the flat portion. Yes. Such a resist thickness distribution is caused by the resist flowing from the top of the wall structure to the wall structure after coating on the wall structure having a height equal to or higher than the liquid crystal layer thickness. The resist generally has such fluidity because it enables easy film formation by means such as spin coating or printing.

ソース電極11はスリット26以外にも境界を有するが、スリット以外の境界では隣接画素の電極が近接しないため、フォト工程の精度が厳しく要求されることはない。近接する電極との短絡など致命的な欠陥が生じるのはスリットなので、ソース電極のフォト工程ではスリットの加工が特に重要である。本実施例の場合、スリットの分布を壁構造頂部に限定しているため、薄いレジストに合わせてスリットの加工条件を最適化すれば高い歩留まりでスリットの加工が可能である。また、スリットの厚さ方向の分布についても壁構造頂部に限定されるため、焦点深度の浅い露光機を用いた場合でも壁構造頂部に焦点を合わせれば高い歩留まりでスリットの加工ができる。   Although the source electrode 11 has a boundary other than the slit 26, the electrode of the adjacent pixel is not adjacent to the boundary other than the slit, so that the accuracy of the photo process is not strictly required. Since it is a slit that causes a fatal defect such as a short circuit with an adjacent electrode, the processing of the slit is particularly important in the photo process of the source electrode. In the case of the present embodiment, the slit distribution is limited to the top of the wall structure. Therefore, if the slit processing conditions are optimized according to the thin resist, the slit can be processed with a high yield. Further, since the distribution in the thickness direction of the slit is also limited to the top of the wall structure, even when an exposure apparatus having a shallow depth of focus is used, the slit can be processed with a high yield by focusing on the top of the wall structure.

図5に、本発明の実施例2に係わる一つの画素の平面構造を示す。実施例1では図1に示したように壁構造10は画素端部で寸断されているが、本実施例では図5に示したように画素端部で連続している。そのため、一画素内に分布する壁構造10は実施例1よりも長くなっている。これにより、ソース電極11も画素長辺方向に対してより長く形成することが可能になる。画素内の透明な部分を増大して開口率を増大すれば、より高い透過率が得られる。   FIG. 5 shows a planar structure of one pixel according to the second embodiment of the present invention. In the first embodiment, the wall structure 10 is cut off at the pixel end as shown in FIG. 1, but in this embodiment, it is continuous at the pixel end as shown in FIG. Therefore, the wall structure 10 distributed in one pixel is longer than that in the first embodiment. Thereby, the source electrode 11 can also be formed longer in the pixel long side direction. Higher transmittance can be obtained by increasing the aperture ratio by increasing the transparent portion in the pixel.

本実施例では壁構造が画素端部で連続しているので、ソース電極を画素長辺方向に対してより長く形成してもスリットは壁構造頂部にのみ分布することになる。そのため、実施例1と同様にして高い歩留まりでスリットの加工が可能である。   In this embodiment, since the wall structure is continuous at the pixel end, the slits are distributed only at the top of the wall structure even if the source electrode is formed longer in the long side direction of the pixel. Therefore, it is possible to process the slits with a high yield as in the first embodiment.

図6に本発明の実施例3に係わる一つの画素の平面構造を示し、図7に一つの画素の断面構造を示す。図6に示したように壁構造10の幅は図1に比較して狭く、なお且つ、ソース電極11と壁構造10の境界は一致している。図7に示したようにソース電極11が壁構造10の壁面上にのみ分布しており、壁構造10の頂部には分布していない。図6と図7に示したような壁電極構造は、以下に説明するセルフアラインプロセスで壁構造頂部のスリットを形成することにより実現できる。   FIG. 6 shows a planar structure of one pixel according to Embodiment 3 of the present invention, and FIG. 7 shows a sectional structure of one pixel. As shown in FIG. 6, the width of the wall structure 10 is narrower than that of FIG. 1, and the boundary between the source electrode 11 and the wall structure 10 coincides. As shown in FIG. 7, the source electrode 11 is distributed only on the wall surface of the wall structure 10 and is not distributed on the top of the wall structure 10. The wall electrode structure as shown in FIGS. 6 and 7 can be realized by forming a slit at the top of the wall structure by a self-alignment process described below.

図4(a)に示したように、レジスト41は壁構造10頂部で薄くなり、平坦部で厚くなる傾向にある。これにプラズマアッシャーを用いてアッシングすれば、図4(b)に示したようにレジスト41は時間に比例して表面から均等に除去されていく。図4(b)の破線は塗布時のレジスト表面である。従って、壁構造頂部の厚さを若干超える分だけレジストを除去すれば、図4(c)に示したように壁構造頂部の電極11が選択的に露出する。この状態でエッチングすれば図4(d)に示したように壁電極上の電極を選択的に除去でき、図4(e)は図4(d)からレジスト41を除去した完成状態を示す。このように、壁構造上に塗布したレジストの膜厚分布を利用すればセルフアラインで壁構造上の電極を除去できる。   As shown in FIG. 4A, the resist 41 tends to be thin at the top of the wall structure 10 and thick at the flat portion. If ashing is performed using a plasma asher, the resist 41 is uniformly removed from the surface in proportion to time as shown in FIG. The broken line in FIG. 4B is the resist surface at the time of application. Therefore, if the resist is removed by an amount slightly exceeding the thickness of the top of the wall structure, the electrode 11 at the top of the wall structure is selectively exposed as shown in FIG. If etching is performed in this state, the electrode on the wall electrode can be selectively removed as shown in FIG. 4D, and FIG. 4E shows a completed state in which the resist 41 is removed from FIG. Thus, if the film thickness distribution of the resist applied on the wall structure is used, the electrode on the wall structure can be removed by self-alignment.

壁電極上以外の部分については別途マスク露光でパターンニングする必要があり、これには壁構造とマスクの合わせ精度が影響する。しかし、スリットが壁構造頂部だけに分布していれば、以下に説明するように短絡が生じない。図8は、1つの壁構造とこれに重畳する電極に着目した平面図であり、壁構造はその境界を太線で示しており、電極は斜線でハッチングして示してある。図8(a)は全面に電極を形成した状態であり、次に図8(b)に示したように前述のセルフアライメントプロセスで壁構造頂部の電極を除去する。その次に図8(c)、図8(d)に示したようにマスク露光を用いて壁構造頂部以外の部分の電極をパターンニングする。図8(c)は図8(b)にマスクを重畳した状態を示し、図8(c)中の破線はマスクの遮光部境界である。図8(d)は図8(c)のマスク配置で最終的に形成された壁電極構造であり、壁電極は図8(c)中に示したマスクの遮光部境界と同様の平面分布となっている。なおこの時マスクの位置合わせずれが生じる可能性があるが、壁構造がスリットから突出した部分の長さをマスクの合わせ精度以上にすることにより、マスクの位置合わせずれが生じても短絡が生じることはない。   Parts other than the wall electrode need to be patterned by mask exposure separately, which is affected by the alignment accuracy of the wall structure and the mask. However, if the slits are distributed only at the top of the wall structure, no short circuit occurs as described below. FIG. 8 is a plan view paying attention to one wall structure and an electrode superimposed on the wall structure. The wall structure has a boundary indicated by a bold line, and the electrode is hatched by a hatched line. FIG. 8A shows a state in which electrodes are formed on the entire surface. Next, as shown in FIG. 8B, the electrodes at the top of the wall structure are removed by the self-alignment process described above. Next, as shown in FIG. 8C and FIG. 8D, the electrodes other than the top of the wall structure are patterned using mask exposure. FIG. 8C shows a state in which the mask is superimposed on FIG. 8B, and a broken line in FIG. 8C is a light shielding portion boundary of the mask. FIG. 8D shows a wall electrode structure finally formed with the mask arrangement shown in FIG. 8C. The wall electrode has a plane distribution similar to the light shielding portion boundary of the mask shown in FIG. It has become. At this time, there is a possibility that misalignment of the mask may occur. However, if the length of the portion of the wall structure protruding from the slit exceeds the alignment accuracy of the mask, a short circuit occurs even if misalignment of the mask occurs. There is nothing.

また、セルフアライメントプロセスを適用することにより、スリット部分でマスクの合わせ精度を考慮した尤度設計が必要なくなり、壁構造の幅をその加工精度で決定される幅まで狭くすることが出来る。例えば、マスクの合わせ精度が基準層に対して1.5μmで、スリットの幅を3.0μmとするならば、壁構造の両壁面上に電極を安定して形成するためには壁構造の幅を9.0μmにしなければならない。一方で壁構造の加工精度は例えば4.0μmなので、セルフアライメントプロセスを用いることにより壁構造の幅を半分以下にすることができる。その結果として開口率を増大でき、より高い透過率を実現することができる。   Further, by applying the self-alignment process, it is not necessary to design the likelihood in consideration of the mask alignment accuracy at the slit portion, and the width of the wall structure can be reduced to a width determined by the processing accuracy. For example, if the mask alignment accuracy is 1.5 μm with respect to the reference layer and the slit width is 3.0 μm, the width of the wall structure is required to stably form electrodes on both wall surfaces of the wall structure. Must be 9.0 μm. On the other hand, since the processing accuracy of the wall structure is, for example, 4.0 μm, the width of the wall structure can be reduced to half or less by using the self-alignment process. As a result, the aperture ratio can be increased and higher transmittance can be realized.

比較例1Comparative Example 1

図9に、比較例1の一画素の平面構造を示す。実施例1においてはスリットは壁構造頂部にのみ分布していたが、図9に示したように、スリット26が壁構造10頂部と平坦部の両方に分布するものである。図9においてスリットは壁構造頂部と平坦部間で連続して分布しているので、スリット26は壁構造の境界を乗り越えて分布することになる。ソース電極11にスリットを形成する際にレジスト41を塗布した状態の断面を、図10(a)、(b)に示す。図10(a)、(b)は、それぞれ壁構造頂部と平坦部における断面図であり、図9に示した平面図の一転鎖線A−A’、B−B’に対応する。また、図10(a)、(b)ではスリット形成において実効的なレジスト膜厚を矢印で示してある。図4と同様に壁構造頂部に相当する図10(a)でレジスト41は薄くなっており、平坦部に相当する図10(b)でレジスト41は厚くなっている。そのため壁構造頂部ではオーバーエッチに、平坦部ではアンダーエッチになる傾向にある。   FIG. 9 shows a planar structure of one pixel in the first comparative example. In Example 1, the slits are distributed only at the top of the wall structure, but as shown in FIG. 9, the slits 26 are distributed at both the top of the wall structure 10 and the flat part. In FIG. 9, since the slits are continuously distributed between the top portion and the flat portion of the wall structure, the slits 26 are distributed across the boundary of the wall structure. 10A and 10B show a cross section in a state where a resist 41 is applied when forming a slit in the source electrode 11. FIGS. 10A and 10B are cross-sectional views of the top portion and the flat portion of the wall structure, respectively, and correspond to the dashed lines A-A ′ and B-B ′ of the plan view shown in FIG. 9. In FIGS. 10A and 10B, an effective resist film thickness is indicated by an arrow in slit formation. Similar to FIG. 4, the resist 41 is thin in FIG. 10A corresponding to the top of the wall structure, and the resist 41 is thick in FIG. 10B corresponding to the flat portion. Therefore, the top of the wall structure tends to be over-etched and the flat portion tends to be under-etched.

壁構造頂部と平坦部のスリットを同じ幅で一括加工するには、図11に示したようにマスク上のスリット幅を変えることが考えられる。図11(a)はマスク上のスリット幅と壁構造の関係を示しており、マスクの合わせずれはないものとしている。図11(b)は図11(a)に対応する完成状態である。図11(a)に示したようにマスク上のスリット幅を壁構造頂部では完成寸法よりも狭くし、平坦部では広くすれば良い。ここで、乗り越え部のスリット幅をどう決めるかが課題になるが、これには乗り越え部近傍におけるレジスト厚分布が参考になる。図10(c)は乗り越え部近傍を含む断面図であり、図9の一転鎖線C−C’に対応している。図10(d)は図10(c)よりレジスト厚の分布を求めた図であり、レジスト厚は乗り越え部に近接する平坦部で最大になる。例えば乗り越え部の前後でレジスト厚分布に対応するようにスリット幅を連続的に変えても良く、具体的には図11(a)に示したように乗り越え部に近接する平坦部でスリット幅を最大にし、壁構造のある方向に向けて連続的にスリット幅を低減する。これにより、図11(b)に示したように壁構造頂部と平坦部の両方にスリットを一括形成でき、なお且つ乗り越え部にもスリットを形成できるはずである。   In order to collectively process the slits at the top of the wall structure and the flat portion with the same width, it is conceivable to change the slit width on the mask as shown in FIG. FIG. 11A shows the relationship between the slit width on the mask and the wall structure, and it is assumed that there is no misalignment of the mask. FIG. 11B shows a completed state corresponding to FIG. As shown in FIG. 11 (a), the slit width on the mask may be narrower than the completed dimension at the top of the wall structure and wider at the flat part. Here, how to determine the slit width of the overpass portion is a problem. For this, the resist thickness distribution in the vicinity of the overpass portion is helpful. FIG. 10C is a cross-sectional view including the vicinity of the overpass portion, and corresponds to the one-dot chain line C-C ′ in FIG. 9. FIG. 10D is a diagram in which the resist thickness distribution is obtained from FIG. 10C, and the resist thickness becomes maximum at the flat portion adjacent to the overpass portion. For example, the slit width may be changed continuously so as to correspond to the resist thickness distribution before and after the overpass portion. Specifically, as shown in FIG. Maximize and continuously reduce the slit width in the direction of the wall structure. As a result, as shown in FIG. 11 (b), slits can be formed collectively at both the top and the flat portion of the wall structure, and slits should be formed at the overpass.

ところが、実際には完成時のスリット形状が図11(b)に比べて大きく異なる例が見出された。これらの一例を図11(d)に示す。図11(d)中のオーバーエッチ部43では乗り越え部近傍でスリット幅が大幅に増大しており、図11(d)中のアンダーエッチ部44では乗り越え部近傍でスリットが消失している。特にアンダーエッチ部44では隣接する2画素のソース電極が短絡するので点欠陥となる。図11(d)に示したスリット形状は、壁構造に対してスリット加工のためのマスクが図11(c)に示したように下方向にずれることによって生じる。図11(c)ではマスク遮光部の境界を破線で示してある。図11(d)中のオーバーエッチ部43はマスク上でスリット幅が最も広い部分がレジスト膜厚の薄い壁電極上部に位置したことによりオーバーエッチになって生じたものである。図11(d)中のアンダーエッチ部44はマスク上でスリット幅が狭い部分がレジスト膜厚の厚い乗り越え部に近接する平坦部に位置したことによりアンダーエッチになって生じたものである。   However, in reality, an example has been found in which the slit shape at the time of completion is greatly different from that in FIG. An example of these is shown in FIG. In the overetched portion 43 in FIG. 11 (d), the slit width is greatly increased near the overpass portion, and in the underetched portion 44 in FIG. 11 (d), the slit disappears in the vicinity of the overpass portion. In particular, in the underetched portion 44, the source electrodes of two adjacent pixels are short-circuited, resulting in a point defect. The slit shape shown in FIG. 11D is generated when the mask for slit processing is shifted downward as shown in FIG. 11C with respect to the wall structure. In FIG. 11C, the boundary of the mask light shielding portion is indicated by a broken line. The overetched portion 43 in FIG. 11D is caused by overetching because the portion with the widest slit width on the mask is located on the upper portion of the wall electrode with a thin resist film thickness. The under-etched portion 44 in FIG. 11D is caused by under-etching because the portion with a narrow slit width on the mask is located in a flat portion close to the overpass portion where the resist film thickness is thick.

このように、液晶層厚と同等の高さの壁構造が存在する場合、マスクの位置合わせ精度を考慮すれば壁構造を乗り越えて分布するスリットを高い歩留まりで一括加工することは出来ない。レジスト厚分布に対応するようにマスク上のスリット幅を変えても、マスクの合わせずれはスリット幅が変動する範囲よりも大きいため、レジスト膜厚変化を設計で想定した通りに補正できなくなるからである。   As described above, when a wall structure having a height equivalent to the thickness of the liquid crystal layer is present, slits distributed over the wall structure cannot be collectively processed with a high yield in consideration of the alignment accuracy of the mask. Even if the slit width on the mask is changed to correspond to the resist thickness distribution, the misalignment of the mask is larger than the range in which the slit width fluctuates, so the resist film thickness change cannot be corrected as designed. is there.

本発明の実施例1の液晶表示装置では、壁構造10の頂部にのみ隣接する二つの画素の壁電極111の境界となるスリット26が分布するようなマスクを用いて、レジストを露光し、壁構造上の透明電極を露出し、露出した壁構造上の透明電極を除去することにより、壁構造10の頂部にのみ隣接する二つの画素の壁電極111の境界となるスリット26が分布する壁電極を形成することができる。   In the liquid crystal display device according to the first embodiment of the present invention, the resist is exposed by using a mask in which slits 26 serving as boundaries between the wall electrodes 111 of two pixels adjacent to only the top of the wall structure 10 are distributed, By exposing the transparent electrode on the structure and removing the transparent electrode on the exposed wall structure, the wall electrode in which slits 26 serving as the boundary between the wall electrodes 111 of two pixels adjacent to only the top of the wall structure 10 are distributed. Can be formed.

比較例2Comparative Example 2

壁構造頂部と平坦部の両方にスリットが分布する構造において、実施例3のセルフアライメントプロセスを適用したものである。実施例3で述べたように、セルフアライメントプロセスの利点は壁構造の幅を壁構造の加工精度まで低減して開口率を増大できることである。この場合平坦部のスリットはマスク露光で形成するが、マスクの合わせ精度により短絡が生じる場合がある。図12は1つの壁構造とこれに重畳する電極に着目した平面図であり、図12(a)は壁構造上を含む全面に電極を成膜した状態で、図12(b)はセルフアライメントプロセスで壁構造頂部を選択的にエッチングした状態である。図12(c)は図12(b)にマスクを重畳した状態であり、図12(c)のように合わせずれがない場合には図12(d)に示したように短絡せずに平坦部のスリットを形成できる。しかし、図12(e)に示したように上下方向で合わせずれが生じると、図12(f)に示したように壁構造の上下いずれか一方の平坦部においてスリットが消失し、隣接する2画素のソース電極が短絡する。   The self-alignment process of Example 3 is applied to a structure in which slits are distributed on both the top and the flat part of the wall structure. As described in the third embodiment, the advantage of the self-alignment process is that the aperture ratio can be increased by reducing the width of the wall structure to the processing accuracy of the wall structure. In this case, the slit in the flat portion is formed by mask exposure, but a short circuit may occur depending on the alignment accuracy of the mask. FIG. 12 is a plan view paying attention to one wall structure and an electrode overlapping therewith, FIG. 12A shows a state in which an electrode is formed on the entire surface including the wall structure, and FIG. 12B shows self-alignment. The top of the wall structure is selectively etched by the process. FIG. 12C shows a state in which the mask is superimposed on FIG. 12B, and when there is no misalignment as shown in FIG. 12C, it is flat without short-circuiting as shown in FIG. Part slits can be formed. However, when misalignment occurs in the vertical direction as shown in FIG. 12E, the slit disappears in either one of the upper and lower flat portions of the wall structure as shown in FIG. The source electrode of the pixel is short-circuited.

合わせずれの対策として、マスク露光で形成するスリットを平坦部から壁構造頂部の一部にまで延長することも考えられる。図13(a)はこのようなマスクを図12(b)に重畳した状態であり、図13(b)に示したように合わせずれが無ければこの場合でもオーバーエッチやアンダーエッチを生じずにソース電極を形成することが出来る。しかし、図13(c)に示したようにマスクの合わせずれが上下方向に生じた場合には、図13(d)に示したように壁構造の上下端でオーバーエッチ部43が発生し、壁面から電極が消失する。壁面から電極が消失した部分では、液晶層に印加する電界強度が低下するため透過率が低下する。セルフアライメントプロセスの利点は壁構造の幅を壁構造の加工精度まで低減できることであるが、この場合壁構造の幅はレジスト膜厚の厚い平坦部にスリットを形成するためのマスク幅とほぼ同等になる。そのため、マスクの合わせずれが生じると壁面上のITO膜をエッチングすることとなり、壁面から電極が消失する。   As a countermeasure against misalignment, it is conceivable to extend a slit formed by mask exposure from a flat portion to a part of the top of the wall structure. FIG. 13A shows a state in which such a mask is superimposed on FIG. 12B. If there is no misalignment as shown in FIG. 13B, overetching or underetching does not occur even in this case. A source electrode can be formed. However, when the mask misalignment occurs in the vertical direction as shown in FIG. 13C, overetched portions 43 are generated at the upper and lower ends of the wall structure as shown in FIG. The electrode disappears from the wall. In the portion where the electrode disappears from the wall surface, the electric field strength applied to the liquid crystal layer is lowered, and thus the transmittance is lowered. The advantage of the self-alignment process is that the width of the wall structure can be reduced to the processing accuracy of the wall structure. In this case, the width of the wall structure is almost the same as the mask width for forming the slit in the flat part where the resist film is thick. Become. Therefore, when the mask misalignment occurs, the ITO film on the wall surface is etched, and the electrode disappears from the wall surface.

このように、液晶層厚と同等の高さの壁構造が存在する場合、マスクの位置合わせ精度を考慮すればセルフアライメントプロセスを用いても壁構造を乗り越えて分布するスリットを高い歩留まりで加工することは出来ない。   In this way, when a wall structure having a height equivalent to the liquid crystal layer thickness exists, if the mask alignment accuracy is taken into consideration, slits distributed over the wall structure are processed with a high yield even if the self-alignment process is used. I can't do that.

10 壁構造11 ソース電極12 第一のコモン電極13 第二のコモン電極14 第三のコモン電極15 信号配線16 ゲート配線17 ポリシリコン層18 第一のコンタクトホール19 第二のコンタクトホール20 第一の基板21 第一の絶縁層22 第二の絶縁層23 第三の絶縁層24 第一の配向膜25 第一の偏光板26 スリット28 液晶層29 液晶分子30 第二の基板31 ブラックマトリクスBM32 カラーフィルタCF33 オーバーコート層34 第二の配向膜35 第二の偏光板36 等電位面41 レジスト43 オーバーエッチ部44 アンダーエッチ部101 基板102 基板103 信号線104 走査線105 コモン線106 画素107 信号駆動回路108 走査駆動回路109 コモン電圧発生回路110 TFT素子 10 Wall Structure 11 Source Electrode 12 First Common Electrode 13 Second Common Electrode 14 Third Common Electrode 15 Signal Wiring 16 Gate Wiring 17 Polysilicon Layer 18 First Contact Hole 19 Second Contact Hole 20 First Substrate 21 First insulating layer 22 Second insulating layer 23 Third insulating layer 24 First alignment film 25 First polarizing plate 26 Slit 28 Liquid crystal layer 29 Liquid crystal molecule 30 Second substrate 31 Black matrix BM32 Color filter CF33 Overcoat layer 34 Second alignment film 35 Second polarizing plate 36 Equipotential surface 41 Resist 43 Overetched portion 44 Underetched portion 101 Substrate 102 Substrate 103 Signal line 104 Scan line 105 Common line 106 Pixel 107 Signal drive circuit 108 Scan driving circuit 109 Common voltage generating circuit 1 10 TFT element

Claims (7)

マトリクス状に複数の画素が配置され、各画素は、画素境界に形成された絶縁体の壁構造と、前記画素境界の壁構造の側面に形成した壁電極、および当該壁電極と連続し、壁電極が第一の基板に接する位置から平面方向に伸びる平面電極から成るソース電極と、画素の両側に形成された壁電極と壁電極の間に設けられ、絶縁層を介して前記平面電極と一部が重畳することにより保持容量を形成する第一のコモン電極と、前記画素の両側に形成されたソース電極とソース電極の間に設けられた第二のコモン電極とを有する液晶表示装置において、
前記壁構造の頂部は前記第一の基板に対向する第二の基板の一部に接する部分を持ち、
前記ソース電極には信号電圧が印加され、前記第1のコモン電極と前記第二のコモン電極にはコモン電圧が印加され、
隣接する二つの画素の壁電極の境界となるスリットを前記壁構造の頂部に選択的に配置したことを特徴とする液晶表示装置。
A plurality of pixels are arranged in a matrix, and each pixel has a wall structure of an insulator formed at a pixel boundary, a wall electrode formed on a side surface of the wall structure of the pixel boundary, and a wall wall continuous with the wall electrode. A source electrode composed of a planar electrode extending in a planar direction from a position where the electrode is in contact with the first substrate, a wall electrode formed on both sides of the pixel, and the wall electrode are provided between the planar electrode and an insulating layer. In a liquid crystal display device having a first common electrode that forms a storage capacitor by overlapping portions, and a second common electrode provided between the source electrode and the source electrode formed on both sides of the pixel,
The top of the wall structure has a portion in contact with a portion of the second substrate facing the first substrate,
A signal voltage is applied to the source electrode, a common voltage is applied to the first common electrode and the second common electrode,
A liquid crystal display device, wherein a slit which becomes a boundary between wall electrodes of two adjacent pixels is selectively arranged at the top of the wall structure.
請求項1に記載の液晶表示装置において、
前記壁電極は、前記画素境界の壁構造の上面まで形成されていることを特徴とする液晶表示装置。
The liquid crystal display device according to claim 1.
The liquid crystal display device, wherein the wall electrode is formed up to an upper surface of a wall structure at the pixel boundary.
請求項1に記載の液晶表示装置において、
前記壁電極は、前記画素境界の壁構造の側面のみに形成されていることを特徴とする液晶表示装置。
The liquid crystal display device according to claim 1.
The liquid crystal display device, wherein the wall electrode is formed only on a side surface of the wall structure at the pixel boundary.
請求項1〜3の何れか一つに記載の液晶表示装置において、
前記壁構造は、画素の長手方向の端部で寸断されており、前記ソース電極の壁電極は、前記壁構造の端部より内側に形成されていることを特徴とする液晶表示装置。
The liquid crystal display device according to claim 1,
2. The liquid crystal display device according to claim 1, wherein the wall structure is cut off at an end portion in the longitudinal direction of the pixel, and the wall electrode of the source electrode is formed inside the end portion of the wall structure.
請求項1〜3の何れか一つに記載の液晶表示装置において、
前記壁構造は、画素の長手方向の端部で連続していることを特徴とする液晶表示装置。
The liquid crystal display device according to claim 1,
The liquid crystal display device, wherein the wall structure is continuous at an end portion in a longitudinal direction of a pixel.
請求項1〜5の何れか一つに記載の液晶表示装置において、
カラーフィルタ側基板上であって、前記画素の両側のソース電極間に、第三のコモン電極を備えることを特徴とする液晶表示装置。
In the liquid crystal display device according to any one of claims 1 to 5,
A liquid crystal display device comprising a third common electrode on a color filter side substrate between source electrodes on both sides of the pixel.
請求項1〜6の何れか一つに記載の液晶表示装置において、
前記画素はV字型の形状で、液晶配向方向は前記画素内で一定であり、前記画素内の一方と他方とで前記壁構造の伸張方向が前記液晶配向方向となす角は等しく、前記画素内の一方と他方とで前記壁構造の伸張方向が前記液晶配向方向に対して互いに反対方向に傾いていることを特徴とする液晶表示装置。
In the liquid crystal display device according to any one of claims 1 to 6,
The pixel has a V-shaped shape, the liquid crystal alignment direction is constant in the pixel, and the angle between the extension direction of the wall structure and the liquid crystal alignment direction is equal between one and the other in the pixel. The liquid crystal display device according to claim 1, wherein the extending direction of the wall structure is inclined in opposite directions with respect to the liquid crystal alignment direction between one and the other.
JP2015253247A 2015-12-25 2015-12-25 Liquid crystal display Active JP6138900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015253247A JP6138900B2 (en) 2015-12-25 2015-12-25 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015253247A JP6138900B2 (en) 2015-12-25 2015-12-25 Liquid crystal display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012008974A Division JP5865088B2 (en) 2012-01-19 2012-01-19 Liquid crystal display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016040639A JP2016040639A (en) 2016-03-24
JP6138900B2 true JP6138900B2 (en) 2017-05-31

Family

ID=55540964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015253247A Active JP6138900B2 (en) 2015-12-25 2015-12-25 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP6138900B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3050191B2 (en) * 1997-11-12 2000-06-12 日本電気株式会社 Liquid crystal display
JP2003295220A (en) * 2002-03-29 2003-10-15 Sharp Corp Matrix board for liquid crystal, manufacturing method therefor, and method for forming connection part of electronic circuit board
JP2004341465A (en) * 2003-05-14 2004-12-02 Obayashi Seiko Kk High quality liquid crystal display device and its manufacturing method
JP2009175483A (en) * 2008-01-25 2009-08-06 Epson Imaging Devices Corp Method of manufacturing semiconductor device, semiconductor device and electro-optical device
JP2009192883A (en) * 2008-02-15 2009-08-27 Hitachi Displays Ltd Liquid crystal display device
US8654292B2 (en) * 2009-05-29 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
JP2012008974A (en) * 2010-06-28 2012-01-12 Mitsubishi Heavy Ind Ltd Diagnosis device and method for industrial machine and program and recording medium for computer

Also Published As

Publication number Publication date
JP2016040639A (en) 2016-03-24

Similar Documents

Publication Publication Date Title
JP5865088B2 (en) Liquid crystal display device and manufacturing method thereof
KR102249284B1 (en) Liquid crystal display
JP4600463B2 (en) Liquid crystal display
KR102094741B1 (en) Liquid crystal display
US20020041354A1 (en) Fringe field switching mode LCD
KR20090129774A (en) Display substrate and liquid crystal display panel having the same
JP4658622B2 (en) Substrate for liquid crystal display device and liquid crystal display device
JP2010271739A (en) Liquid crystal display device
KR100628262B1 (en) Multi domain Liquid Crystal Display Device
KR20150005000A (en) Liquid crystal display
JP2009103797A (en) Liquid crystal display device
US10031381B2 (en) Liquid crystal display device
JP5666100B2 (en) Display substrate and display panel having display substrate
JP2009282409A (en) Liquid crystal display
JP4449958B2 (en) FFS liquid crystal display panel
JP2017151206A (en) Liquid crystal display device
KR101540302B1 (en) Display substrate and liquid crystal display panel having the same
TW201942639A (en) Display device
US9921441B2 (en) Array substrate, liquid crystal display device having the same and method for manufacturing the same thereof
JP3642634B2 (en) Liquid crystal display panel and manufacturing method thereof
JP6609491B2 (en) Liquid crystal display
JP4609483B2 (en) Liquid crystal display device
JP2002221732A (en) Liquid crystal display device
KR100504533B1 (en) Multi-domain liquid crystal display device
JP6138900B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170426

R150 Certificate of patent or registration of utility model

Ref document number: 6138900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250