JP6130808B2 - Phosphor and light emitting device - Google Patents

Phosphor and light emitting device Download PDF

Info

Publication number
JP6130808B2
JP6130808B2 JP2014084522A JP2014084522A JP6130808B2 JP 6130808 B2 JP6130808 B2 JP 6130808B2 JP 2014084522 A JP2014084522 A JP 2014084522A JP 2014084522 A JP2014084522 A JP 2014084522A JP 6130808 B2 JP6130808 B2 JP 6130808B2
Authority
JP
Japan
Prior art keywords
phosphor
light
examples
specific surface
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014084522A
Other languages
Japanese (ja)
Other versions
JP2015203096A (en
Inventor
光祐 和田
光祐 和田
小林 学
学 小林
亮治 稲葉
亮治 稲葉
久之 橋本
久之 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2014084522A priority Critical patent/JP6130808B2/en
Publication of JP2015203096A publication Critical patent/JP2015203096A/en
Application granted granted Critical
Publication of JP6130808B2 publication Critical patent/JP6130808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、LED(Light Emitting Diode)又はLD(Laser Diode)用の蛍光体の製造方法に関する。
The present invention relates to a method for manufacturing a phosphor for LED (Light Emitting Diode) or LD (Laser Diode).

従来の蛍光体としては、例えば特許文献1、2に開示されている蛍光体が挙げられるが、発光素子を作製した際、長期使用による蛍光体の酸化や加水分解による劣化に由来した発光不良が生じていた。 Examples of conventional phosphors include phosphors disclosed in Patent Documents 1 and 2. However, when a light emitting device is manufactured, a light emission failure caused by deterioration due to oxidation or hydrolysis of the phosphor due to long-term use. It was happening.

特開2010−047774号公報JP 2010-047774 A 特開2013−053311号公報JP 2013-053311 A

特許文献2の実施例、比較例の蛍光体を用いた発光装置では、更なる高出力化に伴い、温度上昇によって、蛍光体の劣化による発光不良が見受けられた。この蛍光体の比表面積は、1.6m/g以上5.0m/g以下であった。 In the light emitting devices using the phosphors of the examples and comparative examples of Patent Document 2, a light emission failure due to deterioration of the phosphors was observed due to a temperature rise as the output was further increased. The specific surface area of this phosphor was 1.6 m 2 / g or more and 5.0 m 2 / g or less.

本発明の目的は、高出力のLEDに長時間の使用があっても発光不良の少ない蛍光体の製造方法を提供することにある。
当該蛍光体を用いた用途としては、発光装置、照明装置、バックライト装置、画像表示装置及び交通標識としての信号機がある。
An object of the present invention is to provide a method for producing a phosphor with little light emission failure even when a high-power LED is used for a long time.
Applications using the phosphor include a light emitting device, a lighting device, a backlight device, an image display device, and a traffic signal as a traffic sign.

本発明は、一般式:M1M2M3M4で表され、M1はEu又はCeのいずれか一方又は双方、M2はMg、Ca、Sr、Ba及びZnのうち1種以上の元素、M3はAl、Ga、In及びScのうち1種以上の元素、M4はSi、Ge、Sn、Ti、Zr及びHfのうち1種以上の元素であると共にSiを必須とし、Nは窒素、Oは酸素、a乃至fは、0.00001≦a≦0.15、a+b=1、0.5≦c≦1.5、0.5≦d≦1.5、c+d=2、2.5≦e≦3.0、0≦f≦0.5、e+f=3であり、比表面積が6.0m/g以上10.0m/g以下の、酸処理工程の処理物である蛍光体の製造方法である。なお、前記酸処理工程時の塩酸溶液濃度は4.5質量%以上6.0質量%以下、温度は70℃であることが好ましい。 The present invention has the general formula: M1 is represented by a M2 b M3 c M4 d N e O f, either or both of Eu or Ce M1, M2 is Mg, Ca, Sr, 1 kind of Ba and Zn M3 is one or more elements of Al, Ga, In, and Sc, M4 is one or more elements of Si, Ge, Sn, Ti, Zr, and Hf, and Si is essential, N Is nitrogen, O is oxygen, a to f are 0.00001 ≦ a ≦ 0.15, a + b = 1, 0.5 ≦ c ≦ 1.5, 0.5 ≦ d ≦ 1.5, c + d = 2, 2.5 ≦ e ≦ 3.0, 0 ≦ f ≦ 0.5, e + f = 3, and a processed product of the acid treatment step having a specific surface area of 6.0 m 2 / g or more and 10.0 m 2 / g or less. It is a manufacturing method of a certain phosphor. In addition, it is preferable that the hydrochloric acid solution density | concentration at the time of the said acid treatment process is 4.5 mass% or more and 6.0 mass% or less, and temperature is 70 degreeC.

本発明は、M1がEuであり、M2がCa及びSrであり、M3はAlであり、M4はSiであることが好ましい。 In the present invention, it is preferable that M1 is Eu, M2 is Ca and Sr, M3 is Al, and M4 is Si.

本発明の蛍光体の製造方法で得られた蛍光体と、発光素子を有する発光装置を提供することができる A phosphor obtained by the phosphor production method of the present invention and a light emitting device having a light emitting element can be provided .

本発明によれば、長期信頼性に優れる、すなわち発光効率の低下が少なく、長時間の使用があっても発光不良の少ない蛍光体を提供することができ、同様な効果を発揮する発光装置を提供することができる。発光装置としては、具体的には、照明装置、バックライト装置、画像表示装置及び交通標識としての信号機がある。 According to the present invention, it is possible to provide a phosphor that is excellent in long-term reliability, i.e., has little decrease in light emission efficiency, and has few light emission defects even when used for a long time. Can be provided. Specific examples of the light emitting device include a lighting device, a backlight device, an image display device, and a traffic signal as a traffic sign.

本発明の実施の形態について説明する。
本発明は、一般式:M1M2M3M4で表され、M1はEu又はCeのいずれか一方又は双方、M2はMg、Ca、Sr、Ba及びZnのうち1種以上の元素、M3はAl、Ga、In及びScのうち1種以上の元素、M4はSi、Ge、Sn、Ti、Zr及びHfのうち1種以上の元素であると共にSiを必須とし、Nは窒素、Oは酸素、a乃至fは、0.00001≦a≦0.15、a+b=1、0.5≦c≦1.5、0.5≦d≦1.5、c+d=2、2.5≦e≦3.0、0≦f≦0.5、e+f=3であり、比表面積が6.0〜10.0m/gの、酸処理工程の処理物である蛍光体の製造方法である。
M1は、発光中心元素であり、Eu又はCeのいずれか一方又は双方であり、求められる発光波長によって選択される。
M1は、あまりに少ないと十分な発光ピーク強度が得られない傾向にあり、あまりに多いと濃度消光が生じるため発光ピーク強度が低くなる傾向にあるため、一般式中のaは0.00001以上0.15以下である。
Embodiments of the present invention will be described.
The present invention has the general formula: M1 is represented by a M2 b M3 c M4 d N e O f, either or both of Eu or Ce M1, M2 is Mg, Ca, Sr, 1 kind of Ba and Zn M3 is one or more elements of Al, Ga, In, and Sc, M4 is one or more elements of Si, Ge, Sn, Ti, Zr, and Hf, and Si is essential, N Is nitrogen, O is oxygen, a to f are 0.00001 ≦ a ≦ 0.15, a + b = 1, 0.5 ≦ c ≦ 1.5, 0.5 ≦ d ≦ 1.5, c + d = 2, 2.5 ≦ e ≦ 3.0,0 ≦ f ≦ 0.5, a e + f = 3, the specific surface area is 6.0~10.0m 2 / g, is of the phosphor process of acid treatment step It is a manufacturing method .
M1 is an emission center element, and is either one or both of Eu and Ce, and is selected according to a required emission wavelength.
If M1 is too small, sufficient emission peak intensity tends not to be obtained. If M1 is too large, concentration quenching occurs and emission peak intensity tends to be low. Therefore, a in the general formula is 0.00001 or more and 0.00. 15 or less.

M2は、Mg、Ca、Sr、Ba及びZnのうち1種以上の元素であり、Ca、Srの一方又は双方が好ましい。一般式中のbは、M1との関係上、a+b=1である。 M2 is one or more elements of Mg, Ca, Sr, Ba and Zn, and one or both of Ca and Sr are preferable. In the general formula, b is a + b = 1 in relation to M1.

M3は、Al、Ga、In及びScのうち1種以上の元素であり、Alが好ましい。M3は、あまりに少なくてもあまりに多くても、蛍光体製造時に異相が生じ目的の蛍光体を得る収率が低下してしまう傾向にあるため、一般式でのcは0.5以上1.5以下である。
M4は、Si、Ge、Sn、Ti、Zr及びHfのうち1種以上の元素であると共にSiを必須としたものであり、Si単体が好ましい。M4は、あまりに少なくてもあまりに多くても、蛍光体製造時に異相が生じ目的の蛍光体を得る収率が低下してしまう傾向にあるため、一般式でのdは0.5以上1.5以下である。cとdの合計は、蛍光体の組成の設計上、2である。
M3 is one or more elements of Al, Ga, In, and Sc, and Al is preferable. If M3 is too small or too large, a heterogeneous phase is produced during the production of the phosphor, and the yield of obtaining the target phosphor tends to decrease. Therefore, c in the general formula is 0.5 or more and 1.5. It is as follows.
M4 is one or more elements of Si, Ge, Sn, Ti, Zr, and Hf and essentially requires Si, and Si alone is preferable. If M4 is too small or too large, a heterogeneous phase is produced during the production of the phosphor, and the yield of obtaining the target phosphor tends to decrease. Therefore, d in the general formula is 0.5 or more and 1.5. It is as follows. The sum of c and d is 2 in designing the phosphor composition.

一般式におけるNは窒素であり、一般式のeは2.5以上3.0以下であり2.7以上3.0以下が好ましい。一般式におけるOは酸素であり、一般式のfは0以上0.5以下であり0.3以下が好ましい。eとfの合計は、蛍光体の組成の設計上、3である。 N in the general formula is nitrogen, and e in the general formula is 2.5 or more and 3.0 or less, and preferably 2.7 or more and 3.0 or less. O in the general formula is oxygen, and f in the general formula is 0 or more and 0.5 or less, and preferably 0.3 or less. The sum of e and f is 3 in designing the phosphor composition.

蛍光体の比表面積が6.0m/g以上10.0m/g以下であるのは、比表面積が6.0g/mより小さい場合、長時間の使用により封止樹脂中の水分による加水分解や酸化による劣化により発光不良が生じ、比表面積が10.0m/gより大きい場合、過度な表面凹凸・欠陥による影響で光の吸収率が低下して蛍光体の発光効率低下が生じるためである。比表面積の制御は、蛍光体の製造方法における酸処理工程での酸溶液の温度と濃度を変更することによって対応できる。酸処理工程時の酸溶液の設定温度を上げると比表面積の値が高くなる傾向にあり、酸処理工程時の酸溶液の酸濃度を上げると比表面積の値が高くなる傾向にある。 The specific surface area of the phosphor is 6.0 m 2 / g or more and 10.0 m 2 / g or less because, when the specific surface area is less than 6.0 g / m 2, it depends on the moisture in the sealing resin when used for a long time. If the specific surface area is greater than 10.0 m 2 / g due to degradation due to hydrolysis or oxidation, the light absorption rate is reduced due to excessive surface irregularities and defects, resulting in a decrease in the luminous efficiency of the phosphor. Because. Control of the specific surface area can correspond by changing the temperature and concentration of the hydrochloric acid solution with an acid treatment step in the production method of the phosphor. Tend to the value of increasing the specific surface area of the set temperature of the hydrochloric acid solution during the acid treatment step is high, there is a tendency that the value of the specific surface area increasing the acid concentration of the hydrochloric acid solution during the acid treatment step is high.

本発明に係る蛍光体に設けた表面層は、蛍光体の発光効率の低下を抑え、長時間の使用があっても蛍光体自体の劣化、すなわち発光効率の低下を抑えることができる。表面層は、蛍光体の母体結晶とは異なる酸素成分を主成分とした化学組成を含んだものが好ましい。 The surface layer provided in the phosphor according to the present invention can suppress a decrease in luminous efficiency of the phosphor, and can suppress deterioration of the phosphor itself, that is, a decrease in luminous efficiency even when used for a long time. The surface layer preferably contains a chemical composition mainly composed of an oxygen component different from the host crystal of the phosphor.

<比表面積の測定方法>
比表面積は、比表面積測定装置(マウンテック社製Macsorb HM−1201型)を用いて、JIS Z 8830:2013 ガス吸着による粉体(固体)の比表面積測定に準拠して行った。吸着ガス量の測定方法は、同JIS Z 8830 6.3.4 キャリアガス法を採用した。吸着データの解析は、同JIS Z 8830 7.3 一点法を採用した。測定試料は、あらかじめ0.30MPaでの窒素ガスフロー中、300℃、30分の脱気処理後、4.0gサンプリングしたものである。
<Method for measuring specific surface area>
The specific surface area was measured in accordance with JIS Z 8830: 2013 gas specific surface area measurement by gas adsorption using a specific surface area measuring device (Macsorb HM-1201 type, manufactured by Mountec Co., Ltd.). The JIS Z 8830 6.3.4 carrier gas method was adopted as a method for measuring the amount of adsorbed gas. For the analysis of the adsorption data, the same JIS Z 8830 7.3 single point method was adopted. The measurement sample was obtained by sampling 4.0 g after deaeration treatment at 300 ° C. for 30 minutes in a nitrogen gas flow at 0.30 MPa in advance.

本発明に係る蛍光体を用いた装置としては、発光素子を有する発光装置があり、この発光装置としては、照明装置、液晶モニタの背面で発光するバックライト装置、この発光装置と画像表示モニタを有する画像表示装置、及び、交通標識としての信号機がある。 As a device using the phosphor according to the present invention , there is a light-emitting device having a light-emitting element. As the light-emitting device, an illumination device, a backlight device that emits light on the back of a liquid crystal monitor, and the light-emitting device and an image display monitor are provided. There are image display devices and traffic lights as traffic signs.

本発明に係る発光装置は、上述の蛍光体の他、他の発光色の蛍光体と発光光源とを備える装置である。発光光源としては、紫外LED、青色LED、蛍光体ランプの単体又はこれらの組み合わせがある。使用する蛍光体の組み合わせにより発光装置からの発光色を白色や他の波長の色とすることができる。 The light-emitting device according to the present invention is a device that includes a phosphor of another emission color and a light-emitting light source in addition to the phosphor described above. As the light emission source, there are a single unit of ultraviolet LED, blue LED, and phosphor lamp, or a combination thereof. Depending on the combination of phosphors to be used, the color emitted from the light emitting device can be white or other wavelength.

本発明に係る蛍光体及び発光装置は、長期信頼性に優れるものであり、具体的には、発光効率の低下が少なく、長時間の使用があっても発光不良が少ないものである。 The phosphor and the light emitting device according to the present invention are excellent in long-term reliability. Specifically, the phosphor and the light emitting device are less likely to emit light even when used for a long time with little decrease in light emission efficiency.

以下、本発明に係る蛍光体を比較例と対比し、表1を参照しつつ説明する。

Figure 0006130808

Hereinafter, the phosphor according to the present invention will be described with reference to Table 1 in comparison with the comparative example.
Figure 0006130808

実施例1の蛍光体は、一般式:M1M2M3M4で表される蛍光体であり、その組成は、表1に示すように、Eu0.008Ca0.100Sr0.892Al1.000Si1.0002.9000.100である。
実施例1の蛍光体は、M1をEu、M2をCaとSr、M3をAl、及びM4をSiとしたものである。
Phosphor of Example 1 has the general formula: M1 a M2 b M3 c M4 d N e O a phosphor represented by f, the composition, as shown in Table 1, Eu 0.008 Ca 0. a 100 Sr 0.892 Al 1.000 Si 1.000 N 2.900 O 0.100.
The phosphor of Example 1 has M1 as Eu, M2 as Ca and Sr, M3 as Al, and M4 as Si.

実施例1の蛍光体の製造方法は、表1の組成になるように原料を混合する混合工程、混合工程後の混合物を焼成する焼成工程、焼成工程後の焼成物を粉砕し分級した後に酸溶液に浸して不純物を溶解する酸処理工程を有するものである。表1には、製造方法のうち、酸処理工程での酸処理条件のみ記載した。
実施例1の酸処理条件は、酸溶液として塩酸溶液を用い、その塩酸濃度5.0%、温度70.0℃とした。
The manufacturing method of the phosphor of Example 1 includes a mixing step of mixing raw materials so as to have the composition shown in Table 1, a baking step of baking the mixture after the mixing step, and pulverizing and classifying the baking product after the baking step. It has an acid treatment step of dissolving impurities by dipping in a solution. Table 1 shows only the acid treatment conditions in the acid treatment step of the production method.
The acid treatment conditions of Example 1 were such that a hydrochloric acid solution was used as the acid solution, the hydrochloric acid concentration was 5.0%, and the temperature was 70.0 ° C.

表1の各項目について説明する。
<CIE色度座標x値、y値>
CIE色度座標x値、y値は、実施例、比較例の蛍光体の発光色の確認のための値である。
この測定方法は、次の通りである。
実施例1の蛍光体を試料として凹型のセルに充填し、表面を平滑にして、積分球を取り付けた。この積分球に、発光光源としてのXeランプから455nmの波長に分光した単色光を、光ファイバーを用いて導入した。この単色光を励起源として試料に照射し、分光光度計(大塚電子株式会社製MCPD−7000)を用いて、蛍光体の発光スペクトル測定を行った。得られた発光スペクトルにおいて、励起波長が455nmのときの、465nmから780nmの範囲の波長域データからJIS Z 8724に準じ、JIS Z 8701で規定されるXYZ表色系におけるCIE色度座標x値、y値を算出した。
CIE色度座標x値、y値は、赤色発光のため、0.620〜0.660、0.330〜0.380が好ましい。
Each item in Table 1 will be described.
<CIE chromaticity coordinate x value, y value>
The CIE chromaticity coordinate x value and y value are values for confirming the emission color of the phosphors of the examples and comparative examples.
This measuring method is as follows.
The phosphor of Example 1 was filled in a concave cell as a sample, the surface was smoothed, and an integrating sphere was attached. Into this integrating sphere, monochromatic light dispersed at a wavelength of 455 nm from an Xe lamp as a light source was introduced using an optical fiber. The sample was irradiated with this monochromatic light as an excitation source, and the emission spectrum of the phosphor was measured using a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.). In the obtained emission spectrum, the CIE chromaticity coordinate x value in the XYZ color system defined by JIS Z 8701 according to JIS Z 8724 from the wavelength range data in the range of 465 nm to 780 nm when the excitation wavelength is 455 nm, The y value was calculated.
The CIE chromaticity coordinate x value and y value are preferably 0.620 to 0.660 and 0.330 to 0.380 for red light emission.

<吸収率>
吸収率は、蛍光体の表面凹凸・欠陥を確認する指標である。吸収率が低いと蛍光体の発光効率低下が生じるため好ましくない。吸収率の合格値は80%以上である。
蛍光体の吸収率は、次式で求めた。
吸収率=(励起光フォトン数(Qex)−励起反射光フォトン数(Qref)/励起光フォトン数(Qex))×100)
吸収率は次のように測定し、算出した。
分光光度計(大塚電子株式会社製MCPD−7000)を用いて、試料部に蛍光体を反射率が99%の標準反射板(Labsphere社スペクトラロン)をセットし、励起光のスペクトルを測定し、励起波長455nmとして450nmから465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。
試料部に蛍光体をセットし、得られたスペクトルデータから励起反射光フォトン数(Qref)を算出した。
励起反射光フォトン数(Qref)は、励起光フォトン数(Qex)と同じ波長範囲で算出した。
<Absorption rate>
The absorptance is an index for confirming surface irregularities and defects of the phosphor. A low absorptance is not preferable because the luminous efficiency of the phosphor is reduced. The acceptance value of the absorption rate is 80% or more.
The absorption rate of the phosphor was determined by the following equation.
Absorption rate = (excitation light photon number (Qex) −excitation reflected light photon number (Qref) / excitation light photon number (Qex)) × 100)
The absorptance was measured and calculated as follows.
Using a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.), set a standard reflector (Spectralon manufactured by Labsphere) with a reflectance of 99% on the sample part, and measure the spectrum of the excitation light. The excitation light photon number (Qex) was calculated from the spectrum in the wavelength range from 450 nm to 465 nm with an excitation wavelength of 455 nm.
A phosphor was set in the sample portion, and the number of excited reflected light photons (Qref) was calculated from the obtained spectrum data.
The excitation reflected light photon number (Qref) was calculated in the same wavelength range as the excitation light photon number (Qex).

<相対発光ピーク強度>
相対発光ピーク強度は、蛍光体の表面凹凸、欠陥を確認する指標である。
蛍光分光高度計(株式会社日立ハイテクノロジーズ製F−7000)を使用し、発光光源としてのXeランプから所定の波長に分光した455nmの単色光をYAG:Ce(化成オプトニクス株式会社製P46Y3)に照射して得られる発光スペクトルのピーク高さを100%とし、被測定物としての蛍光体より得られたピーク高さを相対ピーク強度(%)で表したものである。
相対発光ピーク強度の合格値は170%以上である。
<Relative emission peak intensity>
The relative emission peak intensity is an index for confirming surface irregularities and defects of the phosphor.
Using a fluorescence spectrophotometer (F-7000, manufactured by Hitachi High-Technologies Corporation), YAG: Ce (P46Y3, manufactured by Kasei Optonics Co., Ltd.) is irradiated with 455 nm monochromatic light that is split into a predetermined wavelength from an Xe lamp as a light source. The peak height of the emission spectrum obtained in this way is taken as 100%, and the peak height obtained from the phosphor as the object to be measured is expressed in relative peak intensity (%).
The acceptable value of the relative light emission peak intensity is 170% or more.

<比表面積の測定方法>
比表面積は、比表面積測定装置(マウンテック社製Macsorb HM−1201型)を用いて、JIS Z 8830:2013 ガス吸着による粉体(固体)の比表面積測定に準拠して行った。吸着ガス量の測定方法は、同JIS Z 8830 6.3.4 キャリアガス法を採用した。吸着データの解析は、同JIS Z 8830 7.3 一点法を採用した。測定試料は、あらかじめ0.30MPaでの窒素ガスフロー中、300℃、30分の脱気処理後、4.0gサンプリングしたものである。
<Method for measuring specific surface area>
The specific surface area was measured in accordance with JIS Z 8830: 2013 gas specific surface area measurement by gas adsorption using a specific surface area measuring device (Macsorb HM-1201 type, manufactured by Mountec Co., Ltd.). The JIS Z 8830 6.3.4 carrier gas method was adopted as a method for measuring the amount of adsorbed gas. For the analysis of the adsorption data, the same JIS Z 8830 7.3 single point method was adopted. The measurement sample was obtained by sampling 4.0 g after deaeration treatment at 300 ° C. for 30 minutes in a nitrogen gas flow at 0.30 MPa in advance.

<相対発光ピーク強度維持率>
相対発光ピーク強度維持率は、高度加速寿命試験装置(エスペック株式会社EHS−221M)を用いて、温度130℃、湿度98%の条件で100時間静置した前後における相対発光ピーク強度の比率を算出したものである。合格値は97%以上である。
実施例1の蛍光体は全ての評価結果において合格値であった。結果を表1に示す。
<Relative emission peak intensity maintenance ratio>
The relative emission peak intensity maintenance ratio is calculated by calculating the ratio of the relative emission peak intensity before and after standing for 100 hours at a temperature of 130 ° C. and a humidity of 98% using an advanced accelerated life test apparatus (Espec Corporation EHS-221M). It is a thing. The passing value is 97% or more.
The phosphor of Example 1 was a pass value in all evaluation results. The results are shown in Table 1.

[実施例2〜7、比較例1及び2]
実施例2〜7、比較例1及び2の蛍光体は、実施例1の蛍光体に比べ、表1に示すように、比表面積、組成を変更させたものである。比表面積を変更するには、酸処理工程で用いた塩酸の濃度を変更した。組成の変更は、原料の組成比の変更によって行った。実施例2乃至7の蛍光体の吸収率、相対発光ピーク強度、及び、相対発光ピーク強度維持率は、いずれにおいても合格値であった。
[Examples 2 to 7, Comparative Examples 1 and 2]
As shown in Table 1, the phosphors of Examples 2 to 7 and Comparative Examples 1 and 2 have different specific surface areas and compositions as compared to the phosphor of Example 1. In order to change the specific surface area, the concentration of hydrochloric acid used in the acid treatment step was changed. The composition was changed by changing the composition ratio of the raw materials. The absorption rate, relative emission peak intensity, and relative emission peak intensity maintenance rate of the phosphors of Examples 2 to 7 were acceptable values.

表1には記載しなかったが、実施例1の一般式でのM1としてのEuを、Eu及びCeにした実施例、Ceにした実施例を作成した。いずれの実施例も発光波長の変化があったが、相対発光ピーク強度、相対発光ピーク強度維持率において、実施例1と同様な効果を得た。 Although not described in Table 1, Examples in which Eu as M1 in the general formula of Example 1 was Eu and Ce, and Examples in which Ce was used were prepared. In all Examples, the emission wavelength changed, but the same effect as Example 1 was obtained in the relative emission peak intensity and the relative emission peak intensity maintenance rate.

表1には記載しなかったが、実施例1の一般式でのM2としてのCa及びSrを、Caにした実施例、Srにした実施例、及び、Mg及びSrにした実施例を作成した。いずれの実施例も実施例1と同様な効果を得た。 Although not described in Table 1, Examples in which Ca and Sr as M2 in the general formula of Example 1 were changed to Ca, examples in which Sr was changed, and examples in which Mg and Sr were changed to were prepared. . In all examples, the same effect as in Example 1 was obtained.

表1には記載しなかったが、実施例1の一般式でのM3としてのAlを、Gaにした実施例、Al及びGaにした実施例、及び、Inにした実施例を作成した。いずれの実施例も実施例1と同様な効果を得た。 Although not described in Table 1, an example in which Al as M3 in the general formula of Example 1 was changed to Ga, an example in which Al and Ga were changed, and an example in which In was made were prepared. In all examples, the same effect as in Example 1 was obtained.

表1には記載しなかったが、実施例1の一般式でのM4としてのSiを、Si及びGeにした実施例、Si及びZrにした実施例、及び、Si及びTiにした実施例を作成した。いずれの実施例も実施例1と同様な効果を得た。 Although not described in Table 1, Examples in which Si as M4 in the general formula of Example 1 was changed to Si and Ge, examples in which Si and Zr were changed, and examples in which Si and Ti were changed to Si and Ti were used. Created. In all examples, the same effect as in Example 1 was obtained.

[比較例1]
比較例1の蛍光体は、表1に示すように酸処理工程での塩酸濃度を変化させた以外、実施例1と同じ製造方法によって製造したものであり、比表面積が4.7m/gと小さく、相対発光ピーク強度維持率が97%未満であった。
[Comparative Example 1]
The phosphor of Comparative Example 1 was produced by the same production method as Example 1 except that the hydrochloric acid concentration in the acid treatment step was changed as shown in Table 1, and the specific surface area was 4.7 m 2 / g. The relative emission peak intensity maintenance rate was less than 97%.

[比較例2]
比較例2の蛍光体は、表1に示すように酸処理工程での塩酸濃度を変化させた以外、実施例1と同じ製造方法によって製造したものであり、比表面積が11.8m/gと大きく、吸収率が80%未満であり、相対発光ピーク強度維持率が97%未満であった。
[Comparative Example 2]
The phosphor of Comparative Example 2 was produced by the same production method as Example 1 except that the hydrochloric acid concentration in the acid treatment step was changed as shown in Table 1, and the specific surface area was 11.8 m 2 / g. The absorption rate was less than 80%, and the relative emission peak intensity maintenance rate was less than 97%.

蛍光体の相対発光ピーク強度維持率をみると、比表面積が6〜10m/gの範囲内であれば劣化が小さく、長期信頼性に優れていた。 Looking at the relative emission peak intensity maintenance rate of the phosphor, the deterioration was small and the long-term reliability was excellent if the specific surface area was in the range of 6 to 10 m 2 / g.

[他の比較例]
表1には示さないが、実施例1のEu0.008Ca0.100Sr0.892Al1.000Si1.0002.9000.100での組成比を変更した比較例について説明する。
一般式でのM1としてのEuの0.008を0.00001未満にし、a+b=1を維持しつつCaとSrの合計の比率を高めた比較例にあっては、相対発光ピーク強度が170%を超えなかった。
一般式でのM1としてのEuの0.008を0.15より大きい値にして、a+b=1を維持しつつCaとSrの合計の比率を下げた比較例にあっては、相対発光ピーク強度が170%を超えなかった。
一般式でのM3としてのAlの1.000を0.5未満にし、c+d=2を維持しつつSiを1.5より大きい値にした比較例にあっては、製造後の蛍光体を評価すると、異相のものが多く、収率が悪かった。
一般式でのM3としてのAlの1.000を0.5より大きい値にし、c+d=2を維持しつつSiを1.5未満の値にした比較例にあっては、製造後の蛍光体を評価すると、異相のものが多く、収率が悪かった。
[Other comparative examples]
Although not shown in Table 1, the comparative example of changing the composition ratio of In Eu 0.008 Ca 0.100 Sr 0.892 Al 1.000 Si 1.000 N 2.900 O 0.100 Example 1 explain.
In the comparative example in which 0.008 of Eu as M1 in the general formula is less than 0.00001 and the total ratio of Ca and Sr is increased while maintaining a + b = 1, the relative emission peak intensity is 170%. Did not exceed.
In the comparative example in which 0.008 of Eu as M1 in the general formula is set to a value larger than 0.15 and the total ratio of Ca and Sr is reduced while maintaining a + b = 1, the relative emission peak intensity Did not exceed 170%.
In the comparative example in which 1.000 of Al as M3 in the general formula is less than 0.5, and Si is set to a value larger than 1.5 while maintaining c + d = 2, the phosphor after manufacture is evaluated. Then, there were many things of a different phase and the yield was bad.
In the comparative example in which 1.000 of Al as M3 in the general formula is set to a value greater than 0.5 and Si is set to a value less than 1.5 while maintaining c + d = 2, the phosphor after manufacture As a result, the yield was poor due to the large number of different phases.

[実施例8、9及び10]
実施例8、9及び10は、表1には記載しなかったが、実施例1、2及び3の蛍光体をLEDの発光面に搭載した発光装置である。発光装置として照明装置を採用した。これら実施例は、相対発光ピーク強度維持率の高い蛍光体を用いたので、より時間が経過しても劣化の少ない発光装置であった。
[Examples 8, 9 and 10]
Examples 8, 9, and 10 are light emitting devices that are not described in Table 1, but in which the phosphors of Examples 1, 2, and 3 are mounted on the light emitting surface of the LED. A lighting device was adopted as the light emitting device. In these examples, since a phosphor having a high relative emission peak intensity maintenance rate was used, it was a light emitting device with little deterioration over time.

Claims (3)

一般式:M1M2M3M4で表され、M1はEu又はCeのいずれか一方又は双方、M2はMg、Ca、Sr、Ba及びZnのうち1種以上の元素、M3はAl、Ga、In及びScのうち1種以上の元素、M4はSi、Ge、Sn、Ti、Zr及びHfのうち1種以上の元素であると共にSiを必須とし、Nは窒素、Oは酸素、a乃至fは、0.00001≦a≦0.15、a+b=1、0.5≦c≦1.5、0.5≦d≦1.5、c+d=2、2.5≦e≦3.0、0≦f≦0.5、e+f=3であり、比表面積が6.0m/g以上10.0m/g以下の、蛍光体の製造方法であって、最終に酸処理工程を含む製造方法General formula: M1 a is represented by M2 b M3 c M4 d N e O f, either or both of Eu or Ce M1, M2 is at least one element of Mg, Ca, Sr, Ba and Zn, M3 is one or more elements of Al, Ga, In, and Sc, M4 is one or more elements of Si, Ge, Sn, Ti, Zr, and Hf, and Si is essential, N is nitrogen, O Is oxygen, a to f are 0.00001 ≦ a ≦ 0.15, a + b = 1, 0.5 ≦ c ≦ 1.5, 0.5 ≦ d ≦ 1.5, c + d = 2, 2.5 ≦ e ≦ 3.0, 0 ≦ f ≦ 0.5, e + f = 3, and a method for producing a phosphor having a specific surface area of 6.0 m 2 / g or more and 10.0 m 2 / g or less , A production method including an acid treatment step . 酸処理工程が塩酸溶液を用いて処理される工程であり、前記塩酸溶液濃度が4.5質量%以上6.0質量%以下、温度が70℃である、請求項1記載の蛍光体の製造方法 A step of acid treatment step is treated with hydrochloric acid solution, the concentration of the hydrochloric acid solution is 4.5 wt% to 6.0 wt% or less, the temperature is 70 ° C., the phosphor according to claim 1, wherein Manufacturing method . M1がEuであり、M2がCa及びSrであり、M3はAlであり、M4はSiである請求項1または2記載の蛍光体の製造方法The method for producing a phosphor according to claim 1 or 2, wherein M1 is Eu, M2 is Ca and Sr, M3 is Al, and M4 is Si.
JP2014084522A 2014-04-16 2014-04-16 Phosphor and light emitting device Active JP6130808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014084522A JP6130808B2 (en) 2014-04-16 2014-04-16 Phosphor and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014084522A JP6130808B2 (en) 2014-04-16 2014-04-16 Phosphor and light emitting device

Publications (2)

Publication Number Publication Date
JP2015203096A JP2015203096A (en) 2015-11-16
JP6130808B2 true JP6130808B2 (en) 2017-05-17

Family

ID=54596747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014084522A Active JP6130808B2 (en) 2014-04-16 2014-04-16 Phosphor and light emitting device

Country Status (1)

Country Link
JP (1) JP6130808B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179187A (en) * 2016-03-31 2017-10-05 デンカ株式会社 Red phosphor and light emitting device
KR102642425B1 (en) 2018-05-18 2024-03-04 덴카 주식회사 Red phosphor and light emitting device
CN116157734A (en) * 2020-07-16 2023-05-23 住友化学株式会社 Fluorescent material
US20230303922A1 (en) * 2020-07-16 2023-09-28 Sumitomo Chemical Company, Limited Fluorescent material
WO2023123349A1 (en) * 2021-12-31 2023-07-06 苏州君诺新材科技有限公司 Nitrogen oxide green fluorescent material, preparation method, and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180042A (en) * 2000-12-13 2002-06-26 Sumitomo Chem Co Ltd High-luminance phosphor layer
JP4725008B2 (en) * 2003-09-11 2011-07-13 日亜化学工業株式会社 Light emitting device, phosphor for light emitting element, and method for manufacturing phosphor for light emitting element
JP5394903B2 (en) * 2009-11-30 2014-01-22 Dowaエレクトロニクス株式会社 Phosphor, production method thereof, and light source
JP2013053311A (en) * 2011-08-10 2013-03-21 Mitsubishi Chemicals Corp Nitride phosphor
JP2012207228A (en) * 2012-07-09 2012-10-25 Mitsubishi Chemicals Corp Phosphor and light-emitting device using the same

Also Published As

Publication number Publication date
JP2015203096A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
EP2540796B1 (en) ß-SIALON PHOSPHOR, USES THEREOF, PROCESS FOR PRODUCTION OF ß-SIALON PHOSPHOR
JP6130808B2 (en) Phosphor and light emitting device
TWI535067B (en) Illuminating device
US9611237B2 (en) Phosphor materials and related devices
WO2019188377A1 (en) Phosphor, production method for same, and light-emitting device
US8704439B2 (en) Blue-light-emitting phosphor and light-emitting device equipped with the blue-light-emitting phosphor
EP2574653B1 (en) Light emitting module and phosphor
TW201700716A (en) Phosphor, manufacturing method therefor, and light emitting device using said phosphor
JP6223988B2 (en) Phosphor, light emitting device and lighting device
JP5562534B2 (en) Novel phosphor and its production
JP5402029B2 (en) Phosphor
JP2012246462A (en) Light-emitting device
US20150184071A1 (en) Phosphor, preparing method for phosphor, and light emitting device
US11084979B2 (en) Europium-activated alkaline-earth chloroapatite phosphor and light-emitting device thereof
TWI751140B (en) Phosphor, light-emitting element and light-emitting device
TW201441338A (en) Phosphor, light emitting device and lighting device
KR20150045650A (en) Phophor emitting green-color band range, method for manufacturing the same and light emitting device package
JP2018053202A (en) Quantum dot phosphor and light emitting device prepared therewith
JP7428465B2 (en) Red phosphor and light emitting device
TWI592467B (en) Phosphor and light emitting device
JP2015131898A (en) Fluorescent material and light-emitting device
JP6357107B2 (en) Phosphor, light emitting device and lighting device
TWI592466B (en) Manganese linear red fluorescent material and its light source device
TWI516572B (en) Phosphors, and light emitting device employing the same
KR20180069293A (en) Green luminescent phosphor containing lanthanum and manganese and having narrow full width at half maximum and the light emitting device including the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170414

R150 Certificate of patent or registration of utility model

Ref document number: 6130808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250