JP6130707B2 - Liquefied gas evaporator - Google Patents

Liquefied gas evaporator Download PDF

Info

Publication number
JP6130707B2
JP6130707B2 JP2013081837A JP2013081837A JP6130707B2 JP 6130707 B2 JP6130707 B2 JP 6130707B2 JP 2013081837 A JP2013081837 A JP 2013081837A JP 2013081837 A JP2013081837 A JP 2013081837A JP 6130707 B2 JP6130707 B2 JP 6130707B2
Authority
JP
Japan
Prior art keywords
liquefied gas
temperature
heat
heat transfer
transfer block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013081837A
Other languages
Japanese (ja)
Other versions
JP2014200780A (en
Inventor
敏明 伴
敏明 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2013081837A priority Critical patent/JP6130707B2/en
Publication of JP2014200780A publication Critical patent/JP2014200780A/en
Application granted granted Critical
Publication of JP6130707B2 publication Critical patent/JP6130707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

本発明は、液相の液化ガスを気化してガス消費機器等に供給する液化ガス蒸発器に関する。   The present invention relates to a liquefied gas evaporator that vaporizes a liquid phase liquefied gas and supplies it to a gas consuming device or the like.

LPG等の液化ガスは、ボンベなどの容器に収容された液相の液化ガスを蒸発器に導き、蒸発器で気化及び昇温してガス消費機器等に連続的に供給されるようになっている。例えば、特許文献1に記載された蒸発器は、電気ヒータ等の熱源で加熱する伝熱部材内に熱交換流路を形成した蒸発部を備え、液相の液化ガスを蒸発部に導入して気化させ、常温程度まで加熱してガス消費機器に供給するようしている。また、ガス消費機器のガス消費量の変動などに合わせて、蒸発部へ流入する液相の液化ガス量を制御する気化圧力調整弁が設けられている。   The liquefied gas such as LPG is continuously supplied to gas consuming equipment etc. after the liquid phase liquefied gas contained in a container such as a cylinder is led to the evaporator, vaporized and heated by the evaporator. Yes. For example, the evaporator described in Patent Document 1 includes an evaporation section in which a heat exchange channel is formed in a heat transfer member that is heated by a heat source such as an electric heater, and introduces a liquid-phase liquefied gas into the evaporation section. It is vaporized, heated to room temperature, and supplied to gas consuming equipment. In addition, a vaporization pressure adjustment valve is provided for controlling the amount of liquefied gas in the liquid phase flowing into the evaporation unit in accordance with fluctuations in gas consumption of the gas consuming device.

特開平11−114405号公報JP-A-11-114405

特許文献1では、停電等により蒸発器の温度が異常に低下したときに、気化しない液相の液化ガスがガス消費機器側に供給されると種々の問題があることから、そのようなときに気化圧力調整弁を緊急遮断する保安機構が提案されている。しかし、液相の液化ガスを効果的に安定して気化させるために、蒸発部の温度制御を具体的にどのようにするかについては、配慮されていない。   In Patent Document 1, when the temperature of the evaporator is abnormally lowered due to a power failure or the like, there are various problems when liquid phase liquefied gas that does not vaporize is supplied to the gas consuming device side. A safety mechanism that urgently shuts off the vaporization pressure regulating valve has been proposed. However, in order to effectively and stably vaporize the liquefied gas in the liquid phase, no consideration is given to how to specifically control the temperature of the evaporation section.

本発明が解決しようとする課題は、液相の液化ガスを効果的に安定して気化させることができる蒸発部の温度制御を備えた液化ガス蒸発器を提供することにある。   The problem to be solved by the present invention is to provide a liquefied gas evaporator having temperature control of an evaporation section capable of effectively and stably vaporizing a liquefied gas in a liquid phase.

上記の課題を解決するため、本発明の液化ガス蒸発器は、液化ガスの熱交換流路が上下方向に穿設された伝熱ブロックと、前記伝熱ブロックに挿入された熱源と、前記伝熱ブロックに挿入された温度センサと、該温度センサの検出温度に基づいて前記熱源の発熱を制御する温度制御器とを備え、前記熱交換流路の上端が開口された前記伝熱ブロックの面に蒸発面が形成され、該蒸発面を覆って設けられた圧力室に調圧された液相の液化ガスを導入し、前記熱交換流路の下端の開口から気化された液化ガスを排出するように形成され、前記温度センサは、前記熱源と前記蒸発面との間に配置されてなることを特徴とする。 In order to solve the above-described problems, a liquefied gas evaporator according to the present invention includes a heat transfer block in which a heat exchange channel for liquefied gas is formed in a vertical direction, a heat source inserted in the heat transfer block, and the heat transfer block. comprising a temperature sensor which is inserted into the heat block, and a temperature controller for controlling the heat generation of the heat source based on the detected temperature of the temperature sensor, the surface of the heat transfer block the upper end of the heat-exchange passage is opened A vaporized liquefied gas is discharged from an opening at the lower end of the heat exchange flow path, and an adjusted liquid phase liquefied gas is introduced into a pressure chamber provided to cover the evaporated surface. The temperature sensor is arranged between the heat source and the evaporation surface.

すなわち、熱源(例えば、電気ヒータ)と蒸発面との間に位置させて温度センサを伝熱ブロックに挿入して蒸発面に近い温度を検出する。そして、温度制御器は温度センサが挿入された部位の伝熱ブロックの検出温度が、設定温度範囲(例えば、35℃〜46℃)になるように熱源の熱量(例えば、電気ヒータの通電)を制御する。このような温度制御により、蒸発面の温度変化を少なくできるため、総括伝熱係数の変化が少ない安定した蒸発能力を保持させることができる。また、蒸発面を覆って設けられた圧力室に液相の液化ガスを供給する気化圧力調節弁の閉塞圧力も安定する。これらにより、蒸発面の温度変化を一層少なくでき、伝熱ブロックの温度変化幅をも小さくすることができる。言い換えれば、温度制御により温度が下方に振れるアンダーシュートを小さくできるから、液相の液化ガスを効果的に安定して気化させることができる。しかも、蒸発器から液相の液化ガスがガス消費機器等に流出するのを防止するために、一般に液流出防止装置が設けられるが、温度制御のアンダーシュートを小さくできるので、液流出防止装置の作動温度に余裕を持たせることができる。つまり、温度制御器の設定温度範囲を全体に低く設定できるので、蒸発器のシール部材及び電気部品の寿命を長くできる。
That is, a temperature sensor is inserted between the heat source (for example, an electric heater) and the evaporation surface and a temperature sensor is inserted into the heat transfer block to detect a temperature close to the evaporation surface. Then, the temperature controller adjusts the amount of heat of the heat source (for example, energization of the electric heater) so that the detected temperature of the heat transfer block at the part where the temperature sensor is inserted is within a set temperature range (for example, 35 ° C. to 46 ° C.). Control. By such temperature control, the temperature change of the evaporation surface can be reduced, so that stable evaporation ability with little change in the overall heat transfer coefficient can be maintained. Moreover, the closing pressure of the vaporization pressure control valve for supplying the liquid phase liquefied gas to the pressure chamber provided to cover the evaporation surface is also stabilized. As a result, the temperature change of the evaporation surface can be further reduced, and the temperature change width of the heat transfer block can also be reduced. In other words, since undershoot in which the temperature fluctuates downward by temperature control can be reduced, liquid phase liquefied gas can be effectively and stably vaporized. Moreover, in order to prevent the liquid phase liquefied gas from flowing out from the evaporator to the gas consuming device, etc., a liquid outflow prevention device is generally provided, but since the temperature control undershoot can be reduced, the liquid outflow prevention device A margin can be given to the operating temperature. That is, since the set temperature range of the temperature controller can be set to be low as a whole, the lifetime of the seal member and the electrical parts of the evaporator can be extended.

また、伝熱ブロックは、アルミニウム合金の鋳物で形成し、これに複数の熱交換流路を液化ガスの導入側から排出側に向けて並列に穿設し、それらの熱交換流路の間に、熱交換流路に直交させて1本又は複数本の棒状に形成した電気ヒータを分散して挿入することが好ましい。これにより、伝熱ブロックの温度分布を均一化して、液相の液化ガスの蒸発及び加熱を効率よく安定して行わせることができる。さらに、熱電対を棒状の保護パイプに収容した温度センサを用い、その温度センサを熱交換流路の間に位置させて、熱源である電気ヒータと蒸発面との間の伝熱ブロックに挿入することができる。これにより、蒸発面に近い伝熱ブロックの部位の温度を検出できるから、一層安定して伝熱ブロックの温度を制御できる。   Further, the heat transfer block is formed of an aluminum alloy casting, and a plurality of heat exchange passages are formed in parallel from the liquefied gas introduction side to the discharge side, and the heat exchange block is interposed between the heat exchange passages. It is preferable to disperse and insert electric heaters formed in one or a plurality of rods so as to be orthogonal to the heat exchange flow path. Thereby, the temperature distribution of the heat transfer block can be made uniform, and evaporation and heating of the liquid phase liquefied gas can be performed efficiently and stably. Furthermore, using a temperature sensor in which a thermocouple is housed in a rod-shaped protective pipe, the temperature sensor is positioned between the heat exchange flow paths and inserted into a heat transfer block between the electric heater as a heat source and the evaporation surface. be able to. Thereby, since the temperature of the part of the heat transfer block close to the evaporation surface can be detected, the temperature of the heat transfer block can be controlled more stably.

本発明によれば、液相の液化ガスを効果的に安定して気化させることができる蒸発部の温度制御を備えた液化ガス蒸発器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the liquefied gas evaporator provided with the temperature control of the evaporation part which can vaporize the liquefied gas of a liquid phase effectively and stably can be provided.

本発明の蒸発器の一実施例の構成を説明する部分断面図である。It is a fragmentary sectional view explaining the structure of one Example of the evaporator of this invention. 図1の実施例の気化圧力調整弁の構成を説明する断面図である。It is sectional drawing explaining the structure of the vaporization pressure regulating valve of the Example of FIG. 図1の実施例の温度制御動作を説明する線図である。It is a diagram explaining the temperature control operation | movement of the Example of FIG.

本発明の一実施例の蒸発器は、図1に示すように、蒸発部1と、蒸発部1の側面に設けられた温度制御器50と、蒸発部1の上部に設けられた気化圧力調節弁60とを備えて形成される。蒸発部1は、アルミニウム合金鋳物などの金属材により形成された熱媒体である伝熱ブロック2を有して形成されている。伝熱ブロック2には、図において上方から下方に並列に複数の熱交換流路3が穿設され、複数の熱交換流路3の間に直交させて、熱源としての複数の棒状の電気ヒータ4と、電気ヒータ4の上方に棒状の温度センサ5が挿入されている。温度センサ5は、熱電対を棒状の保護管に収容して形成されている。伝熱ブロック2には、熱交換流路3の上端が開口する面に蒸発面6が形成されている。熱交換流路3の下端は伝熱ブロック2の下部に形成された底部空間7に開口されている。伝熱ブロック2の下面には、底部空間7と共に気化ガス室8を形成する凹状の底部部材9が固定されている。   As shown in FIG. 1, an evaporator according to an embodiment of the present invention includes an evaporator 1, a temperature controller 50 provided on a side surface of the evaporator 1, and a vapor pressure adjustment provided on the top of the evaporator 1. And a valve 60. The evaporation part 1 has a heat transfer block 2 that is a heat medium formed of a metal material such as an aluminum alloy casting. In the heat transfer block 2, a plurality of heat exchange channels 3 are perforated in parallel from the upper side to the lower side in the drawing, and a plurality of rod-shaped electric heaters as heat sources are orthogonally arranged between the plurality of heat exchange channels 3. 4 and a bar-shaped temperature sensor 5 is inserted above the electric heater 4. The temperature sensor 5 is formed by accommodating a thermocouple in a rod-shaped protective tube. In the heat transfer block 2, an evaporation surface 6 is formed on the surface where the upper end of the heat exchange flow path 3 opens. The lower end of the heat exchange channel 3 is opened to a bottom space 7 formed in the lower part of the heat transfer block 2. A concave bottom member 9 that forms a vaporized gas chamber 8 together with the bottom space 7 is fixed to the lower surface of the heat transfer block 2.

気化ガス室8の上部に気化された液化ガスの出口ノズル10が連通され、図示していないガス消費機器に気化された液化ガスを供給するようになっている。出口ノズル10には、元バルブ11を介して安全弁12が連通されている。ガス消費機器のガス消費が急に停止して気化圧力調整弁60が遮断されたときに、蒸発器内に残っている液相の液化ガスが気化して内部圧力が上昇しても、安全弁12の吹き始め圧力(例えば、0.693MPa)未満に保持するよう内部容積が決められている。一方、気化ガス室8の底部には、ドレン弁13を備えたドレンノズル14が連通されている。   An outlet nozzle 10 for vaporized liquefied gas is communicated with the upper portion of the vaporized gas chamber 8 to supply the vaporized liquefied gas to a gas consuming device (not shown). A safety valve 12 is communicated with the outlet nozzle 10 via the original valve 11. Even if the gas consumption of the gas consuming device is suddenly stopped and the vaporization pressure regulating valve 60 is shut off, the safety valve 12 can be used even if the liquid-phase liquefied gas remaining in the evaporator is vaporized and the internal pressure rises. The internal volume is determined so as to be kept at a pressure less than the pressure at which the air begins to blow (for example, 0.693 MPa). On the other hand, a drain nozzle 14 having a drain valve 13 is communicated with the bottom of the vaporized gas chamber 8.

温度制御器50は、防爆構造電気機械器具として型式認定されたものであり、複数の電気ヒータ4の通電を制御する制御部と、温度センサ5の出力に基づいて検出温度を求める温度検出部等を備えて形成されている。   The temperature controller 50 is certified as an explosion-proof electrical machine instrument, and includes a control unit that controls energization of the plurality of electric heaters 4, a temperature detection unit that obtains a detection temperature based on the output of the temperature sensor 5, and the like. It is formed with.

気化圧力調整弁60は、図2に示すように、バルブボディ61に形成された圧力室62により、伝熱ブロック2の蒸発面6を覆って取り付けられている。圧力室62に臨ませて、バルブボディ61の側壁に固定された入口ノズル部63から液相の液化ガスを導入し、圧力室62の圧力を調整する調整弁64が設けられている。また、圧力室62は連通路62aを介して設定圧力室65に連通されている。設定圧力室65はバルブボディ61の上面に開口され、設定圧力室65の開口を覆って圧力設定部66が設けられている。圧力設定部66は、バルブボディ61の上面に固定された円筒状のケース67を有し、ケース67の下部の開口部に支持されたダイアフラム68が設定圧力室65に臨ませて設けられている。ダイアフラム68の中心部の下面にステム69が垂下して設けられている。ダイアフラム68は、調圧ばね70により設定圧力室65側に付勢されている。調圧ばね70の上端はばね押え71に当接して設けられ、ばね押え71は調圧ネジ72のねじ込み量を調整して、設定圧力を加減できるようになっている。ステム69は、設定圧力室65と圧力室62との隔壁73に穿設された貫通孔74を通して、先端が圧力室62に突出して設けられている。貫通孔74とステム69の隙間は、シール部材75によりステム69が摺動可能にシールされている。圧力室62側の隔壁73の下面から垂下された支持部材76に、三角形の可動片77がピン78により回動可能に設けられている。そして、可動片77の一辺にステム69の先端が当接して設けられている。   As shown in FIG. 2, the vaporization pressure regulating valve 60 is attached so as to cover the evaporation surface 6 of the heat transfer block 2 by a pressure chamber 62 formed in the valve body 61. An adjustment valve 64 that adjusts the pressure in the pressure chamber 62 by introducing a liquefied gas in a liquid phase from an inlet nozzle portion 63 fixed to the side wall of the valve body 61 so as to face the pressure chamber 62 is provided. Further, the pressure chamber 62 communicates with the set pressure chamber 65 via the communication passage 62a. The set pressure chamber 65 is opened on the upper surface of the valve body 61, and a pressure setting portion 66 is provided to cover the opening of the set pressure chamber 65. The pressure setting unit 66 has a cylindrical case 67 fixed to the upper surface of the valve body 61, and a diaphragm 68 supported by an opening at the lower part of the case 67 is provided facing the set pressure chamber 65. . A stem 69 is suspended from the lower surface of the central portion of the diaphragm 68. The diaphragm 68 is urged toward the set pressure chamber 65 by the pressure adjusting spring 70. The upper end of the pressure adjusting spring 70 is provided in contact with the spring retainer 71, and the spring retainer 71 can adjust the set pressure by adjusting the screwing amount of the pressure adjusting screw 72. The stem 69 has a tip projecting from the pressure chamber 62 through a through hole 74 formed in a partition wall 73 between the set pressure chamber 65 and the pressure chamber 62. The gap between the through hole 74 and the stem 69 is slidably sealed by the seal member 75. A triangular movable piece 77 is rotatably provided by a pin 78 on a support member 76 suspended from the lower surface of the partition wall 73 on the pressure chamber 62 side. The tip of the stem 69 is in contact with one side of the movable piece 77.

一方、調整弁64は、先細り状に形成された円筒状の本体部80の基端部に穿設された中空部81に入口ノズル部63を挿入して、バルブボディ61に固定されている。中空部81の先端から本体部80の先端まで小径の貫通孔82が穿設されている。中空部81と貫通孔82とにより形成される段部を弁座83とし、その弁座83の開口を開閉する弁体84が設けられている。弁体84は、貫通孔82に挿通された弁棒85に固定されるとともに、入口ノズル部63の先端部との間に介装されたばね86により弁座83方向に付勢されている。弁棒85の先端は、可動片77の一辺に当接させて設けられている。弁棒85とステム69がそれぞれ当接される可動片77の辺は、回動方向においてピン78を挟む関係の辺である。   On the other hand, the regulating valve 64 is fixed to the valve body 61 by inserting an inlet nozzle portion 63 into a hollow portion 81 formed in a proximal end portion of a cylindrical main body portion 80 formed in a tapered shape. A small-diameter through hole 82 is bored from the distal end of the hollow portion 81 to the distal end of the main body portion 80. A step formed by the hollow portion 81 and the through hole 82 is a valve seat 83, and a valve body 84 that opens and closes the opening of the valve seat 83 is provided. The valve body 84 is fixed to a valve rod 85 inserted through the through hole 82 and is urged in the direction of the valve seat 83 by a spring 86 interposed between the valve body 84 and the distal end portion of the inlet nozzle portion 63. The tip of the valve rod 85 is provided in contact with one side of the movable piece 77. The side of the movable piece 77 with which the valve rod 85 and the stem 69 are in contact with each other is the side having the pin 78 in the rotational direction.

このように構成される本実施例の液化ガス蒸発器の動作について説明する。液状の液化ガスは、図示していない液化ガス容器から入口ノズル部63を介して調整弁64に供給されるようになっている。蒸発器を起動して蒸発部1の温度が所定温度に上昇した後、入口ノズル部63から液状の液化ガス(例えば、圧力0.2〜1.5MPa)を調整弁64に供給すると、噴出ノズル90から液相の液化ガスが圧力室62内に噴出される。圧力室62内の圧力は、調節弁64と圧力設定部66の協働により設定圧力(例えば、0.15±0.04MPa)に調整される。圧力室62内に噴出された液相の液化ガスが蒸発面6で瞬間的に蒸発し、熱交換流路3を通って常温程度まで昇温されて気化ガス室8に導かれる。気化ガス室8に導入された液化ガスは、出口ノズル10を介して図示していないガス消費機器等に供給される。   The operation of the liquefied gas evaporator of this embodiment configured as described above will be described. The liquid liquefied gas is supplied from a liquefied gas container (not shown) to the regulating valve 64 via the inlet nozzle portion 63. After the evaporator is started and the temperature of the evaporation unit 1 rises to a predetermined temperature, when a liquid liquefied gas (for example, a pressure of 0.2 to 1.5 MPa) is supplied from the inlet nozzle unit 63 to the regulating valve 64, the ejection nozzle From 90, a liquid phase liquefied gas is ejected into the pressure chamber 62. The pressure in the pressure chamber 62 is adjusted to a set pressure (for example, 0.15 ± 0.04 MPa) by the cooperation of the control valve 64 and the pressure setting unit 66. The liquid-phase liquefied gas ejected into the pressure chamber 62 is instantaneously evaporated on the evaporation surface 6, heated to about room temperature through the heat exchange channel 3, and guided to the vaporized gas chamber 8. The liquefied gas introduced into the vaporized gas chamber 8 is supplied to a gas consuming device (not shown) through the outlet nozzle 10.

ガス消費機器等の液化ガスの消費量が少ないとき、あるいは蒸発面6における蒸発量が多いこと等により、圧力設定部66における設定圧よりも圧力室62の圧力が高くなると、設定圧力室65の圧力により調圧ばね70が圧縮されてダイアフラム68が押し上げられる。これによりステム69が押し上げられ、可動片77が時計回りに回動して、弁棒85を介して弁体84がばね86により弁座83方向に付勢されて、圧力室62への液状の液化ガスの導入が遮断される。   When the pressure in the pressure chamber 62 becomes higher than the set pressure in the pressure setting section 66 due to a small amount of liquefied gas consumed by a gas consuming device or the like, or because the amount of evaporation on the evaporation surface 6 is large, etc. The pressure adjusting spring 70 is compressed by the pressure, and the diaphragm 68 is pushed up. As a result, the stem 69 is pushed up, the movable piece 77 rotates clockwise, the valve body 84 is urged toward the valve seat 83 by the spring 86 via the valve rod 85, and the liquid to the pressure chamber 62 is liquidated. The introduction of liquefied gas is interrupted.

逆に、液化ガスの消費量が多くなると、あるいは蒸発面6における蒸発量が少なくなること等により、圧力室62の圧力が設定圧よりも低くなると、調圧ばね70の付勢力が打ち勝ってダイアフラム68によりステム69が押し下げられる。これにより、可動片77が反時計回りに回動して、弁棒85を介して弁体84がばね86により弁座83から離れる方向に付勢され、圧力室62への液状の液化ガスが導入される。このようにして、気化圧力調整弁60の動作により、液化ガスの消費量あるいは蒸発部1における蒸発状態に応じて圧力室62の圧力が設定圧に保持され、消費量に応じた液相の液化ガスを気化して安定した圧力及び量の液化ガスをガス消費機器等に供給することができる。   On the contrary, when the consumption amount of the liquefied gas increases or the pressure in the pressure chamber 62 becomes lower than the set pressure due to a decrease in the evaporation amount on the evaporation surface 6 or the like, the urging force of the pressure adjusting spring 70 overcomes the diaphragm. The stem 69 is pushed down by 68. As a result, the movable piece 77 rotates counterclockwise, and the valve body 84 is urged by the spring 86 in a direction away from the valve seat 83 via the valve rod 85, so that the liquid liquefied gas into the pressure chamber 62 is discharged. be introduced. In this way, by the operation of the vaporization pressure adjustment valve 60, the pressure in the pressure chamber 62 is held at the set pressure according to the consumption amount of the liquefied gas or the evaporation state in the evaporation unit 1, and the liquid phase liquefaction according to the consumption amount The gas can be vaporized to supply a liquefied gas having a stable pressure and amount to a gas consuming device or the like.

一方、蒸発部1では、蒸発面6と電気ヒータ4との間の設けられた温度センサ5の検出温度が温度制御器50に入力される。温度制御器50は、温度センサ5が挿入された部位の伝熱ブロック2の温度である温度センサ5の検出温度を、予め設定された温度範囲(例えば、35℃〜46℃)に保持するように電気ヒータ4の通電を制御する。電気ヒータ4の通電制御は、例えば、検出温度が設定温度範囲の上限T℃に達したときに通電をオフし、下限Tに低下したときにオンする制御を適用することができる。その他、電気ヒータ4に供給する電圧を可変する温度制御を適用することができる。 On the other hand, in the evaporation unit 1, the temperature detected by the temperature sensor 5 provided between the evaporation surface 6 and the electric heater 4 is input to the temperature controller 50. The temperature controller 50 maintains the temperature detected by the temperature sensor 5, which is the temperature of the heat transfer block 2 at the part where the temperature sensor 5 is inserted, in a preset temperature range (for example, 35 ° C. to 46 ° C.). The energization of the electric heater 4 is controlled. The energization control of the electric heater 4 can be, for example, a control that turns off the energization when the detected temperature reaches the upper limit T H ° C of the set temperature range and turns on when the detected temperature falls to the lower limit T L. In addition, temperature control that varies the voltage supplied to the electric heater 4 can be applied.

ここで、図3を参照して、本実施例の温度制御動作の効果を説明する。同図の横軸は時間軸を示し、縦軸は温度軸を示している。また、同図は伝熱ブロック2の代表部位の温度変化を示し、実線は本実施例の温度制御特性、点線は比較例の温度制御特性であり、温度センサ5を電気ヒータ4よりも伝熱ブロック2の下方の部位に位置させた例である。   Here, the effect of the temperature control operation of the present embodiment will be described with reference to FIG. In the figure, the horizontal axis indicates the time axis, and the vertical axis indicates the temperature axis. The figure shows the temperature change of the representative part of the heat transfer block 2, the solid line is the temperature control characteristic of this embodiment, the dotted line is the temperature control characteristic of the comparative example, and the temperature sensor 5 is more heat transfer than the electric heater 4. This is an example in which the block 2 is positioned below the block 2.

図3からわかるように、本実施例のように、温度センサ5を電気ヒータ4と蒸発面6との間に位置させて、その部位の伝熱ブロック2の温度を設定範囲に収めるように電気ヒータ4の通電を制御する温度制御によれば、蒸発面6の温度変化を少なくできる。これにより、本実施例によれば、蒸発部1における総括伝熱係数の変化が少ない安定した蒸発能力を保持させることができる。また、蒸発面6に液相の液化ガスを供給する気化圧力調節弁60の閉塞圧力も安定する。特に、蒸発面6の温度変化を少なくでき、伝熱ブロック2の温度変化幅をも小さくすることができる。言い換えれば、比較例に比べて、温度制御により温度が下方に振れるアンダーシュート(図中、楕円で囲った部分)を小さくできるから、液相の液化ガスを効果的に安定して気化させることができる。しかも、蒸発器から液相の液化ガスがガス消費機器等に流出するのを防止するために、一般に液流出防止装置が設けられるが、温度制御のアンダーシュートを小さくできるので、液流出防止装置の作動温度に余裕を持たせることができる。つまり、温度制御器の設定温度範囲を全体に低く設定できるので、蒸発器のシール部材及び電気部品の寿命を長くできる。   As can be seen from FIG. 3, as in this embodiment, the temperature sensor 5 is positioned between the electric heater 4 and the evaporation surface 6 so that the temperature of the heat transfer block 2 at that portion falls within the set range. According to the temperature control for controlling the energization of the heater 4, the temperature change of the evaporation surface 6 can be reduced. Thereby, according to a present Example, the stable evaporation capability with few changes of the overall heat transfer coefficient in the evaporation part 1 can be hold | maintained. Further, the closing pressure of the vaporization pressure control valve 60 for supplying the liquid phase liquefied gas to the evaporation surface 6 is stabilized. In particular, the temperature change of the evaporation surface 6 can be reduced, and the temperature change width of the heat transfer block 2 can also be reduced. In other words, compared to the comparative example, the undershoot (the part enclosed by an ellipse in the figure) in which the temperature fluctuates downward can be reduced by temperature control, so that the liquid phase liquefied gas can be effectively and stably vaporized. it can. Moreover, in order to prevent the liquid phase liquefied gas from flowing out from the evaporator to the gas consuming device, etc., a liquid outflow prevention device is generally provided, but since the temperature control undershoot can be reduced, the liquid outflow prevention device A margin can be given to the operating temperature. That is, since the set temperature range of the temperature controller can be set to be low as a whole, the lifetime of the seal member and the electrical parts of the evaporator can be extended.

また、本実施例によれば、熱交換流路3の間に、熱交換流路3に直交させて1本又は複数本の棒状に形成した電気ヒータ4を分散して挿入したことから、伝熱ブロック2の温度分布を均一化して、液相の液化ガスの蒸発及び加熱を効率よく安定して行わせることができる。   Further, according to the present embodiment, the electric heaters 4 formed in one or a plurality of rod shapes perpendicularly to the heat exchange flow path 3 are inserted between the heat exchange flow paths 3 in a distributed manner. The temperature distribution of the heat block 2 can be made uniform, and the liquid phase liquefied gas can be evaporated and heated efficiently and stably.

以上説明したように、本発明の液化ガス蒸発器によれば、液相の液化ガスを効果的に安定して気化させることができる。なお、上記の実施例では、伝熱ブロック2をアルミニウム合金の鋳物で形成した例を示したが、これに限らず、熱伝導性に優れた伝熱部材を用いることができる。また、複数の熱交換流路3を液化ガスの導入側から排出側に向けて並列に穿設するにあたり、各流路を格子状に配列することができる。   As described above, according to the liquefied gas evaporator of the present invention, the liquid liquefied gas can be effectively and stably vaporized. In the above embodiment, the heat transfer block 2 is formed of an aluminum alloy casting. However, the present invention is not limited to this, and a heat transfer member having excellent heat conductivity can be used. Further, when the plurality of heat exchange channels 3 are drilled in parallel from the liquefied gas introduction side to the discharge side, the respective channels can be arranged in a lattice pattern.

1 蒸発部
2 伝熱ブロック
3 熱交換流路
4 電気ヒータ
5 温度センサ
6 蒸発面
8 気化ガス室
10 出口ノズル
50 温度制御器
60 気化圧力調整弁
DESCRIPTION OF SYMBOLS 1 Evaporation part 2 Heat transfer block 3 Heat exchange flow path 4 Electric heater 5 Temperature sensor 6 Evaporation surface 8 Vaporized gas chamber 10 Outlet nozzle 50 Temperature controller 60 Vaporization pressure adjustment valve

Claims (3)

液化ガスの熱交換流路が上下方向に穿設された伝熱ブロックと、前記伝熱ブロックに挿入された熱源と、前記伝熱ブロックに挿入された温度センサと、該温度センサの検出温度に基づいて前記熱源の発熱を制御する温度制御器とを備え、前記熱交換流路の上端が開口された前記伝熱ブロックの面に蒸発面が形成され、該蒸発面を覆って設けられた圧力室に調圧された液相の液化ガスを導入し、前記熱交換流路の下端の開口から気化された液化ガスを排出するように形成され、
前記温度センサは、前記熱源と前記蒸発面との間に位置されてなる液化ガス蒸発器。
A heat transfer block in which a heat exchange flow path for liquefied gas is vertically drilled, a heat source inserted in the heat transfer block, a temperature sensor inserted in the heat transfer block, and a detected temperature of the temperature sensor And a temperature controller that controls the heat generation of the heat source, and an evaporation surface is formed on the surface of the heat transfer block in which an upper end of the heat exchange channel is opened, and a pressure provided to cover the evaporation surface A liquid phase liquefied gas is introduced into the chamber , and the vaporized liquefied gas is discharged from the opening at the lower end of the heat exchange channel;
The temperature sensor is a liquefied gas evaporator located between the heat source and the evaporation surface.
前記温度制御器は、前記温度センサの検出温度を設定された温度範囲に収めるように前記熱源の発熱を制御することを特徴とする請求項1に記載の液化ガス蒸発器。   The liquefied gas evaporator according to claim 1, wherein the temperature controller controls the heat generation of the heat source so that the temperature detected by the temperature sensor falls within a set temperature range. 前記熱源は、電気ヒータであり、前記温度制御器は、前記電気ヒータの通電を制御して前記電気ヒータの発熱を制御することを特徴とする請求項1又は2に記載の液化ガス蒸発器。   The liquefied gas evaporator according to claim 1, wherein the heat source is an electric heater, and the temperature controller controls heat generation of the electric heater by controlling energization of the electric heater.
JP2013081837A 2013-04-10 2013-04-10 Liquefied gas evaporator Active JP6130707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013081837A JP6130707B2 (en) 2013-04-10 2013-04-10 Liquefied gas evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081837A JP6130707B2 (en) 2013-04-10 2013-04-10 Liquefied gas evaporator

Publications (2)

Publication Number Publication Date
JP2014200780A JP2014200780A (en) 2014-10-27
JP6130707B2 true JP6130707B2 (en) 2017-05-17

Family

ID=52351726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013081837A Active JP6130707B2 (en) 2013-04-10 2013-04-10 Liquefied gas evaporator

Country Status (1)

Country Link
JP (1) JP6130707B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124898A (en) * 1984-07-13 1986-02-03 Chiyoda Seiki:Kk Evaporator for liquefied gas
US4645904A (en) * 1985-05-17 1987-02-24 Sam Dick Industries, Inc. Liquefied gas vaporizer unit
JP3757475B2 (en) * 1996-07-15 2006-03-22 株式会社石井鐵工所 Liquefied gas evaporator
JP3413461B2 (en) * 1997-10-14 2003-06-03 矢崎総業株式会社 Vapor riser
JPH11319537A (en) * 1998-05-13 1999-11-24 Ebara Corp Cartridge heater for vaporizer of liquid raw material
JP2001240414A (en) * 2000-02-28 2001-09-04 Miura Co Ltd Apparatus for ammonia preparation

Also Published As

Publication number Publication date
JP2014200780A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
JP5350824B2 (en) Liquid material vaporization supply system
KR20030093926A (en) Liquid material vaporizing and feeding apparatus
TW201918813A (en) Vaporization system and vaporization system program
JP3619964B2 (en) Gas supply method
JP3828821B2 (en) Liquid material vaporizer
US20080264072A1 (en) Liquefied gas supply device and method
JP6130707B2 (en) Liquefied gas evaporator
JP2005501214A (en) Steam delivery system
KR100791581B1 (en) Chemistry solution store tank of structure
JP2005325686A (en) Regulator for lpg
JP5500822B2 (en) Steam cutting method and torch for the same
JP2009280223A (en) Pressure regulator for carbon dioxide gas
JP2004324894A (en) Gas supply device
KR101575028B1 (en) Atmospheric Vaporizing System for Liquified Petroleum Gas
JP6712440B2 (en) Liquid material vaporizer, liquid material vaporization system
RU2359433C1 (en) Method of generating plasma flow
JP2016117937A (en) Heating type vaporization device
JP7257826B2 (en) gas supply
KR101202008B1 (en) Regulator Having Thermo Element and Supply Apparatus of Gas Fuel Using The Same and Vehicle Having The Same
JP6214359B2 (en) Liquefied fuel gas vaporizer
JP4722665B2 (en) Steam desuperheater
JP2011144915A (en) Liquefied fuel gas vaporizing device
JP2009149939A (en) Method for supplying liquid material gas and system for supplying liquid material gas
JP2005061484A (en) Cryogenic liquid heating method and its device
JP2022054139A (en) Supply device of liquefied petroleum gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170414

R150 Certificate of patent or registration of utility model

Ref document number: 6130707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250