JP6128036B2 - Film thickness measuring device - Google Patents

Film thickness measuring device Download PDF

Info

Publication number
JP6128036B2
JP6128036B2 JP2014069833A JP2014069833A JP6128036B2 JP 6128036 B2 JP6128036 B2 JP 6128036B2 JP 2014069833 A JP2014069833 A JP 2014069833A JP 2014069833 A JP2014069833 A JP 2014069833A JP 6128036 B2 JP6128036 B2 JP 6128036B2
Authority
JP
Japan
Prior art keywords
electrode material
distance
thickness
film thickness
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014069833A
Other languages
Japanese (ja)
Other versions
JP2015190926A (en
Inventor
甫 藤村
甫 藤村
孝博 牧原
孝博 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014069833A priority Critical patent/JP6128036B2/en
Publication of JP2015190926A publication Critical patent/JP2015190926A/en
Application granted granted Critical
Publication of JP6128036B2 publication Critical patent/JP6128036B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は膜厚計測装置に係り、例えば、連続的に搬送される帯状の膜の厚さを計測する膜厚計測装置に関する。   The present invention relates to a film thickness measuring apparatus, for example, a film thickness measuring apparatus that measures the thickness of a belt-shaped film that is continuously conveyed.

二次電池の製造工程では、フィルム状の材料の裏面及び表面に活物質を塗布して電極材を形成する。このとき、電極材は帯状に連続的に形成される。そして、二次電池の品質の均質化のため、電極材をローラで挟んで加圧し、厚さを均一に形成する工程がある。該工程では膜状の電極材の厚さを計測し、該厚さの調整をするフィードバック制御を行うため、膜の厚さの精密な計測が重要となる。薄い材料の厚さを計測する装置として、例えば特許文献1に記載されたものがある。この装置によると、シートの表面との距離を計測する第1の距離決定手段がシートの表面の上側の位置に取り付けられている。そして、シートの裏面との距離を計測する第2の距離決定手段がシートの裏面の下側の位置に取り付けられている。即ち、第1の距離決定手段と第2の距離決定手段とはシートが無い状態では対向するように取り付けられ、シートを挟むようにして厚さを計測する。そして、対向する第1の距離決定手段と第2の距離決定手段との離間値を計測するセンサがさらに設けられている。このような構成により該装置は、第1の距離決定手段と第2の距離決定手段との計測結果を用いてシートの厚さを算出し、センサの離間値の測定値に基づいて算出されたシートの厚さの温度補償を行っている。   In the manufacturing process of the secondary battery, an electrode material is formed by applying an active material to the back and front surfaces of a film-like material. At this time, the electrode material is continuously formed in a strip shape. And in order to homogenize the quality of the secondary battery, there is a step of forming a uniform thickness by sandwiching and pressing the electrode material with a roller. In this process, since the thickness of the film-like electrode material is measured and feedback control is performed to adjust the thickness, precise measurement of the thickness of the film is important. As an apparatus for measuring the thickness of a thin material, for example, there is one described in Patent Document 1. According to this apparatus, the first distance determining means for measuring the distance from the surface of the sheet is attached at a position above the surface of the sheet. And the 2nd distance determination means which measures the distance with the back surface of a sheet | seat is attached to the position below the back surface of a sheet | seat. That is, the first distance determining means and the second distance determining means are attached so as to face each other when there is no sheet, and the thickness is measured so as to sandwich the sheet. A sensor for measuring a separation value between the first distance determining unit and the second distance determining unit facing each other is further provided. With such a configuration, the apparatus calculates the thickness of the sheet using the measurement results of the first distance determination unit and the second distance determination unit, and is calculated based on the measured value of the separation value of the sensor. Temperature compensation for sheet thickness is performed.

特表2002−533661号公報Special Table 2002-533661

特許文献1に開示された装置によると、シートの厚さの測定環境の温度変化が計測結果に与える影響を補償することができる。しかし、距離を計測するセンサは、連続的に計測を続けると自己発熱の影響により、計測精度が悪化する場合がある。特許文献1にかかる装置では、センサは、対向する第1の距離決定手段と第2の距離決定手段との離間値を計測しており、距離決定手段が有するセンサの自己発熱の影響による計測結果の悪化を補正することができない。そのため、特許文献1にかかる装置を二次電池の電極材の製造工程に適用すると、膜の厚さを精度よく均一に生成できない場合があるという課題がある。
本発明は、膜の厚さ計測するセンサ自体の発熱による測定結果への影響を補正して膜の厚さを精度よく計測する膜厚計測装置を提供することを目的とする。
According to the apparatus disclosed in Patent Document 1, it is possible to compensate for the influence of the temperature change in the measurement environment of the sheet thickness on the measurement result. However, if the sensor for measuring the distance is continuously measured, the measurement accuracy may deteriorate due to the influence of self-heating. In the apparatus according to Patent Document 1, the sensor measures a separation value between the first distance determining unit and the second distance determining unit facing each other, and a measurement result due to the effect of self-heating of the sensor included in the distance determining unit. It is not possible to correct the deterioration. Therefore, when the apparatus according to Patent Document 1 is applied to the manufacturing process of the electrode material of the secondary battery, there is a problem that the film thickness may not be generated accurately and uniformly.
An object of the present invention is to provide a film thickness measuring apparatus that accurately measures the film thickness by correcting the influence on the measurement result due to the heat generated by the sensor itself that measures the film thickness.

本発明の一態様にかかる膜厚計測装置は、連続的に搬送される帯状の膜の厚さを計測し、前記膜を搬送する搬送手段と、前記搬送手段から搬送される搬送路の途中において、前記膜を緊張させ、前記膜を上下に変動させる変動ローラと、前記膜の表面からの距離を計測する計測手段と、前記変動ローラによって変動する前記距離の計測結果に基づいて計測手段6の出力値を補正して前記膜の厚さを算出する膜厚算出手段と、を備える。   The film thickness measurement apparatus according to one aspect of the present invention measures the thickness of a continuous film that is transported, and in the middle of a transporting means that transports the film and a transporting path that is transported from the transporting means. , A variable roller that tensions the film and fluctuates the film up and down, a measuring unit that measures a distance from the surface of the film, and a measuring unit 6 based on the measurement result of the distance that is fluctuated by the variable roller Film thickness calculating means for correcting the output value and calculating the thickness of the film.

本発明はこのような構成により、搬送手段で連続的に搬送される帯状の膜の厚さを計測手段で精度よく計測し、膜の厚さを均一にするためのフィードバック制御に適用することができる。即ち、本発明は変動ローラで計測対象物である連続搬送される膜を規定量上下動させる。そして、計測手段は規定量上下動する膜からの距離を計測する。膜厚算出手段は変動する規定量と計測した変動量から、自己発熱の影響を計算し補正を行う。自己発熱の影響を補正した膜の厚さを算出することができ、その結果、計測手段が連続的に出力することによって生じる発熱による測定結果への影響を低減することができる。   With this configuration, the present invention can be applied to feedback control for measuring the thickness of a belt-like film continuously conveyed by a conveying means with a measuring means with high accuracy and making the film thickness uniform. it can. That is, according to the present invention, the film that is continuously measured, which is the object to be measured, is moved up and down by a predetermined amount by the variable roller. Then, the measuring means measures the distance from the membrane that moves up and down by a specified amount. The film thickness calculation means calculates and corrects the influence of self-heating from the fluctuation amount and the measured fluctuation amount. It is possible to calculate the thickness of the film in which the influence of self-heating is corrected, and as a result, it is possible to reduce the influence on the measurement result due to the heat generated when the measuring means outputs continuously.

本発明によると、膜の厚さ計測するセンサ自体の発熱による測定結果への影響を補正して膜の厚さを精度よく計測することができる。   According to the present invention, it is possible to accurately measure the film thickness by correcting the influence on the measurement result due to the heat generated by the sensor itself for measuring the film thickness.

第1の実施形態にかかる膜厚計測装置の斜視図である。It is a perspective view of the film thickness measuring device concerning a 1st embodiment. 電極材の厚さの計測方法を示した概略図である。It is the schematic which showed the measuring method of the thickness of an electrode material. 距離センサの自己発熱による出力値の変化を示したグラフである。It is the graph which showed the change of the output value by the self-heating of a distance sensor. 変動ローラによる上下動を計測し、その出力値を示した図である。It is the figure which measured the vertical motion by a fluctuation | variation roller, and showed the output value. 変動ローラによる上下動から距離センサの出力値を補正した結果を示した図である。It is the figure which showed the result which correct | amended the output value of the distance sensor from the vertical motion by a fluctuation | variation roller. 変動ローラを示した斜視図である。It is the perspective view which showed the fluctuation | variation roller. 変動ローラによって電極材が上下動する様子を示した断面図である。It is sectional drawing which showed a mode that the electrode material moved up and down with the fluctuation | variation roller. インバー材と鉄の熱膨張量を示したグラフである。It is the graph which showed the amount of thermal expansion of Invar material and iron. ガイドローラが熱収縮、熱膨張する様子を示した図である。It is the figure which showed a mode that a guide roller thermally contracted and expanded. 計測手段を示した斜視図である。It is the perspective view which showed the measurement means. 膜厚計測装置の内部構成を示したブロック図である。It is the block diagram which showed the internal structure of the film thickness measuring apparatus. 膜厚計測装置の動作を示したフローチャートである。It is the flowchart which showed operation | movement of the film thickness measuring apparatus. 第2の実施形態にかかる膜厚計測装置を示した断面図である。It is sectional drawing which showed the film thickness measuring apparatus concerning 2nd Embodiment. 膜厚計測装置の計測手段を示した図である。It is the figure which showed the measurement means of the film thickness measuring apparatus. 膜厚計測装置の内部構成を示したブロック図である。It is the block diagram which showed the internal structure of the film thickness measuring apparatus. 膜厚計測装置の動作を示したフローチャートである。It is the flowchart which showed operation | movement of the film thickness measuring apparatus. ガイドローラの変形例を示した図である。It is the figure which showed the modification of the guide roller. 電極材を上下動させる機構の変形例を示した正面図である。It is the front view which showed the modification of the mechanism which moves an electrode material up and down. 計測手段の変形例を示した正面図である。It is the front view which showed the modification of the measurement means. 計測手段のその他の変形例を示した正面図である。It is the front view which showed the other modification of the measurement means.

以下、図面を参照して本発明に係る膜厚計測装置の実施形態について説明する。
[第1の実施形態]
図1に示されるように、膜厚計測装置100は、連続的に搬送される帯状の膜、例えば、二次電池の電極材5の厚さを計測する装置である。膜厚計測装置100は、繰り出しローラ1aで繰り出された電極材5を巻取りローラ1bで巻き取ることで電極材5を搬送する。搬送途中の電極材5は、ガイドローラ3a,4aで緊張状態にされ、緊張状態にされた電極材5の厚さを計測手段6で計測する。膜厚計測装置100は、計測された電極材5の厚さに基づいて、圧延ローラ2a,2bの離間距離を調整して電極材5の厚さを調整する。
Hereinafter, an embodiment of a film thickness measuring device according to the present invention will be described with reference to the drawings.
[First Embodiment]
As shown in FIG. 1, the film thickness measuring device 100 is a device that measures the thickness of a belt-like film continuously conveyed, for example, the electrode material 5 of a secondary battery. The film thickness measuring apparatus 100 conveys the electrode material 5 by winding the electrode material 5 fed by the feed roller 1a with the take-up roller 1b. The electrode material 5 in the middle of conveyance is brought into a tensioned state by the guide rollers 3a and 4a, and the thickness of the electrode material 5 brought into the tensioned state is measured by the measuring means 6. The film thickness measuring apparatus 100 adjusts the thickness of the electrode material 5 by adjusting the separation distance between the rolling rollers 2 a and 2 b based on the measured thickness of the electrode material 5.

電極材5はフィルム状の材料の表裏に活物質を塗布して形成されており、繰り出しローラ1aに巻き取られている。繰り出しローラ1aを中心軸回りに時計方向に回転させると電極材5が巻き出される。巻き出された電極材5を巻き取りローラ1bが中心時回りに時計方向に回転することにより巻き取る。このようにして巻取りローラ1bを回転させることにより電極材5は、繰り出しローラ1aから巻取りローラ1bに連続的に搬送される。繰り出しローラ1aと巻取りローラ1bとで搬送手段1が構成されている。搬送手段1は床面(不図示)に固定されたフレーム等に取り付けられる。   The electrode material 5 is formed by applying an active material to the front and back of a film-like material, and is wound around a feeding roller 1a. When the feeding roller 1a is rotated clockwise around the central axis, the electrode material 5 is unwound. The unwound electrode material 5 is wound up by the winding roller 1b rotating clockwise around the center time. By rotating the winding roller 1b in this manner, the electrode material 5 is continuously conveyed from the feeding roller 1a to the winding roller 1b. The feeding roller 1a and the take-up roller 1b constitute a conveying means 1. The conveying means 1 is attached to a frame or the like fixed to a floor surface (not shown).

繰り出しローラ1aと巻取りローラ1bとの間に位置する電極材5にはたるみが生じる。このたるみを除去するために、搬送路の途中にガイドローラ3a,4aが配置され、搬送中の電極材5を緊張させる。電極材5の厚さを計測するために、計測手段6が電極材5の緊張状態となった部分を計測可能な位置に取り付けられる。計測手段6は、電極材5の表面からの距離を表面と裏面とで同時に計測する2つの距離センサ6a,6bが対向するように取り付けられている。距離センサ6a,6bは、例えば、同軸共焦点センサ、レーザセンサ、赤外線センサ、超音波センサ等を用いることができる。距離センサ6aから電極材5の表面までの距離と、距離センサ6bから電極材5の裏面までの距離を計測すると電極材5の厚さが計算可能である。   Sag is generated in the electrode material 5 located between the feeding roller 1a and the take-up roller 1b. In order to remove this slack, guide rollers 3a and 4a are disposed in the middle of the transport path, and the electrode material 5 being transported is tensioned. In order to measure the thickness of the electrode material 5, the measuring means 6 is attached to a position where the tensioned state of the electrode material 5 can be measured. The measuring means 6 is attached so that two distance sensors 6a and 6b that simultaneously measure the distance from the front surface of the electrode material 5 on the front surface and the back surface face each other. As the distance sensors 6a and 6b, for example, a coaxial confocal sensor, a laser sensor, an infrared sensor, an ultrasonic sensor, or the like can be used. If the distance from the distance sensor 6a to the surface of the electrode material 5 and the distance from the distance sensor 6b to the back surface of the electrode material 5 are measured, the thickness of the electrode material 5 can be calculated.

図2に示されるように、表面からの距離をL1とし、裏面からの距離をL2とすると、電極材5の厚さtは、距離センサ6a,6bのそれぞれの先端からの離間距離をLとすると、式(1)で求められる。
t=L−(L1+L2)…(1)
ここで求めた電極材5の厚さtに基づいて、圧延ローラ2a,2bの離間距離を調整し、繰り出しローラ1aから巻き出された電極材5を挟み込んで圧延することにより電極材5の厚さを調整する。圧延ローラ2a,2bで圧延手段2を構成している。
As shown in FIG. 2, assuming that the distance from the front surface is L1 and the distance from the back surface is L2, the thickness t of the electrode material 5 is L as the distance from the respective tips of the distance sensors 6a and 6b. Then, it calculates | requires by Formula (1).
t = L− (L1 + L2) (1)
Based on the thickness t of the electrode material 5 obtained here, the distance between the rolling rollers 2a and 2b is adjusted, and the electrode material 5 unwound from the feeding roller 1a is sandwiched and rolled to obtain the thickness of the electrode material 5 Adjust the height. The rolling means 2 is constituted by the rolling rollers 2a and 2b.

図3に示されるように、温度が上昇すると、距離センサの出力値が低下する。即ち、距離計測時に距離センサ6a,6bがほぼ一定の距離を計測し続けると、距離センサ6a,6b自体が発熱し、その影響により計測結果が悪化する。   As shown in FIG. 3, when the temperature rises, the output value of the distance sensor decreases. That is, if the distance sensors 6a and 6b continue to measure a substantially constant distance during distance measurement, the distance sensors 6a and 6b themselves generate heat, and the measurement result deteriorates due to the influence.

これは、発熱により距離センサ6a,6b内部の回路素子等の抵抗値が変化することが原因である。その他に距離センサ6a,6bの外部の温度が変化することによっても計測結果が悪化する。外部の温度変化は電子部品全体の温度を変化させるが、距離センサ6a,6bの内部発熱は電子素子の一部が発熱する。しかし、電子素子の一つ一つの温度を計測して出力値を補正することは実質的に困難である。この発熱による出力値への影響は電極材5の膜厚変動の規格値(±0.4μm)より大きい(数μm)。   This is because the resistance values of the circuit elements and the like inside the distance sensors 6a and 6b change due to heat generation. In addition, the measurement result also deteriorates when the temperature outside the distance sensors 6a and 6b changes. The external temperature change changes the temperature of the entire electronic component, but the internal heat generation of the distance sensors 6a and 6b generates a part of the electronic element. However, it is substantially difficult to correct the output value by measuring the temperature of each electronic element. The influence of the heat generation on the output value is larger (several μm) than the standard value (± 0.4 μm) of the film thickness variation of the electrode material 5.

図4Aに示されるように、ガイドローラ3a,4aをある規定量で一定の周期上下させて電極材5の表面位置を変動させることにより、距離センサ6a,6bに経時的に変動する距離を計測させる。このガイドローラ3a,4aの上下動は予め定めた規定量で一定周期で変動する。上下の移動量は規定量であり、電極材5の膜厚変動幅より十分の大きい。   As shown in FIG. 4A, the distances that vary with time are measured in the distance sensors 6a and 6b by changing the surface position of the electrode material 5 by moving the guide rollers 3a and 4a up and down by a certain predetermined amount for a certain period. Let The vertical movement of the guide rollers 3a and 4a fluctuates in a predetermined cycle with a predetermined amount. The amount of vertical movement is a specified amount, which is sufficiently larger than the fluctuation range of the film thickness of the electrode material 5.

図4Bに示されるように、距離センサ6a,6bの出力値から該変動量を差し引いた時に現れる温度による出力値のずれを補正する。   As shown in FIG. 4B, the deviation of the output value due to the temperature that appears when the fluctuation amount is subtracted from the output value of the distance sensors 6a and 6b is corrected.

図5に示されるように、支持ローラ3b,3cの間に偏心した位置に配置された偏心軸3fによってガイドローラ3a,4aが取り付けられる。偏心軸3fはガイドローラ3aに挿通され、ガイドローラ3aは偏心軸3fを中心に回転する。支持ローラ3b,3cを中心軸3d,3eを中心に回転させると、ガイドローラ3aは中心軸3d,3eを中心に偏心距離を半径として公転する。その結果、ガイドローラ3aは回転しながら上下動することができる。上記のガイドローラ3aと、支持ローラ3b,3cと、中心軸3d,3eとで変動ローラ3を構成している。変動ローラ4も上記と同様の構成を有している。   As shown in FIG. 5, guide rollers 3a and 4a are attached by an eccentric shaft 3f disposed at an eccentric position between the support rollers 3b and 3c. The eccentric shaft 3f is inserted through the guide roller 3a, and the guide roller 3a rotates about the eccentric shaft 3f. When the support rollers 3b and 3c are rotated about the central axes 3d and 3e, the guide roller 3a revolves around the central axes 3d and 3e with the eccentric distance as the radius. As a result, the guide roller 3a can move up and down while rotating. The guide roller 3a, the support rollers 3b and 3c, and the central shafts 3d and 3e constitute the variable roller 3. The variable roller 4 has the same configuration as described above.

図6に示されるように、変動ローラ3と変動ローラ4とは同期して回転し、電極材5を緊張状態で上下動させることができる。変動ローラ3,4は、上記のフレーム(不図示)に取り付けられる。変動ローラ3,4の偏心距離は例えば、0.5μmである。変動ローラ3,4の材料としてインバー材を用いることができる。   As FIG. 6 shows, the fluctuation | variation roller 3 and the fluctuation | variation roller 4 rotate synchronously, and the electrode material 5 can be moved up and down in a tension | tensile_strength state. The variable rollers 3 and 4 are attached to the frame (not shown). The eccentric distance of the variable rollers 3 and 4 is, for example, 0.5 μm. Invar material can be used as the material of the variable rollers 3 and 4.

図7に示されるように、インバー材とは低膨張材料であり温度が変化しても歪みが生じにくい材料からなり熱変形が非常に小さい。インバー材を使用すると、膜厚計測装置100が使用される工場内等の環境の温度が変化しても変動ローラ3,4の熱歪みが生じにくくなり、電極材5の厚さの計測への影響を低減することができる。このため、材料に鉄を用いた場合に比べて膜厚計測装置100の計測精度が向上する。   As shown in FIG. 7, the invar material is a low expansion material and is made of a material that is not easily distorted even if the temperature changes, and its thermal deformation is very small. When the invar material is used, even if the temperature of the environment such as the factory where the film thickness measuring device 100 is used changes, thermal deformation of the variable rollers 3 and 4 is less likely to occur, and the thickness of the electrode material 5 can be measured. The influence can be reduced. For this reason, the measurement accuracy of the film thickness measuring apparatus 100 is improved as compared with the case where iron is used as the material.

鉄の線膨張係数は約12.1μm/℃/m(1mの材料は1度で12.1μm変形する)である。例えば、工場内で昼夜で5〜15℃程度の温度変化がある場合、10cmの治具は6μm〜18μm程度変形する。   The linear expansion coefficient of iron is about 12.1 μm / ° C./m (a 1 m material deforms 12.1 μm at a time). For example, when there is a temperature change of about 5 to 15 ° C. day and night in a factory, a 10 cm jig is deformed by about 6 μm to 18 μm.

図8(a)及び図8(b)に示されるように、例えば、ガイドローラ3a,4aの材料に鉄を用いると、温度変化の影響により変形する。特に、ガイドローラ3a,4aの角部は温まりやすく、放熱し易いため、電極材5の厚さの計測に悪影響を与える。この変形の影響により、工場内での超高精度の電極材5の厚さ計測は極めて困難となっている。しかし、インバー材を部材に用いると電極材5の厚さ計測を工場内で高精度に行うことが可能となる。インバー材は、計測手段6の材料にも用いることができる。   As shown in FIGS. 8A and 8B, for example, when iron is used as the material of the guide rollers 3a and 4a, the material is deformed due to the influence of temperature change. In particular, the corner portions of the guide rollers 3a and 4a are easily heated and radiate heat, which adversely affects the measurement of the thickness of the electrode material 5. Due to the influence of this deformation, it is very difficult to measure the thickness of the electrode material 5 with ultrahigh accuracy in the factory. However, when the invar material is used as a member, the thickness measurement of the electrode material 5 can be performed with high accuracy in the factory. The invar material can also be used as a material for the measuring means 6.

図9に示されるように、計測手段6は、距離センサ6a,6bが対向するように取り付けられている。距離センサ6a,6bを支持している支持部材6c,6d,6eの材料にインバー材を用いると、熱膨張による距離センサ6a,6bの離間距離の変動を抑え、電極材5の厚さの計測誤差を低減することができる。即ち、距離センサ6a,6bがそれぞれ取り付けられた支持部材6d,6eと、支持部材6dおよび支持部材6eを支持する支持部材6cとにインバー材を用いることができる。支持部材6cは上記のフレーム(不図示)に取り付けられ、計測手段6は固定される。   As shown in FIG. 9, the measuring means 6 is attached so that the distance sensors 6a and 6b face each other. When an invar material is used as the material of the support members 6c, 6d, and 6e that support the distance sensors 6a and 6b, variation in the distance between the distance sensors 6a and 6b due to thermal expansion is suppressed, and the thickness of the electrode material 5 is measured. The error can be reduced. That is, an invar material can be used for the support members 6d and 6e to which the distance sensors 6a and 6b are respectively attached, and the support member 6c that supports the support members 6d and 6e. The support member 6c is attached to the frame (not shown), and the measuring means 6 is fixed.

温度変化の他、工場内での電極材5の厚さの計測誤差を発生させる要因として振動の影響がある。工場内の振動は計測手段6に伝搬し、電極材5の厚さの計測結果に誤差を与える。工場内の振動は床面からフレームに伝わり、フレームから支持部材6cに伝わる。その他、搬送手段1、圧延手段2、変動ローラ3,4等が発生させる振動もフレームから支持部材6cに伝わる。距離センサ6a,6bに伝わる振動を低減するために、支持部材6cと支持部材6dとの間及び支持部材6cと支持部材6eとの間にそれぞれ防振材6f,6gが取り付けられている。これにより支持部材6cに伝わった振動を防振材6f,6gが吸収し、距離センサ6a,6bに振動が伝わりにくくなる。   In addition to the temperature change, there is an influence of vibration as a factor causing a measurement error of the thickness of the electrode material 5 in the factory. The vibration in the factory propagates to the measuring means 6 and gives an error to the measurement result of the thickness of the electrode material 5. The vibration in the factory is transmitted from the floor surface to the frame and from the frame to the support member 6c. In addition, vibrations generated by the conveying means 1, rolling means 2, variable rollers 3, 4 and the like are also transmitted from the frame to the support member 6c. In order to reduce vibration transmitted to the distance sensors 6a and 6b, vibration-proof materials 6f and 6g are attached between the support member 6c and the support member 6d and between the support member 6c and the support member 6e, respectively. As a result, vibrations transmitted to the support member 6c are absorbed by the vibration isolating materials 6f and 6g, and the vibrations are hardly transmitted to the distance sensors 6a and 6b.

防振材6f,6gで吸収しきれない振動は支持部材6d,6eに伝わり、距離センサ6a,6bに振動を与える。この振動による電極材5の厚さの計測結果への悪影響を低減するため、支持部材6d,6eには歪センサ7a,7bが取り付けられている。歪センサ7a,7bは例えば、歪ゲージを用いることができる。振動による支持部材6d,6eの歪を歪センサ7a,7bで検出し、検出結果に基づいて距離センサ6a,6bの計測結果を補正する。歪センサ7a,7bの出力値を用いて補正手段7が計測結果を補正する。歪センサ7a,7bの取り付け位置は図示した位置に限るものではない。支持部材6c,6d,6eの剛性が十分に高く、振動の影響を受けない場合は防振材6f,6g及び歪センサ7a,7bを計測手段6に取り付けなくてもよい。   Vibrations that cannot be absorbed by the vibration isolating materials 6f and 6g are transmitted to the support members 6d and 6e, and give vibrations to the distance sensors 6a and 6b. In order to reduce the adverse effect on the measurement result of the thickness of the electrode material 5 due to the vibration, strain sensors 7a and 7b are attached to the support members 6d and 6e. For example, strain gauges can be used as the strain sensors 7a and 7b. The distortion of the support members 6d and 6e due to vibration is detected by the strain sensors 7a and 7b, and the measurement results of the distance sensors 6a and 6b are corrected based on the detection results. The correction means 7 corrects the measurement result using the output values of the strain sensors 7a and 7b. The attachment positions of the strain sensors 7a and 7b are not limited to the illustrated positions. If the supporting members 6c, 6d, and 6e have sufficiently high rigidity and are not affected by vibration, the vibration isolating materials 6f and 6g and the strain sensors 7a and 7b may not be attached to the measuring unit 6.

次に膜厚計測装置100の内部構成の概略について説明する。   Next, an outline of the internal configuration of the film thickness measuring apparatus 100 will be described.

図10に示されるように、計測手段6は、計測した電極材5と距離センサ6a,6bとの距離の値を膜厚算出手段8に出力する。膜厚算出手段8は、上記の式(1)に基づいて電極材5の厚さを算出する。このとき、膜厚算出手段8は、補正手段7が出力した値に基づいて電極材5の厚さの算出結果を補正する。膜厚算出手段8は、電極材5の厚さの算出結果を制御手段9に出力する。制御手段9は、電極材5の厚さに基づいて圧延手段2を調整して電極材5の厚さを調整する。制御手段9は、その他、搬送手段1の搬送速度、それに伴う変動ローラ3,4の回転周期を制御している。搬送手段1の搬送速度は巻取りローラ1bの回転を調整して行う。   As shown in FIG. 10, the measuring unit 6 outputs the measured distance value between the electrode material 5 and the distance sensors 6 a and 6 b to the film thickness calculating unit 8. The film thickness calculation means 8 calculates the thickness of the electrode material 5 based on the above formula (1). At this time, the film thickness calculation unit 8 corrects the calculation result of the thickness of the electrode material 5 based on the value output from the correction unit 7. The film thickness calculation means 8 outputs the calculation result of the thickness of the electrode material 5 to the control means 9. The control means 9 adjusts the rolling means 2 based on the thickness of the electrode material 5 to adjust the thickness of the electrode material 5. In addition, the control unit 9 controls the conveyance speed of the conveyance unit 1 and the rotation period of the variable rollers 3 and 4 associated therewith. The conveying speed of the conveying means 1 is adjusted by adjusting the rotation of the winding roller 1b.

次に、膜厚計測装置100の動作について説明する。   Next, the operation of the film thickness measuring apparatus 100 will be described.

図11に示されるように、制御手段9は、搬送手段1の巻取りローラ1bを回転させ、電極材(膜)5の搬送を開始する。計測手段6は、電極材5の表面からの距離を計測する(S100)。即ち、距離センサ6a,6bが電極材5の表裏の表面からの距離を計測する。計測手段6は、計測した電極材5と距離センサ6a,6bとの距離の値を膜厚算出手段8に出力する。   As shown in FIG. 11, the control means 9 rotates the winding roller 1 b of the conveying means 1 and starts conveying the electrode material (film) 5. The measuring means 6 measures the distance from the surface of the electrode material 5 (S100). That is, the distance sensors 6 a and 6 b measure the distance from the front and back surfaces of the electrode material 5. The measuring means 6 outputs the measured distance value between the electrode material 5 and the distance sensors 6 a and 6 b to the film thickness calculating means 8.

膜厚算出手段8は、入力された表面からの距離の計測結果に基づいて式(1)を用いて電極材5の厚さを算出する(S110)。補正手段7は、支持部材6d,6eに生じた振動による歪を歪センサ7a,7bで検出する。膜厚算出手段8は、検出された歪センサ7a,7bの出力値に基づいてS110で算出された電極材5の厚さを補正する(S130)。   The film thickness calculation means 8 calculates the thickness of the electrode material 5 using equation (1) based on the input distance measurement result from the surface (S110). The correction means 7 detects distortion due to vibration generated in the support members 6d and 6e by the strain sensors 7a and 7b. The film thickness calculation means 8 corrects the thickness of the electrode material 5 calculated in S110 based on the detected output values of the strain sensors 7a and 7b (S130).

制御手段9は、S130で算出された電極材5の厚さに基づいて圧延手段2を調整して電極材5の厚さを調整する(S140)。制御手段9は、所定のタイミングで変動ローラ3,4の回転周期を制御して電極材5を上下動させ、膜厚算出手段8は、予め分かっている規定量(上下動)から距離センサ6a,6bの出力値を補正する。(S150)。制御手段9は、装置を停止するための入力を判断する(S160)。制御手段9は、装置を停止する入力があった場合、処理を終了する(S160:Yes)。制御手段9は、装置を停止する入力がなかった場合、S100に戻り、処理を継続する(S160:No)。   The control means 9 adjusts the thickness of the electrode material 5 by adjusting the rolling means 2 based on the thickness of the electrode material 5 calculated in S130 (S140). The control means 9 controls the rotation cycle of the variable rollers 3 and 4 to move the electrode material 5 up and down at a predetermined timing, and the film thickness calculation means 8 moves the distance sensor 6a from a predetermined amount (up and down movement) known in advance. , 6b is corrected. (S150). The control means 9 determines an input for stopping the apparatus (S160). If there is an input to stop the apparatus, the control means 9 ends the process (S160: Yes). If there is no input for stopping the apparatus, the control means 9 returns to S100 and continues the process (S160: No).

上述した膜厚計測装置100によると、変動ローラ3,4で電極材5を上下動させることにより、計測手段6に経時的に変動する距離を計測させ、距離センサ6a,6bの自己発熱による出力値を補正して電極材5の厚さの計測結果を高精度化することができる。また、膜厚計測装置100は、変動ローラ3,4と、計測手段6を構成する支持部材6c,6d,6eとに低膨張材料を用いることにより周囲の環境の温度が変化しても電極材5の厚さの計測結果への悪影響を低減し、計測結果を高精度化することができる。即ち、恒温室のような高価な建屋を必要とせず、一般的な空調設備の環境下で電極材5の厚さを高精度で計測することができる。そして、膜厚計測装置100は、計測手段6に防振材6f,6gを用いることにより、距離センサ6a,6bの振動を低減し、電極材5の厚さの計測結果を高精度化することができる。さらに、補正手段7により算出された電極材5の厚さを補正し、振動の影響による計測精度の悪化を低減することができる。   According to the film thickness measuring apparatus 100 described above, the electrode member 5 is moved up and down by the variable rollers 3 and 4 to cause the measuring means 6 to measure the distance that fluctuates over time, and the output due to self-heating of the distance sensors 6a and 6b. The measurement result of the thickness of the electrode material 5 can be improved by correcting the value. Further, the film thickness measuring apparatus 100 uses the low expansion material for the variable rollers 3 and 4 and the supporting members 6c, 6d and 6e constituting the measuring means 6, so that the electrode material can be used even if the ambient temperature changes. The adverse effect on the measurement result of the thickness of 5 can be reduced, and the measurement result can be highly accurate. That is, an expensive building such as a temperature-controlled room is not required, and the thickness of the electrode material 5 can be measured with high accuracy under the environment of a general air conditioning facility. And the film thickness measuring apparatus 100 reduces the vibration of distance sensor 6a, 6b by using the vibration isolator 6f, 6g for the measurement means 6, and makes the measurement result of the thickness of the electrode material 5 highly accurate. Can do. Furthermore, the thickness of the electrode material 5 calculated by the correction means 7 can be corrected, and the deterioration of measurement accuracy due to the influence of vibration can be reduced.

[第2の実施形態]
第1の実施形態において、膜厚計測装置100は、電極材5の厚さを電極材5の表裏からの距離を計測することで膜厚算出手段8に算出させていた。これに対して第2の実施形態では、膜厚計測装置200は、電極材5の厚さを第1の実施形態とは異なる方法で計測する。第2の実施形態において、第1の実施形態と同一の部分は同一の符号を用い、かつ同様の役割を持つ部材には同一の名称を用い、重複する部分の説明は適宜省略する。
[Second Embodiment]
In the first embodiment, the film thickness measuring apparatus 100 causes the film thickness calculating means 8 to calculate the thickness of the electrode material 5 by measuring the distance from the front and back of the electrode material 5. On the other hand, in the second embodiment, the film thickness measuring apparatus 200 measures the thickness of the electrode material 5 by a method different from that of the first embodiment. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, the same names are used for members having the same roles, and the description of the overlapping parts is omitted as appropriate.

図12に示されるように、膜厚計測装置200においては、膜厚計測装置100と異なり、変動ローラ4が省略されている。膜厚計測装置200においては、ガイドローラ3aが電極材5を緊張状態にする。   As shown in FIG. 12, in the film thickness measuring device 200, unlike the film thickness measuring device 100, the variable roller 4 is omitted. In the film thickness measuring apparatus 200, the guide roller 3a puts the electrode material 5 in a tension state.

図13に示されるように、ガイドローラ3a上で緊張状態となった電極材5の表面からの距離を距離L1をセンサ15aで計測する。そして、ガイドローラ3aの表面からの距離L2を距離センサ15aと同じ高さに取り付けられた距離センサ15bで計測する。これにより、電極材5の厚さtは以下の式(2)によって求められる。
t=L2−L1…(2)
そして、距離センサ15a,15bの自己発熱による影響を低減するため、第1の実施形態と同様に支持ローラ3b,3cを中心軸3d,3eを中心に回転させる。
As shown in FIG. 13, the distance L1 from the surface of the electrode material 5 that is in tension on the guide roller 3a is measured by the sensor 15a. Then, the distance L2 from the surface of the guide roller 3a is measured by the distance sensor 15b attached at the same height as the distance sensor 15a. Thereby, the thickness t of the electrode material 5 is calculated | required by the following formula | equation (2).
t = L2-L1 (2)
Then, in order to reduce the influence of the self-heating of the distance sensors 15a and 15b, the support rollers 3b and 3c are rotated around the central axes 3d and 3e as in the first embodiment.

距離センサ15a,15bは、支持部材15cに取り付けられる。支持部材15cは、防振材15f,15gを介して支持部材15d,15eに設けられる。支持部材15d,15eは、変動ローラ3を支持するフレーム(不図示)に固定される。このようにして距離センサ15a,15bと、支持部材15c,15d,15eと、防振材15f,15gとで計測手段15を構成する。支持部材15cには歪センサ16aが取り付けられる。歪センサ16aで補正手段16を構成する。各支持部材はインバー材を用いて形成される。   The distance sensors 15a and 15b are attached to the support member 15c. The support member 15c is provided on the support members 15d and 15e via the vibration isolation materials 15f and 15g. The support members 15d and 15e are fixed to a frame (not shown) that supports the variable roller 3. In this way, the distance sensor 15a, 15b, the support members 15c, 15d, 15e, and the vibration isolating materials 15f, 15g constitute the measuring means 15. A strain sensor 16a is attached to the support member 15c. The distortion sensor 16a constitutes the correction means 16. Each support member is formed using an invar material.

ガイドローラ3aの上下動に伴って電極材5の表面からの距離も上下動する(図4A参照)。式(2)を用いると、変動する電極材5の表面からの距離の計測値と、ガイドローラ3aの表面からの距離とに基づいて電極材5の厚さが算出される。   As the guide roller 3a moves up and down, the distance from the surface of the electrode material 5 also moves up and down (see FIG. 4A). When Expression (2) is used, the thickness of the electrode material 5 is calculated based on the measured value of the distance from the surface of the electrode material 5 that fluctuates and the distance from the surface of the guide roller 3a.

次に膜厚計測装置200の内部構成の概略について説明する。   Next, an outline of the internal configuration of the film thickness measuring apparatus 200 will be described.

図14に示されるように、計測手段15は、計測した電極材5と距離センサ15aとの距離と、ガイドローラ3aと距離センサ15bとの距離の値とを膜厚算出手段17に出力する。膜厚算出手段17は、上記の式(2)に基づいて電極材5の厚さを算出する。このとき、膜厚算出手段17は、補正手段16が出力した値に基づいて電極材5の厚さの算出結果を補正する。膜厚算出手段17は、電極材5の厚さの算出結果を制御手段9に出力する。制御手段9は、電極材5の厚さに基づいて圧延手段2を調整して電極材5の厚さを調整する。制御手段9は、その他、搬送手段1の搬送速度、それに伴う変動ローラ3の回転周期を制御している。搬送手段1の搬送速度は巻取りローラ1bの回転を調整して行う。   As shown in FIG. 14, the measuring unit 15 outputs the measured distance between the electrode material 5 and the distance sensor 15 a and the distance between the guide roller 3 a and the distance sensor 15 b to the film thickness calculating unit 17. The film thickness calculation means 17 calculates the thickness of the electrode material 5 based on the above equation (2). At this time, the film thickness calculation unit 17 corrects the calculation result of the thickness of the electrode material 5 based on the value output from the correction unit 16. The film thickness calculation means 17 outputs the calculation result of the thickness of the electrode material 5 to the control means 9. The control means 9 adjusts the rolling means 2 based on the thickness of the electrode material 5 to adjust the thickness of the electrode material 5. In addition, the control unit 9 controls the conveyance speed of the conveyance unit 1 and the rotation period of the variable roller 3 associated therewith. The conveying speed of the conveying means 1 is adjusted by adjusting the rotation of the winding roller 1b.

次に、膜厚計測装置200の動作について説明する。   Next, the operation of the film thickness measuring apparatus 200 will be described.

図15に示されるように、制御手段9は、搬送手段1の巻取りローラ1bを回転させ、電極材(膜)5の搬送を開始する。計測手段15は、電極材5の表面からの距離及びガイドローラ3aとの距離を計測する(S200)。即ち、距離センサ15aが電極材5表面からの距離を計測し、距離センサ15bがガイドローラ3a表面からの距離を計測する。計測手段15は、計測した電極材5と距離センサ15aとの距離及びガイドローラ3a表面からの距離の値を膜厚算出手段17に出力する。   As shown in FIG. 15, the control unit 9 rotates the winding roller 1 b of the transport unit 1 and starts transporting the electrode material (film) 5. The measuring means 15 measures the distance from the surface of the electrode material 5 and the distance from the guide roller 3a (S200). That is, the distance sensor 15a measures the distance from the surface of the electrode material 5, and the distance sensor 15b measures the distance from the surface of the guide roller 3a. The measuring means 15 outputs the measured distance between the electrode material 5 and the distance sensor 15 a and the distance from the surface of the guide roller 3 a to the film thickness calculating means 17.

膜厚算出手段17は、入力された表面からの距離の計測結果に基づいて式(2)を用いて電極材5の厚さを算出する(S210)。補正手段16は、支持部材15d、15eに生じた振動による歪を歪センサ16aで検出する。膜厚算出手段17は、検出された歪センサ16aの出力値に基づいてS210で算出された電極材5の厚さを補正する(S230)。   The film thickness calculation means 17 calculates the thickness of the electrode material 5 using the formula (2) based on the input distance measurement result from the surface (S210). The correction unit 16 detects distortion caused by vibration generated in the support members 15d and 15e by the strain sensor 16a. The film thickness calculating means 17 corrects the thickness of the electrode material 5 calculated in S210 based on the detected output value of the strain sensor 16a (S230).

制御手段9は、S230で算出された電極材5の厚さに基づいて圧延手段2を調整して電極材5の厚さを調整する(S240)。制御手段9は、所定のタイミングで変動ローラ3の回転周期を制御して電極材5を上下動させ、膜厚算出手段8は、予め分かっている規定量(上下動)から距離センサ15aの出力値を補正する。(S250)。制御手段9は、装置を停止するための入力を判断する(S260)。制御手段9は、装置を停止する入力があった場合、処理を終了する(S260:Yes)。制御手段9は、装置を停止する入力がなかった場合、S100に戻り、処理を継続する(S260:No)。   The control means 9 adjusts the thickness of the electrode material 5 by adjusting the rolling means 2 based on the thickness of the electrode material 5 calculated in S230 (S240). The control means 9 controls the rotation period of the variable roller 3 at a predetermined timing to move the electrode material 5 up and down, and the film thickness calculation means 8 outputs the output of the distance sensor 15a from a predetermined amount (up and down movement) known in advance. Correct the value. (S250). The control means 9 determines an input for stopping the apparatus (S260). When there is an input to stop the apparatus, the control means 9 ends the process (S260: Yes). If there is no input for stopping the apparatus, the control means 9 returns to S100 and continues the process (S260: No).

上述した膜厚計測装置200によると、変動ローラ3一つで電極材5を緊張させるため、装置構成を簡略化することができる。   According to the film thickness measuring apparatus 200 described above, the electrode material 5 is tensioned by one variable roller 3, so that the apparatus configuration can be simplified.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

図16に示されるように、第1及び第2の実施形態で用いた変動ローラ3,4に代えて、楕円ローラ20を用いてもよい。楕円ローラ20は、特に計測手段6、15の計測速度が十分に速い場合に用いると良い。楕円ローラ20を用いると、楕円ローラ20の回転に連動して電極材5が上下動する。楕円ローラ20は、電極材5の搬送に従って回転するので、楕円ローラ20を制御する機構が不要となり、装置構成を簡略化することができる。   As shown in FIG. 16, an elliptical roller 20 may be used instead of the variable rollers 3 and 4 used in the first and second embodiments. The elliptic roller 20 is preferably used particularly when the measuring speed of the measuring means 6 and 15 is sufficiently high. When the elliptical roller 20 is used, the electrode material 5 moves up and down in conjunction with the rotation of the elliptical roller 20. Since the elliptical roller 20 rotates in accordance with the conveyance of the electrode material 5, a mechanism for controlling the elliptical roller 20 becomes unnecessary, and the apparatus configuration can be simplified.

図17に示されるように、第1及び第2の実施形態で用いた変動ローラ3,4に代えて、ガイドローラ21,22を楔23,24によって上下動させてもよい。即ち、ガイドローラ21,22を支持するフレーム25の下部にスライドして近接、離間するよう対向配置された楔23,24を設ける。そして、フレーム25下部の角部が楔23,24の斜面に持ち上げられたり滑り降りたりしてガイドローラ21,22を上下動させる。これらの材料は、インバー材を用いることができる。上記の構成により、電極材5を上下動させることができる。   As shown in FIG. 17, the guide rollers 21 and 22 may be moved up and down by wedges 23 and 24 instead of the variable rollers 3 and 4 used in the first and second embodiments. In other words, wedges 23 and 24 are provided opposite to each other so as to slide toward and away from the lower portion of the frame 25 that supports the guide rollers 21 and 22. Then, the lower corners of the frame 25 are lifted up or down on the slopes of the wedges 23 and 24 to move the guide rollers 21 and 22 up and down. These materials can be Invar materials. With the above configuration, the electrode material 5 can be moved up and down.

第1及び第2の実施形態においては電極材5の厚さを一対の距離センサ、または一つの距離センサで計測していた。これらの計測方法では、電極材5の一部の厚さを計測している。   In the first and second embodiments, the thickness of the electrode material 5 is measured by a pair of distance sensors or one distance sensor. In these measurement methods, the thickness of a part of the electrode material 5 is measured.

図18に示されるように、電極材5の膜厚分布を計測するために、例えば変動ローラ3,4の回転軸方向に複数の距離センサ30a,30bを支持部材30d、30eにそれぞれ取り付ける。そして、支持部材30d,30eは、支持部材30cにコの字型になるように取り付け計測手段30を構成する。そして、計測手段30により、電極材5の表裏の表面からの距離を複数箇所計測する。これにより、連続搬送される帯状の電極材5の厚さの分布を連続的に計測できる。   As shown in FIG. 18, in order to measure the film thickness distribution of the electrode material 5, for example, a plurality of distance sensors 30a and 30b are attached to the support members 30d and 30e in the rotation axis direction of the variable rollers 3 and 4, respectively. The support members 30d and 30e constitute the attachment measuring means 30 so as to be U-shaped with respect to the support member 30c. Then, a plurality of distances from the front and back surfaces of the electrode material 5 are measured by the measuring means 30. Thereby, distribution of the thickness of the strip-shaped electrode material 5 continuously conveyed can be measured continuously.

上記の計測手段30においては、距離センサを複数用いていた。   In the measurement means 30 described above, a plurality of distance sensors are used.

図19に示されるように、計測手段32において、コの字型に形成された支持部材32c,32d,32eの剛性が十分にあり、距離センサ32a,32bに振動を発生させないように移動させることができる場合、例えば、振動により距離センサ32a,32bの離間距離が変化しない状態において、距離センサ32a,32bを支持部材32d,32eの長軸方向に沿ってトラバースさせ、電極材5の膜厚分布を計測することができる(ただし、電極材5の厚さの計測は電極材5表面を距離センサ32a,32bがジグザグ形に計測することになるため、全数補償はできない)。これにより、距離センサの数をふやさなくても電極材5の厚さの分布を計測することができる。   As shown in FIG. 19, in the measuring means 32, the support members 32c, 32d and 32e formed in a U-shape are sufficiently rigid, and the distance sensors 32a and 32b are moved so as not to generate vibrations. When the distance between the distance sensors 32a and 32b is not changed by vibration, for example, the distance sensors 32a and 32b are traversed along the major axis direction of the support members 32d and 32e, and the film thickness distribution of the electrode material 5 is achieved. (However, since the distance sensors 32a and 32b measure the surface of the electrode material 5 in a zigzag shape, the thickness of the electrode material 5 cannot be fully compensated). As a result, the thickness distribution of the electrode material 5 can be measured without increasing the number of distance sensors.

1…搬送手段 1a…繰り出しローラ 1b…巻取りローラ 2…圧延手段 2a…圧延ローラ 2b…圧延ローラ 3,4…変動ローラ 3a…ガイドローラ 3b…支持ローラ 3c…支持ローラ 3d…中心軸 3f…偏心軸 5…電極材(膜) 6…計測手段 6a,6b…距離センサ 6c…支持部材 6d…支持部材 6e…支持部材 6f…防振材 7…補正手段 7a,7b…歪センサ 8…膜厚算出手段 9…制御手段 15…計測手段 15a…センサ 15a…距離センサ 15b…距離センサ 15c…支持部材 15d…支持部材 15f…防振材 16…歪センサ 16…補正手段 16a…歪センサ 17…膜厚算出手段 20…楕円ローラ 21,22…ガイドローラ 23,24…楔 25…フレーム 30…計測手段 30a,30b…距離センサ 30c…支持部材 30d…支持部材 32…計測手段 32a,32b…距離センサ 32c…支持部材 32d…支持部材 100…膜厚計測装置 200…膜厚計測装置 L…離間距離 L1…距離 L2…距離 t…電極材の厚さ DESCRIPTION OF SYMBOLS 1 ... Conveyance means 1a ... Feeding roller 1b ... Winding roller 2 ... Rolling means 2a ... Rolling roller 2b ... Rolling roller 3, 4 ... Fluctuating roller 3a ... Guide roller 3b ... Support roller 3c ... Support roller 3d ... Center shaft 3f ... Eccentricity Axis 5 ... Electrode material (film) 6 ... Measuring means 6a, 6b ... Distance sensor 6c ... Support member 6d ... Support member 6e ... Support member 6f ... Vibration isolator 7 ... Correction means 7a, 7b ... Strain sensor 8 ... Film thickness calculation Means 9 ... Control means 15 ... Measurement means 15a ... Sensor 15a ... Distance sensor 15b ... Distance sensor 15c ... Support member 15d ... Support member 15f ... Vibration isolator 16 ... Strain sensor 16 ... Correction means 16a ... Strain sensor 17 ... Film thickness calculation Means 20 ... Elliptical roller 21, 22 ... Guide roller 23, 24 ... Wedge 25 ... Frame 30 ... Measuring means 30a, 30b ... Distance sensor Support 30c ... Support member 30d ... Support member 32 ... Measuring means 32a, 32b ... Distance sensor 32c ... Support member 32d ... Support member 100 ... Thickness measuring device 200 ... Thickness measuring device L ... Distance L1 ... Distance L2 ... Distance t ... Thickness of electrode material

Claims (1)

連続的に搬送される帯状の膜の厚さを計測する膜厚計測装置であって、
前記膜を搬送する搬送手段と、
前記搬送手段から搬送される搬送路の途中において、前記膜を緊張させ、前記膜を上下に変動させる変動ローラと、
前記膜の表面からの距離を計測する計測手段と、
前記変動ローラによって変動する前記距離の計測結果に基づいて前記計測手段の出力値を補正して前記膜の厚さを算出する膜厚算出手段と、を備える、
膜厚計測装置。
A film thickness measuring device that measures the thickness of a continuous belt-shaped film,
Conveying means for conveying the film;
In the middle of the conveyance path conveyed from the conveyance means, the variable roller that tensions the film and fluctuates the film up and down,
Measuring means for measuring the distance from the surface of the membrane;
A film thickness calculation unit that corrects an output value of the measurement unit based on a measurement result of the distance that varies by the variable roller, and calculates a thickness of the film;
Film thickness measuring device.
JP2014069833A 2014-03-28 2014-03-28 Film thickness measuring device Expired - Fee Related JP6128036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069833A JP6128036B2 (en) 2014-03-28 2014-03-28 Film thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069833A JP6128036B2 (en) 2014-03-28 2014-03-28 Film thickness measuring device

Publications (2)

Publication Number Publication Date
JP2015190926A JP2015190926A (en) 2015-11-02
JP6128036B2 true JP6128036B2 (en) 2017-05-17

Family

ID=54425508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069833A Expired - Fee Related JP6128036B2 (en) 2014-03-28 2014-03-28 Film thickness measuring device

Country Status (1)

Country Link
JP (1) JP6128036B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220011379A (en) * 2020-07-21 2022-01-28 문상호 Contactless type thickness measuring apparatus
KR20220036495A (en) * 2020-09-16 2022-03-23 문상호 Contactless type thickness measuring apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932713A (en) * 2018-09-10 2022-01-14 奥动新能源汽车科技有限公司 Battery compartment positioning method and positioning system
CN112097715B (en) * 2020-09-03 2021-07-06 南京贝迪新材料科技股份有限公司 LCP film thickness detection device
CN114705123A (en) * 2022-04-19 2022-07-05 潍坊石花化工建材有限公司 Waterproofing membrane thickness measuring device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0080309A3 (en) * 1981-11-16 1984-02-29 De La Rue Systems Limited Apparatus for analysing sheets
JPS58113704A (en) * 1981-12-26 1983-07-06 Toshiba Corp Detector for thickness of paper sheet
JPH01204198A (en) * 1988-02-09 1989-08-16 Fujitsu Ltd Method for detecting thickness of paper and the like
JP2821422B2 (en) * 1996-05-21 1998-11-05 日本電気ロボットエンジニアリング株式会社 Thickness detector
JP3922937B2 (en) * 2002-03-04 2007-05-30 横浜ゴム株式会社 Thickness measuring method and apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220011379A (en) * 2020-07-21 2022-01-28 문상호 Contactless type thickness measuring apparatus
KR102400495B1 (en) * 2020-07-21 2022-05-19 문상호 Contactless type thickness measuring apparatus
KR20220036495A (en) * 2020-09-16 2022-03-23 문상호 Contactless type thickness measuring apparatus
KR102432761B1 (en) * 2020-09-16 2022-08-12 문상호 Contactless type thickness measuring apparatus

Also Published As

Publication number Publication date
JP2015190926A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6128036B2 (en) Film thickness measuring device
JP5176347B2 (en) Electrode plate pressing method and electrode plate pressing apparatus
JP5660972B2 (en) Manufacturing method and rolling device for differential thickness plate
JP5411371B1 (en) Roll press equipment and thickness measurement system
JP5937600B2 (en) Belt adjusting method and belt conveying system
JP6082885B2 (en) Method and apparatus for manufacturing battery electrode sheet
JP2016115406A (en) Thickness indicator and roll press machine including thickness indicator
JP2010032387A (en) Temperature measuring method, temperature measuring apparatus, temperature control method, temperature control apparatus, correction method, and correction apparatus
JP2007039247A (en) Media registration system and method
JPWO2018025476A1 (en) Roll press method and roll press system
JPWO2009122836A1 (en) Thin film laminate manufacturing apparatus and method
JP2008249352A (en) Dimension measuring device and dimension measuring method
JP2011042459A (en) Web carrying device, method thereof and method of manufacturing battery
KR20160016186A (en) Fabricating Apparatus And Method For Secondary Battery
JP2008044787A (en) Film transport method, film transport device, film and sheet-like product
CN110304484B (en) Conveying system and tension adjusting unit
JP6074095B1 (en) Belt meandering control device
US11173671B2 (en) Electric heating device
JP2016112872A (en) Rolling device, and gap adjustment method of rolling device
JP3922937B2 (en) Thickness measuring method and apparatus
JP5563648B2 (en) Measuring apparatus and article manufacturing method
JP5220836B2 (en) Temperature measuring apparatus and temperature measuring method
JP2020051862A (en) Mass measuring apparatus and mass measurement method of rubber member
CN114803630B (en) Amorphous strip double-side winding device and method
WO2023182440A1 (en) Thickness-measuring method and thickness-measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170327

R151 Written notification of patent or utility model registration

Ref document number: 6128036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees