JP6125858B2 - Combined vane of rotary compressor - Google Patents

Combined vane of rotary compressor Download PDF

Info

Publication number
JP6125858B2
JP6125858B2 JP2013028609A JP2013028609A JP6125858B2 JP 6125858 B2 JP6125858 B2 JP 6125858B2 JP 2013028609 A JP2013028609 A JP 2013028609A JP 2013028609 A JP2013028609 A JP 2013028609A JP 6125858 B2 JP6125858 B2 JP 6125858B2
Authority
JP
Japan
Prior art keywords
vane
vane body
covering member
back surface
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013028609A
Other languages
Japanese (ja)
Other versions
JP2014156829A (en
Inventor
靖 上野
靖 上野
佐藤 公彦
公彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2013028609A priority Critical patent/JP6125858B2/en
Priority to PCT/JP2014/053162 priority patent/WO2014126091A1/en
Publication of JP2014156829A publication Critical patent/JP2014156829A/en
Application granted granted Critical
Publication of JP6125858B2 publication Critical patent/JP6125858B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3446Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/802Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for
    • F05C2201/903Aluminium alloy, e.g. AlCuMgPb F34,37

Description

本発明は、ロータリー型圧縮機に適用される複合ベーンに関し、詳しくは、アルミニウム系材料のベーン本体を鉄系材料の板材で被覆した複合ベーンに関する。   The present invention relates to a composite vane applied to a rotary compressor, and more particularly to a composite vane in which a vane body made of an aluminum material is coated with a plate material made of an iron material.

ベーン型のロータリー圧縮機は、一例として、図1に示すように、内周断面が非円形のシリンダー(2)の内側を回転運動するローター(1)を有し、ベーン(3)はローター(1)の外周部に形成された溝に挿入され、図示しないバネや油圧、さらには回転運動の遠心力によって背面からシリンダー(2)に向けて付勢されることで、ベーン(3)の先端部とシリンダー(2)の内周面が当接し、ベーン(3)、ローター(1)、シリンダー(2)、及び図示しないサイドプレートによって複数の作動空間(6)をシリンダー(2)内に形成する。ローター(1)にはシャフト(7)が締結されており、図示しない動力源によってシャフト(7)を回転させることで、ローター(1)がシリンダー内で回転する。ローター(1)が回転すると、作動空間(6)の容積変化が生じるため、吸入口(4)から冷媒ガスを吸入し、作動空間(6)内の冷媒ガスを圧縮し、吐出口(5)から圧縮された冷媒ガスを吐出して圧縮機として作用することになる。ベーン型ロータリー圧縮機としては、図1に示すものの他に、シリンダー(2)の内周断面を円形としシリンダー(2)の中心とローター(1)の中心を偏芯させる形式のものや、ベーン(3)がローター(1)の外周部ではなくシリンダー(2)側に配されるものもある。   As an example, the vane-type rotary compressor has a rotor (1) that rotates inside a cylinder (2) having a non-circular inner cross section, as shown in FIG. 1, and the vane (3) is a rotor ( The tip of the vane (3) is inserted into the groove formed in the outer peripheral part of 1) and biased from the back toward the cylinder (2) by a spring (not shown), hydraulic pressure, or centrifugal force of rotational motion. And the inner peripheral surface of the cylinder (2) are in contact with each other, and a plurality of working spaces (6) are formed in the cylinder (2) by the vane (3), the rotor (1), the cylinder (2), and a side plate (not shown). To do. A shaft (7) is fastened to the rotor (1), and the rotor (1) rotates in the cylinder by rotating the shaft (7) by a power source (not shown). When the rotor (1) rotates, the volume of the working space (6) changes, so the refrigerant gas is drawn from the suction port (4), the refrigerant gas in the working space (6) is compressed, and the discharge port (5) Then, the compressed refrigerant gas is discharged from the cylinder and acts as a compressor. As the vane type rotary compressor, in addition to the type shown in FIG. 1, the cylinder (2) has a circular inner peripheral section and the center of the cylinder (2) and the center of the rotor (1) are eccentric, In some cases, (3) is arranged not on the outer periphery of the rotor (1) but on the cylinder (2) side.

このような機構の中で使用されているベーン(3)の当接面には高い荷重が作用するため、耐摩耗性の高い材料が要求されている。これまで、高クロム鋳鉄、マルテンサイト系ステンレス(SUS440C)、高速度工具鋼(SKH51)等の溶製材料、高速度工具鋼(SKH51)相当材やその他の焼結材料、高強度アルミニウム合金、アルミニウム含浸カーボン等が使用されてきた。鉄系材料のベーンとアルミニウム系材料のベーンを対比すると、鉄系材料は、比重(密度)がアルミニウム系材料の約3倍となることから、ローター回転時のベーンの遠心力がアルミニウム系材料に比べて非常に大きくなる。このため、ベーン(3)とシリンダー(2)のそれぞれの摺動部の摩耗が増大する問題や、ローター(1)の回転始動時にベーン(3)とシリンダー(2)との衝突音(チャタリング)が大きくなるという問題があった。ベーン(3)がアルミニウム系材料の場合、地肌で摺動させたときに凝着の問題を起こすことからベーン(3)の表面にNi-P系のめっきを施す必要があるが、コストが高くなるという問題や、特定の条件下で剥離を起こすという問題により、十分な性能を発揮するに至っていないのが実情である。   Since a high load acts on the contact surface of the vane (3) used in such a mechanism, a material with high wear resistance is required. Up to now, high chromium cast iron, martensitic stainless steel (SUS440C), high speed tool steel (SKH51) and other melted materials, high speed tool steel (SKH51) equivalent materials and other sintered materials, high strength aluminum alloys, aluminum Impregnated carbon and the like have been used. When iron-based material vanes and aluminum-based material vanes are compared, the specific gravity (density) of iron-based materials is about three times that of aluminum-based materials, so the centrifugal force of the vane during rotor rotation is applied to aluminum-based materials. Compared to very large. For this reason, there is a problem that wear of the sliding parts of the vane (3) and the cylinder (2) increases, and a collision sound (chattering) between the vane (3) and the cylinder (2) when the rotor (1) starts rotating. There was a problem that became larger. If the vane (3) is made of an aluminum-based material, the surface of the vane (3) must be plated with Ni-P because it causes adhesion problems when slid on the ground. The fact is that sufficient performance has not been achieved due to the problem of becoming and peeling of the film under specific conditions.

これらに対応したものとして、特許文献1及び特許文献2は、アルミニウム系材料の母材に、鉄系材料(特許文献2ではステンレス系材料)を押し出し、引く抜き又はプレスによって密着被覆したベーンを開示している。めっきに代えて鉄系材料(特許文献2ではステンレス系材料)を摺動部に使用しているため、高い摺動特性を維持し、コストを低減でき、また、軽量であるため衝突音の問題も回避できるとしている。   Corresponding to these, Patent Document 1 and Patent Document 2 disclose a vane obtained by extruding an iron-based material (a stainless-based material in Patent Document 2) onto a base material of an aluminum-based material, and closely coating it by drawing or pressing. doing. Since iron-based material (stainless steel material in Patent Document 2) is used for the sliding part instead of plating, high sliding characteristics can be maintained, cost can be reduced, and the problem of collision noise due to light weight. Can also be avoided.

しかしながら、特許文献1や特許文献2によるベーンは、実際、アルミニウム系材料の母材と鉄系材料の被覆材とを基本的に密着して形成しているため、運転中に、圧縮熱や摺動摩擦熱によるアルミニウム系材料の母材(約23.1×10-6/Kの熱膨張係数)と鉄系材料の被覆材(約11.8〜14.7×10-6/K)との熱膨張差を鉄系材料の被覆材が吸収できずに変形して、ローター(1)の溝から飛び出しにくくなり、かつサイドクリアランスの維持も困難となって冷媒のリークが生じ、圧縮機の性能低下を引き起こす虞をもたらしている。 However, the vanes according to Patent Document 1 and Patent Document 2 are actually formed by closely adhering the base material of the aluminum material and the covering material of the iron material. The difference in thermal expansion between the base material of aluminum material (thermal expansion coefficient of approximately 23.1 × 10 -6 / K) and the coating material of iron material (approximately 11.8 to 14.7 × 10 -6 / K) due to dynamic frictional heat The coating of the material cannot be absorbed and deforms, making it difficult to jump out of the groove of the rotor (1) and maintaining the side clearance, causing refrigerant leakage and causing a decrease in compressor performance. ing.

特開平8−177767号公報JP-A-8-177767 特開平10−82387号公報Japanese Patent Laid-Open No. 10-82387

本発明は、上記問題に鑑み、軽量で、摺動特性に優れ、かつ変形のない、ロータリー型圧縮機に適用されるアルミニウム系材料のベーン本体を鉄系材料の板材で被覆した複合ベーンを提供することを課題とする。
In view of the above problems, the present invention provides a composite vane in which a vane body of an aluminum-based material applied to a rotary compressor that is lightweight, excellent in sliding characteristics, and has no deformation is coated with a plate material of an iron-based material. The task is to do.

本発明者達は、アルミニウム系材料のベーン本体を鉄系材料の板材で被覆した複合ベーンについて鋭意研究の結果、鉄系材料の板材が閉じた環(ループ)を形成しないようにベーン本体を被覆することによりアルミニウム系材料のベーン本体との熱膨張差を吸収でき、変形のない複合ベーンを得ることができることに想到した。   As a result of diligent research on a composite vane in which a vane body made of an aluminum material is covered with a plate material made of an iron-based material, the inventors have coated the vane body so that the iron-based material plate material does not form a closed loop. By doing so, it was conceived that a difference in thermal expansion of the aluminum-based material from the vane body can be absorbed, and a composite vane without deformation can be obtained.

すなわち、本発明の複合ベーンは、アルミニウム系材料のベーン本体を鉄系材料の板材で被覆したロータリー型圧縮機の複合ベーンであって、前記ベーン本体は両端面が開放され、前記板材で形成される被覆部材は、端部が前記ベーン本体の背面で隙間を設けて対向し、且つ側面と背面とで形成する角度が鋭角であることを特徴とする。前記隙間は0.2〜0.6 mmであることが好ましい。
That is, the composite vane of the present invention is a composite vane of a rotary compressor in which a vane body made of an aluminum material is covered with a plate material made of an iron-based material, and the vane body is formed of the plate material with both end surfaces open. The covering member is characterized in that the end faces the back surface of the vane body with a gap and the angle formed between the side surface and the back surface is an acute angle . The gap is preferably 0.2 to 0.6 mm.

さらに、前記ベーン本体の前記背面に、側面に平行な溝が形成されていることが好ましく、前記被覆部材の前記端部が前記ベーン本体の前記背面の溝部に接していることが好ましい。   Furthermore, it is preferable that a groove parallel to the side surface is formed on the back surface of the vane body, and the end portion of the covering member is in contact with the groove portion on the back surface of the vane body.

さらに、前記ベーン本体の前記背面と前記被覆部材の間に空隙部が形成されていることが好ましい。   Furthermore, it is preferable that a gap is formed between the back surface of the vane body and the covering member.

本発明の複合ベーンは、ベーン本体がアルミニウム系材料で形成されているため、従来の鉄系材料のベーンに比べ軽量であり、ローター回転時の遠心力を抑制し、ベーンとシリンダーの摺動部の摩耗を大幅に削減でき、さらに、ローター始動時の衝突音も軽減する。また、表面は鉄系材料で被覆されているため、優れた摺動特性を発揮する。さらに、鉄系材料の板材の端部が閉じた環(ループ)を形成することなくベーン本体の背面で隙間を設けて対向し、且つベーン本体の両端面が開放されているため、アルミニウム系材料のベーン本体の熱膨張を逃しベーンの変形を防ぐことや、アルミ製シリンダーの場合に一定のサイドクリアランスの維持ができる。また、ベーン本体の背面に形成された側面に平行な溝は、ベーン本体を鉄系材料の被覆部材に押込む際のガイドとして機能して、偏りのない正常で容易な組み付けを可能とし、ベーン本体と被覆部材とが熱膨張する際にも、被覆部材の端部がベーン本体の溝部に接することにより、ベーン本体と被覆部材が一体的で且つ溝に平行な方向に熱膨張して拘束による変形を起こり難くする効果を有している。さらに、ベーン本体の溝の形状や深さ、ベーン本体の背面と被覆部材との間に設定する空隙部の大きさにより複合ベーンの重量調整も可能となる。   The composite vane of the present invention is lighter than the conventional iron-based vane because the vane body is formed of an aluminum-based material, and suppresses centrifugal force when the rotor rotates, and the sliding portion of the vane and the cylinder Can significantly reduce wear, and also reduce the impact noise when starting the rotor. Moreover, since the surface is coat | covered with the iron-type material, the outstanding sliding characteristic is exhibited. Furthermore, since the end of the iron-based material plate is opposed to the back surface of the vane body without forming a closed ring (loop), and both end surfaces of the vane body are open, the aluminum-based material This prevents the vane body from thermal expansion and prevents deformation of the vane, and can maintain a constant side clearance in the case of an aluminum cylinder. In addition, the groove formed on the back surface of the vane body parallel to the side surface functions as a guide when the vane body is pushed into the coating member made of ferrous material, enabling normal and easy assembly without bias. Even when the main body and the covering member are thermally expanded, the end portion of the covering member is in contact with the groove portion of the vane main body, so that the vane main body and the covering member are thermally expanded in a direction parallel to the groove and restrained. It has the effect of making deformation difficult to occur. Further, the weight of the composite vane can be adjusted by the shape and depth of the groove of the vane body and the size of the gap portion set between the back surface of the vane body and the covering member.

本発明の複合ベーンが適用されるロータリー型圧縮機の一例の断面の概略を示した図である。It is the figure which showed the outline of the cross section of an example of the rotary type compressor to which the composite vane of this invention is applied. 複合ベーンの参考例の概略を示した図((a)は正面図、(b)は側面図)である。 It is the figure ((a) is a front view, (b) is a side view) which showed the outline of the reference example of a composite vane . 本発明の複合ベーンの一例(ベーン本体背面にV字溝を有し、被覆部材の側面と背面の形成する角度を鋭角としている)の概略を示した図((a)は正面図、(b)は側面図)である。The figure ((a) is a front view, and (b) which shows the outline of an example of the compound vane of the present invention (it has a V-shaped groove in the back of a vane body, and makes the angle which the side and back of a covering member form). ) Is a side view). 本発明の複合ベーンの別の一例(ベーン本体背面には溝がなく、被覆部材の側面と背面の形成する角度を鋭角としている)の概略を示した図((a)は正面図、(b)は側面図)である。The figure ((a) is a front view, (b) shows the outline of another example of the composite vane of the present invention (the rear surface of the vane body has no groove and the angle formed between the side surface and the back surface of the covering member is an acute angle). ) Is a side view). 本発明の複合ベーンの別の一例(ベーン本体背面にU字溝を有し、被覆部材の側面と背面の形成する角度を鋭角としている)の概略を示した図((a)は正面図、(b)は側面図)である。The figure ((a) is a front view, and the figure which showed the outline of another example of the composite vane of this invention (it has a U-shaped groove in the vane main body back surface, and makes the angle which the side surface and back surface of a coating | coated member form) an acute angle, (b) is a side view).

以下、図面を参照して本発明の実施の形態について説明する。図2(a)及び(b)に示す参考例としての複合ベーン(31)は、アルミニウム系材料からなるベーン本体(32)と鉄系材料からなる被覆部材(33)から構成される。ベーン本体(32)は、2000(Al-Cu-Mg)系合金や、6000(Al-Mg-Si)系合金も使用できるが、強度的には、急冷凝固した粉末アルミニウム合金を押出成形した高強度アルミニウム合金を使用することが好ましく、被覆部材(33)は、SPCC等の冷間圧延鋼板も使用できるが、いわゆるバネ材として使用されているSUP9(マンガンクロム鋼)やSWOSC-V(シリコンクロム鋼)やSUS304(オーステナイト系ステンレス鋼)等の板材が好ましく使用できる。複合ベーン(31)は、図2(b)の側面図に示すとおり、ベーン本体(32)の両端面が開放されており、また被覆部材(33)は、その端部がベーン本体の背面(321)で隙間(A)を設けるように成形されている。すなわち、複合ベーンが圧縮熱や摺動熱により加熱されても、ベーン本体(32)は図2(b)の側面図に垂直な方向に自由に膨張可能であり、被覆部材(33)も側面図に垂直な方向にも端部の隙間(A)を縮める方向にも自由に膨張可能であり、熱膨張による拘束を受けないような構造としている。被覆部材(33)が先に加熱されて膨張したことを考慮すれば、前記隙間(A)は0.2 mm以上あることが好ましい。一方、ベーン本体(32)の背面(321)を保持するという観点では、前記隙間(A)は0.6 mm以下であることが好ましい。前記隙間(A)は0.3〜0.5 mmであればなお好ましい。
Embodiments of the present invention will be described below with reference to the drawings. A composite vane (31) as a reference example shown in FIGS. 2 (a) and 2 (b) includes a vane body (32) made of an aluminum-based material and a covering member (33) made of an iron-based material. The vane body (32) can be made of 2000 (Al-Cu-Mg) alloy or 6000 (Al-Mg-Si) alloy. It is preferable to use a strength aluminum alloy, and the coated member (33) can be a cold rolled steel plate such as SPCC, but SUP9 (manganese chrome steel) and SWOSC-V (silicon chrome) are used as so-called spring materials. Steel) and SUS304 (austenitic stainless steel) can be preferably used. As shown in the side view of FIG. 2 (b), the composite vane (31) has both ends of the vane body (32) open, and the covering member (33) has an end at the back of the vane body ( 321) is formed so as to provide a gap (A). That is, even when the composite vane is heated by compression heat or sliding heat, the vane body (32) can freely expand in the direction perpendicular to the side view of FIG. 2 (b), and the covering member (33) also has a side surface. The structure can be freely expanded both in the direction perpendicular to the drawing and in the direction of reducing the gap (A) at the end, and is not restricted by thermal expansion. Considering that the covering member (33) is heated and expanded first, the gap (A) is preferably 0.2 mm or more. On the other hand, from the viewpoint of holding the back surface (321) of the vane body (32), the gap (A) is preferably 0.6 mm or less. The gap (A) is more preferably 0.3 to 0.5 mm.

図3(a)及び(b)に示す本発明の複合ベーン(31)は、ベーン本体(32)の背面(321)にベーン本体(32)の側面(322)に平行なV字溝(324)が形成されている。同時に被覆部材(33)もベーン本体(32)の背面(321)の溝形状に合わせて板材を折り曲げて成形されている。ベーン本体(32)の溝(324)はV字溝に限定されることなく、図5(b)に示すようにU字溝でもよい。また、ベーン本体(32)の背面(321)を被覆部材(33)で保持するためには、被覆部材(33)の端部(331)がベーン本体(32)の溝部に接していることが好ましく、そのためには被覆部材(33)の側面(334)と背面(333)とで形成する角度(θ)は鋭角とするのが好ましい。この角度(θ)は、ベーン本体(32)の素材強度や被覆部材(33)の曲げ加工を考慮すると45〜75°であるのが好ましい。被覆部材(33)の端部(331)がベーン本体(32)の溝部に接することにより、複合ベーン(31)が加熱されたときにも、ベーン本体(32)と被覆部材(33)が一体的で且つ溝(324)に平行な方向に熱膨張して拘束による変形を起こり難くしている。
The composite vane (31) of the present invention shown in FIGS. 3 (a) and 3 (b) has a V-shaped groove (324) parallel to the back surface (321) of the vane body (32) and the side surface (322) of the vane body (32). ) Is formed. At the same time, the covering member (33) is also formed by bending a plate material in accordance with the groove shape of the back surface (321) of the vane body (32). The groove (324) of the vane body (32) is not limited to the V-shaped groove, but may be a U-shaped groove as shown in FIG. 5 (b). Further, in order to hold the back surface (321) of the vane body (32) by the covering member (33), the end portion (331) of the covering member (33) is in contact with the groove portion of the vane body (32). For this purpose, the angle (θ) formed between the side surface (334) and the back surface (333) of the covering member (33) is preferably an acute angle. This angle (θ) is preferably 45 to 75 ° in consideration of the material strength of the vane body (32) and the bending of the covering member (33). Since the end (331) of the covering member (33) is in contact with the groove of the vane body (32), the vane body (32) and the covering member (33) are integrated even when the composite vane (31) is heated. And is thermally expanded in a direction parallel to the groove (324) to prevent deformation due to restraint.

さらに、ベーン本体(32)の背面(321)及び背面近傍の側面(322, 323)の形状によっては、空隙部(S)が形成される。図4(b)はベーン本体(32)の背面(321)に溝がない場合を示しているが、空隙部(S)はごく僅かである。しかし、例えば、図5(b)に示すU字溝(323)の深さを増加したり、ベーン本体(32)の側面(322, 323)からベーン本体(32)の厚さを減肉したり、あるいは被覆部材(33)の側面(334)と背面(333)とで形成する角度(θ)を鋭角とすることにより、空隙部(S)の体積を増加することができる。すなわち、ベーン本体(32)の背面(321)及び背面近傍の側面(322, 323)と被覆部材(33)との間に設定する空隙部(S)の大きさにより複合ベーンの重量調整も可能とすることができる。また、鉄系材料の板材の側面(334,335)の厚みを減肉させ、シリンダーと接触する先端部(332)を厚くすることで始動時の飛び出し性を改善し、低速回転時の性能を向上することもできる。   Further, depending on the shape of the back surface (321) of the vane body (32) and the side surfaces (322, 323) in the vicinity of the back surface, the gap (S) is formed. FIG. 4 (b) shows a case where there is no groove on the back surface (321) of the vane body (32), but the gap (S) is very small. However, for example, the depth of the U-shaped groove (323) shown in FIG. 5 (b) is increased, or the thickness of the vane body (32) is reduced from the side surfaces (322, 323) of the vane body (32). Alternatively, by setting the angle (θ) formed between the side surface (334) and the back surface (333) of the covering member (33) to an acute angle, the volume of the gap (S) can be increased. In other words, the weight of the composite vane can be adjusted by the size of the gap (S) set between the back surface (321) of the vane body (32) and the side surfaces (322, 323) near the back surface and the covering member (33). It can be. In addition, the thickness of the side surfaces (334,335) of the iron-based material is reduced, and the tip (332) that contacts the cylinder is increased to improve the pop-out performance at the start and improve the performance at low-speed rotation. You can also.

本発明の複合ベーンは、鉄系材料の板材から、前記板材の端部が隙間を設けて対向し、且つ側端部が開放された被覆部材を曲げ加工によって成形する工程と、前記被覆部材にアルミニウム系材料のベーン本体を押込み、組み付ける工程と、組み付け後の複合ベーンを研磨加工する工程により製造される。本発明の被覆部材は基本的に環(ループ)を形成しないことを特徴としているため、板材からの曲げ加工により成形することが適している。また、ベーン本体を確実に保持するためには、被覆部材の側面(334, 335)がやや閉じる方向に成形することが好ましい。さらに、ロータリー型圧縮機のベーンは、先端部(332)のR面、厚さ寸法、及び長さ寸法において厳しい公差が要求されるため、ベーン本体を被覆部材に組み付けた後に、それぞれ研磨加工することが必要である。
The composite vane of the present invention includes a step of forming a covering member having an end portion of the plate member facing each other with a gap and an open side end portion by bending from an iron-based material plate member, and the covering member. It is manufactured by pressing and assembling a vane body made of an aluminum-based material and a process of polishing the combined vane after assembly. Since the covering member of the present invention is basically characterized by not forming a ring (loop), it is suitable to be formed by bending from a plate material. Further, in order to securely hold the vane body, it is preferable that the side surfaces (334, 335) of the covering member are molded in a direction in which they are slightly closed. Further, since the vane of the rotary compressor requires strict tolerances in the R surface, thickness dimension, and length dimension of the tip (332), each vane body is polished after being assembled to the covering member. It is necessary.

参考例
ベーン本体として、T6処理をしたA6061(Al-Mg-Si)(JIS規格材:JIS H 4000)合金の板材から、図2に示す形状の先端をR加工した厚さ3 mm×幅13.45 mm×長さ34 mmの素材を製作した。被覆部材としては、厚さ0.3 mm×幅34 mmのSUS304の板材から、ベーン本体の側端面を開放しSUS304板材(JIS規格材:JIS G 4313)の端部がベーン本体の背面で隙間を設けて対向して被覆できる図2(b)に示す形状に、プレス機を使用した曲げ加工により製作した。ここで、隙間寸法は0.4 mmとした。なお、被覆部材の側面は、ベーン本体に抱き付くように少し内側に強めに折り曲げた。ベーン本体の被覆部材への組み付けは、側端部から被覆部材へ押し込むことによって行い、その後、先端部のR面、側面及び側端面を研磨加工して本発明の複合ベーンとした。これらの複合ベーンを図1に示すような構造の実機試験機に組み込み、200時間の連続実機試験を行った。複合ベーンは変形や焼付等のトラブルもなく、またチャタリングの発生もなかった。
Reference example 1
As the vane body, the tip of the A6061 (Al-Mg-Si) (JIS standard material: JIS H 4000) alloy treated with T6 is rounded at the tip of the shape shown in Fig. 2. Thickness 3 mm x width 13.45 mm x A 34 mm long material was produced. As the covering member, the side end face of the vane body is opened from a SUS304 plate with a thickness of 0.3 mm x width 34 mm, and the end of the SUS304 plate (JIS standard material: JIS G 4313) provides a gap at the back of the vane body. In the shape shown in FIG. 2 (b) that can be covered oppositely, it was manufactured by bending using a press. Here, the gap dimension was 0.4 mm. In addition, the side surface of the covering member was bent slightly inward so as to be hung on the vane body. The vane body was assembled to the covering member by pushing into the covering member from the side end, and then the R surface, the side surface and the side end surface of the tip were polished to obtain the composite vane of the present invention. These composite vanes were incorporated into an actual machine test machine having a structure as shown in FIG. 1, and a 200-hour continuous machine test was conducted. The composite vane had no troubles such as deformation and seizure and no chattering.

実施例1
ベーン本体の背面の形状を図3(b)に示すようなV字溝とし、被覆部材の背面をベーン本体のV字溝にあわせて側面と背面の形成する角度が鋭角になるように曲げ加工した以外は参考例1と同様に製作し、参考例1と同じ連続実機試験を行った。試験結果は、参考例1と同様に、変形や焼付等のトラブルもチャタリングの発生もなかった。
Example 1
The shape of the back surface of the vane body is a V-shaped groove as shown in FIG. 3B, and the back surface of the covering member is bent to match the V-shaped groove of the vane body so that the angle formed between the side surface and the back surface is an acute angle. except that the is manufactured in the same manner as in example 1, it was subjected to the same continuous physical tests as in reference example 1. As in the case of Reference Example 1 , the test results were free from troubles such as deformation and seizure and no chattering.

実施例2及び3
参考例1で用いたベーン本体に、実施例1で用いた被覆部材(但し、被覆部材の背面端部はベーン本体の背面に接触している)を組み合わせて製作した図4に示す複合ベーンを実施例2とし、背面の形状が図5(b)に示すようなU字溝のベーン本体と、実施例1で用いた被覆部材(但し、被覆部材の背面端部はベーン本体背面の溝部に接触している)を組み合わせて製作した図5に示す複合ベーンを実施例3として製作し、参考例1と同じ連続実機試験を行った。試験結果は、いずれも参考例1と同様に、変形や焼付等のトラブルもチャタリングの発生もなかった。
Examples 2 and 3
The composite vane shown in FIG. 4 manufactured by combining the vane body used in Reference Example 1 with the covering member used in Example 1 (however, the back end portion of the covering member is in contact with the back surface of the vane body). as example 2, the back surface of the shape and the vane body of the U-shaped groove as shown in FIG. 5 (b), the cover member used in example 1 (however, the rear end portion of the covering member into the groove of the rear vane body 5 was manufactured as Example 3 and the same continuous real machine test as in Reference Example 1 was performed. The test results were the same as in Reference Example 1, and there was no trouble such as deformation or seizure or chattering.

実施例4
高強度で熱膨張係数の比較的低い、急冷凝固した高Siのアルミニウム粉末成形体の熱間押出して製造した材料を用いてベーン本体を製造した以外は、実施例1と同様にして複合ベーンを製造し、参考例1と同じ連続実機試験を行った。試験結果は、変形や焼付等のトラブルもチャタリングの発生もなかった。
Example 4
A composite vane was produced in the same manner as in Example 1 except that the vane body was produced using a material produced by hot extrusion of a rapidly solidified high Si aluminum powder compact having a high strength and a relatively low thermal expansion coefficient. The same continuous machine test as in Reference Example 1 was conducted. The test results showed no troubles such as deformation and seizure and no chattering.

実施例5
被覆部材としてSUS304の板材の代わりにSPCC(JIS規格材:JIS G 3141)の冷間圧延鋼板を使用し、最終工程でSi3N4粒子を分散したNi-Pめっきを約10μm被覆した以外は実施例1と同様にして複合ベーンを製造した。参考例1と同じ連続実機試験を行った結果、変形や焼付等のトラブルもチャタリングの発生もなかった。
Example 5
A SPCC (JIS standard material: JIS G 3141) cold-rolled steel sheet was used instead of SUS304 as the covering material, and Ni-P plating with Si 3 N 4 particles dispersed in the final process was covered by about 10 μm. A composite vane was produced in the same manner as in Example 1 . As a result of conducting the same continuous real machine test as in Reference Example 1 , there was no trouble such as deformation or seizure and no chattering.

1 ローター
2 シリンダー
3 ベーン
4 吸入口
5 吐出口
6 作動空間
7 シャフト
31 複合ベーン
32 ベーン本体(端面)
33 被覆部材(側端部)
321 ベーン本体の背面
322, 323 ベーン本体の側面
324 溝
331 被覆部材(鉄系材料の板材)の端部
332 被覆部材の先端部(R面)
333 被覆部材の背面
334, 335 被覆部材の側面
1 rotor
2 cylinders
3 Vane
4 Suction port
5 Discharge port
6 Working space
7 Shaft
31 Combined vanes
32 Vane body (end face)
33 Covering member (side edge)
321 Back of vane body
322, 323 Side of vane body
324 groove
331 End of cover member (iron-based material plate)
332 End of cover member (R surface)
333 Rear side of covering member
334, 335 Side surface of covering member

Claims (5)

アルミニウム系材料のベーン本体を鉄系材料の板材で被覆したロータリー型圧縮機の複合ベーンであって、前記ベーン本体は両端面が開放され、前記板材で形成される被覆部材は、端部が前記ベーン本体の背面で隙間を設けて対向し、且つ側面と背面とで形成する角度が鋭角であることを特徴とするロータリー型圧縮機の複合ベーン。 A composite vane of a rotary compressor in which a vane body of an aluminum-based material is coated with a plate material of an iron-based material, the both ends of the vane body are open , and a covering member formed of the plate material has an end portion described above A composite vane for a rotary compressor , wherein a gap is formed on the back surface of the vane body so as to face each other, and an angle formed between the side surface and the back surface is an acute angle . 前記隙間が0.2〜0.6 mmであることを特徴とする請求項1に記載のロータリー型圧縮機の複合ベーン。 The rotary vane composite vane according to claim 1, wherein the gap is 0.2 to 0.6 mm. 前記ベーン本体の前記背面に、前記ベーン本体の側面に平行な溝が形成されていることを特徴とする請求項1又は2に記載のロータリー型圧縮機の複合ベーン。 3. The composite vane for a rotary compressor according to claim 1 , wherein a groove parallel to a side surface of the vane body is formed on the back surface of the vane body. 前記被覆部材の前記端部が前記ベーン本体の前記背面の溝部に接していることを特徴とする請求項1〜3のいずれかに記載のロータリー型圧縮機の複合ベーン。 The composite vane for a rotary compressor according to any one of claims 1 to 3 , wherein the end portion of the covering member is in contact with a groove on the back surface of the vane body. 前記ベーン本体の前記背面と前記被覆部材の間に空隙部が形成されていることを特徴とする請求項1〜4のいずれかに記載のロータリー型圧縮機の複合ベーン。
The composite vane of the rotary compressor according to any one of claims 1 to 4 , wherein a gap is formed between the back surface of the vane body and the covering member.
JP2013028609A 2013-02-18 2013-02-18 Combined vane of rotary compressor Expired - Fee Related JP6125858B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013028609A JP6125858B2 (en) 2013-02-18 2013-02-18 Combined vane of rotary compressor
PCT/JP2014/053162 WO2014126091A1 (en) 2013-02-18 2014-02-12 Composite vane for rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013028609A JP6125858B2 (en) 2013-02-18 2013-02-18 Combined vane of rotary compressor

Publications (2)

Publication Number Publication Date
JP2014156829A JP2014156829A (en) 2014-08-28
JP6125858B2 true JP6125858B2 (en) 2017-05-10

Family

ID=51354091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013028609A Expired - Fee Related JP6125858B2 (en) 2013-02-18 2013-02-18 Combined vane of rotary compressor

Country Status (2)

Country Link
JP (1) JP6125858B2 (en)
WO (1) WO2014126091A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4330448Y1 (en) * 1968-02-15 1968-12-12
JPS5730448Y2 (en) * 1974-05-22 1982-07-03
JPH0452586U (en) * 1990-09-05 1992-05-06
JPH08177767A (en) * 1994-12-20 1996-07-12 Zexel Corp Vane of vane type compressor and its manufacture

Also Published As

Publication number Publication date
WO2014126091A1 (en) 2014-08-21
JP2014156829A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
KR101718045B1 (en) Scroll compressor
JP3958443B2 (en) Rotary compressor
JP6125858B2 (en) Combined vane of rotary compressor
JP2006271034A5 (en)
JP4684671B2 (en) Screw rotor
JPS58133493A (en) Vane type compressor
JP2010112332A (en) Vane type vacuum pump
WO2011033977A1 (en) Refrigerant compressor and freeze cycle device
JPH08177767A (en) Vane of vane type compressor and its manufacture
JPS6331678B2 (en)
JP2003262186A5 (en)
JPH03160184A (en) Rotary compressor
JP4452035B2 (en) Scroll compressor
JP2013119814A (en) Piston skirt structure and sliding member
JP4475430B2 (en) Method for adapting turbo engine and stator and rotor of turbo engine
JP2005163607A (en) Vane type vacuum pump and method for manufacturing rotor and coupling for vacuum pump
JPH04232244A (en) Manufacture of rotary body
JPS63201388A (en) Vane type compressor
JP2010112333A (en) Vane type vacuum pump
JP2003314477A (en) Rotary pump
JP2010101232A (en) Refrigerant compressor
JP5374294B2 (en) Refrigerant compressor and refrigeration cycle apparatus
JPS5813775B2 (en) How to line the hole
JP2009215893A (en) Vane rotary type compressor
WO2019077714A1 (en) Scroll compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170406

R150 Certificate of patent or registration of utility model

Ref document number: 6125858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees