JP6120684B2 - 漏洩電流検知装置 - Google Patents

漏洩電流検知装置 Download PDF

Info

Publication number
JP6120684B2
JP6120684B2 JP2013120685A JP2013120685A JP6120684B2 JP 6120684 B2 JP6120684 B2 JP 6120684B2 JP 2013120685 A JP2013120685 A JP 2013120685A JP 2013120685 A JP2013120685 A JP 2013120685A JP 6120684 B2 JP6120684 B2 JP 6120684B2
Authority
JP
Japan
Prior art keywords
current
calibration
phase
zero
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013120685A
Other languages
English (en)
Other versions
JP2014238313A (ja
Inventor
恵美子 倉田
恵美子 倉田
甚 井上
甚 井上
佳正 渡邊
佳正 渡邊
鹿井 正博
正博 鹿井
隆史 平位
隆史 平位
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013120685A priority Critical patent/JP6120684B2/ja
Publication of JP2014238313A publication Critical patent/JP2014238313A/ja
Application granted granted Critical
Publication of JP6120684B2 publication Critical patent/JP6120684B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Breakers (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Transformers For Measuring Instruments (AREA)

Description

この発明は、零相変流器を用いて漏洩電流検知を行う漏洩電流検知装置に関する。
漏洩電流検知は、稼働中の電動機の故障、過電流による火災を防止するなどの重要な機能である。しかし、検知精度が低く誤差が大きい場合には、誤検知が発生する可能性がある。この場合、例えば、漏洩電流検知ができずに稼働中の電動機が過電流により故障して停止する、或いは正常状態であるにも関わらず漏洩電流が流れている状態であると誤検知して機器を停止させるといった問題が発生する可能性があった。
それゆえ、零相変流器を用いて漏洩電流検知を行う漏洩電流検知装置においては、検知精度を向上させて誤検知を防止するために、新たに校正用電流線を設けるとともに、電路を活線状態(通電状態)とし、校正用電流線に既知の電流を流して零相変流器(以下、ZCTという)を校正する技術が存在する(例えば特許文献1,2)。
特許第3313200号公報 特開2004−325302号公報
ところで、近年の電力事情、運用コストの削減のため、高精度化に加えて低消費電力化が要求されている。
しかし、従来の漏洩電流検知装置においては、活線状態の電路を流れる電流に加え、校正用電流線に常時電流を流して校正を実施しているため、消費電力が高くなり、高精度化と消費電力低減とが両立されていないという課題があった。
また、一般に漏洩電流検知装置においては、更なる検知精度の向上も求められている。
本発明の目的は、消費電力が低く、高い検知精度を有する漏洩電流検知装置を提供することである。
上記目的を達成するために、本発明に係る漏洩電流検知装置は、磁性体コアを有し、当該磁性体コアに挿通された被検知電路の零相電流を検知するための零相変流器と、被検知電路の零相電流を校正して漏洩電流を取得するための零相電流校正部とを備える。零相電流校正部は、被検知電路に沿って零相変流器の磁性体コアに挿通される校正用電流線を含み、活線状態の被検知電路により生じる磁界を模擬した磁界を発生させる模擬磁界発生部と、校正用電流線を活線状態とし、被検知電路を非活線状態としたときの零相変流器の出力を基に、被検知電路の零相電流の校正演算に用いる校正係数を算出する校正係数算出部と、算出された校正係数と、被検知電路に印加された電圧の位相とを基に、被検知電路の零相電流の校正演算を実施する校正演算部とを有する。
本発明によれば、模擬磁界発生部により、活線状態の被検知電路により生じる磁界を模擬した磁界を発生させて校正係数が算出される。また、校正係数の算出は被検知電路を非活線状態として実施できる。これにより、消費電力が低く、高い検知精度を有する漏洩電流検知装置が実現される。
ZCTの特性を説明するためのグラフである。 アンペールの法則による、電流値と磁界強度との関係を示す表である。 本発明の実施の形態1による漏洩電流検知装置を示す構成図である。 本発明の実施の形態1による電路の配置を示す要部断面図である。 本発明の実施の形態1による校正用電流線の形状と配置を示す要部断面図である。 漏洩電流検知装置のZCT周辺の構成を示す概略図である。 校正用電流線用の形状保持具を示す斜視図である。 校正用電流線用の形状保持具と配置保持具を示す要部断面図である。 本発明の実施の形態1の変形例を示す、図4に対応する要部断面図である。 本発明の実施の形態1の変形例を示す、図5に対応する要部断面図である。 校正用電流設定値に含まれる各値を示す表である。 位相シフト量について説明するためのグラフである。 出力校正手段に保存される校正係数のテーブルを示す。 ZCTの出力校正値から漏洩電流値を算出する方法を説明するための説明図である。 本発明の実施の形態2による校正用電流線の形状と配置を示す要部断面図である。 本発明の実施の形態3による校正用電流線の形状と配置を示す要部断面図である。 本発明の実施の形態4による校正用電流線及び磁石の形状と配置を示す要部断面図である。 校正用電流線を流れる電流値の決定方法を説明するためのグラフである。 本発明の実施の形態4の変形例による校正用電流線の形状と配置を示す要部断面図である。 本発明の実施の形態5による校正用電流線及び磁石の形状と配置を示す要部断面図である。 本発明の実施の形態5の変形例による校正用電流線及び磁石の形状と配置を示す要部断面図である。 本発明の実施の形態6による校正用電流線の形状と配置を示す要部断面図である。
以下、本発明の実施の形態による漏洩電流検知装置について、図を参照して説明する。各実施の形態において、同一の構成には同一の符号を付して、説明を省略する。
また、以下で記号I,Jを付したものは、特に断らない限り電流の大きさ(最大定格)の情報と位相の情報とを含む電流ベクトルである。ただし、以下の各式にこれらの記号が現れるときは、それぞれ交流電流の大きさを示すものとする。
まず、ZCTの特性とそれに由来する新しい課題について具体的に説明する。
図1は、ZCTの特性を説明するためのグラフである。グラフの横軸は磁化力の大きさHを、縦軸は特定の電磁鋼板の透磁率μを示す。
電磁鋼板は磁性材料の一例である。ZCTの基本構成は、電流検出用トランス(以下、CTという)と同様であり、磁性材料を用いたコアに巻線が巻回されている。コアの透磁率μは、図1に示すように、磁化力に応じて変化することが知られている。それゆえ、ZCT、CTのように、コアに挿通された電路を流れる電流が発生させる磁界を検知する方式では、電流値によってコアの透磁率が変化する。
電流が作る磁界強度Hは、電路を流れる電流値をI、電流線からの距離をrとして、アンペールの法則H=I/2πrで記述される。r=0.1mの場合の電流値Iと磁界強度Hとの関係を図2に示す。図2に示した磁界強度と図1の磁化力とは、厳密ではないがほぼ等しいと考えられている。例えば100Aと200Aとでは、磁界強度が約2倍異なり、図1の例では、μの値が約1.3倍異なる。図1では、透磁率が比較的小さい電磁鋼板の例を示したが、ZCTの磁性体コアとして頻繁に使用されるパーマロイの場合、透磁率は更に大きく、かつ磁界強度Hの変化に応じて急激に変化する。
このように、ZCTのコアに挿通された電路を流れる電流値に応じて、ZCTを構成するコアの透磁率μが変化する。
ここで、ZCT、CTの原理に関して、本発明に関連する部分のみを抜粋して説明する。
ZCTのコアに挿通された電路に電流が流れると、コアに巻回された巻線に励磁電流Iが発生する。励磁電流Iは、下記の式(1)のように、鉄損電流Iと磁化電流Iclとのベクトル和で表すことができる。つまり、Iの大きさと位相は、IclとIの大きさと位相によって決まる。
Figure 0006120684
電路を1次側、ZCTの巻線を2次側とする。磁化電流Iclは、自己インダクタンスLと1次印加電圧に依存する。自己インダクタンスLは、巻き数をn、磁路長をl、角速度をω(=2πf)、磁路の断面積をS、コアの透磁率をμとして、L=n ×μ×S/lで表され、μに依存する。上記の通り、μは1次側電流値に依存し、したがってZCTのコアにかかる磁界に依存する。したがって、磁化電流Iclは、ZCTのコアにかかる磁界の影響を受ける。一方、鉄損電流Iは、材料に応じた定数、電流の周波数及び1次誘導起電力の実効値で決まる。以上より、ZCTのコアにかかる磁界によって、励磁電流Iの大きさと位相が変化することがわかる。
ここで、ZCT特有の状態に着目する。ZCTの出力は、電路を流れる漏洩電流値成分が同じ値の場合でも、電路を流れる電流値が大きく異なる場合がある。例えば、漏洩電流値が1mAでも、電路を流れる電流値としては100A、1000A、10000Aなどのいずれの可能性もある。そのため、同じ値の漏洩電流が流れている場合でも、電路を流れる電流値によってZCTのコアにかかる磁界強度が異なり、したがってZCTからの出力の大きさ(ゲイン)と位相が異なる。
確かに、漏洩電流値は、電路を流れる電流値よりも小さい。しかし、例えばモーターなどの電動機に用いる3相200Vで、かつ電流値としては10数Aで駆動されるときに、300mA程度の漏洩電流が流れる場合があることが知られている。それゆえ、ZCTにかかる磁界強度を正確に検知するためには漏洩電流値を無視できず、電路を流れる電流値と漏洩電流値の両方の値により磁界強度を検知することが求められる。
ところで、漏洩電流が無い状態において、ZCTの出力は理想的には0である。しかし実際には、漏洩電流が無い場合でも、電路の成分による電流が流れるために0とはならない。それゆえ、ZCTの出力として、微小電流値が検知されることが多い。このように、各電路を流れる電流ではなく、ZCTのコアを貫通して流れる電流値のバランスの崩れを検出するZCTの特性のため、先行技術では、校正用電流を流してZCTの校正を行うに際して電路を流れる電流値は考慮せず、漏洩電流を模擬した値を一意に決定して校正を行っている(例えば、特許文献2)。
また、特許文献1,2では、活線状態の電路に校正用電流値を付加し、周波数によって校正と漏洩電流検知とを分離している。しかし、ZCTで得られた電気信号は周波数解析によって分離できても、ZCTのコアにかかる磁界は、校正用電流による成分に電路を流れる電流による成分が重畳されているため分離できない。それゆえ、実際に漏洩電流検知を行っている時点で印加される磁界強度と校正時に印加される磁界強度とは異なる。
いずれの場合も、ZCTのコアにかかる磁界強度を正確に反映できていない状態で校正を行っているため、高い検知精度を実現することが難しい。
さらに、活線状態の電路に校正用電流を付加した場合には、次のような問題の発生も想定される。つまり、活線状態では、実際に漏洩電流が発生している場合もあるし、上記の通り、漏洩電流が無いにも関わらず、電路の成分でZCTに出力が発生している場合もある。このような状態で校正用電流が流れると、漏洩電流もしくは電路の成分による電流によって元々かなり大きい磁界がZCTにかかっている場合には、ZCTのコア材が飽和してしまう可能性がある。
このようにコア材が飽和した場合には、ZCTから非常に大きな出力が検知されてしまう。それゆえ、電路の静電容量に由来する成分ではなく、実際の漏洩電流値が非常に小さく運転に支障が無い場合でも、これらを切り分けることもできず漏洩電流検知と誤判断してしまい、電流を遮断してしまう可能性がある。活線状態で校正を行っている先行技術の場合、上記のような問題が発生する可能性がある。
このような問題を解決するには、電路への電流供給を停止した状態で校正を行うことが考えられるが、従来技術では、校正用電流線を1本のみ付加し、漏洩電流を模擬する構成となっているため、電路の電流供給を停止した状態ではZCTコアにかかる磁界を正しく再現できず、したがって精度の高い校正を実施できない状態になる。
以上より、ZCTの出力電流ではなく、ZCTの原理に基づいてZCTにかかる磁界の影響を検討すると、従来技術のような、電流線を1本周回させて校正電流を流す校正方法、或いは、活線状態の電流線に校正用電流を追加する校正方法では、漏洩電流検出時にZCTにかかる磁界を正しく反映していない状態での校正となるため、精度の高い校正を実施できないという問題がある。
また、ZCTにかかる磁界の影響を考慮した場合、活線状態に校正用電流を追加する校正方法では、実際には漏洩電流が発生していないにも関わらず、漏洩電流として誤検知してしまうという問題が発生する可能性もある。
本発明の実施の形態の目的は、以上の問題に加え、活線状態での測定による消費電力の増加といった問題を解決可能な漏洩電流検知装置を提供することである。つまり、消費電力が低く、電路への電流供給が停止した状態でも、電路が作る磁界を反映してZCTを高精度に校正可能な漏洩電流検知装置を提供することである。
実施の形態1.
まず、漏洩電流検知装置100の構成について説明する。
図3は、本発明の実施の形態1による漏洩電流検知装置を示す構成図である。漏洩電流検知装置100は、漏洩電流の検知対象である電路1に予め設置されたZCT2と、ZCT2の出力の校正演算を実施するための校正係数を算出する校正係数算出部20と、当該校正係数などを基にZCT2の出力を校正する出力校正部30と、校正されたZCT2の出力などを基に漏電電流値を算出する漏電電流値算出部50と、などを備える。
ZCT2は、環状の磁性体コア(以下、単にコアという)と、コアに巻回された出力用コイルとを有する。また、コアの空隙部には、電路1と後述する校正用電流線21が挿通され、これらの零相電流を検知するようになっている。
電路1には、電路1を流れる電流(以下、電路電流という)を測定する電路電流測定手段3と、電路1に印加される電圧(以下、電路電圧という)を測定する電路電圧測定手段4とが設置されている。電路1の電気抵抗値が既知の場合には、電路電流と電路電圧の一方から他方を算出でき、したがって電路電流測定手段3と電路電圧測定手段4とを兼用できる。
電路1は、遮断機、漏洩電流ブレーカー、配電盤などの電流線であり、例えば3相交流の3本、接地電路の往復2本、或いはこれらの組合せの4本以上の電流線で構成される。例として、接地電路の往復2本分が2系統まとめて挿通された4本構成でもよい。以下では、電路1が三相3線式である場合について説明する。
電路1には、家庭用などの小電流から配電盤大電流までの数A〜数1000Aの電流が流れる。当該電流の周波数帯域としては商用周波数を想定しているが、交流であればその他の周波数でもよい。
ZCT2は、貫通型でもよく、クランプ式でもよい。電路電流測定手段3は、CTなどで構成され、3相交流の場合には3相すべての電路電流を測定するように構成されてもよく、或いは2相分だけを測定するように構成されてもよい。電路電圧測定手段4は、計器用変圧器(VT)などで構成される。
校正係数算出部20は、活線状態の電路1が発生させる磁界を模擬して発生させる校正用電流線21と、校正用電流線21のための電源22と、出力校正係数24を算出するための演算を行う校正係数算出手段23と、出力校正部30のメモリ31に校正係数24を書き込む校正係数書き込み手段25と、などを有する。校正係数算出手段23は、ZCT2の出力と校正用電流線を流れる電流値とから校正係数24を算出する。
校正係数算出部20はコネクタ201を有し、このコネクタ201により校正用電流線21を校正係数算出部20に対して着脱できるようになっている。また、校正係数算出部20は可搬型である。これにより、既設のZCT2に対して校正係数算出部20を後付けすることも可能となり、校正係数の算出が終了すると取り外すことができる。運搬を容易にするために、校正係数算出部20に取っ手、車輪などが設けられてもよい。
校正用電流線21は、一般的な被覆電線、バスバーなどであり、本実施形態1では、ZCT2のコアに挿通された電路1と本数、材質、形状が同一の電流線で構成される。また、長さは校正用電流線21の全本数で同一とするが、静電容量を小さくするため、可能な限り短くすることが好ましい。ただし、図3に示すように、校正用電流線21は校正係数算出部20内の電源22から配線され、後述する形状保持具222内を通って再度電源22に戻って閉回路を形成するので、校正用電流線21は形状保持具222よりは充分に長い。
符号22,221,222,223を付した部品は、すべて校正用電流線用の部品であるが、以下では「校正用電流線用」を省略して名称を記載する。
図4,5は、実施の形態1による電路の配置、及び校正用電流線の形状と配置を示す要部断面図である。この断面図は、電路1及び校正用電流線21の、長手方向に垂直な方向での断面である。これは、以下で説明する断面図でも同様である。
前述のように、ZCT2は、そのコアに電路1が挿通された状態で設置されている(図4を参照)。この状態で、校正用電流線21が電路1に沿ってコアに挿通されて固定される。図5に示すように、校正用電流線21は、この断面で電路1と同一の形状を有する。電路1と各校正用電流線21は、それぞれ断面の中心から見て、等距離及び等角度隔てて配置される。それゆえ、各校正用電流線21の断面中心は、各電路1の断面中心と同一円周上に位置する。
図6は、漏洩電流検知装置のZCT周辺の構成を示す概略図である。図6では、電路1については図示していない。
校正用電流線21の位置決めは、形状保持具222と配置保持具223を使用して行われる。形状保持具222と配置保持具223は、ZCT2に対して着脱可能に取り付けられている。
図7は、校正用電流線用の形状保持具を示す斜視図である。
形状保持具222は、硬質な絶縁材料で構成される。その形状は、筒状であって、筒の中空部分を校正用電流線21が貫通し、中空部分の内壁に校正用電流線21が保持される。それゆえ、形状保持具222の内径は、校正用電流線21の径より大きい。一方、当該内径は、校正用電流線21を配置した場合に、ZCT2のコアと隣接する電路1同士とで作られる空間に内接する円よりも小さくする。また、形状保持具222の長さは、図6に示すようにZCT2よりも充分に長く、さらに配置保持具223の間隔よりも長い。
校正用電流線21が曲がった状態、或いは傾いた状態では、図5のような配置とすることができない。それゆえ、校正用電流線21は、形状保持具222を用いて真っ直ぐに伸ばされる。形状保持具222は、このようにして校正用電流線21を所望の形状に保持する。形状保持具222は、予め校正用電流線21に設置されてもよい。
また、形状保持具222として円筒状の形状を示したが、電路1を直線状に保持できるのであれば、円筒形状にスリットが入った形状などでもよい。これにより、ZCT2の断面に占める形状保持具222の面積の割合を減らすことができるため、配置がより容易になる。
図8は、校正用電流線用の形状保持具と配置保持具を示す要部断面図である。図8では、電路1が貫通する孔を図示していない。
配置保持具223は、図5に示すような校正用電流線21の配置を維持するように校正用電流線21と形状保持具222を保持する。さらに、配置保持具223は、校正用電流線21と形状保持具222を着脱できるように構成される。この構成は、例えば、嵌合構造を設けることにより、或いは、形状保持具222を設置する部分と形状保持具222の外形にネジ溝を掘り、ネジとして固定することにより実現される。
さらに、配置保持具223は、図5に示す校正用電流線21の配置を維持するために、ZCT2と配置保持具223を接続及び固定する接続部223aを有する。図8では、配置保持具223の形状が円柱状である場合を示したが、各電路1と校正用電流線21を図5のように保持できればよく、保持に関係の無い部分は必ずしも必要ではない。また、形状保持具222を省略し、配置保持具223だけで校正用電流線21を保持してもよい。
図9,10は、本発明の実施の形態1の変形例を示す、それぞれ図4,5に対応する要部断面図である。図9,10のように、電路1が3本以外の場合でも、例えばこれらの図のように電路1と校正用電流線21を配置できる。
図3に戻り、電源22を流れる電流値は、電流検知手段221により検知される。電源22の駆動のオンオフは、電源駆動手段26に接続されたスイッチ261により行われる。電源駆動手段26はメモリを有し、予め設定された校正用電流線21に流す校正用電流設定値27を記憶している。電源駆動手段26は、電源22に接続されており、校正用電流設定値27からの信号で指定された電流が校正用電流線21を流れるように電源22を駆動する。
図11は、校正用電流設定値に含まれる各値を示す表である。流れる電流は交流のため、電流値は最大定格で示している。
図11に示すように、校正用電流設定値27は、周波数と、電路1に流す可能性がある電流(以下、電路模擬電流という)I0aの大きさと、検知したい範囲の漏電に相当する電流(以下、漏電模擬電流という)I0Lの大きさと、電流を流す時間との組合せで構成される。例えば電路1が三相3線式であるとき、校正係数の算出において、校正用電流線21のうち1本にはI0Lの大きさとI0aの大きさとの和(I0a+I0L)の電流を流し、残りの2本にはI0aのみを流して、漏洩電流がある場合に発生する磁界を模擬する。また、3本の電流線21を流れる電流の位相はそれぞれ120°ずれており、3相交流電流を模擬したものとなっている。
校正用電流設定値27の電流I0a,I0Lの大きさと周波数は、可能性があるすべての値とされる。例えば、電路1に50Hz/60Hzで1A〜10Aの電流を流す可能性がある場合は、この範囲の周波数、電流値を複数種類の組合せで設定できる。このとき、50Hz/60Hzに対して、細かい電流値(例えば1A)刻みで設定してもよいが、校正時間が必要となる上に、メモリも多く必要になる。それゆえ、実際には特定の組合せ(例えば50Hz、1A,5A,10A)でしか使用しないことが予め判明している場合には、当該特定の組合せで設定してもよい。
図11では、時間を各電流値、周波数の組合せ毎に設定しているが、上記と同様の理由で、一括ですべて同じ値を設定してもよい。また、電源駆動手段26に校正用電流設定値27を記憶させる構成としたが、装置100にボタン、テンキーなどの外部入力部を設け、校正用電流設定値27を直接に駆動手段26に入力する構成でもよい。
以上のように、校正用電流線21に流す電流の周波数と大きさを設定し、校正用電流線21を所定の位置に配置することで、電路電流によりZCT2のコアに印加される磁界を模擬できる。
校正係数算出手段23は、CPU(中央処理装置)とメモリなどで構成され、校正用電流検知手段221及びZCT2からの出力と校正用電流設定値27とを基に校正係数24を算出する。校正用電流線21を流れる電流は、図11に示した校正用電流設定値27にしたがって変化するので、複数の校正係数24が算出されることになる。校正係数算出手段23は、漏洩模擬電流I0Lと電路模擬電流I0aとの組合せに対応したテーブル(図13を参照)を作成する。
校正係数24は、ZCT2の出力の大きさを校正するためのゲインgs(I0L,I0a)と、位相を校正するための位相シフト量θs(I0L,I0a)とからなる。これらの値gs,θsは、漏洩模擬電流I0L及び電路模擬電流I0aに対して決定される値であって、ZCT2の個体固有の値である。これらの値gs,θsの具体的な算出方法については後述する。
校正係数書き込み手段25は、算出された校正係数24を出力校正部30のメモリ31へ書き込む。なお、校正係数算出手段23にメモリを設け、当該メモリに一時的に校正係数24を記憶させ、校正係数24の算出がすべて終わってからメモリ31へ一斉に出力する構成でもよい。
出力校正部30は、校正係数24を記憶するメモリ31と、ZCT2の出力に対して校正演算を実施するCPU32とを有する。CPU32は、校正係数24とZCT2及び電路電圧測定手段4(又は電路電流測定手段3)の出力とを基に、ZCT2が出力する電路1の零相電流Iに対して校正演算を実施する。校正係数24の値は、基本的に校正係数算出手段23のメモリに保存されたテーブルを参照して取得されるが、必要に応じてデータの補間を実施する。具体的な演算方法については後述する。
漏洩電流値算出部50は、A/D変換器、CPUなどで構成され、出力校正部30により校正されたZCT2の出力と電路電流測定手段3の信号とを基に漏洩電流値Iを算出し、絶縁劣化判定部51に出力する。漏洩電流値Iの具体的な算出方法は後述するが、電路1の成分を除いて、電路1の絶縁劣化に由来する漏洩電流値を算出する。絶縁劣化判定部51は、CPU、メモリなどで構成され、当該メモリに保存された閾値と算出された漏洩電流値とを比較して、絶縁劣化度合いを判定する。判定された絶縁劣化度合いは、表示部52に出力されて表示される。表示部52は、漏洩電流値算出部50の算出結果と絶縁劣化判定部51の判定結果との両方を表示してもよい。
次に、漏洩電流検知装置100の動作について説明する。ここでも、例として電路1は三相3線式であるとする。
まず、作業者が感電せず安全に作業可能な状態であることを確認する。電路1に電流が流れている場合は作業を停止する。
次に、校正用電流線21に形状保持具222を設置し、校正用電流線21を真っ直ぐに伸ばして保持する。そして、形状保持具222と一体化した校正用電流線21をZCT2のコアに挿通し、配置保持具223を設置する。そして、当該一体化した校正用電流線21を、図5に示す配置となるようZCT2に固定する。先に校正用電流線21をZCT2に固定してから形状保持具223を設置してもよい。
このように、形状保持具222と配置保持具223を用いて校正用電流線21をZCT2に対して固定することにより、校正用電流線21が被覆電線のような柔軟物であっても、例えば図5のように、校正用電流線21をZCT2に対して所望の位置に配置できる。
さらに、外部からの振動、衝撃、或いは自重などによって、作業中にZCT2に対する校正用電流線21の相対位置が変化することを防止できる。これにより、作業中に、校正用電流21に対して所望の磁界を安定して印加できる。また、校正用電流線21を図5のように設置することによって、ZCT2に対する配置が相対的に電路1と同じになる。これにより、電路1が発生させてZCT2に印加される磁界をほぼ完全に同じ強度、方向で再現できる。
これらにより、電路1を活線状態とせずに、電路1が活線状態のときにZCT2に印加される磁界強度、方向を校正用電流線21で再現可能となる。
ここで、ZCT2に対して校正用電流線21が等距離に設置されない場合には、ZCT2の一部に強い磁界が印加され、ZCT2に漏洩電流に由来しない出力が発生する可能性がある。この場合、校正用電流線21が一定距離を超えてZCT2に近づくと、ZCT2のコアの磁性材料が飽和して出力が無くなる、もしくは極端に大きくなり、正しい出力が得られなくなることも考えられる。
一方、本実施形態1のように、校正用電流線21がZCT2に対して対称かつ等距離に設置されることによって、上記の問題は起こらず、また、ZCT2の原理に従って、校正用電流線21を流れる電流によって作られる磁界が互いに相殺し、漏洩電流が無い場合にはZCT2に出力が発生しない理想的な状況を実現することができる。
次に、校正係数算出手段23により、校正係数24が算出される。校正係数24の算出は、電路1を活線状態とせず(非活線状態として)、校正用電流線21のみを活線状態として実施される。
まず、校正用電流線21をコネクタ201に接続し、校正係数算出部20をZCT2に対して所定の位置に設置する。これにより、校正係数算出用の電流を校正用電流線21に流せるようになる。スイッチ261をオンにすると、電源駆動手段26が電源22を駆動し、電源22により、校正用電流設定値27に予め設定された条件で校正用電流線21に電流が流れる。
校正用電流線21を流れる電流の周波数、電路模擬電流I0a及び漏洩模擬電流0Lは、図11の表に従って変化し、電流が流れる時間も同表に従う。3本の電流線21のうち1本には、電路模擬電流I0aと漏洩模擬電流I0Lとの大きさの和であるI0a+I0Lが流れ、他の2本には、電路模擬電流I0aが流れる。また、3本の電流線21を流れる電流の位相は、それぞれ120°ずれている。
以上の条件で校正用電流線21に電流を流すことによって、電路1に流れる電流値と検知範囲の漏電電流を網羅できる。これにより、電路1が活線状態である場合にZCT2に印加される磁界を、電路1を活線状態とせずに再現して校正係数24を算出できる。
ここで、校正係数の算出方法について説明する。
電路1を活線状態とせず校正用電流21のみを活線状態としたときに、ZCT2が出力する零相電流をIとする。前述の通り、Iの位相と大きさは、ZCT2のコアにかかる磁界の変化に応じて変化する。校正用電流検知手段221で検知されたI0a及びI0Lの電流の位相を基準にした場合のIの位相シフト量を、位相シフト量θs(I0a,I0L)として算出する。このとき、3本の校正用電流線21で材質と長さを同一としているので、各電流線の静電容量、抵抗値も同一となって、I0aの位相とI0a+I0Lの位相とは同一となる。ここでは簡単のため、I0aの位相を代表値として使用する。
0aの位相をθI0a、Iの位相をθI0とすると、両者の関係は、下記の式(2)のように記述できる。この関係を図12に図示している。
θI0=θI0a+θs(I0a,I0L) …(2)
なお、校正用電流線21は充分に短くされるため静電容量も小さく、電流線21が位相シフト量θsに与える影響は小さいといえる。それゆえI0aの位相として、校正用電流検知手段221の位相を用いることも可能であるが、校正用電流設定値27に記憶された電源22での位相を用いることにより、より精度を向上させることができる。
また、ZCT2で検知される零相電流Iは、I0aもしくはI0a+I0Lに相当する値であるが、前述の通り、IはZCT2のコアにかかる磁界によって大きさが変化する。校正後のZCT2の出力をJとし、校正係数(ゲイン)をgs(I0a,I0L)とすると、これらの関係は、下記の式(3)のように記述できる。
=I×gs(I0a,I0L) …(3)
ここで、校正後の零相電流Jは既知の漏洩模擬電流I0Lに一致する必要がある。それゆえ、下記の式(4)のようにgs(I0a,I0L)を算出できる。
gs(I0a,I0L)=I0L/I …(4)
図13は、出力校正手段に保存される校正係数のテーブルを示す。
校正用電流設定値27により電流I0a,I0Lが変化することにより、ZCT2が出力する零相電流Iも変化する。それゆえ、上記の方法に従って複数の校正係数24が算出される。校正係数算出手段23により、漏洩模擬電流I0Lと電路模擬電流I0aとの組合せに対応した図13のようなテーブルが作成される。図13では、1つの周波数に対して1つの2軸テーブルとしているため、周波数が異なる場合には複数の表が作成される。或いは、周波数を含めた3軸テーブルにしてもよく、つまり校正係数24が3パラメータで構成されてもよい。パラメータと校正係数との組合せは、必要な精度、計算能力、処理時間などに応じて適宜選定できる。
以上のように算出された校正係数24は、校正用電流設定値27に予め設定された条件パターンが1つ或いは数種類終了するごとに、校正係数書き込み手段25により順次に出力校正部30のメモリ31に書き込まれる。このとき、前述の通り、校正算出手段23に設けられたメモリに一時的に校正係数24が保存され、すべての条件が終了してからメモリ31に書き込まれるようにしてもよい。
一般に、校正係数は漏洩電流値にのみ対応付けられるところ、上記のように、流れる可能性のある漏洩電流値I0Lに加えて、電路1に漏電が無い場合に流れる可能性のある電流I0aに対して校正係数を算出することによって、ZCT2にかかる磁界の影響を反映させ、校正精度をより向上させることができる。さらに、算出した校正係数24をメモリ31に保存することによって、電路1への電流供給が停止した状態で、電路1に流れる電流値と漏洩電流値を網羅できる。
メモリ31への書き込みが終了すると、スイッチ261をオフにして電源駆動手段26の動作を停止させ、校正用電流線21、形状保持具222、配置保持具223を含む校正係数算出部20を、設置時と逆の手順で撤去する。
校正用電流線21は、電源22に接続されない状態では電気的に安全である。それゆえ、次回以降の校正で使用しやすいように、形状保持具222、配置保持具223及び校正用電流線21については取り外さずに設置した状態としてもよい。
以上のように算出及び保存された校正係数24を用いて、電路1を活線状態としたときのZCT2の出力校正が実施される。
電路1を活線状態とすると、電路1を流れる電流によりZCT2に磁界が印加され、これによりZCT2から零相電流Iが出力されてCPU32に入力される。また、電路電流測定手段3からは、電路電流Iorgが出力されてCPU32に入力される。
ここで、CPU32によるZCT2の出力Iの校正方法について説明する。
CPU32は、メモリ31に記憶された校正係数24のテーブルを参照し(図13を参照)、I0LをIと読み替え、I0aをIorgと読み替えて、同テーブルからゲインgs(Iorg,I)、位相シフト量θs(Iorg,I)を抽出する。
このとき、テーブルには存在しないI,Iorgの組合せが検知される場合がある。この場合には、データ補間(内挿又は外挿)を実施して算出できる。補間方法は、必要な精度、計算能力、処理時間などに応じて、例えば、線形補間、スプライン補間などから選定して実施できる。
校正後のZCT2の出力(零相電流)の大きさをJ、位相をθJ1、電路電圧の位相をθorgとする。出力の大きさJ、位相θJ1は、下記の式(5),(6)のように算出できる。
=I×gs(Iorg,I) …(5)
θJ1=θorg−θs(Iorg,I) …(6)
このとき、電路1の静電容量による位相シフト量が無視できない場合には、電路電流測定手段3によって得られる位相でなく、電路電圧測定手段4によって得られる位相をθorgとして使用することが好ましい。
次に、漏洩電流値の算出について説明する。
以上のようにZCT2の出力が校正され、校正後の大きさJ、位相θJ1が得られる。これらの値J,θJ1は、漏電電流値算出部50に入力され、漏洩電流値が算出される。
図14は、ZCTの出力校正値から漏洩電流値を算出する方法を説明するための説明図である。
漏洩電流は、主として電路1の絶縁劣化による抵抗値の変化によって発生するところ、ZCT2の出力には電路1の静電容量に由来する成分が含まれる。図14に示すように、漏洩電流のうち、電路1の静電容量に由来する成分Icと抵抗に由来する成分Irとは位相が90°ずれており、この2成分のベクトル演算の合計値が、ZCT2の出力Jとなる。
Irの位相は電路1に印加された電圧の位相θorgと等しいため、電路電圧測定手段3の出力の位相を用いてIrを算出できる。例えば、A/D変換器によりJをデジタル信号に変換し、これをフーリエ変換することにより、Irが算出される。このIrの大きさが漏洩電流値Iとなる。このとき、電路1の成分は温度、湿度、電路1の長さなどによって変化するため、これらを反映したIcの位相シフト量と大きさを用いることが好ましい。
このようにして算出された漏洩電流値は、絶縁劣化判定部51へ送られ、所定の閾値に対してどのレベルにあるかの判定が行われる。この所定の閾値は、運用場所によって異なるが、実際の絶縁劣化が、人体への安全、もしくは機器の安定運転に対して影響があるか否かに基づいて決定される。或いは、規格に基づいて決定することも想定される。また、閾値を下げて、より低い漏洩電流値から検知できるようにした場合には、絶縁劣化の兆候を検知できることから、予防安全にも使用できる。判定結果は表示部52に出力される。以上のようにして漏洩電流検知が実施される。
以上で説明した本実施形態1による漏洩電流検知装置100によれば、電路1を流れる可能性があるすべての電流値及び可能性があるすべての漏洩電流値に対して、ZCT2にかかる磁界を反映した校正係数が算出される。これにより、電路1が停止した状態でも、活線状態を予め模擬した校正係数が算出されることになる。また、実際に検知されたZCT2の出力が校正係数の組合せから漏れたときにも、CPU32が組合せデータを補完して、適切な校正係数により精度の高い校正が実施される。
これにより、従来技術のように、電路1が活線状態のときに校正用電流を常時付加する必要がなく、したがって低消費電力で漏洩電流検知を実施できる。また、ZCT2のコアにかかる磁界強度が正確に反映された状態で校正が実施されるため、検知精度が向上する。
また、漏洩電流検知前に校正用電流線21への電流供給が停止され、したがって電路1が活線状態のときには校正係数の算出が行われない。これにより、電路電流以外の電流に由来する磁界がZCT2及び電路1にかかることがないため、不要な磁界による誤った漏洩電流検知を防止できる。
また、活線状態での作業を行う必要が無いため、作業者の安全も確保できる。
さらに、磁性材料は加工などによって透磁率μに個体差が発生する場合があるところ、本実施形態1の構成では、電路1に既設されたZCT2の校正を現地で実施でき、個体差の補正が可能になる。
なお、本実施形態1では、校正係数の算出において、校正用電流線21のうちの1本には漏洩模擬電流と電路模擬電流との和の電流I0a+I0Lを流し、残りの2本にはI0aのみを流して、漏洩電流がある場合を模擬したが、例えば1本に差の電流I0a−I0Lを流し、残りの2本にはI0aのみを流した場合にも、同様に漏洩電流がある場合を模擬できる。このように、各校正用電流線21に流す電流の大きさの組合せは適宜変更可能である。
以下で説明する各実施の形態では、それ以前で説明した実施の形態と異なる部分の構成のみについて説明し、同様の構成については説明を省略する。また、以下では電流線21の本数が3本である場合について説明するが、図9,10を参照して説明したように、それ以外の本数でもよい。
実施の形態2.
図15は、本発明の実施の形態2による校正用電流線の形状と配置を示す要部断面図である。
実施形態1では、電路1と同一径の校正用電流線21を設置した。本実施形態2では、電路1よりも径が小さい校正用電流線21を使用し、当該電流線21をZCT2のコアの内壁に近づけている。
この断面において、電路1の中心からZCT2のコアまでの最短距離をR、校正用電流線21の中心から当該コアまでの最短距離をRとする。校正用電流線21によって電路電流が作る磁界と磁界強度が同じ磁界をZCT2に印加するためには、アンペールの法則から、校正用電流線21を流れる電流値をR/R倍とすることができる。R=Rの場合は、校正用電流線21に流す電流値は電路1と同じ値となり、実施形態1と同じ構成となる。一方、本実施形態2では、電流線21をZCT2のコアに近づけているのでR>Rであり、校正用電流線21に流す電流値は、電路1より小さくて済む。
隣接する校正用電流線21同士の位置決め方法は、実施形態1と同様である。材質については、それぞれの校正用電流線21で同一であるが、電路1と異なる材質でもよい。
このような構成により、校正用電流線21に流す電流を小さくしても、電路1を流れる電流が作る磁界を模擬でき、実施形態1と比較すると、さらに低消費電力で漏洩電流検知を実施できる。また、本実施形態2の構成であれば、電路1の径が大きく、ZCT2の内側に電路1と同形状の校正用電流線21を設置できない場合でも、校正用電流線21の径を小さくして校正用電流線21の設置が可能となり、より多くの電路1及びZCT2へ適応可能となる。
実施の形態3.
図16は、本発明の実施の形態3による校正用電流線の形状と配置を示す要部断面図である。
実施形態2では、電路1より径の小さい校正用電流線21を設置した。本実施形態3では、断面において径方向の長さが周方向の長さより小さい校正用電流線21を使用し、当該電流線21をZCT2のコアの内壁に近づけている。校正用電流線21の断面における形状は、図16に示した薄膜状の他、湾曲形状、扁平形状などでもよい。
実施形態2と同様に、この断面において、電路1の中心からZCT2までの最短距離をR、校正用電流線21の中心からZCT2までの最短距離をRとして、校正用電流線21を流れる電流値をR/R倍とすれば、電路電流が作る磁界と同じ強度を有する磁界をZCT2に印加できる。なお、この断面における校正用電流線21の中心は、円弧上の中心点に一致するものとする。本実施形態3では、校正用電流線21が薄膜状などに形成されたことにより、Rを充分に小さくすることができる。
また、校正用電流線21の断面中心と、電路1の3つの断面中心の中心とが、同心円上に位置するように校正用電流線21の形状を決定すると、電路1による磁界をより高精度に模擬できる。
また特に、校正用電流線21を金属薄膜とすることにより、電流値低減効果及び適応先拡大効果をさらに向上させることができる。ただし、金属薄膜の場合、薄膜の周囲に絶縁被覆を設置する。このとき、発熱による被覆の損傷可能性を考慮して絶縁被覆の材料を選択してもよい。
このような構成により、実施形態2により得られる効果、つまり低消費電力で漏洩電流検知を実施でき、かつ、より多くの電路1及びZCT2へ適応可能となるという効果をさらに高めることができる。
実施の形態4.
図17は、本発明の実施の形態4による校正用電流線及び磁石の形状と配置を示す要部断面図である。
実施形態1〜3では、電路1による磁界を模擬するために校正用電流線21を用いた。また、3本の校正用電流線21のうち、2本には電路模擬電流I0aを、1本には電路模擬電流I0aと漏洩模擬電流I0Lとの組合せの電流を流した。本実施形態4では、磁石211(211a,211b)を設け、上記磁界を模擬する機能の一部を磁石211に担保させる。また、3本の校正用電流線21のうち、2本には電路模擬電流I0aを、1本には漏洩模擬電流I0Lのみを流す。
磁石211は、例えば棒状の永久磁石であり、例えばフェライト磁石、ネオジム磁石などを用いることができる。これらの磁石は表面磁束密度が強すぎる場合もあるので、ボンド磁石のように、金属にゴムなどを混合させて表面磁束密度を弱めたものを用いてもよい。また、永久磁石ではなく電磁石を用いてもよい。
図17に示すように、2つの磁石211a,211bは、3本の校正用電流線21のうち電路模擬電流I0aを流す2本の校正用電流線21a,21bにそれぞれ近接して設置される。そして、校正用電流線21による磁界と磁石211による磁界との合成磁界により、電路1による磁界を模擬する。
磁石211による磁界の大きさと向きは一定であり、交流電流が流れる電路1による磁界を全時間にわたって模擬することはできない。そこで、以下のように、ある瞬間のZCT2に印加される磁界を模擬し、1周期に1回校正を行う。
以下、磁石211を用いた磁界の模擬方法について具体的に説明する。
図18は、校正用電流線を流れる電流値の決定方法を説明するためのグラフである。3相交流の合計電流値が0になることからもわかるように、ZCT2に印加される磁界では、ZCT2上の磁界強度分布が時間変動するだけである。例えば、図18に示す最大定格100Aの3相交流の電流値では、位相0°ではA相が0A、B相がsin(−120°)×100A(約−86.6A)、C相がsin(−240°)×100A(約86.6A)である。それゆえ、ZCT2のA相に近い箇所では磁界強度が小さく、B相とC相の作る磁界が支配的で、B相近くではB相による磁界、C相近くではC相による磁界がそれぞれ支配的である。一方、位相60°ではA相が86.6A、B相が−86.6A、C相が0Aとなる。これは、位相0°でZCT2上にかかる磁界と、A相とC相の位置が入れ替わっただけである。
このように、位相の進みに伴って、ZCT2上の磁界強度分布が円周方向に沿って変移する。それゆえ、1周期中のある瞬間で校正を実施すると、全周期で校正を実施したのと等価になる。
ここで、3相中の1相が0Aになる位相に着目する。代表例として、図18に太字で示す最大定格100Aの位相60°を取り上げる。A相、B相には逆位相で同じ大きさの電流が流れ、C相を流れる電流は0Aである。ZCT2は磁束密度の時間変化を検出するので、位相60°を中心としてその前後での磁束密度変化を検出することになる。それゆえ、C相を流れる電流が0Aとなる位相を抽出しても問題はない。以下では、図17の磁石211a,211b及び近接する校正用電流線21a,21bでA相、B相を模擬し、磁石を設置しない校正用電流線21cでC相を模擬する場合について説明する。
まず、A相、B相を模擬した校正用電流線21a,21b及び磁石211a,211bについて説明する。
校正用電流線21a,21bについての校正用電流設定値27、及び磁石211a,211bの磁極の向き(着磁方向)、形状、表面磁束密度は、電路1に86.6A、−86.6Aの電流が流れた場合に生じる磁界を模擬するように決定される。
磁石211a,211bの着磁方向について説明する。
磁石211a,211bは、ZCT2のコアの径方向と交差する方向に着磁され、より好ましくは、断面においてコアの円弧の接線方向に着磁され、さらに好ましくはコアの円周方向に着磁される。さらに、隣接する磁石211a,211bの着磁方向は、互いに逆向きとされる。これにより、電流方向が正負反転したA相、B相による磁界の方向を模擬できる。
また、磁石211a,211bは、上記着磁方向が長手方向となる。さらに、磁石211a,211bの断面中心と、電路1の断面中心とが同心円上に位置するように磁石211a,211bの形状及び配置を決定することにより、電路1による磁界をより高精度に模擬できる。
磁石211a,211bの表面磁束密度について説明する。
例えば、A相、B相を模擬した校正用電流線21a,21bに、校正用電流設定値27が最大定格50Aで流れるように設定する。これにより、位相60°では、それぞれ43.3A、−43.3Aの電流が流れる。また、校正用電流線21a,21bが、ZCT2の内壁から中心に向かって20mmの位置にその断面中央が位置するように設置されている場合、ZCT2にかかる磁界は34.5A/m(約0.43G)である。
そして、この磁界を再現するように、磁石211a,211bの表面磁束密度を選択する。選択する表面磁束密度の大きさは、磁石211a,211bの大きさにも依存する。また、逆に磁石211a,211bの形状、表面磁束密度を決定した後に、模擬したい電路1の電流の大きさとなるように、校正用電流線21a,21bに流す校正用電流設定値27を決定してもよい。
次に、C相を模擬した校正用電流線21cについて説明する。
上記のように、C相が0Aとなる位相に着目しているため、校正用電流線21cには、C相と同位相の漏洩模擬電流I0Lだけ流せばよい。
以上の構成では、3相交流が発生させる磁界を模擬するために、A相、B相に関しては一部に磁石211a,211bが作る磁界を用いることで、消費電力をより低下させることができる。さらに、3相のうち1相が0Aになる位相を選択し、漏洩電流のみを模擬させることで、より消費電力を低減させることができる。
なお、1相が0Aになる位相を選択しない場合でも、電路1を流れる電流を模擬できるように校正用電流設定値と磁石211a,211bを選択すればよい。ただし、その場合には漏洩電流のみを模擬する校正用電流線21cはなくなるため、1相が0Aになる位相を選択した場合よりも消費電力は大きくなる。
図19は、本発明の実施の形態4の変形例による校正用電流線の形状と配置を示す要部断面図である。
図19に示すように、磁石211a,211bは、ZCT2の外側に設置されてもよい。この場合、上記で記載した磁石211の形状、表面磁束密度の選定と同様に、A相、B相が作る磁界を模擬できるように位置、形状、表面磁束密度を選定すればよい。
本実施形態4において、形状保持具222、配置保持具223の形状は、磁石211a,211bの形状及び配置、校正用電流線21の外形形状に合わせて適宜変更される。
実施の形態5.
図20は、本発明の実施の形態5による校正用電流線及び磁石の形状と配置を示す要部断面図である。
実施形態4では、電路1の発生させる磁界を模擬するために、電路1と同数の校正用電流線21a〜21cを用いた。本実施形態5では、前述の3相交流のA相、B相については校正用電流線を用いず、磁石211a,211bのみで模擬する。それ以外の構成は、実施形態4と同様である。
磁石211a,211bとして永久磁石を用いる場合には、発生する磁界強度が可変でない。そこで、電路電流が取り得る電流値を網羅するために、当該電流値によりZCT2にかかる磁界を模擬できるように磁石211の形状、位置、表面磁束密度を選定する。
このような構成により、実施形態4に記載の漏洩電流検知を、より低消費電力で実施できる。
また、図21に示すように、磁石211は、ZCT2の外側に設置してもよい。これは、実施形態5の変形例と同様の構成である。
実施の形態6.
図22は、本発明の実施の形態6による校正用電流線の形状と配置を示す要部断面図である。
実施の形態1〜3では、1本の電路1を流れる漏洩電流を模擬するために、1本の校正用電流線21(21c)に、電路模擬電流I0aと漏洩模擬電流I0Lとを組み合わせた大きさの電流を流した。本実施形態6では、図22に示すように、校正用電流線21cに近接させて漏洩模擬電流用の校正用電流線21dが設けられる。校正用電流線21a〜21cには電路模擬電流I0aが流れ、校正用電流線21dには漏洩模擬電流I0Lが流れるようにする。このような構成でも、実施の形態1〜3で説明した効果と同様の効果が得られる。
1 電路、 2 ZCT、 3 電路電流測定手段、 4 電路電圧測定手段、 20 校正係数算出部、 201 コネクタ、 21 校正用電流線、 22 (校正用電流線用)電源、 221 (校正用電流線用)電流検知手段、 222 (校正用電流線用)形状保持具、 223 (校正用電流線用)配置保持具、 23 校正係数算出手段、 24 校正係数、 25 校正係数書き込み手段、 26 電源駆動手段、 261 スイッチ、 27 校正用電流設定値、 30 出力校正部、 31 メモリ、 32 出力校正手段、 50 漏電電流値算出部、 51 絶縁劣化判定部、 52 表示部。

Claims (12)

  1. 磁性体コアを有し、該磁性体コアに挿通された被検知電路の零相電流を検知する零相変流器と、
    前記被検知電路の零相電流を校正して漏洩電流を取得する零相電流校正部とを備え、
    前記零相電流校正部は、
    前記被検知電路に沿って前記零相変流器の磁性体コアに挿通される校正用電流線を含み、活線状態の前記被検知電路により生じる磁界を模擬した磁界を発生させる模擬磁界発生部と、
    前記校正用電流線を活線状態とし、前記被検知電路を非活線状態としたときの前記零相変流器の出力を基に、前記被検知電路の零相電流の校正演算に用いる校正係数を算出する校正係数算出部と、
    算出された校正係数と、前記被検知電路に印加された電圧の位相とを基に、該被検知電路の零相電流の校正演算を実施する校正演算部とを有することを特徴とする漏洩電流検知装置。
  2. 校正用電流線を零相変流器に対して所望の位置に位置決め、該零相変流器に対して着脱可能に取り付けられた位置決め部材を備えたことを特徴とする、請求項1に記載の漏洩電流検知装置。
  3. 校正用電流線の数は、被検知電路の数に等しく、
    前記校正用電流線と被検知電路とは、該校正用電流線の長手方向に直交する断面で同一の形状を有するとともに、該断面の中心から見て、等距離及び等角度隔てて配置されたことを特徴とする、請求項1又は2に記載の漏洩電流検知装置。
  4. 校正用電流線の長手方向に直交する断面での該校正用電流線の中心と零相変流器との最短距離は、被検知電路の中心と前記零相変流器との間の最短距離より小さいことを特徴とする、請求項1から3のいずれか1項に記載の漏洩電流検知装置。
  5. 校正用電流線の長手方向に直交する断面での該校正用電流線の径方向の長さは、周方向の長さより小さいことを特徴とする、請求項1から4のいずれか1項に記載の漏洩電流検知装置。
  6. 校正係数算出部は、校正用電流線を流れる電流を変化させることにより、被検知電路を流れる電路電流と、該被検知電路の零相電流との組合せに対応した複数の校正係数からなるテーブルを作成し、
    校正演算部は、該テーブルを参照して校正演算に用いる校正係数を取得することを特徴とする、請求項1から5のいずれか1項に記載の漏洩電流検知装置。
  7. 模擬磁界発生部は、複数の校正用電流線を含み、
    該複数の校正用電流線には、
    前記テーブルの電路電流が流れる電路模擬電流線と、
    該電路電流と前記テーブルの零相電流との組合せの電流が流れる零相模擬電流線とが含まれることを特徴とする、請求項6に記載の漏洩電流検知装置。
  8. 校正係数は、被検知電路の零相電流の大きさを校正するための電流値校正係数と、該零相電流の位相を校正するための位相校正係数とを含み、
    校正係数算出部は、
    前記テーブルの零相電流の大きさと、校正用電流線を活線状態とし、前記被検知電路を非活線状態としたときの零相変流器の出力電流の大きさとを基に前記電流値校正係数を算出し、
    該出力電流の位相と、前記校正用電流線を流れる電流の位相とを基に前記位相校正係数を算出することを特徴とする、請求項7に記載の漏洩電流検知装置。
  9. 模擬磁界発生部は、複数の校正用電流線を含み、
    該複数の校正用電流線には、前記テーブルの零相電流が流れる零相模擬電流線が含まれ、
    該複数の校正用電流線のうち前記零相模擬電流線以外の電流線には、磁石が近接して設置されたことを特徴とする、請求項6に記載の漏洩電流検知装置。
  10. 校正係数算出部は、零相模擬電流線を流れる電流の大きさが0となる位相で校正係数を算出することを特徴とする、請求項9に記載の漏洩電流検知装置。
  11. 模擬磁界発生部は、
    校正用電流線の長手方向に直交する断面で、零相変流器の磁性体コアの径方向と交差する方向に着磁された磁石を含み、
    該磁石の位置及び表面磁束密度は、前記校正用電流線を流れる電流の大きさに応じて決定されたことを特徴とする、請求項1から6のいずれか1項に記載の漏洩電流検知装置。
  12. 模擬磁界発生部は、複数の校正用電流線を含み、
    該複数の校正用電流線には、
    前記テーブルの電路電流が流れ、被検知電路と同数の電路模擬電流線と、
    前記テーブルの零相電流が流れ、前記電路模擬電流線に近接して設置された零相模擬電流線とが含まれることを特徴とする、請求項6に記載の漏洩電流検知装置。
JP2013120685A 2013-06-07 2013-06-07 漏洩電流検知装置 Active JP6120684B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013120685A JP6120684B2 (ja) 2013-06-07 2013-06-07 漏洩電流検知装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013120685A JP6120684B2 (ja) 2013-06-07 2013-06-07 漏洩電流検知装置

Publications (2)

Publication Number Publication Date
JP2014238313A JP2014238313A (ja) 2014-12-18
JP6120684B2 true JP6120684B2 (ja) 2017-04-26

Family

ID=52135577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013120685A Active JP6120684B2 (ja) 2013-06-07 2013-06-07 漏洩電流検知装置

Country Status (1)

Country Link
JP (1) JP6120684B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101636487B1 (ko) * 2015-03-02 2016-07-05 주식회사 루텍 Ct 및 zct를 내장하는 전기 모듈
CN112213679B (zh) * 2020-10-22 2022-11-08 国网福建省电力有限公司 基于位置信息的磁敏电流互感器估值方法
KR20230021742A (ko) * 2020-12-15 2023-02-14 미쓰비시덴키 가부시키가이샤 영상 변류기의 평형 특성 시험 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534373B2 (ja) * 2001-03-26 2010-09-01 三菱電機株式会社 漏洩電流表示ユニット付回路遮断器
JP2004325302A (ja) * 2003-04-25 2004-11-18 Chubu Electric Power Co Inc 広範囲まで測定可能な活線絶縁診断装置および方法

Also Published As

Publication number Publication date
JP2014238313A (ja) 2014-12-18

Similar Documents

Publication Publication Date Title
WO2010043937A1 (en) Method and apparatus for current measurement using hall sensors without iron cores
RU2009107851A (ru) Устройство для определения замыкания на землю
Sevov et al. Enhancing power transformer differential protection to improve security and dependability
JPH07110343A (ja) 直流電流センサー
JP6120684B2 (ja) 漏洩電流検知装置
US20110254562A1 (en) Method and device for detecting short-circuits in the stator core of electric machines
Emanuel et al. Current harmonics measurement by means of current transformers
US9146279B2 (en) Method for detection of interlaminar sheet short circuits in the stator sheet core of electromachines
RU2599180C2 (ru) Способ и система для управления временем переключения устройства с магнитной цепью
Bessolitsyn et al. Experimental study of current error of up to 50 hz current-measuring transformer
JP2003075475A (ja) 交流電流センサ
JP6298581B2 (ja) 電流検出装置及びこれを備えた変電設備
JP6461698B2 (ja) 漏電検出装置及び漏電検出方法
Cataliotti et al. Characterization of clamp-on current transformers under nonsinusoidal conditions
Wanjiku et al. Design of a sinusoidally wound 2-D rotational core loss setup with the consideration of sensor sizing
JP4817079B2 (ja) 鋼管の磁気探傷用磁化装置
Mirabal et al. Experimental study of grain oriented electrical steel laminations under 3D magnetic flux excitation
Chen et al. Measurement research on magnetic properties of electrical sheet steel under different temperature, harmonic and dc bias
JP2013027262A (ja) インバータ電源装置
JP5930455B2 (ja) コアロス測定装置の試料台、コアロス測定装置
JP6695054B2 (ja) 着磁防止装置及びこれを用いた電流検出装置
Sixdenier et al. Current sensor modeling with a FE-tuned MEC: Parameters identification protocol
Takahashi Expanding of test current of CT by equivalent magneto motive force method up to 20 kA
Bertenshaw Analysis of stator core faults-a fresh look at the EL CID vector diagram
KR102039268B1 (ko) 교류 및 직류 전류 감지 회로

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170328

R150 Certificate of patent or registration of utility model

Ref document number: 6120684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250