JP6118129B2 - Linear expansion coefficient test method - Google Patents

Linear expansion coefficient test method Download PDF

Info

Publication number
JP6118129B2
JP6118129B2 JP2013034340A JP2013034340A JP6118129B2 JP 6118129 B2 JP6118129 B2 JP 6118129B2 JP 2013034340 A JP2013034340 A JP 2013034340A JP 2013034340 A JP2013034340 A JP 2013034340A JP 6118129 B2 JP6118129 B2 JP 6118129B2
Authority
JP
Japan
Prior art keywords
expansion coefficient
linear expansion
heat
specimen
hardened cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013034340A
Other languages
Japanese (ja)
Other versions
JP2014163770A (en
Inventor
百瀬 晴基
晴基 百瀬
稲葉 洋平
洋平 稲葉
閑田 徹志
徹志 閑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2013034340A priority Critical patent/JP6118129B2/en
Publication of JP2014163770A publication Critical patent/JP2014163770A/en
Application granted granted Critical
Publication of JP6118129B2 publication Critical patent/JP6118129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、コンクリート等の線膨張係数を求めるための線膨張係数試験方法に関する。   The present invention relates to a linear expansion coefficient test method for determining a linear expansion coefficient of concrete or the like.

鉄筋コンクリート造などの構造物では、断面寸法の大きいマスコンクリート部材を用いた場合に、セメントの水和熱に起因するコンクリートの温度上昇、低下によって温度ひび割れが生じることが問題となっている。   In a structure such as a reinforced concrete structure, when a mass concrete member having a large cross-sectional dimension is used, there is a problem that temperature cracking occurs due to the temperature rise and fall of concrete due to the heat of hydration of cement.

このような温度ひび割れに大きな影響を及ぼすコンクリートの物性として、線膨張係数がある。線膨張係数は、温度が1℃変化した際に生じる長さ変化量を意味し、値が小さいほど温度ひび割れは生じにくい。一般的なコンクリートの線膨張係数は10μ/℃程度であるが、骨材やセメントの種類、調合などの影響を受け大きくばらつくことが明らかになっており、マスコンクリート部材の施工に際しコンクリートの線膨張係数を把握しておくことは重要である。   One of the physical properties of concrete that greatly affects such temperature cracks is the coefficient of linear expansion. The coefficient of linear expansion means the amount of change in length that occurs when the temperature changes by 1 ° C. The smaller the value, the less likely the temperature cracks to occur. The linear expansion coefficient of general concrete is about 10μ / ° C, but it has been revealed that it varies greatly due to the influence of aggregates and cement types, blending, etc., and the linear expansion of concrete during construction of mass concrete members It is important to know the coefficients.

線膨張係数を測定する方法としては、例えば、JIS A 1325 「建築材料の線膨張率測定方法」として定められているものがある。また、実構造物や実大レベルの模擬試験体内部に、周囲との縁を切る無応力容器の中にひずみ計を設置したものを埋め込み、コンクリートの水和熱による温度上昇、低下の過程における温度とひずみ量の挙動から線膨張係数を算出する方法もある。これにより、マスコンクリートの温度ひび割れに直接的に影響する線膨張係数が得られる(非特許文献1参照)。   As a method for measuring the linear expansion coefficient, for example, there is one defined as JIS A 1325 “Method for measuring linear expansion coefficient of building materials”. In addition, a strain gauge installed in a stress-free container that cuts off the edge of the actual structure or full-scale mock test specimen is embedded in the process of temperature rise and fall due to the heat of hydration of concrete. There is also a method of calculating the linear expansion coefficient from the behavior of temperature and strain. Thereby, the linear expansion coefficient which directly affects the temperature crack of mass concrete is obtained (refer nonpatent literature 1).

また、特許文献1には、外面が空気層形成体に覆われ、かつ内部空間に水硬性材料を流し込んで養生、固化させるための型枠と、型枠の内部空間に設けた温度計とひずみ計とを備えた水硬性材料の線膨張係数算出装置が記載されている。   Further, Patent Document 1 discloses a mold for covering the outer surface with an air layer forming body and pouring a hydraulic material into the internal space for curing and solidifying, and a thermometer and strain provided in the internal space of the mold. An apparatus for calculating the linear expansion coefficient of a hydraulic material provided with a meter is described.

ところで、前記したようなマスコンクリートの内部では、コンクリート材料から生じる水和熱のみがコンクリートの加熱源となる。このような状態を模擬した例として、特許文献2には、断熱材壁で密閉した内部空間中に混練後のコンクリート供試体を配置し断熱養生を行うことが記載されており、特許文献3には、打設直後の小型供試体を断熱材で包覆して断熱し、大断面コンクリート構造体に近い温度履歴を与えて小型供試体の強度を測定し、構造体強度を推定する方法が記載されている。   By the way, inside the mass concrete as described above, only the heat of hydration generated from the concrete material becomes the heating source of the concrete. As an example of simulating such a state, Patent Document 2 describes that a concrete specimen after kneading is placed in an internal space sealed with a heat insulating material wall to perform heat insulation curing. Describes a method of estimating the structure strength by covering the small specimen immediately after placement with a heat insulating material to insulate, measuring the strength of the small specimen by giving a temperature history close to that of a large section concrete structure Has been.

志垣隆浩、船本憲治、寺原学、亀谷哲章、津田智弘、伊集院博敏、黒岩秀介:低熱ポルトランドセメントを用いた建築物の温度・応力計測、日本建築学会学術講演梗概集、A−1、材料施工、497−502、2008.7Takahiro Shigaki, Kenji Funamoto, Manabu Terahara, Tetsuaki Kameya, Tomohiro Tsuda, Hirotoshi Ishuin, Shusuke Kuroiwa: Temperature and stress measurement of buildings using low heat Portland cement, Summary of Academic Lectures of Architectural Institute of Japan, A-1 497-502, 2008.7

特開2009−58326号公報JP 2009-58326 A 特開平6−201548号公報JP-A-6-201548 特開平2−300646号公報JP-A-2-3000064

従来の線膨張係数測定方法は、実務レベルで適用することが困難であるという問題がある。例えば、JIS A 1325「建築材料の線膨張率測定方法」では、環境温度を変動させる特殊な機器が必要となる。また、非特許文献1のように実大レベルの模擬試験体等を用いる方法では、大規模な実験空間が必要となる。従って、これらの方法を、建設現場やレディーミクストコンクリート工場において実務レベルで使用することは難しい。   The conventional linear expansion coefficient measuring method has a problem that it is difficult to apply at a practical level. For example, JIS A 1325 “Measuring method of linear expansion coefficient of building materials” requires special equipment that varies the environmental temperature. Further, in the method using a full-scale simulation test body or the like as in Non-Patent Document 1, a large-scale experiment space is required. Therefore, it is difficult to use these methods at a construction site or a ready mixed concrete factory at a practical level.

一方、特許文献1の線膨張係数算出装置は、水和熱のみが加熱源となるマスコンクリート内部の熱環境を模したものではなく、特許文献2、3ではコンクリートを断熱状態で養生しているが、コンクリートの線膨張係数を測定できるものではなかった。   On the other hand, the linear expansion coefficient calculating device of Patent Document 1 does not simulate the thermal environment inside mass concrete where only the heat of hydration serves as a heating source. In Patent Documents 2 and 3, the concrete is cured in an adiabatic state. However, the linear expansion coefficient of concrete could not be measured.

本発明は、前述した問題点に鑑みてなされたもので、その目的は、マスコンクリート内の熱環境を模した試験を行い、簡便に線膨張係数を求めることができる線膨張係数試験方法を提供することである。   The present invention has been made in view of the above-described problems, and its purpose is to provide a linear expansion coefficient test method that can perform a test imitating the thermal environment in mass concrete and easily obtain the linear expansion coefficient. It is to be.

前述した目的を達成するための本発明は、断熱材を用いた断熱養生容器の内部に、温度計とひずみ計を埋設したセメント硬化体による供試体を配置し、前記セメント硬化体内部で生じる水和熱による温度とひずみ量の継時変化を測定し、温度低下時のひずみ量変化を直線近似し、その傾きを線膨張係数として算出することを特徴とする線膨張係数試験方法である。 In order to achieve the above-mentioned object, the present invention arranges a specimen made of a hardened cement body in which a thermometer and a strain gauge are embedded in a heat insulating curing container using a heat insulating material, and generates water generated inside the hardened cement body. This is a linear expansion coefficient test method characterized by measuring the change over time in temperature and strain due to sum heat , linearly approximating the change in strain when the temperature drops, and calculating the slope as the linear expansion coefficient .

本発明では、高い断熱性能を有する断熱養生容器を用いることにより、水和熱のみが加熱源となるマスコンクリート内部の熱環境を再現するので、容器自体の小型化を図るとともに、少量のセメント硬化体の水和熱で実大レベルの模擬試験体内部と同程度の温度履歴を与えることが可能になる。こうしてセメント硬化体の水和熱による温度上昇、低下の過程における温度とひずみ量を測定することで、建設現場やレディーミクストコンクリート工場などで簡便に試験を実施し、線膨張係数を求めることができる。また、試験装置の小型化により室内での試験が可能となることから、外気温の影響を受けず精度の高い評価が可能になる。以上より、本発明によれば、実務レベルで実施可能である低コストかつ簡便な線膨張係数試験方法が実現され、マスコンクリートの温度ひび割れについて高精度の解析が可能であり、マスコンクリートのひび割れ低減に有効なコンクリートの調合選定などが可能になる。   In the present invention, by using a heat-insulating curing container having high heat insulation performance, only the heat of hydration reproduces the thermal environment inside the mass concrete that becomes a heating source, so that the container itself can be miniaturized and a small amount of cement can be cured. The body's heat of hydration can provide a temperature history similar to that inside the full-scale simulated specimen. In this way, by measuring the temperature and strain in the process of temperature rise and fall due to heat of hydration of the hardened cement body, it is possible to easily conduct tests at construction sites, ready mixed concrete factories, etc., and obtain the linear expansion coefficient . In addition, since the test can be performed indoors by downsizing the test apparatus, highly accurate evaluation can be performed without being affected by the outside air temperature. As described above, according to the present invention, a low-cost and simple linear expansion coefficient test method that can be carried out at a practical level is realized, high-accuracy analysis can be performed for temperature cracks in mass concrete, and cracks in mass concrete can be reduced. It is possible to select concrete mixes that are effective in

前記断熱養生容器の内部には、セメント硬化体を型枠に打設した供試体が複数配置され、複数の前記供試体のうち少なくとも1個で、温度計とひずみ計がセメント硬化体に埋設されることが望ましい。   A plurality of specimens in which a hardened cement body is placed in a mold are arranged inside the heat insulation curing container, and at least one of the plurality of specimen bodies includes a thermometer and a strain gauge embedded in the hardened cement body. It is desirable.

セメント硬化体を型枠に打設した供試体を用いることで、試験を容易に行うことができる。また、複数の供試体を置いて断熱養生容器内でのセメント硬化体の数量を増やすと、単独の供試体を配置する場合に比べ、水和熱による顕著な温度上昇を得ることができる。   The test can be easily performed by using a specimen in which a hardened cement body is placed on a mold. Moreover, when a plurality of specimens are placed and the number of hardened cement bodies in the heat-insulating curing container is increased, a remarkable temperature increase due to heat of hydration can be obtained as compared with the case where a single specimen is arranged.

前記断熱養生容器の内部に配置するセメント硬化体の総量を、以下の式で定めることが望ましい。
V≧−0.62・R+22
ここで、
V;セメント硬化体の総量(L)
R;断熱材の熱抵抗値(m・K/W)
It is desirable to determine the total amount of the hardened cement body to be arranged inside the heat insulation curing container by the following formula.
V ≧ −0.62 · R + 22
here,
V: Total amount of hardened cement (L)
R: Thermal resistance value of heat insulating material (m 2 · K / W)

断熱養生容器では、より高い断熱性能を有する断熱材を用いるほど、必要なセメント硬化体の量を低減でき、断熱養生容器の小型化が図れる。必要なセメント硬化体の量は、断熱材の熱抵抗値により異なり、上記のように定めることで、実大レベルの模擬試験体と同程度の温度履歴が得られる。   In the heat-insulating curing container, the amount of necessary cement hardened body can be reduced and the heat-insulating curing container can be downsized as the heat insulating material having higher heat insulating performance is used. The amount of hardened cement required depends on the heat resistance value of the heat insulating material, and by setting as described above, a temperature history comparable to that of a full-scale simulated test specimen can be obtained.

前記断熱養生容器内の中央により近い位置にある供試体と、中央からより遠い位置にある供試体のそれぞれで、温度計およびひずみ計がセメント硬化体に埋設されることが望ましい。   It is desirable that a thermometer and a strain gauge are embedded in the hardened cement body in each of the specimen located closer to the center in the heat insulation curing container and the specimen farther from the center.

これにより、断熱養生容器内での供試体の配置条件による試験結果の違いを踏まえて線膨張係数の評価が行える。例えば複数の供試体での結果を平均等すると、線膨張係数の評価がより好適に行える。   Thereby, a linear expansion coefficient can be evaluated based on the difference in the test result by the arrangement | positioning conditions of the test body in an insulation curing container. For example, when the results of a plurality of specimens are averaged, the linear expansion coefficient can be evaluated more suitably.

前記断熱養生容器内の前記供試体以外の空間に、断熱材を配置することが望ましい。   It is desirable to arrange a heat insulating material in a space other than the specimen in the heat insulating curing container.

断熱養生容器内に供試体を配置した残りの空間に、発泡スチロール製のビーズなどの断熱材を詰めると、更に断熱性能を向上させることができ、より好適に線膨張係数試験が行える。   If the remaining space in which the specimen is placed in the heat-insulating curing container is filled with a heat insulating material such as polystyrene foam beads, the heat insulating performance can be further improved, and the linear expansion coefficient test can be performed more suitably.

本発明によれば、マスコンクリート内部の熱環境を模した試験を行い、簡便に線膨張係数を求めることができる線膨張係数試験方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the test which simulated the thermal environment inside mass concrete can be performed, and the linear expansion coefficient test method which can obtain | require a linear expansion coefficient simply can be provided.

断熱養生容器1の斜視図Perspective view of heat insulation curing container 1 断熱養生容器1の断面図Cross section of heat insulation curing container 1 供試体2の断面図Cross section of specimen 2 セメント硬化体20の温度とひずみ量の継時変化を模式的に示す図The figure which shows typically the change over time of the temperature and strain amount of the cement hardened body 20 本実施形態の別の例を示す図The figure which shows another example of this embodiment 実施例1について説明する図The figure explaining Example 1 実施例1について説明する図The figure explaining Example 1 実施例2について説明する図The figure explaining Example 2 実大レベルの模擬試験体30を示す図The figure which shows the full-scale simulation specimen 30 断熱養生容器40を示す図The figure which shows the heat insulation curing container 40 セメント硬化体の温度履歴、およびセメント硬化体の温度とひずみ量の継時変化の一例を示す図The figure which shows an example of the temperature history of cement hardening body, and the change over time of the temperature and strain amount of the cement hardening body 実施例2について説明する図The figure explaining Example 2

以下、図面に基づいて、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(1.断熱養生容器)
図1を用いて、本実施形態の線膨張係数試験方法で用いる断熱養生容器1について説明する。図1は断熱養生容器1の斜視図であり、図1(a)は蓋部13を空けた状態、図1(b)は蓋部13を閉じた状態である。
(1. Insulation curing container)
The heat insulation curing container 1 used with the linear expansion coefficient test method of this embodiment is demonstrated using FIG. FIG. 1 is a perspective view of the heat insulating curing container 1, FIG. 1 (a) shows a state in which the lid portion 13 is opened, and FIG. 1 (b) shows a state in which the lid portion 13 is closed.

図1に示すように、断熱養生容器1は、上部を開口とした函状の本体部11と、蓋部13により構成される。本体部11の各面と蓋部13にはそれぞれ断熱材が用いられる。断熱材には、例えば発泡スチロール、発泡ウレタン、真空断熱材などの高い断熱性能を有するものを用いる。   As shown in FIG. 1, the heat-insulating curing container 1 is composed of a box-shaped main body portion 11 having an upper portion as an opening and a lid portion 13. A heat insulating material is used for each surface of the main body 11 and the lid 13. As the heat insulating material, for example, a material having high heat insulating performance such as polystyrene foam, urethane foam, vacuum heat insulating material or the like is used.

(2.供試体)
図2は断熱養生容器1の断面図であり、図2(a)は図2(b)の線B−Bに沿った水平方向の断面図、図2(b)は図2(a)の線A−Aに沿った鉛直方向の断面図である。図2に示すように、本体部11の内部空間には、供試体2が複数配置される。図の例では縦3列、横3列で計9個配置される。
(2. Specimen)
2 is a cross-sectional view of the heat-insulating curing container 1, FIG. 2 (a) is a horizontal cross-sectional view along line BB in FIG. 2 (b), and FIG. 2 (b) is a cross-sectional view of FIG. It is sectional drawing of the perpendicular direction along line AA. As shown in FIG. 2, a plurality of specimens 2 are arranged in the internal space of the main body 11. In the illustrated example, a total of nine rows are arranged in three vertical rows and three horizontal rows.

図3は供試体2の鉛直方向の断面を詳細に示す図である。図3(a)に示すように、供試体2は、軽量型枠24の内部に混練後のセメント硬化体20を打設して詰めたものである。軽量型枠24は、例えばブリキ製やプラスチック製などの、上部を開放した円筒状の型枠である。   FIG. 3 is a diagram showing in detail the cross section of the specimen 2 in the vertical direction. As shown in FIG. 3 (a), the specimen 2 is obtained by placing a hardened cement body 20 after kneading inside a lightweight mold 24. The lightweight mold 24 is a cylindrical mold having an open top, such as tin or plastic.

セメント硬化体20は、コンクリート、モルタル、セメントペーストなどであり、結合材にポルトランドセメント、またはこれに加えて高炉スラグやフライアッシュなど混和材を添加したものなどを用いた、水和熱による温度上昇が期待できるもの全般を指す。   The hardened cement body 20 is concrete, mortar, cement paste, or the like, and the temperature rise due to heat of hydration using Portland cement as a binder, or an additive such as blast furnace slag or fly ash added to the binder. Refers to all that can be expected.

供試体2のうち少なくとも1つでは、図3(b)に示すように、セメント硬化体20の内部にひずみ計21と温度計23が埋設される。ひずみ計21は例えばひずみゲージであり、温度計23としては例えば熱電対が用いられる。本実施形態では、容器内の中央にある供試体2a(図2(a)参照)で、セメント硬化体20の内部にひずみ計21と温度計23が埋設される。   In at least one of the specimens 2, as shown in FIG. 3B, a strain gauge 21 and a thermometer 23 are embedded in the hardened cement body 20. The strain gauge 21 is, for example, a strain gauge, and the thermometer 23 is, for example, a thermocouple. In the present embodiment, a strain gauge 21 and a thermometer 23 are embedded in the hardened cement body 20 with a specimen 2a (see FIG. 2A) in the center of the container.

(3.線膨張係数試験方法)
線膨張係数試験としては、図1(b)に示すように断熱養生容器1の蓋部13を閉じた状態とし、ひずみ計21および温度計23を用いて、セメント硬化体20の打設直後からの水和熱による温度上昇、低下の過程における、セメント硬化体20の温度とひずみ量の継時変化を計測する。
(3. Linear expansion coefficient test method)
As the linear expansion coefficient test, as shown in FIG. 1 (b), the lid 13 of the heat-insulating curing container 1 is closed, and the strain cement 21 and the thermometer 23 are used to immediately after placing the hardened cement body 20. In the course of temperature increase and decrease due to heat of hydration, the change over time of the temperature and strain amount of the hardened cement body 20 is measured.

図4に、セメント硬化体20の温度とひずみ量の継時変化を模式的に示す。本実施形態では、図に示す継時変化から、温度低下時のひずみ量変化を直線近似し、その傾きを線膨張係数として算出することができる。   FIG. 4 schematically shows changes over time in the temperature and strain amount of the hardened cement body 20. In the present embodiment, the strain change at the time of temperature drop can be linearly approximated from the change over time shown in the figure, and the slope can be calculated as the linear expansion coefficient.

なお、複数の供試体2でひずみ計21および温度計23を設けることもできる。この場合、少なくとも、断熱養生容器1内の中央により近い位置にある供試体2と、中央からより遠い位置にある供試体2で、ひずみ計21および温度計23を設けるとよい。例えば、図2(a)で中央にある供試体2と隅角部にある供試体2、あるいは側辺の中央部にある供試体2と隅角部にある供試体2にてひずみ計21および温度計23を設ける。   Note that the strain gauge 21 and the thermometer 23 can be provided by a plurality of specimens 2. In this case, it is preferable to provide the strain gauge 21 and the thermometer 23 at least with the specimen 2 located closer to the center in the heat-insulating curing container 1 and the specimen 2 located farther from the center. For example, in FIG. 2 (a), the strain gauge 21 and the specimen 2 at the corner and the specimen 2 at the corner, or the specimen 2 at the center of the side and the specimen 2 at the corner. A thermometer 23 is provided.

これにより、断熱養生容器1内での供試体2の配置条件による試験結果の違いを踏まえて線膨張係数の評価が行える。例えば、各供試体2におけるセメント硬化体20の線膨張係数を平均等すると、線膨張係数の評価がより精度よく行える。   Thereby, a linear expansion coefficient can be evaluated based on the difference in the test result by the arrangement | positioning conditions of the test body 2 in the heat insulation curing container 1. FIG. For example, if the linear expansion coefficient of the cement cured body 20 in each specimen 2 is averaged, the linear expansion coefficient can be evaluated more accurately.

以上説明したように、本実施形態では、高い断熱性能を有する断熱養生容器1を用いることにより、水和熱のみが加熱源となるマスコンクリート内部の温度条件を再現するので、容器自体の小型化を図るとともに、少量のセメント硬化体20の水和熱で、実大レベルの模擬試験体内部と同程度の温度履歴を与えることが可能になる。こうしてセメント硬化体20の水和熱による温度上昇、低下の過程における温度とひずみ量を測定することで、建設現場やレディーミクストコンクリート工場などで簡便に試験を実施し、線膨張係数を求めることができる。また、試験装置の小型化により室内での試験が可能となることから、外気温の影響を受けず精度の高い評価が可能になる。   As described above, in the present embodiment, by using the heat insulating curing container 1 having high heat insulating performance, the temperature condition inside the mass concrete where only the heat of hydration is a heating source is reproduced, so the container itself is downsized. In addition, the hydration heat of a small amount of the hardened cement body 20 can provide a temperature history comparable to that of the actual full-scale simulated test body. By measuring the temperature and strain in the process of temperature rise and fall due to heat of hydration of the hardened cement body 20 in this way, it is possible to easily conduct tests at construction sites, ready mixed concrete factories, etc., and obtain linear expansion coefficients. it can. In addition, since the test can be performed indoors by downsizing the test apparatus, highly accurate evaluation can be performed without being affected by the outside air temperature.

以上より、実務レベルで実施可能である低コストかつ簡便な線膨張係数試験方法が実現され、マスコンクリートの温度ひび割れについて高精度の解析が可能であり、マスコンクリートのひび割れ低減に有効なコンクリートの調合選定などが可能になる。   From the above, a low-cost and simple linear expansion coefficient test method that can be carried out at a practical level is realized, high-accuracy analysis of temperature cracks in mass concrete is possible, and concrete mixing is effective in reducing cracks in mass concrete. Selection becomes possible.

また、本実施形態では、軽量型枠24にセメント硬化体20を詰めたものを供試体2として用いることで、容易に試験が行える。また、供試体2を容器内に複数配置して、セメント硬化体20の数量を増やすと、単独の供試体2を配置する場合に比べ、水和熱による顕著な温度上昇を得ることができる。これは、後述する実施例においても確認されている。   Further, in the present embodiment, the test can be easily performed by using the lightweight mold 24 stuffed with the hardened cement body 20 as the specimen 2. Further, when a plurality of specimens 2 are arranged in the container and the number of the hardened cement bodies 20 is increased, a remarkable temperature increase due to heat of hydration can be obtained as compared with the case where a single specimen 2 is arranged. This has also been confirmed in examples described later.

ただし本発明はこれに限らず、例えば図5(a)に示すように、断熱養生容器1の内部全体にセメント硬化体を打設して供試体2とすることもできる。また、図5(b)に示すように、断熱養生容器1内の供試体2以外の空間に発泡スチロール製のビーズなど断熱材25を詰めることにより、更に断熱性能を向上させることができ、より好適に線膨張係数試験が行える。   However, this invention is not restricted to this, For example, as shown to Fig.5 (a), a cement hardening body can be laid in the whole inside of the heat insulation curing container 1, and it can also be set as the test body 2. FIG. Moreover, as shown in FIG.5 (b), the heat insulation performance can be improved further by stuffing heat insulation materials 25, such as beads made from a polystyrene foam, in the space other than the specimen 2 in the heat insulation curing container 1, and more suitable. A linear expansion coefficient test can be performed.

次に、本発明の線膨張係数試験方法について検討を行った結果を、実施例として説明する。ただし、本発明がこれに限られることはない。   Next, the results of studying the linear expansion coefficient test method of the present invention will be described as examples. However, the present invention is not limited to this.

[実施例1;断熱材の熱抵抗値とセメント硬化体数量の関係]
実施例1では、断熱養生容器の断熱材の熱抵抗値と、セメント硬化体の数量との関係について、最適な値を検討するための試験を行った。
[Example 1; relationship between thermal resistance value of heat insulating material and quantity of hardened cement body]
In Example 1, the test for examining the optimal value was conducted about the relationship between the heat resistance value of the heat insulating material of a heat insulation curing container and the quantity of hardened cement bodies.

実施例1では、断熱材の熱抵抗値、およびセメント硬化体の数量について、異なる複数の水準を用意し、セメント硬化体打設直後から内部温度を測定して、最高温度の比較を行った。供試体としては、図3等で説明した軽量型枠に、図6(a)に示す調合のセメント硬化体BLを打設して用い実験を行った。   In Example 1, a plurality of different levels were prepared for the thermal resistance value of the heat insulating material and the quantity of the hardened cement body, and the internal temperature was measured immediately after placing the hardened cement body to compare the maximum temperatures. As a specimen, an experiment was performed by placing a cement hardened body BL having a composition shown in FIG. 6A on the lightweight mold described in FIG.

断熱養生容器としては、図6(b)に示すように、断熱材の熱抵抗値が異なる3つの断熱養生容器A、B、Cを用意した。また、セメント硬化体の数量は、断熱養生容器内に配置する供試体の本数を変えて、図6(b)に示すように4通りに変化させた。   As the heat insulation container, as shown in FIG.6 (b), the three heat insulation containers A, B, and C from which the heat resistance value of a heat insulating material differs were prepared. In addition, the number of hardened cement bodies was changed in four ways as shown in FIG. 6B by changing the number of specimens arranged in the heat insulation curing container.

また、比較例として、縦1000mm×横1000mm×高さ800mmの大きさのセメント硬化体を型枠内に打設した模擬試験体を用意した。セメント硬化体内には温度計を配置し、打設直後からの内部の温度履歴より得られる最高温度を真の値とした。   Further, as a comparative example, a simulated test body was prepared in which a hardened cement body having a size of 1000 mm long × 1000 mm wide × 800 mm high was placed in a mold. A thermometer was placed in the hardened cement body, and the maximum temperature obtained from the internal temperature history immediately after placement was regarded as the true value.

結果を図6(b)の項目「最高温度」に示す。各断熱養生容器内の供試体のセメント硬化体の最高温度は、模擬試験体の最高温度に概ね近い値となっており、実大レベルの模擬試験体のセメント硬化体内部の温度履歴を、断熱養生容器内の供試体によって良好に模擬できていることがわかった。   The result is shown in the item “maximum temperature” in FIG. The maximum temperature of the cement-cured body of the specimen in each heat-insulating curing container is approximately close to the maximum temperature of the simulated specimen, and the temperature history inside the cement-cured body of the full-scale simulated specimen is insulated. It was found that the specimens in the curing container were successfully simulated.

なかでも、図6(b)のNo.1、2、5、6、7、9、10で示した条件でのセメント硬化体の最高温度は、模擬試験体での最高温度に対し90%以上の値となっており、特に良好であることがわかる。   Among these, No. 6 in FIG. The maximum temperature of the hardened cement body under the conditions indicated by 1, 2, 5, 6, 7, 9, and 10 is 90% or more of the maximum temperature of the simulated test body, which is particularly good. I understand that.

以上の結果を、断熱材の熱抵抗値を横軸、セメント硬化体の数量を縦軸としたグラフで示したものが図7である。図7の丸で記載したプロットは、上記のNo.1、2、5、6、7、9、10のデータを示し、四角で示したプロットはそれ以外のNo.3、4、8、11、12のデータを示す。   FIG. 7 shows the above results in a graph with the thermal resistance value of the heat insulating material as the horizontal axis and the quantity of the hardened cement body as the vertical axis. The plot indicated by the circle in FIG. 1, 2, 5, 6, 7, 9, 10 are shown, and the plots shown by squares are No. The data of 3, 4, 8, 11, 12 are shown.

ここで、グラフ中の直線は両データを分ける条件を示し、下記の式(1)
V=−0.62×R+22…(1)
で表されることがわかった。Vはセメント硬化体の数量(L)であり、Rは断熱材の熱抵抗値(m・K/W)である。
Here, the straight line in the graph indicates the condition for separating both data, and the following equation (1)
V = −0.62 × R + 22 (1)
It was found that V is the quantity (L) of hardened cement, and R is the thermal resistance value (m 2 · K / W) of the heat insulating material.

以上のように、実施例1の試験結果から、断熱材の熱抵抗値Rが大きく、セメント硬化体の数量Vが大きいほど、実大レベルの模擬試験体に近い温度履歴が得られ、本発明において特に好ましい条件は、V≧−0.62×R+22で表されることがわかった。   As described above, from the test results of Example 1, as the thermal resistance value R of the heat insulating material is larger and the quantity V of the hardened cement body is larger, a temperature history closer to a full-scale simulated specimen is obtained. It was found that a particularly preferable condition in is represented by V ≧ −0.62 × R + 22.

[実施例2;線膨張係数の精度検証]
実施例2として、本発明の線膨張係数試験方法によって求められる線膨張係数の精度を検証するための試験を行った。
[Example 2; Verification of accuracy of linear expansion coefficient]
As Example 2, a test for verifying the accuracy of the linear expansion coefficient obtained by the linear expansion coefficient test method of the present invention was performed.

実施例2では、図8に調合を示す3種類のセメント硬化体NS、NL、BLを試験に用いた。各セメント硬化体につき、実大レベルの模擬試験体を用いた線膨張係数試験から求められる線膨張係数を真値とし、これと本発明の線膨張係数試験から求められる線膨張係数とを比較した。   In Example 2, three types of hardened cement NS, NL, and BL whose formulation is shown in FIG. 8 were used for the test. For each hardened cement body, the linear expansion coefficient obtained from the linear expansion coefficient test using a full-scale simulated specimen was regarded as a true value, and this was compared with the linear expansion coefficient obtained from the linear expansion coefficient test of the present invention. .

図9に実大レベルの模擬試験体30を示す。図9(a)は図9(b)の線D−Dに沿った水平方向の断面図、図9(b)は図9(a)の線C−Cに沿った鉛直方向の断面図である。模擬試験体30は、縦1000mm×横1000mm×高さ800mmのセメント硬化体とし、これを型枠(不図示)内に打設した。模擬試験体30の上下面には断熱材として発泡スチロール32を配置した。   FIG. 9 shows a full-scale simulation specimen 30. 9A is a horizontal cross-sectional view along line DD in FIG. 9B, and FIG. 9B is a vertical cross-sectional view along line CC in FIG. 9A. is there. The simulated test body 30 was a cement cured body having a length of 1000 mm × width of 1000 mm × height of 800 mm, and this was placed in a mold (not shown). Styrofoam 32 was disposed on the upper and lower surfaces of the simulated specimen 30 as a heat insulating material.

模擬試験体30内部には、周囲のセメント硬化体との縁を切る無応力容器31の中に温度計とひずみ計(不図示)を設置したものを、図に示す位置に埋め込んだ。そして、セメント硬化体の水和熱による温度上昇、低下の過程における温度とひずみ量の継時変化から、温度低下時の線膨張係数を求めた。   Inside the simulated test body 30, a thermometer and a strain gauge (not shown) installed in a stress-free container 31 that cuts the edge with the surrounding cemented body was embedded at the position shown in the figure. And the linear expansion coefficient at the time of temperature fall was calculated | required from the change over time of the temperature and the strain amount in the process of the temperature rise by the heat | fever of hydration of a cement hardening body, and a fall.

実施例2で用いた断熱養生容器40を図10に示す。図10(a)は図10(b)の線F−Fに沿った水平方向の断面図、図10(b)は図10(a)の線E−Eに沿った鉛直方向の断面図である。   The heat insulation curing container 40 used in Example 2 is shown in FIG. 10A is a horizontal cross-sectional view along line FF in FIG. 10B, and FIG. 10B is a vertical cross-sectional view along line EE in FIG. 10A. is there.

実施例2では、本体部41と蓋部43で構成される横350mm×縦255mm×高さ300mmの断熱養生容器40を用いた。断熱養生容器40の各面には、25m・K/Wの熱抵抗値を有する断熱材を用いた。 In Example 2, the heat insulation curing container 40 of width 350mm x length 255mm x height 300mm comprised by the main-body part 41 and the cover part 43 was used. A heat insulating material having a thermal resistance value of 25 m 2 · K / W was used for each surface of the heat insulating curing container 40.

断熱養生容器40内には、直径100mm×高さ200mmの上部を開放した円筒状の軽量型枠にセメント硬化体を打設した6本の供試体50を図のように配置した。セメント硬化体の数量は計9.4Lとなった。   In the heat-insulating curing container 40, six specimens 50 in which a hardened cement body was placed in a cylindrical lightweight mold with an upper part having a diameter of 100 mm and a height of 200 mm were arranged as shown in the figure. The total number of hardened cement bodies was 9.4L.

実施例2では、横方向(図の左右方向に対応する)の側辺に沿って配置された3本の供試体50a〜50cのそれぞれに温度計とひずみ計を配し、セメント硬化体の打設直後からの温度とひずみ量を測定した。温度計には熱電対を用い、ひずみ計にはひずみゲージを用いた。   In Example 2, a thermometer and a strain gauge are arranged on each of the three specimens 50a to 50c arranged along the lateral side (corresponding to the horizontal direction in the drawing), and The temperature and strain were measured immediately after installation. A thermocouple was used for the thermometer, and a strain gauge was used for the strain gauge.

供試体50のセメント硬化体の温度履歴と、温度とひずみ量の継時変化の一例を図11(a)、(b)にそれぞれ示す。実施例2では、図11(b)に示す温度とひずみ量の継時変化を用いて、セメント硬化体の温度低下時の線膨張係数を、図11(b)の点線に示す直線の傾きにより算出した。図の例では線膨張係数が直線の傾きより9.09(約9.1)μ/℃と算出された。   An example of the temperature history of the hardened cement body of the specimen 50 and the change over time of the temperature and strain is shown in FIGS. 11 (a) and 11 (b), respectively. In Example 2, the linear expansion coefficient when the temperature of the hardened cement body is lowered is determined by the slope of the straight line indicated by the dotted line in FIG. 11B by using the change over time in the temperature and strain amount shown in FIG. Calculated. In the example shown in the figure, the linear expansion coefficient was calculated to be 9.09 (about 9.1) μ / ° C. from the slope of the straight line.

実施例2の結果を、図12の表中項目「試験結果」に示す。模擬試験体30(比較例)については、2つの無応力容器31(図9参照)内のそれぞれに配置した温度計とひずみ計により求められた最高温度と線膨張係数、およびそれらの平均値を示した。   The result of Example 2 is shown in the item “Test Result” in the table of FIG. For the simulated test specimen 30 (comparative example), the maximum temperature and linear expansion coefficient obtained by the thermometer and strain gauge placed in each of the two unstressed containers 31 (see FIG. 9), and their average values are Indicated.

供試体50(本発明例)については、3つの供試体50a〜50cのそれぞれのセメント硬化体の最高温度と線膨張係数、およびそれらの平均値を示した。   For the specimen 50 (example of the present invention), the maximum temperature and the linear expansion coefficient of each cemented body of the three specimens 50a to 50c, and the average value thereof were shown.

図に示すように、本実施例2において、供試体50のセメント硬化体の最高温度は実大レベルの模擬試験体30と同程度の結果であり、線膨張係数の値も同等の値が得られた。以上から、本発明により、実大レベルの模擬試験体と同等の最高温度及び線膨張係数が得られることが確認された。   As shown in the figure, in Example 2, the maximum temperature of the cement-hardened body of the specimen 50 is the same as that of the full-scale simulated specimen 30, and the linear expansion coefficient value is equivalent. It was. From the above, it was confirmed that the maximum temperature and the linear expansion coefficient equivalent to the full-scale simulation specimen were obtained by the present invention.

以上、添付図を参照しながら、本発明の実施形態を説明したが、本発明の技術的範囲は、前述した実施形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

1、40………断熱養生容器
2、50………供試体
20………セメント硬化体
21………ひずみ計
23………温度計
24………軽量型枠
25………断熱材
30………模擬試験体
1, 40 ............ Insulation curing container 2, 50 ...... Specimen 20 ...... Cement cured body 21 ...... Strain meter 23 ...... Thermometer 24 ...... Lightweight formwork 25 ...... Insulation 30 ……… Mock test specimen

Claims (5)

断熱材を用いた断熱養生容器の内部に、温度計とひずみ計を埋設したセメント硬化体による供試体を配置し、
前記セメント硬化体内部で生じる水和熱による温度とひずみ量の継時変化を測定し、温度低下時のひずみ量変化を直線近似し、その傾きを線膨張係数として算出することを特徴とする線膨張係数試験方法。
Inside a heat-insulating curing container using a heat insulating material, place a specimen with a hardened cement body embedded with a thermometer and strain gauge,
A line characterized by measuring a change in temperature and strain over time due to heat of hydration generated inside the hardened cement body , linearly approximating the change in strain when the temperature drops, and calculating the slope as a linear expansion coefficient Expansion coefficient test method.
前記断熱養生容器の内部には、セメント硬化体を型枠に打設した供試体が複数配置され、
複数の前記供試体のうち少なくとも1個で、温度計とひずみ計がセメント硬化体に埋設されることを特徴とする請求項1に記載の線膨張係数試験方法。
Inside the heat-insulating curing container, a plurality of specimens in which a hardened cement body is placed in a mold are arranged,
The linear expansion coefficient test method according to claim 1, wherein a thermometer and a strain gauge are embedded in the hardened cement body in at least one of the plurality of specimens.
前記断熱養生容器の内部に配置するセメント硬化体の総量を、以下の式で定めることを特徴とする請求項1または請求項2に記載の線膨張係数試験方法。
V≧−0.62・R+22
ここで、
V;セメント硬化体の総量(L)
R;断熱材の熱抵抗値(m・K/W)
The linear expansion coefficient test method according to claim 1 or 2, wherein a total amount of the hardened cement body to be disposed inside the heat insulation curing container is determined by the following formula.
V ≧ −0.62 · R + 22
here,
V: Total amount of hardened cement (L)
R: Thermal resistance value of heat insulating material (m 2 · K / W)
前記断熱養生容器内の中央により近い位置にある供試体と、中央からより遠い位置にある供試体のそれぞれで、温度計およびひずみ計がセメント硬化体に埋設されることを特徴とする請求項1乃至請求項3のいずれかに記載の線膨張係数試験方法。   The thermometer and the strain gauge are embedded in the hardened cement body in each of the specimen closer to the center in the heat insulation curing container and the specimen farther from the center, respectively. The linear expansion coefficient test method according to claim 3. 前記断熱養生容器内の前記供試体以外の空間に、断熱材を配置することを特徴とする請求項1乃至請求項4のいずれかに記載の線膨張係数試験方法。   The linear expansion coefficient test method according to claim 1, wherein a heat insulating material is disposed in a space other than the specimen in the heat insulating curing container.
JP2013034340A 2013-02-25 2013-02-25 Linear expansion coefficient test method Active JP6118129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013034340A JP6118129B2 (en) 2013-02-25 2013-02-25 Linear expansion coefficient test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013034340A JP6118129B2 (en) 2013-02-25 2013-02-25 Linear expansion coefficient test method

Publications (2)

Publication Number Publication Date
JP2014163770A JP2014163770A (en) 2014-09-08
JP6118129B2 true JP6118129B2 (en) 2017-04-19

Family

ID=51614514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013034340A Active JP6118129B2 (en) 2013-02-25 2013-02-25 Linear expansion coefficient test method

Country Status (1)

Country Link
JP (1) JP6118129B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181346A (en) * 2017-12-21 2018-06-19 中国水利水电科学研究院 Fully graded concrete scene autogenous volumetric deformation and linear expansion coefficient monitoring device and method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106979958B (en) * 2017-04-01 2019-08-02 河海大学 A kind of concrete dam linear expansion coefficient on-site measurement device and measuring method
JP7076696B2 (en) * 2017-10-24 2022-05-30 利明 溝渕 Insulation test equipment for heat-generating materials during curing
CN108593704A (en) * 2018-06-07 2018-09-28 长安大学 A kind of system and method for measuring the cement stabilization base coefficient of expansion
JP7093297B2 (en) * 2018-12-27 2022-06-29 三井住友建設株式会社 Heat generation characteristics test method for concrete
CN112881460B (en) * 2021-02-25 2021-12-03 华东理工常熟研究院有限公司 Method for rapidly predicting desulfurization ash expansion amount of circulating fluidized bed boiler

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662717B2 (en) * 1995-02-14 1997-10-15 水資源開発公団 Non-stress detector for concrete
JP2000292387A (en) * 1999-04-01 2000-10-20 Isamu Yoshitake Simplified test method and device of insulation temperature rise characteristic of concrete
JP3975255B2 (en) * 2000-05-15 2007-09-12 株式会社共和電業 Concrete embedded strain gauge and concrete strain measurement method
JP4429821B2 (en) * 2004-06-24 2010-03-10 太平洋セメント株式会社 Method for estimating expansion stress of expansive concrete
JP2006118996A (en) * 2004-10-21 2006-05-11 Marutani Shiko Kk Concrete tester and concrete testing method using it
JP2009058326A (en) * 2007-08-31 2009-03-19 Mitsubishi Materials Corp Linear expansion coefficient calculating method of hydraulic-setting material and apparatus of the same
CN101482526B (en) * 2009-01-24 2011-11-23 浙江工业大学 Measuring method for thermal expansion coefficient of early-age concrete

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181346A (en) * 2017-12-21 2018-06-19 中国水利水电科学研究院 Fully graded concrete scene autogenous volumetric deformation and linear expansion coefficient monitoring device and method

Also Published As

Publication number Publication date
JP2014163770A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
JP6118129B2 (en) Linear expansion coefficient test method
Lucchi Thermal transmittance of historical brick masonries: A comparison among standard data, analytical calculation procedures, and in situ heat flow meter measurements
Park et al. Modeling of water permeability in early aged concrete with cracks based on micro pore structure
Kodur et al. Effect of temperature on thermal properties of spray applied fire resistive materials
Bianco et al. Thermal insulating plaster as a solution for refurbishing historic building envelopes: First experimental results
Zhang et al. Calculation of moisture distribution in early-age concrete
Samouh et al. Experimental and numerical study of size effect on long-term drying behavior of concrete: influence of drying depth
Pisello et al. Multifunctional analysis of innovative PCM-filled concretes
Zach et al. Technology of concrete with low generation of hydration heat
Vinkler et al. Drying concrete: experimental and numerical modeling
Liblik et al. Performance of constructions with clay plaster and timber at elevated temperatures
JP2006118996A (en) Concrete tester and concrete testing method using it
Aversa et al. Thermo-hygrometric behavior of hempcrete walls for sustainable building construction in the Mediterranean area
Zych Research on thermal cracking of a rectangular RC tank wall under construction. II: comparison with numerical model
Su et al. Development and performance test including mechanical and thermal of new tenon composite block masonry walls
Toufigh et al. Experimental and numerical investigation of thermal enhancement methods on rammed-earth materials
Lawane et al. Hygrothermal features of laterite dimension stones for sub-Saharan residential building construction
JP2000292387A (en) Simplified test method and device of insulation temperature rise characteristic of concrete
Fjellström Measurement and modelling of young concrete properties
Nilsson A comparison between different methods to determine moisture transport properties of cementitious materials
Hroudová et al. Laboratory testing of developed thermal insulation plasters on pillars built from masonry bricks
Ng et al. Semi-adiabatic curing test with heat loss compensation for evaluation of adiabatic temperature rise of concrete
Wyrzykowski et al. Thermal properties
McKenna et al. Heat transfer characteristics of GGBS concrete in fire
Al-Tamimi et al. Thermal performance evaluation of hempcrete masonry walls for energy storage in cold weather

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170324

R150 Certificate of patent or registration of utility model

Ref document number: 6118129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250