JP7076696B2 - Insulation test equipment for heat-generating materials during curing - Google Patents
Insulation test equipment for heat-generating materials during curing Download PDFInfo
- Publication number
- JP7076696B2 JP7076696B2 JP2017205206A JP2017205206A JP7076696B2 JP 7076696 B2 JP7076696 B2 JP 7076696B2 JP 2017205206 A JP2017205206 A JP 2017205206A JP 2017205206 A JP2017205206 A JP 2017205206A JP 7076696 B2 JP7076696 B2 JP 7076696B2
- Authority
- JP
- Japan
- Prior art keywords
- test
- heat
- property test
- thermal
- heat insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Description
本発明は、コンクリートや樹脂などの硬化時に発熱する材料の温度上昇特性、及びこれに応じた力学特性などを評価するための硬化時発熱材料の断熱試験用装置に関する。 The present invention relates to an apparatus for adiabatic test of heat-generating materials during curing for evaluating temperature rise characteristics of materials that generate heat during curing, such as concrete and resin, and mechanical properties corresponding to the temperature rise characteristics.
例えば、ダムや橋脚などのマスコンクリート構造物は、中心部での水和熱の発散が遅れ、各部位で温度差に起因した温度ひずみが生じやすく、これに伴い温度ひび割れが発生するおそれがある。 For example, in mass concrete structures such as dams and piers, the heat of hydration is delayed in the central part, and temperature strain due to temperature differences is likely to occur at each part, which may cause temperature cracks. ..
このような初期のひび割れはコンクリート構造物の耐久性に大きく影響するため、施工時に温度ひび割れを制御することが重要であり、公益社団法人土木学会では、コンクリート標準示方書[施工編]で施工段階におけるひび割れ照査を温度応力解析によって行うことを規定している。 Since such initial cracks greatly affect the durability of concrete structures, it is important to control temperature cracks during construction. It is stipulated that the crack check in is performed by temperature stress analysis.
一方、ひび割れ照査のうち温度解析には、断熱温度上昇量を設定することが必要であり、コンクリート(セメント系材料/硬化時発熱材料)を断熱状態で長期間維持して断熱温度上昇量を測定するための各種断熱試験用の装置が提案、実用化されている(例えば、特許文献1参照)。 On the other hand, it is necessary to set the amount of heat insulation temperature rise for temperature analysis in the crack inspection, and the amount of heat insulation temperature rise is measured by maintaining the concrete (cement-based material / heat-generating material at the time of hardening) in the heat-insulated state for a long period of time. Various adiabatic test devices for this purpose have been proposed and put into practical use (see, for example, Patent Document 1).
しかしながら、上記従来の断熱試験用装置においては、マスコンクリートの温度環境を再現するために大きなコンクリート試験体を用いる必要があり、装置自体が大型で、施工現場での取扱性が悪いという問題があった。 However, in the above-mentioned conventional heat insulation test equipment, it is necessary to use a large concrete test piece in order to reproduce the temperature environment of mass concrete, and there is a problem that the equipment itself is large and the handling at the construction site is poor. rice field.
また、コンクリート打設後の温度変化だけでなく、強度変化などの力学特性を把握することも品質管理として重要であるが、コンクリート打設後の断熱状態(温度変化)を再現した上で力学特性を把握する手法がなく、このような手法の開発が強く望まれていた。 In addition, it is important for quality control to understand not only the temperature change after concrete placement but also the mechanical characteristics such as strength change, but the mechanical characteristics after reproducing the heat insulation state (temperature change) after concrete placement. There is no method for grasping the above, and the development of such a method has been strongly desired.
本発明は、上記事情に鑑み、取扱性に優れ、且つ断熱温度特性だけでなく、断熱状態を再現した上での力学特性の試験を行い、その評価を可能にする硬化時発熱材料の断熱試験用装置を提供することを目的とする。 In view of the above circumstances, the present invention is excellent in handleability, and not only the heat insulating temperature characteristic but also the mechanical property test after reproducing the heat insulating state is performed, and the heat insulating test of the heat generating material at the time of curing enables the evaluation. The purpose is to provide equipment for use.
上記の目的を達するために、この発明は以下の手段を提供している。 In order to achieve the above object, the present invention provides the following means.
本発明の断熱試験用装置は、内部に収容空間を形成しつつ該収容空間を外部から隔離する断熱本体部と、前記収容空間内に設けられ、硬化時発熱材料の熱特性試験用の試験体を収容する熱特性試験体収容部と、前記収容空間内に設けられ、硬化時熱発熱材料の力学特性試験用の試験体を収容する力学特性試験体収容部とを備えるとともに、前記熱特性試験体収容部は、熱特性用の試験体を養生する熱特性用試験体養生部と、前記熱特性用試験体養生部と前記断熱本体部の間に設けられた熱特性用試験体側断熱部とを備え、前記力学特性試験体収容部は、力学特性用の試験体を養生する力学特性用試験体養生部と、前記力学特性用試験体養生部と前記断熱本体部の間に設けられた力学特性用試験体側断熱部とを備え、且つ、前記熱特性用試験体側断熱部と前記熱特性試験用の試験体の間、及び前記力学特性用試験体側断熱部と前記力学特性試験用の試験体の間にそれぞれ、前記試験体を所定の形状に保つ成形性能と、断熱性能と、前記試験体を脱離させる剥離性能とを有する断熱脱離層が設けられていることを特徴とする。 The heat insulating test apparatus of the present invention is provided in a heat insulating main body portion that isolates the accommodation space from the outside while forming an accommodation space inside, and a test body for thermal property test of a heat generating material at the time of curing, which is provided in the accommodation space. A thermal property test body accommodating portion for accommodating a test body and a mechanical property test body accommodating portion provided in the accommodating space for accommodating a test body for a mechanical property test of a heat-generating material during curing are provided, and the thermal property test is provided. The body accommodating part includes a heat characteristic test body curing part that cures the heat characteristic test body, and a heat characteristic test body side heat insulating part provided between the heat characteristic test body curing part and the heat insulation main body part. The mechanical property test body accommodating portion is provided between the mechanical property test body curing unit for curing the mechanical property test body, the mechanical property test body curing unit, and the heat insulating body portion. It is provided with a heat insulating part on the test piece side for characteristics, and is between the heat insulating part on the test body side for thermal characteristics and the test piece for the thermal characteristic test, and the heat insulating part on the test piece side for the mechanical characteristics and the test piece for the mechanical property test. It is characterized in that a heat insulating desorption layer having a molding performance for keeping the test body in a predetermined shape, a heat insulating performance, and a peeling performance for desorbing the test body is provided between the two.
また、本発明の断熱試験用装置においては、前記熱特性試験体収容部と前記力学特性試験体収容部を前後方向に進退させるスライド機構を備え、前記熱特性試験体収容部と前記力学特性試験体収容部がそれぞれ個別に前方に引出し可能に構成されていることが望ましい。 Further, the heat insulating test apparatus of the present invention is provided with a slide mechanism for advancing and retreating the thermal property test body accommodating portion and the mechanical property test body accommodating portion in the front-rear direction, and the thermal characteristic test body accommodating portion and the mechanical property test. It is desirable that the body accommodating parts are individually configured so that they can be pulled forward.
さらに、本発明の断熱試験用装置においては、前記熱特性試験体収容部の前方に配された前記断熱本体部と、前記力学特性試験体収容部の前方に配された前記断熱本体部とがそれぞれ個別に取り外し可能に分割形成されていることがより望ましい。 Further, in the heat insulating test apparatus of the present invention, the heat insulating main body portion arranged in front of the thermal property test body accommodating portion and the heat insulating main body portion arranged in front of the mechanical property test body accommodating portion are provided. It is more desirable that each is individually removable and separately formed.
また、本発明の断熱試験用装置においては、前記断熱本体部及び前記断熱部が15倍発泡の発泡スチロールであることが望ましい。 Further, in the heat insulating test apparatus of the present invention, it is desirable that the heat insulating main body portion and the heat insulating portion are made of styrofoam that is 15 times foamed.
さらに、本発明の断熱試験用装置においては、前記力学特性試験体収容部が前記熱特性試験体収容部を間に対称配置されていることがより望ましい。 Further, in the adiabatic test apparatus of the present invention, it is more desirable that the mechanical property test body accommodating portion is symmetrically arranged between the thermal property test body accommodating portions.
本発明の断熱試験用装置においては、取扱性に優れ、精度よく断熱温度特性を把握することが可能になるとともに、断熱温度特性だけでなく、断熱状態を再現した上での力学特性を精度よく把握することが可能になる。 In the adiabatic test apparatus of the present invention, it is excellent in handleability, it is possible to accurately grasp the adiabatic temperature characteristics, and not only the adiabatic temperature characteristics but also the mechanical characteristics after reproducing the adiabatic state are accurately obtained. It becomes possible to grasp.
以下、図1から図9を参照し、本発明の一実施形態に係る断熱試験用装置について説明する。ここで、本実施形態では、本発明に係る硬化時発熱材料がコンクリートであるものとして説明を行うが、本発明に係る断熱試験用装置は、コンクリート以外のセメント系材料や樹脂など、硬化時に発熱を伴うあらゆる材料の断熱温度特性(熱特性)及び断熱力学特性を評価する際に適用可能である。 Hereinafter, the adiabatic test apparatus according to the embodiment of the present invention will be described with reference to FIGS. 1 to 9. Here, in the present embodiment, it is assumed that the heat generating material at the time of curing according to the present invention is concrete, but the heat insulating test apparatus according to the present invention generates heat at the time of curing, such as a cement-based material other than concrete or a resin. It can be applied when evaluating the adiabatic temperature characteristics (thermal characteristics) and adiabatic mechanical properties of any material with.
本実施形態の断熱試験用装置Aは、図1から図7に示すように、装置内部(中心部)に略直方体状の収容空間Hを形成しつつ該収容空間Hを外部から隔離するように断熱試験用装置Aの外殻を形成する略直方体箱状の断熱本体部1と、収容空間H内に設けられ、熱特性用の試験体を収容する熱特性試験体収容部2と、収容空間H内に設けられ、力学特性用の試験体を収容する力学特性試験体収容部3とを備えて構成されている。
As shown in FIGS. 1 to 7, the heat insulating test apparatus A of the present embodiment forms a substantially rectangular accommodation space H inside (center) of the apparatus and isolates the accommodation space H from the outside. A substantially square box-shaped
断熱本体部1は、略平板状の上蓋部4及び下蓋部5と、幅方向の両側部側の上蓋部4及び下蓋部5の間に配設される略平板状の右側側面蓋部6及び左側側面蓋部7と、奥行方向の前後部側の上蓋部4及び下蓋部5の間に配設される略平板状の前面蓋部8及び背面蓋部9とを備えて略直方体箱状に形成されている。
The heat insulating
これら蓋部4~9は、例えば、発泡スチロールが主な構成要素とされ、それぞれ所定の厚さを備えることにより、外部に対する収容空間Hを所望の断熱状態で確保できるように構成されている。本実施形態では、15倍発泡の発泡スチロールを用いることによって所望の断熱性能を確保できるようにしている。なお、発泡倍率が数倍から数十倍の発泡スチロールを用いて試験を行った結果、15倍発泡の発泡スチロールが本装置Aに適していることが確認された。
For example, styrofoam is the main component of these
収容空間G内には、熱特性試験体収容部2を中心として力学特性試験体収容部3が対称位置に配設けられている。
In the accommodation space G, the mechanical property test
具体的に、本実施形態の断熱試験用装置Aでは、収容空間Hひいては断熱試験用装置Aの中心部に略直方体状の熱特性試験体収容部2が配設され、熱特性試験体収容部2を間にして幅方向の左右両側の対称位置にそれぞれ略直方体状の力学特性試験体収容部3が配設されている。
Specifically, in the heat insulation test device A of the present embodiment, the heat characteristic test
熱特性試験体収容部2は、その中央にφ300mm×h6000mmの円柱状の熱特性用試験体養生部10を備え、熱特性用試験体養生部10の周囲に、蓋部4~9と同様、発泡スチロールが主な構成要素の断熱部(熱特性用試験体側断熱部)11を設けて所望の断熱性能を確保できるように構成されている。
The thermal characteristic test
また、熱特性用試験体養生部10と断熱部11の間、すなわち、熱特性用試験体養生部10を形成する断熱部11の内周面には、熱特性用試験体養生部10に打設したコンクリートをφ300mm×h6000mmの所定の円柱状に保つ成形性能と、試験時に試験体の熱の断熱部11への伝達を抑止する断熱性能と、試験後に熱特性試験体収容部2からの試験体の脱離を容易にする剥離性能とを備えた断熱脱離層12が設けられている。
Further, the heat characteristic test
熱特性用試験体養生部10には、熱特性用試験体養生部10内の熱特性用試験体の所望の位置の温度を計測するための温度計測手段(不図示)と、熱特性用試験体のひずみを計測するためのひずみ計測手段(不図示)とが設けられている。なお、温度計測手段とひずみ計測手段が個別に設けられていても、一体に構成されていてもよい。
The thermal characteristic test
左右の力学特性試験体収容部3はそれぞれ、φ100mm×h200mmの円柱状の複数の試験体をそれぞれ個別に収容する複数の力学特性用試験体養生部15を備え、各力学特性用試験体養生部15の周囲に、蓋部4~9や熱特性用試験体養生部10と同様、発泡スチロールが主な構成要素の断熱部(力学特性用試験体側断熱部)11を設けて所望の断熱性能を確保できるように構成されている。
The left and right mechanical property test
また、本実施形態では、各力学特性試験体収容部3が12本の力学特性用の試験体をそれぞれ個別に収容する12個の力学特性用試験体養生部15を備えている。さらに、本実施形態では、前後方向に所定の間隔をあけて配された上段の3本の力学特性用の試験体と下段の3本の力学用の試験体を1つの方形箱状のユニット(養生ボックス)16で収容し、このユニット16を左右二列で配設して各力学特性試験体収容部3が構成されている。なお、各力学特性試験体収容部3の2つのユニット16はそれぞれ、例えば、材齢3日、材齢7日、材齢14日、材齢28日にそれぞれ力学試験を行うための3本の試験体、計12本の試験体をまとめて収容できるように構成されている。
Further, in the present embodiment, each mechanical property test
さらに、熱特性試験体収容部2と力学特性試験体収容部3の間には、両収容部2、3に収容した試験体のひずみ等に伴う応力や、装置の移動時、力学特性用の試験体の取り出し時等に作用する外力を吸収し、各収容部2、3に養生した試験体に外力が作用することを防止するための緩衝層17が設けられている。
Further, between the thermal property test
ここで、本実施形態の断熱本体部1の上蓋部4及び前面蓋部8はそれぞれ着脱可能(取り外し可能)とされている。
Here, the
上蓋部4を取り外すことによって熱特性用試験体養生部10と左右の力学特性用試験体養生部15を上方に開放できる。また、前面蓋部8は、熱特性試験体収容部2と、力学特性試験体収容部3の各ユニット16と前後に重なる対応部分がそれぞれ個別に取り外し可能に分割形成され、収容空間H内の熱特性試験体収容部2と、力学特性試験体収容部3の各ユニット16をそれぞれ個別に前方に開放できるように構成されている。
By removing the
図7(及び図1から図6)に示すように、熱特性試験体収容部2と、力学特性試験体収容部3の各ユニット16とをそれぞれ、収容空間Hに対して引出し/収容するためのスライド機構18が設けられている。
As shown in FIG. 7 (and FIGS. 1 to 6), each
スライド機構18は、熱特性試験体収容部2、力学特性試験体収容部3の各ユニット16と下蓋部5との間や、熱特性試験体収容部2と力学特性試験体収容部3のユニット16の間などに介設されるガイド板やガイドレールなどのガイド手段19と、ガイド手段19に一体に設けられたポリテトラフルオロエチレン製のテープ(テフロンテープ/テフロン:登録商標)などの滑動手段20とを備えて構成されている。
The
また、本実施形態では、滑動手段20(及びガイド手段19)が前後方向に延び、左右の幅方向に所定の間隔をあけて複数設けられ、これら滑動手段20及びガイド手段19に支持/案内されて、熱特性試験体収容部2と力学特性試験体収容部3の各ユニット16とが、それぞれ個別に前後方向に進退可能(スライド移動可能/装置内部から引出し可能)に具備されている。
Further, in the present embodiment, the sliding means 20 (and the guiding means 19) extend in the front-rear direction, and a plurality of sliding means 20 (and the guiding means 19) are provided at predetermined intervals in the left and right width directions, and are supported / guided by the sliding
図1から図7に示すように、熱特性試験体収容部2と力学特性試験体収容部3の各ユニット16の前面には、熱特性試験体収容部2、力学特性試験体収容部3の各ユニット16をそれぞれ、前後方向に進退させる際に使用する取っ手21が取り付けられている。
As shown in FIGS. 1 to 7, on the front surface of each
上記構成からなる本実施形態の断熱試験用装置Aにおいては、断熱部1の上蓋部4が取り外し可能であるため、上蓋部4を取り外し、熱特性試験体収容部2の熱特性用試験体養生部10に、試験対象のコンクリートを打設し、熱特性用試験体を成形、セットすることができる。これにより、φ300mm×h6000mmで大重量の熱特性用試験体を外部から熱特性試験体収容部2に搬送する必要がなく、容易に熱特性用の試験体をセットすることができる。
In the heat insulating test apparatus A of the present embodiment having the above configuration, since the
断熱本体部1の分割形成された前面蓋部8がそれぞれ取り外し可能で、且つ、熱特性試験体収容部2と力学特性試験体収容部3の各ユニット16がそれぞれスライド機構18によって引出可能であるため、前面蓋部8を取り外して熱特性試験体収容部2や力学特性試験体収容部3の各ユニット16を引き出すことができる。また、必要に応じて取り外すこともできる。これにより、試験対象のコンクリートを容易に打設して試験体を成形することができる。
The separately formed
さらに、コンクリートを打設した後の各ユニット16をスライド機構18でスライドさせて収容空間Hに戻すことができる。これにより、容易に力学特性用試験体をセットすることが可能になる。
Further, each
熱特性用試験体と力学特性用試験体をセットし、前面蓋部8と上蓋部4を取り付けることにより、収容空間H内の熱特性用試験体と力学特性用試験体を断熱状態で養生することができる。これにより、経時的(経日的)に、熱特性用試験体の温度やひずみを温度計測手段やひずみ計測手段で計測することにより、断熱温度上昇量を得ることができ、ひび割れ照査の温度解析の断熱温度上昇量を精度よく設定することが可能になる。
By setting the thermal characteristic test piece and the mechanical property test piece and attaching the
また、本実施形態の断熱試験用装置Aにおいては、例えば、図1及び図2に示すように、装置全体の大きさが幅1520mm×奥行900mm×高さ900mm、熱特性試験体収容部2の大きさが幅465mm×奥行465mm×高さ585mmであり、この小さなサイズの装置Aによって、3000mm×3000mm×3000mmの大きさのコンクリートの断熱状態、温度履歴を再現できる。
Further, in the adiabatic test apparatus A of the present embodiment, for example, as shown in FIGS. 1 and 2, the size of the entire apparatus is
これにより、本実施形態の断熱試験用装置Aによれば、非常にコンパクトで現場での取扱性に優れた装置でありながら、精度よく(信頼性が高い)断熱温度上昇量を求めることが可能になる。 As a result, according to the heat insulation test device A of the present embodiment, it is possible to accurately (highly reliable) determine the amount of heat insulation temperature rise while the device is extremely compact and has excellent on-site handling. become.
一方、本実施形態の断熱試験用装置Aにおいては、断熱温度上昇の試験を行うとともに、例えば、材齢3日、材齢7日、材齢14日、材齢28日の所定の材齢に達した段階で力学特性試験体収容部3から力学試験用の試験体を取り出し、圧縮強度試験などの力学試験を実施できる。
On the other hand, in the adiabatic test apparatus A of the present embodiment, the adiabatic temperature rise test is performed, and for example, the material age is 3 days, the material age is 7 days, the material age is 14 days, and the material age is 28 days. When the test piece is reached, the test piece for the mechanical test can be taken out from the mechanical property test
よって、本実施形態の断熱試験用装置Aにおいては、これらの力学試験用の試験体が断熱本体部1や断熱部11、さらに断熱脱離層12によってセメントの水和熱の放熱を抑えた断熱状態で養生されるため、温度履歴に応じた力学特性を把握し、評価することが可能になる。
Therefore, in the adiabatic test apparatus A of the present embodiment, these test pieces for the mechanical test are adiabatic by suppressing the heat dissipation of the hydration heat of the cement by the adiabatic
また、前面蓋部8が分割形成され、力学特性試験体収容部3の各ユニット16と前後に重なる対応部分の前面蓋部8をそれぞれ個別に取り外しできるため、材齢ごとに試験に供する3本の試験体を収容したユニット16を取り出す部分だけ、前面蓋部8を外し、スライド機構18によってユニット16を前方に引き出して3本の試験体を取り出すことができる。
Further, since the
このように分割形成した前面蓋部8の対称部分を外し、ユニット16をスライド移動させ、試験に供する試験体を取り出すことができることにより、試験体の取出しに伴う収容空間H内の温度変化(放熱)を防止でき、すなわち、他の試験体の断熱状態を損なうことがなく、好適に試験体を断熱状態で養生することが可能になる。
By removing the symmetrical portion of the
また、3本の試験体を取り出した後に、スライド機構18で収容空間H内にユニット16を戻し、前面蓋部8を元に戻して取り付けることで、他の試験体の断熱状態を継続して保持できる。
Further, after taking out the three test pieces, the
これにより、本実施形態の断熱試験用装置Aにおいては、収容空間H内の温度を確実に保ちつつ、温度履歴に応じた力学特性を把握し、評価することが可能になる。 As a result, in the adiabatic test apparatus A of the present embodiment, it is possible to grasp and evaluate the mechanical characteristics according to the temperature history while reliably maintaining the temperature in the accommodation space H.
したがって、本実施形態の断熱試験用装置Aによれば、精度よく、信頼性の高い断熱温度特性、断熱力学特性の試験を実施できる。また、取扱性に優れた装置を実現、提供することが可能になる。 Therefore, according to the adiabatic test apparatus A of the present embodiment, it is possible to carry out the test of the adiabatic temperature characteristic and the adiabatic mechanical characteristic with high accuracy and reliability. In addition, it becomes possible to realize and provide a device having excellent handleability.
さらに、本実施形態の断熱試験用装置Aにおいては、力学特性試験体収容部3と熱特性試験体収容部2の間に緩衝層17が設けられていることにより、両収容部2、3に収容した試験体のひずみ等に伴う応力や、装置Aの移動時、力学特性用の試験体の取り出し時等に作用する外力を緩衝層17で吸収できる。これにより、さらに精度よく熱特性、力学特性を把握することが可能になる。
Further, in the adiabatic test apparatus A of the present embodiment, since the
ここで、従来の断熱試験用装置は勿論、本発明に係る断熱試験用装置Aであっても、放熱によって完全な断熱状態を保持することは難しく、簡易物性試験時の装置内部(断熱容器中央部)の温度履歴が図8に示すようになる。 Here, it is difficult to maintain a complete heat insulating state by heat dissipation even in the heat insulating test device A according to the present invention as well as the conventional heat insulating test device, and the inside of the device at the time of the simple physical property test (center of the heat insulating container). The temperature history of the part) is shown in FIG.
このため、本実施形態の断熱試験用装置Aで測定した温度履歴にフィッティングするように熱特性値(断熱温度上昇式、熱伝導率、比熱、表面熱伝達率)を補正する必要がある。 Therefore, it is necessary to correct the thermal characteristic values (adiabatic temperature rise type, thermal conductivity, specific heat, surface heat transfer coefficient) so as to fit the temperature history measured by the adiabatic test apparatus A of the present embodiment.
この補正を行うにあたり、まず、熱特性値のコンクリート及び断熱材の熱伝導率と比熱に関しては使用材料などでほとんど変化しないこと、表面熱伝達率も特殊な養生などを施さない限り外気温が変化に大きな影響を受けないことが確認されており、ほぼ一定とみなすことができる。 In making this correction, first, the thermal conductivity and specific heat of concrete and heat insulating materials, which have thermal characteristics, hardly change depending on the materials used, and the surface heat transfer coefficient also changes unless special curing is applied. It has been confirmed that it is not significantly affected by the heat, and it can be regarded as almost constant.
このため、本実施形態では、使用材料、配調合によって変化する断熱温度上昇式に着目することとし、この断熱温度上昇式を温度履歴にフィッティングさせて最適化する。
この最適化方法を以下に示す。
Therefore, in this embodiment, we focus on the adiabatic temperature rise formula that changes depending on the materials used and the composition, and optimize this adiabatic temperature rise formula by fitting it to the temperature history.
This optimization method is shown below.
コンクリートの断熱温度上昇式(時間依存性を考慮した水和発熱モデル)は、対象とするコンクリートが周囲から全く放熱されない状態に置かれた場合、自己発熱による最高温度量まで上昇し、その際の上昇速度を近似的に与えたものであり、一般に、下記の式(1)で表したものが知られている。なお、Q∞は終局断熱温度上昇量(℃)、γ,βは上昇速度に関する無次元定数、tは材齢(日)である。 In the concrete heat insulation temperature rise type (hydration heat generation model considering time dependence), when the target concrete is placed in a state where it does not dissipate heat from the surroundings at all, it rises to the maximum temperature due to self-heat generation, and at that time The ascending speed is given approximately, and generally, the one expressed by the following equation (1) is known. Q ∞ is the ultimate adiabatic temperature rise (° C), γ and β are dimensionless constants related to the rate of rise, and t is the age (day).
式(1)から、断熱温度上昇量は材齢tによって決まり、対象位置でのコンクリート温度には関係しないことが分かる。但し、終局断熱温度上昇量及び上昇速度に関する定数は打込み温度、単位セメント量及びセメントの種別によって変化する。 From equation (1), it can be seen that the amount of increase in heat insulation temperature is determined by the age of the material t and is not related to the concrete temperature at the target position. However, the constants relating to the amount and rate of increase in the ultimate adiabatic temperature vary depending on the driving temperature, the unit cement amount, and the type of cement.
したがって、断熱温度上昇式を最適化するためには、単位セメント量、セメントの種別及び時間変化に対し、終局断熱温度上昇量、上昇速度に関する定数γ及びβの3つの変数を定める必要がある。また、これら3つの変数は、相互作用があることからそれを考慮して最適化する必要がある。 Therefore, in order to optimize the adiabatic temperature rise equation, it is necessary to determine three variables of the unit cement amount, the cement type and the time change, the ultimate adiabatic temperature rise amount, and the constants γ and β regarding the rise rate. In addition, since these three variables interact with each other, it is necessary to optimize them in consideration of them.
これを踏まえ、本実施形態では、上記の3つの変数を同定するために粒子群最適化手法(PSO:Particle Swarm Optimization)を用いる。 Based on this, in this embodiment, a particle swarm optimization method (PSO) is used to identify the above three variables.
PSOは、多次元空間を多数の粒子が移動し、目的関数の最適値解取得のための探索アルゴリズムである。PSOの特徴は、従来の他の最適化手法に比べて素早く解を求めることができ、目的関数の微分情報を必要とせず連続系の問題に適用可能であり、さらに、複数のパラメータを取り扱える点などが挙げられる。 PSO is a search algorithm for obtaining the optimum value solution of an objective function by moving a large number of particles in a multidimensional space. The feature of PSO is that it can find a solution more quickly than other conventional optimization methods, it can be applied to continuous problems without the need for differential information of the objective function, and it can handle multiple parameters. And so on.
そして、PSOは下記の式(2)、式(3)で最適化することができる。
νi
t及びνi
t+1は粒子iのステップk及びk+1における速度ベクトル、wは慣性係数、c1及びc2は認知的(各粒子の経験に重みを置いた場合)及び社会的(群の経験に重みを置いた場合)パラメータ、r1及びr2は0~1の間での一様乱数、χi
t及びχi
t+1は粒子iのステップk及びk+1における位置ベクトル、gbestはステップkにおいて目的関数が最良となる位置情報、pbestiは粒子iがステップkにおいて最良となる位置情報、△tは時間増分である。
Then, the PSO can be optimized by the following equations (2) and (3).
ν it and ν it + 1 are velocity vectors in steps k and k + 1 of the particle i , w is the inertial coefficient, c 1 and c 2 are cognitive (when weighting the experience of each particle) and social (of the group). (When weighted by experience) Parameters, r 1 and r 2 are uniform random numbers between 0 and 1, χ it and χ it + 1 are position vectors in steps k and k + 1 of the particle i , gbest is step k. Where the objective function is the best position information, pbest i is the position information where the particle i is the best in step k, and Δt is the time increment.
PSOでは、各粒子に対し、過去(前ステップまで)に移動してきた軌跡の中で最良位置(pbest:Personal best position)での評価値との比較を行い、現在の評価値が過去の評価値によりも良い位置にいる場合には、現在の評価値をpbestとする。また、pbestが更新された場合には、粒子群全体におけるこれまでの最良位置(gbest:Global best position)での評価値との比較を行い、現在の評価値がこれまでの評価値よりも良い位置であれば、現在の評価値をgbestとする。 In PSO, each particle is compared with the evaluation value at the best position (pbest: Personal best position) in the trajectory that has moved to the past (up to the previous step), and the current evaluation value is the past evaluation value. If it is in a better position, the current evaluation value is set as pbest. In addition, when the pbest is updated, a comparison is made with the evaluation value at the best position (gbest: Global best position) so far in the entire particle group, and the current evaluation value is better than the previous evaluation value. If it is a position, the current evaluation value is gvest.
具体的に、PSOによる検討手順を図9に示す。 Specifically, FIG. 9 shows the examination procedure by PSO.
図9に示すように、まず、Step1でn次元(本実施形態では終局断熱温度上昇量、上昇速度に関する定数γ及びβの3つの変数であることから3次元)の解空間内において粒子の初期位置及び初期速度を任意に設定する。
As shown in FIG. 9, first, in
例えば、使用セメント及び単位セメント量、打込み温度から、公益社団法人日本コンクリート工学会による「マスコンクリートひび割れ制御指針(2016)」に示されている断熱温度上昇式の算定式を用いるなどして粒子の初期位置及び初期速度を設定する。 For example, from the cement used, the amount of unit cement, and the driving temperature, the calculation formula of the adiabatic temperature rise formula shown in the "Mass Concrete Crack Control Guideline (2016)" by the Japan Concrete Engineering Association is used. Set the initial position and initial speed.
Step2で、例えば、式(4)に示すように対象位置での温度計測値(時間ステップ数n)と解析値の残差平方和を最小(閾値を設け、それよりも小さくなった場合)、もしくは設定している最大計算ステップ数に達した場合に終了とする(各変数の算定)。
In
Step3で、各粒子でStep4~Step8を繰り返し、変数の最適化を行う。 In Step3, Step4 to Step8 are repeated for each particle to optimize the variables.
Step4で、温度計測結果と比較するための温度解析(設定した終局断熱温度上昇量、上昇速度に関する定数γ及びβを用いる)を実施する。前述したように、その他の熱特性値は定数として扱う。
In
Step5で、各粒子の最良位置pbestの更新と保存を行う。
In
Step6で、粒子群の最良位置gbestの更新と保存を行う。
In
Step7で、現ステップkでの最良位置を基に、次ステップでの各粒子の速度ベクトルについて、前記の式(2)を用いて算定する。但し、各粒子の速度には予め制限値vmaxを設定しておき、式(2)で求められた速度がvmaxを超えた場合には次ステップでの速度ベクトルとしてvmaxを用いることとする。
In
Step8で、前記の式(3)を用いて各粒子の位置を算定する。
In
温度解析自体は、例えば、JCMAC3やASTEA-MACS等の市販の温度解析ソフトを用いて行えばよい。 The temperature analysis itself may be performed using, for example, commercially available temperature analysis software such as JCMAC3 or ASTEA-MACS.
このとき、同一断熱容器、同一断熱材を用いることから、事前にメッシュレイアウトを設定しておけば、モデル作成などの手間が省ける。また、上述したように対象とする断熱温度上昇式の3つの変数以外も同一材料、同一条件であれば、事前に固定値(定数)として設定しておくことにより、入力の手間を省くことができる。 At this time, since the same heat insulating container and the same heat insulating material are used, if the mesh layout is set in advance, the trouble of creating a model can be saved. In addition, as described above, if the materials and conditions are the same except for the three variables of the target heat insulation temperature rise formula, it is possible to save the trouble of input by setting them as fixed values (constants) in advance. can.
よって、Step4で実施する温度解析は、初期値として評価対象とする位置での温度計測値、外気温、公益社団法人日本コンクリート工学会による「マスコンクリートひび割れ制御指針(2016)」などに示されている断熱温度上昇式の算定式から算定した終局断熱温度上昇量、上昇速度に関する定数γ及びβのみとなる。
Therefore, the temperature analysis carried out in
そして、本実施形態においては、例えば、Visual Basicのような簡単なプログラムを用い、入力画面にセメントの種別、単位セメント量、打込み温度、計測結果をCSVで貼り付けられるような参照ファイル入力窓を作成し、そこに入力さえすればプログラム内部でPSOによる最適化と温度解析へのリンケージを自動で実施できるようにしておく。また、閾値の設定及び最大計算数はデフォルトを用意しておき、ユーザによってカスタマイズできるようにしておく。 Then, in the present embodiment, for example, using a simple program such as Visual Basic, a reference file input window is provided on the input screen so that the cement type, unit cement amount, driving temperature, and measurement result can be pasted in CSV. If you create it and input it there, you can automatically perform optimization by PSO and linkage to temperature analysis inside the program. In addition, defaults are prepared for the threshold setting and the maximum number of calculations so that the user can customize them.
出力として、最適化された終局断熱温度上昇量、上昇速度に関する定数γ及びβの値と計測値と最適化した時の温度履歴の比較した図、及び断熱温度上昇の履歴の図が示されるようにする。 As an output, a diagram comparing the optimized ultimate adiabatic temperature rise amount, the values of constants γ and β related to the rise rate and the measured value and the temperature history at the time of optimization, and a diagram of the history of the adiabatic temperature rise are shown. To.
以上、本発明に係る断熱試験用装置の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Although the embodiment of the heat insulating test apparatus according to the present invention has been described above, the present invention is not limited to the above-mentioned embodiment and can be appropriately modified without departing from the spirit of the present invention.
例えば、本実施形態では、硬化時発熱材料がコンクリート(セメント系材料)であるものとして説明を行ったが、前述の通り、本発明に係る硬化時発熱材料はモルタルやセメントペースト、樹脂など、経時的に硬化が進行し、硬化時に発熱現象が生じるあらゆる材料の熱特性、力学特性の簡易試験に本発明に係る断熱試験用装置を用いることが可能である。 For example, in the present embodiment, it has been described that the heat generating material during curing is concrete (cement-based material), but as described above, the heat generating material during curing according to the present invention is mortar, cement paste, resin, or the like over time. It is possible to use the adiabatic test apparatus according to the present invention for a simple test of thermal properties and mechanical properties of any material in which curing progresses and heat generation occurs during curing.
また、本実施形態では、熱特性試験体収容部2を挟んで左右の対称位置に力学特性試験体収容部3が設けられているものとしたが、必ずしも熱特性試験体収容部2と力学特性試験体収容部3の相対位置を本実施形態のように限定しなくてもよい。例えば、平面視で、熱特性用試験体養生部10を中心とし、複数の力学特性用試験体養生部15を周方向に等間隔で配置するなどしてもよい。
Further, in the present embodiment, it is assumed that the mechanical property test
さらに、本実施形態では、力学特性試験体収容部3に24個の力学特性用試験体養生部15が設けられているものとしたが、力学特性用試験体養生部15の数を限定する必要はない。また、力学特性試験体収容部3における力学特性用試験体養生部15の配置も限定する必要はない。
Further, in the present embodiment, it is assumed that the mechanical property test
1 断熱本体部
2 熱特性試験体収容部
3 力学特性試験体収容部
4 上蓋部
5 下蓋部
6 右側側面蓋部
7 左側側面蓋部
8 前面蓋部
9 背面蓋部
10 熱特性用試験体養生部
11 断熱部(熱特性用試験体側断熱部、力学特性用試験体側断熱部)
12 断熱脱離層
15 力学特性用試験体養生部
16 ユニット(養生ボックス)
17 緩衝層
18 スライド機構
19 ガイド手段
20 滑動手段
21 取っ手
A 断熱試験用装置
H 収容空間
1 Insulation
12
17
Claims (5)
内部に収容空間を形成しつつ該収容空間を外部から隔離する断熱本体部と、
前記収容空間内に設けられ、硬化時発熱材料の熱特性試験用の試験体を収容する熱特性試験体収容部と、
前記収容空間内に設けられ、硬化時熱発熱材料の力学特性試験用の試験体を収容する力学特性試験体収容部とを備えるとともに、
前記熱特性試験体収容部は、熱特性用の試験体を養生する熱特性用試験体養生部と、前記熱特性用試験体養生部と前記断熱本体部の間に設けられた熱特性用試験体側断熱部とを備え、
前記力学特性試験体収容部は、力学特性用の試験体を養生する力学特性用試験体養生部と、前記力学特性用試験体養生部と前記断熱本体部の間に設けられた力学特性用試験体側断熱部とを備え、
前記熱特性試験体収容部と前記力学特性試験体収容部を前後方向に進退させるスライド機構を備え、
前記熱特性試験体収容部と前記力学特性試験体収容部がそれぞれ個別に前方に引出し可能に構成され、
且つ、前記熱特性用試験体側断熱部と前記熱特性試験用の試験体の間、及び前記力学特性用試験体側断熱部と前記力学特性試験用の試験体の間にそれぞれ、前記試験体を所定の形状に保つ成形性能と、断熱性能と、前記試験体を脱離させる剥離性能とを有する断熱脱離層が設けられており、
前記熱特性試験用の試験体、及び前記力学特性試験用の試験体を、前記収容空間内に同時に収容し、断熱状態で養生する、硬化時発熱材料の断熱試験用装置。 It is an adiabatic test device for grasping the mechanical properties of the material after reproducing the adiabatic temperature characteristics and the adiabatic state of the material that generates heat during curing.
Insulation main body that isolates the accommodation space from the outside while forming the accommodation space inside,
A thermal property test specimen accommodating portion provided in the accommodating space and accommodating a test specimen for a thermal property test of a material that generates heat during curing,
It is provided in the accommodation space and is provided with a mechanical property test body accommodating portion for accommodating a test body for a mechanical property test of a heat-generating material at the time of curing.
The thermal characteristic test body accommodating portion includes a thermal characteristic test body curing section for curing the thermal characteristic test body, and a thermal characteristic test provided between the thermal characteristic test body curing section and the heat insulating body portion. Equipped with a body side insulation
The mechanics property test body accommodating part is a mechanics property test body curing part that cures the mechanics property test body, and a mechanics property test provided between the mechanics property test body curing part and the heat insulating body part. Equipped with a body-side insulation part ,
A slide mechanism for advancing and retreating the thermal property test body accommodating portion and the mechanical property test object accommodating portion in the front-rear direction is provided.
The thermal property test body housing unit and the mechanical property test body housing unit are individually configured to be able to be pulled forward.
Further, the test piece is designated between the heat insulating portion on the test piece side for thermal characteristics and the test piece for the thermal property test, and between the heat insulating part on the test piece side for mechanical properties and the test piece for the mechanical property test, respectively. A heat insulating and desorbing layer having a molding performance of maintaining the shape of the above, a heat insulating performance, and a peeling performance of desorbing the test piece is provided.
A device for heat insulation test of a heat-generating material during curing, in which the test body for thermal property test and the test body for mechanical property test are simultaneously housed in the storage space and cured in a heat insulating state.
The heat insulating body portion arranged in front of the thermal property test body accommodating portion and the heat insulating main body portion arranged in front of the mechanical property test body accommodating portion are individually and detachably formed separately. The device for heat insulation test of a heat generating material at the time of curing according to claim 1 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017205206A JP7076696B2 (en) | 2017-10-24 | 2017-10-24 | Insulation test equipment for heat-generating materials during curing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017205206A JP7076696B2 (en) | 2017-10-24 | 2017-10-24 | Insulation test equipment for heat-generating materials during curing |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019078614A JP2019078614A (en) | 2019-05-23 |
JP7076696B2 true JP7076696B2 (en) | 2022-05-30 |
Family
ID=66628358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017205206A Active JP7076696B2 (en) | 2017-10-24 | 2017-10-24 | Insulation test equipment for heat-generating materials during curing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7076696B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116026884B (en) * | 2023-03-29 | 2023-07-18 | 山东美生热能科技有限公司 | High-temperature high-pressure integral testing system for heat-insulating oil casing based on data analysis |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004294141A (en) | 2003-03-26 | 2004-10-21 | Taisei Corp | Method for managing strength of high-strength concrete structure |
JP2014163770A (en) | 2013-02-25 | 2014-09-08 | Kajima Corp | Linear expansion coefficient test method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2775235B2 (en) * | 1994-11-29 | 1998-07-16 | 勝村建設株式会社 | Method and apparatus for producing specimen of structural concrete |
JP3408072B2 (en) * | 1996-07-31 | 2003-05-19 | 株式会社熊谷組 | Resin concrete and resin mortar |
JP2008089395A (en) * | 2006-10-02 | 2008-04-17 | Honda Instrument Service Co Ltd | Photocatalyst meter, optical power measuring method and sensor head used therein |
-
2017
- 2017-10-24 JP JP2017205206A patent/JP7076696B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004294141A (en) | 2003-03-26 | 2004-10-21 | Taisei Corp | Method for managing strength of high-strength concrete structure |
JP2014163770A (en) | 2013-02-25 | 2014-09-08 | Kajima Corp | Linear expansion coefficient test method |
Also Published As
Publication number | Publication date |
---|---|
JP2019078614A (en) | 2019-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Oliver et al. | Reduced order modeling strategies for computational multiscale fracture | |
Xiang et al. | Prediction of the fatigue life of natural rubber composites by artificial neural network approaches | |
Mirzaeifar et al. | On superelastic bending of shape memory alloy beams | |
JP7076696B2 (en) | Insulation test equipment for heat-generating materials during curing | |
JP6118129B2 (en) | Linear expansion coefficient test method | |
SA519410151B1 (en) | Determining Rock Properties | |
Swiler et al. | Calibration of a fuel relocation model in BISON | |
CN110658079B (en) | Indoor characterization method of asphalt surface layer under multiple environment gradient coupling | |
JP6363392B2 (en) | Method for estimating compressive strength of concrete | |
Al-Bukhaiti et al. | Effect of the axial load on the dynamic response of the wrapped CFRP reinforced concrete column under the asymmetrical lateral impact load | |
Zhang et al. | Rubber curing process simulation based on parabola model | |
Veerababu et al. | Cyclic viscoplastic analysis for steam generator material of Indian fast breeder reactor | |
JP2007309704A (en) | Numerical analytical method, analyzer, and program for lead material | |
Brandt et al. | FE‐Simulation of compaction and solid‐state sintering of cemented carbides | |
Suiker et al. | Crystalline damage growth during martensitic phase transformations | |
JP2009259043A (en) | Simulation method for rubber material | |
Novaes et al. | Calibration of Simulation for Soft Manipulators: A Case Study | |
Maiti et al. | Modeling the mechanical and aging properties of silicone rubber and foam-stockpile-historical & additively manufactured materials | |
Hossain et al. | Finite element validation of the over-coring deep-hole drilling technique | |
Mase | T. Mase and AM Kersten,” Experimental evaluation of a 3-D hyperelastic, rate-dependent golf ball constitutive model,” The Engineering of Sport 5-Conference Proceedings of, Vol. 2, pp. 238-244, 2004 | |
Saklani | Implementation of a Coupled Creep Damage Model in Moose Finite Element Framework: Application to Irradiated Concrete Structures | |
Barroso-Medina et al. | Design and development of a sensorized hammerstone for accurate force measurement in stone knapping experiments | |
Poquillon et al. | Mode II creep crack initiation in 316 LN stainless steel: experiments and modelling | |
Neimitz et al. | Approximation of strain-stress curves in front of a crack in a non-linear material | |
Jernberg | Cleavage fracture toughness at varying specimen size and crack depth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171124 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210810 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211026 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220502 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7076696 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |