JP6117320B2 - Non-curing thermal expansion putty composition - Google Patents

Non-curing thermal expansion putty composition Download PDF

Info

Publication number
JP6117320B2
JP6117320B2 JP2015226115A JP2015226115A JP6117320B2 JP 6117320 B2 JP6117320 B2 JP 6117320B2 JP 2015226115 A JP2015226115 A JP 2015226115A JP 2015226115 A JP2015226115 A JP 2015226115A JP 6117320 B2 JP6117320 B2 JP 6117320B2
Authority
JP
Japan
Prior art keywords
putty composition
expandable
resin
curable
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015226115A
Other languages
Japanese (ja)
Other versions
JP2016117882A (en
JP2016117882A5 (en
Inventor
将太 光宗
将太 光宗
英順 用瀬
英順 用瀬
栄治 三木
栄治 三木
鈴木 裕
裕 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Techno Material Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Techno Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Techno Material Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JP2016117882A publication Critical patent/JP2016117882A/en
Publication of JP2016117882A5 publication Critical patent/JP2016117882A5/ja
Application granted granted Critical
Publication of JP6117320B2 publication Critical patent/JP6117320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、主に建築物(建物や船舶等)における防火壁や床等に設けられた電線やケーブル・配管等の貫通孔の閉塞材として有用な非硬化型熱膨張性パテ組成物に関する。   The present invention relates to a non-curing thermal expansion putty composition that is useful as a plugging material for through holes such as electric wires, cables, and piping provided on fire walls and floors in buildings (buildings, ships, etc.).

建物や船舶などの建造物では、各設備・各部屋を画分する壁や床などの防火区画体に貫通孔(それらは設備や部屋などの隅や角に設けることが多い)を穿設し、この貫通孔に空調設備の配管や各種電線ケーブル等の各種貫通物が挿通される。しかしながら、ある区画で火災が発生すると、その熱や炎により貫通物を構成する発泡断熱材、被覆材、樹脂パイプ等の可燃性樹脂が燃焼、溶融して焼失し、その結果貫通孔に空隙が生じ、これが炎道となって隣室へ延焼が進んでしまう。   In buildings such as buildings and ships, through holes (which are often provided in the corners and corners of facilities and rooms) are made in fire-proof compartments such as walls and floors that divide each facility and room. Various penetrations such as piping of air conditioning equipment and various electric cables are inserted through the through holes. However, when a fire breaks out in a certain section, the heat and flame cause the combustible resin such as the foam insulation, covering material, and resin pipe composing the penetrating material to burn, melt and burn out, resulting in voids in the through holes. It becomes a flame path and spreads to the next room.

貫通孔に対する防火措置としては、耐火性又は不燃性のパテ、あるいはこのパテと難燃性・不燃性の材料とを組み合わせたものを開口内に充填し、間隙を閉塞することが行われる。前述の通り火災時には、炎と熱で貫通物を構成する可燃性樹脂が燃焼、溶融し、空隙が生じる。したがって、火災時の熱によって膨張し、生じた空隙を閉塞することができる熱膨張性のパテが、提案されている(例えば特許文献1、特許文献2)。   As a fire prevention measure for the through-hole, filling the opening with a fire-resistant or non-flammable putty or a combination of this putty and a flame-retardant / non-flammable material is performed to close the gap. As described above, in the case of a fire, the combustible resin composing the penetrating material is burned and melted by flame and heat, and voids are generated. Therefore, a heat-expandable putty that expands due to heat at the time of fire and can close the generated gap has been proposed (for example, Patent Document 1 and Patent Document 2).

熱膨張性パテの熱膨張性材料としては、熱膨張性黒鉛(以下、「膨張性黒鉛」ともいう。)が汎用されている。膨張性黒鉛は、層間に存在する化合物が火災時の熱によって熱分解し、生じた分解ガスの圧力で、各層の間が押し広げられて膨張する。   As a heat-expandable material for the heat-expandable putty, heat-expandable graphite (hereinafter also referred to as “expandable graphite”) is widely used. In the expandable graphite, a compound existing between layers is thermally decomposed by heat at the time of fire, and the pressure between the generated decomposition gases expands and expands between the layers.

特開昭55−118987号公報Japanese Patent Laid-Open No. 55-118987 特開2011−036290号公報JP 2011-036290 A

しかしながら、熱膨性黒鉛を含むパテの製造では、材料を十分に均一分散させるために高粘度の混合物を長時間加圧して混練することが欠かせない。この工程では高いせん断応力等がかかるために、膨張性黒鉛が潰れて破壊されてしまい、膨張倍率が低下してしまう。この膨張性黒鉛の破壊は、混練時間を短縮することによりある程度軽減することができる。しかし、混練時間の短縮は、材料の分散不均一性を招きやすく、パテ製品の品質低下に繋がる。
したがって、十分な混練時間を確保した上で、耐火性能上十分なパテの膨張倍率を実現するためには、材料物性から導かれる理論値以上の多量の膨張性黒鉛を配合するか、あるいは施工に使用するパテの使用量を増やす必要がある。しかし、多量の膨張性黒鉛を配合すると混練時のせん断応力の上昇を招きコストが高くなり、しかも所望の物性のパテに調製するのが困難となる。
また、近年、建物や船舶などの建造物の高層化が進んでいる。従来の耐火パテは比重が高いものが多く、パテの使用量を増やすことは作業者が搬送する材料の重量を増やすことになり、搬送と施工に多大な労力を要することになる。
However, in the production of putty containing heat-expandable graphite, it is indispensable to press and knead a high-viscosity mixture for a long time in order to sufficiently disperse the material sufficiently. In this process, since high shear stress is applied, the expandable graphite is crushed and destroyed, and the expansion ratio is lowered. The destruction of the expandable graphite can be reduced to some extent by shortening the kneading time. However, shortening the kneading time tends to cause non-uniform dispersion of the material, leading to a reduction in the quality of putty products.
Therefore, in order to achieve sufficient putty expansion ratio for fire resistance while ensuring sufficient kneading time, a large amount of expansive graphite exceeding the theoretical value derived from material properties is blended, or in construction. It is necessary to increase the amount of putty used. However, when a large amount of expansive graphite is blended, the shear stress during kneading is increased and the cost is increased, and it becomes difficult to prepare a putty having desired physical properties.
In recent years, buildings such as buildings and ships are becoming higher-rise. Conventional fire-resistant putty often has a high specific gravity. Increasing the amount of putty used increases the weight of the material transported by the operator, and requires a lot of labor for transport and construction.

熱膨張性パテが十分な性能を発揮するためには、施工対象に対してパテが適切な形で施工される必要がある。従来は施工時に開口部の隙間などに小さくちぎって充填する施工方法が多かった。しかし近年では施工を簡易にするため、パテを薄いシート状やテープ状に延伸して成型したものを施工対象に巻きつけたり貼り付けたりする工法が増えてきている。しかし、従来のパテは、かかる工法に適用するには強度が十分でなく、施工の際に破断したりパテ内部に空隙が生じたり、パテの一体性がくずれてささくれが生じたりしやすいものであった。それ故、シート状やテープ状に成形した際の強度を高めるには厚みを厚くする必要があり、パテの適用形態には制限があった。   In order for the heat-expandable putty to exhibit sufficient performance, the putty needs to be constructed in an appropriate form for the construction object. In the past, there were many construction methods in which the gaps between the openings were broken into small pieces during construction. However, in recent years, in order to simplify the construction, there is an increasing number of construction methods in which a putty is stretched into a thin sheet or tape to be molded and wound around or pasted on a construction object. However, conventional putty is not strong enough to be applied to such a construction method, and it is easy to break during construction, to create voids inside the putty, or to lose the integrity of the putty and to cause crusting. there were. Therefore, it is necessary to increase the thickness in order to increase the strength when it is formed into a sheet shape or a tape shape, and there is a limit to the putty application form.

本発明は、前述した問題点に鑑みてなされたもので、熱膨張倍率が高く耐火性能(空隙封鎖性能)に優れ、熱膨張後の型崩れも生じにくく耐火性能の持続性にも優れ、且つ、軽量で搬送性に優れ、さらに施工性も良好な非硬化型熱膨張性パテ組成物を提供することを課題とする。すなわち本発明は、防火性に必要な諸性能(熱膨張倍率が高く空隙封鎖性能に優れ、熱膨張後の型崩れも生じにくく耐火性能の持続性にも優れる)を備え、且つ、軽量で搬送性に優れ、さらにシート状ないしテープ状に成形した際にも十分な強度を有し破断や空隙を生じにくく、所望の形状に自由に成形することができる非硬化型熱膨張性パテ組成物を提供することを課題とする。   The present invention has been made in view of the above-mentioned problems, has a high thermal expansion ratio and is excellent in fire resistance (void sealing performance), hardly loses its shape after thermal expansion, and is excellent in sustainability of fire resistance, and It is an object of the present invention to provide a non-curing thermally expandable putty composition that is lightweight, excellent in transportability, and also has good workability. In other words, the present invention has various performances necessary for fire resistance (high thermal expansion ratio, excellent air gap sealing performance, hardly loses its shape after thermal expansion, and has excellent fire resistance durability), and is lightweight and transported. A non-curable heat-expandable putty composition that has excellent properties, has sufficient strength even when molded into a sheet or tape, is less prone to breakage and voids, and can be freely molded into a desired shape The issue is to provide.

本発明者らは、上記課題に鑑み鋭意検討を重ねた。その結果、膨張性黒鉛を配合した非硬化型熱膨張性パテ組成物の製造において、樹脂製マイクロバルーン(以下、単に「樹脂バルーン」ともいう。)を配合することにより、施工に適した柔らかさを付与することができること、加圧混練しても膨張性黒鉛が潰れにくくなり、熱膨張性を促進させ、得られるパテ組成物が優れた熱膨張倍率を示すこと、さらに熱膨張後の形状も良好に保持できることを見い出した。さらにこのパテ組成物は軽量で搬送性に優れ、且つ、グリーン強度が高く、シート状ないしテープ状を含む所望の形状に自由に成形可能な物性を有することを見い出した。
本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
The inventors of the present invention have made extensive studies in view of the above problems. As a result, in the production of a non-curable heat-expandable putty composition blended with expandable graphite, a softness suitable for construction can be obtained by blending a resin microballoon (hereinafter also simply referred to as “resin balloon”). That the expandable graphite is not easily crushed even under pressure kneading, promotes thermal expansion, and that the putty composition obtained exhibits an excellent thermal expansion ratio, and also has a shape after thermal expansion. It was found that it can be held well. Furthermore, it has been found that this putty composition is lightweight and excellent in transportability, has high green strength, and has physical properties that can be freely molded into a desired shape including a sheet shape or a tape shape.
The present invention has been further studied based on these findings and has been completed.

すなわち上記課題は以下の発明により解決された。
〔1〕
バインダー樹脂と、樹脂製マイクロバルーンと、膨張性黒鉛とを含有してなる非硬化型熱膨張性パテ組成物であって、
前記バインダー樹脂が、ポリブテン、ポリブタジエン、スチレンブタジエンゴム、ブチルゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、クロロプレンゴム、及びイソプレンゴムからなる群より選ばれる1種又は2種以上を含み、
前記非硬化型熱膨張性パテ組成物の硬さが10N以上50N以下、比重が0.5〜1.5、熱膨張倍率が4倍以上である、非硬化型熱膨張性パテ組成物。
〔2〕
前記非硬化型熱膨張性パテ組成物中、前記膨張性黒鉛の含有量に対する前記樹脂製マイクロバルーンの含有量の比(樹脂製マイクロバルーン/膨張性黒鉛)が、体積比で0.2〜14.0である、〔1〕に記載の非硬化型熱膨張性パテ組成物。
〔3〕
前記非硬化型熱膨張性パテ組成物中、前記樹脂製マイクロバルーンの含有量が3.0〜61.0体積%であり、前記膨張性黒鉛の含有量が3.0〜25.0体積%である、〔1〕又は〔2〕に記載の非硬化型熱膨張性パテ組成物。
〔4〕
前記非硬化型熱膨張性パテ組成物中、前記バインダー樹脂の含有量が15.0〜50.0質量%、前記樹脂製マイクロバルーンの含有量が0.4〜15.0質量%、前記膨張性黒鉛の含有量が5.0〜40.0質量%である、〔1〕〜〔3〕のいずれか1項に記載の非硬化型熱膨張性パテ組成物。
〔5〕
前記非硬化型熱膨張性パテ組成物中、無機充填剤の含有量が50質量%以下である、〔1〕〜〔4〕のいずれか1項に記載の非硬化型熱膨張性パテ組成物。
〔6〕
前記無機充填剤が、水酸化アルミニウム、水酸化マグネシウム、タルク、クレー、炭酸カルシウム、無機バルーン、酸化アルミニウム、酸化マグネシウム、及びシリカからなる群から選ばれる1種又は2種類以上である、〔5〕に記載の非硬化型熱膨張性パテ組成物。
〔7〕
前記非硬化型熱膨張性パテ組成物が、難燃剤を含有する、〔1〕〜〔6〕のいずれか1項に記載の非硬化型熱膨張性パテ組成物。
〔8〕
前記難燃剤が、ポリフェニレンエーテル、リン酸エステル、赤燐、及びポリリン酸アンモニウムからなる群より選ばれる1種又は2種以上である、〔7〕に記載の非硬化型熱膨張性パテ組成物
〔9
前記樹脂製マイクロバルーンの殻を構成する樹脂が、アクリロニトリル樹脂、フェノール樹脂、及び塩化ビニリデン樹脂からなる群より選ばれる1種又は2種以上を含む、〔1〕〜〔〕のいずれか1項に記載の非硬化型熱膨張性パテ組成物。
10
前記非硬化型熱膨張性パテ組成物中、無機バルーンの含有量が0〜5体積%である、〔1〕〜〔〕のいずれか1項に記載の非硬化型熱膨張性パテ組成物。
11
可塑剤を含有する、〔1〕〜〔10〕のいずれか1項に記載の非硬化型熱膨張性パテ組成物。
〔12〕
前記非硬化型熱膨張性パテ組成物がシート状である、〔1〕〜〔11〕のいずれか1項に記載の非硬化型熱膨張性パテ組成物。
13
少なくともバインダー樹脂と、樹脂製マイクロバルーンと、膨張性黒鉛とを混合することを含む非硬化型熱膨張性パテ組成物の製造方法であって、
前記バインダー樹脂が、ポリブテン、ポリブタジエン、スチレンブタジエンゴム、ブチルゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、クロロプレンゴム、及びイソプレンゴムからなる群より選ばれる1種又は2種以上であり、
得られる非硬化型熱膨張性パテ組成物が、硬さが10N以上50N以下、比重が0.5〜1.5、熱膨張倍率が4倍以上である、非硬化型熱膨張性パテ組成物の製造方法
14
前記膨張性黒鉛の混合量に対する前記樹脂製マイクロバルーンの混合量の比(樹脂製マイクロバルーン/膨張性黒鉛)を、体積比で0.2〜14.0とする、〔13〕に記載の非硬化型熱膨張性パテ組成物の製造方法。
15
混合する原料の総量中、前記樹脂製マイクロバルーンの割合を3.0〜61.0体積%とし、前記膨張性黒鉛の割合を3.0〜25.0体積%とする、〔13〕又は〔14〕に記載の非硬化型熱膨張性パテ組成物の製造方法
〔16
得られる非硬化型熱膨張性パテ組成物中、無機バルーンの含有量が0〜5体積%である、〔13〕〜〔15〕のいずれか1項に記載の非硬化型熱膨張性パテ組成物の製造方法。
That is, the said subject was solved by the following invention.
[1]
A non-curable thermally expandable putty composition containing a binder resin, a resin microballoon, and expandable graphite,
The binder resin includes one or more selected from the group consisting of polybutene, polybutadiene, styrene butadiene rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene rubber, chloroprene rubber, and isoprene rubber,
A non-curable thermally expandable putty composition having a hardness of 10N to 50N, a specific gravity of 0.5 to 1.5, and a thermal expansion ratio of 4 or more.
[2]
In the non-curable thermally expandable putty composition, the ratio of the resin microballoon content to the content of the expandable graphite (resin microballoon / expandable graphite) is 0.2 to 14 in volume ratio. The non-curing type thermally expandable putty composition according to [1], which is 0.0.
[3]
In the non-curable heat-expandable putty composition, the resin microballoon content is 3.0 to 61.0% by volume, and the expandable graphite content is 3.0 to 25.0% by volume. The non-curable heat-expandable putty composition according to [1] or [2].
[4]
In the non-curable heat-expandable putty composition, the content of the binder resin is 15.0 to 50.0 mass%, the content of the resin microballoon is 0.4 to 15.0 mass%, and the expansion The non-curable heat-expandable putty composition according to any one of [1] to [3], wherein the content of heat-resistant graphite is 5.0 to 40.0 mass%.
[5]
The non-curable heat-expandable putty composition according to any one of [1] to [4], wherein the content of the inorganic filler is 50% by mass or less in the non-curable heat-expandable putty composition. .
[6]
The inorganic filler is one or more selected from the group consisting of aluminum hydroxide, magnesium hydroxide, talc, clay, calcium carbonate, inorganic balloon, aluminum oxide, magnesium oxide, and silica, [5] A non-curable thermally expandable putty composition as described in 1.
[7]
The non-curable heat-expandable putty composition according to any one of [1] to [6], wherein the non-curable heat-expandable putty composition contains a flame retardant.
[8]
The non-curable thermally expandable putty composition according to [7], wherein the flame retardant is one or more selected from the group consisting of polyphenylene ether, phosphate ester, red phosphorus, and ammonium polyphosphate .
[9 ]
Any one of [1] to [ 8 ], wherein the resin constituting the shell of the resin microballoon includes one or more selected from the group consisting of acrylonitrile resin, phenol resin, and vinylidene chloride resin. A non-curable thermally expandable putty composition as described in 1.
[ 10 ]
The non-curable heat-expandable putty composition according to any one of [1] to [ 9 ], wherein the content of the inorganic balloon is 0 to 5% by volume in the non-curable heat-expandable putty composition. .
[ 11 ]
The non-curable heat-expandable putty composition according to any one of [1] to [ 10 ], which contains a plasticizer.
[12]
The non-curable thermally expandable putty composition according to any one of [1] to [ 11 ], wherein the non-curable thermally expandable putty composition is a sheet.
[ 13 ]
And at least a binder resin, and the resin microballoons, mixing the the expandable graphite A manufacturing method of including non-curable intumescent putty composition,
The binder resin is one or more selected from the group consisting of polybutene, polybutadiene, styrene butadiene rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene rubber, chloroprene rubber, and isoprene rubber,
The obtained non-curing type heat-expandable putty composition has a hardness of 10N or more and 50N or less, a specific gravity of 0.5 to 1.5, and a thermal expansion ratio of 4 times or more. Manufacturing method .
[ 14 ]
The mixing amount of the ratio of the resin microballoons for mixing amount of expandable graphite (resin microballoons / expandable graphite), and 0.2 to 14.0 by volume, non according to [13] A method for producing a curable thermally expandable putty composition.
[ 15 ]
Mixing the total amount of the raw material, the proportion of the resin microballoons and 3.0 to 61.0% by volume, and from 3.0 to 25.0% by volume ratio of the expandable graphite, [13] or [ 14 ] The manufacturing method of the non-curable heat-expandable putty composition of description .
[16 ]
The non-curable heat-expandable putty composition according to any one of [13] to [15], wherein the content of the inorganic balloon is 0 to 5% by volume in the obtained non-curable heat-expandable putty composition. Manufacturing method.

本発明の非硬化型熱膨張性パテ組成物(以下、単に「本発明のパテ組成物」ともいう。)は、原料として用いる膨張性黒鉛が有する熱膨張性能を効果的に発現させることができ、これと樹脂バルーンによる膨張の促進とが相俟って、優れた熱膨張倍率を示し、火災時に強固な耐火バリアを形成することができる。さらに本発明のパテ組成物は、軽量で搬送性に優れ、さらに貫通孔の場所、施工対象の形状を問わず、所望の形状に自由に成形し、施工することができる。   The non-curable heat-expandable putty composition of the present invention (hereinafter also simply referred to as “the putty composition of the present invention”) can effectively exhibit the thermal expansion performance of the expandable graphite used as a raw material. In combination with the promotion of expansion by the resin balloon, an excellent thermal expansion ratio can be obtained, and a strong fireproof barrier can be formed in the event of a fire. Furthermore, the putty composition of the present invention is lightweight and excellent in transportability, and can be freely molded into a desired shape and applied regardless of the location of the through hole and the shape of the construction object.

図1は、実施例の熱膨張試験に用いた、パテをセットした状態の試験治具を模式的に示す断面図である。図1aは電気炉内で加熱する前の状態(成形したパテ組成物を試験治具にセットした状態)を示し、図1bは、成形したパテ組成物をセットした試験治具を電気炉内で加熱した後の状態を示す。FIG. 1 is a cross-sectional view schematically showing a test jig with putty set used in the thermal expansion test of the example. FIG. 1a shows a state before heating in an electric furnace (a state in which a molded putty composition is set in a test jig), and FIG. 1b shows a test jig in which the molded putty composition is set in the electric furnace. The state after heating is shown. 図2は、実施例の試験例6の結果を示すグラフである。破線は樹脂バルーンを含有する本発明のパテ組成物の結果を、実線は樹脂バルーンを含有しないパテ組成物の結果を示す。FIG. 2 is a graph showing the results of Test Example 6 of the example. A broken line shows the result of the putty composition of the present invention containing the resin balloon, and a solid line shows the result of the putty composition not containing the resin balloon. 図3は、実施例のグリーン強度の測定方法を模式的に示す説明図である。FIG. 3 is an explanatory diagram schematically showing a method for measuring the green strength of the example.

本発明のパテ組成物は、特定のバインダー樹脂と、樹脂バルーンと、膨張性黒鉛とを少なくとも含有する。本発明のパテ組成物は硬化性成分を含有せず、その物性は非硬化性である。本発明のパテ組成物は、硬さが50N以下、比重が0.5〜1.5、熱膨張倍率が4倍以上である。
本発明のパテ組成物の好ましい実施形態について以下に説明する。
The putty composition of the present invention contains at least a specific binder resin, a resin balloon, and expandable graphite. The putty composition of the present invention does not contain a curable component, and its physical properties are non-curable. The putty composition of the present invention has a hardness of 50 N or less, a specific gravity of 0.5 to 1.5, and a thermal expansion ratio of 4 or more.
Preferred embodiments of the putty composition of the present invention are described below.

[バインダー樹脂]
本発明に用いるバインダー樹脂は、組成物をパテ状にまとめることが可能な性状の樹脂であれば特に制限はなく、通常用いられる樹脂を採用することができる。例えば、本発明に用いるバインダー樹脂は、ポリブテン、ポリブタジエン、スチレンブタジエンゴム、ブチルゴム、エチレンプロピレン(EP)ゴム、エチレンプロピレンジエン(EPDM)ゴム、クロロプレンゴム、及びイソプレンゴムからなる群より選ばれる1種又は2種以上の樹脂を含む構成とすることができる。
本発明に用いるバインダー樹脂は、より好ましくはポリブテン、ポリブタジエン、ブチルゴム、及びイソプレンゴムからなる群より選ばれる1種又は2種以上を含み、より好ましくはポリブテン、ポリブタジエン、及びブチルゴムからなる群から選ばれる1種又は2種以上の樹脂からなる。
[Binder resin]
The binder resin used in the present invention is not particularly limited as long as it is a resin having a property that allows the composition to be put into a putty, and a commonly used resin can be adopted. For example, the binder resin used in the present invention is one or more selected from the group consisting of polybutene, polybutadiene, styrene butadiene rubber, butyl rubber, ethylene propylene (EP) rubber, ethylene propylene diene (EPDM) rubber, chloroprene rubber, and isoprene rubber. It can be set as the structure containing 2 or more types of resin.
The binder resin used in the present invention more preferably contains one or more selected from the group consisting of polybutene, polybutadiene, butyl rubber, and isoprene rubber, and more preferably selected from the group consisting of polybutene, polybutadiene, and butyl rubber. It consists of 1 type or 2 or more types of resin.

本発明のパテ組成物中、バインダー樹脂の含有量は、組成物をパテ状にまとめる観点、良好な固さのパテとする観点から、15.0〜50.0質量%が好ましく、18.0〜45.0質量%がより好ましく、20.0〜40.0質量%がさらに好ましい。
バインダー樹脂は常法により合成して得ることができる。また、市販品を用いてもよい。
In the putty composition of the present invention, the content of the binder resin is preferably 15.0 to 50.0% by mass from the viewpoint of putting the composition into a putty shape and a putty having good hardness, and 18.0 -45.0 mass% is more preferable, and 20.0-40.0 mass% is further more preferable.
The binder resin can be obtained by synthesis by a conventional method. Moreover, you may use a commercial item.

[樹脂製マイクロバルーン]
本発明に用いる樹脂バルーンは、球状の樹脂製の殻をもつ中空、軽量の粒子である。一般的に液状ガスを内包した状態で樹脂を成形し、これを加熱処理することにより、体積で数十倍に膨張させ、所望の粒径の中空球状の粒子とすることで製造される。
樹脂バルーンは適度な弾性を有し、圧力や機械的ストレスによっても破壊されにくい。樹脂バルーンはパテ組成物製造時の混練工程時に、せん断応力に対してクッションのような役割を果たし、後述する膨張性黒鉛の破壊(潰れ)を効果的に抑える作用を示す。これにより、膨張性黒鉛が本来的に有する熱膨張性能を良好に維持した状態で混入してパテ組成物を調製することができる。
また、樹脂バルーンを配合することにより、上記混練工程において、膨張性黒鉛が潰れて熱膨張性能の低下を招くまでの時間を長く取れることから、加圧混練時間が変化しても、得られるパテ組成物の品質のバラツキを抑えることができる。
また、火災時に樹脂バルーンの殻が破れると、バルーン中の液状ガス(炭化水素等)が燃焼し、近傍に存在する膨張性黒鉛の熱膨張を効果的に促進しうる。この効果は一般的に知られている樹脂バルーンの効果ではなく、本発明者らがはじめて見出したものである。本発明のパテ組成物において、目的の膨張倍率を達成するために樹脂バルーンは不可欠な材料である。
[Resin micro-balloon]
The resin balloon used in the present invention is a hollow, lightweight particle having a spherical resin shell. In general, a resin is molded in a state in which a liquid gas is encapsulated, and this is heat-treated, so that it is expanded several tens of times in volume to obtain hollow spherical particles having a desired particle size.
Resin balloons have moderate elasticity and are not easily destroyed by pressure or mechanical stress. The resin balloon plays a role like a cushion against the shear stress during the kneading process at the time of manufacturing the putty composition, and exhibits an action of effectively suppressing the breakage (collapse) of the expandable graphite described later. Thereby, it can mix in the state which maintained the thermal expansion performance which expansible graphite inherently has favorable, and can prepare a putty composition.
In addition, by blending a resin balloon, it is possible to take a long time until the expandable graphite is crushed and the thermal expansion performance is deteriorated in the kneading step. Variations in the quality of the composition can be suppressed.
Moreover, when the shell of the resin balloon is torn during a fire, the liquid gas (hydrocarbon etc.) in the balloon burns, and the thermal expansion of the expandable graphite existing in the vicinity can be effectively promoted. This effect is not the effect of a generally known resin balloon, but was first found by the present inventors. In the putty composition of the present invention, a resin balloon is an indispensable material in order to achieve a desired expansion ratio.

樹脂バルーンの殻を構成する樹脂は樹脂バルーンを形成可能な樹脂であれば特に制限はない。例えば、樹脂バルーンの殻を構成する樹脂をアクリロニトリル樹脂、フェノール樹脂、及び塩化ビニリデン樹脂からなる群から選ばれる樹脂を含む構成とすることができる。なかでも、樹脂バルーンの殻を構成する樹脂がアクリロニトリル樹脂、フェノール樹脂、及び塩化ビニリデン樹脂からなる群から選ばれる樹脂からなることが好ましい。本明細書において、アクリロニトリル樹脂、フェノール樹脂、及び塩化ビニリデン樹脂からなる群から選ばれる樹脂とは、本発明の効果を損なわない範囲でアクリロニトリル樹脂、フェノール樹脂、及び塩化ビニリデン樹脂からなる群から選ばれる樹脂を変性させたもの、例えば共重合体としたものも含まれる意味である。
樹脂バルーンの殻がアクリロニトリル樹脂、フェノール樹脂、及び塩化ビニリデン樹脂からなる群から選ばれる樹脂を含むことにより、加圧混練時における膨張性黒鉛の潰れを効果的に抑制することができる。また、燃焼時においては殻が不完全燃焼を起こしやすく、生じたすすがバインダーの役割をし、熱膨張後のパテの型崩れを抑える方向に働くと考えられる。
The resin constituting the shell of the resin balloon is not particularly limited as long as the resin balloon can be formed. For example, the resin constituting the shell of the resin balloon can be configured to include a resin selected from the group consisting of acrylonitrile resin, phenol resin, and vinylidene chloride resin. Especially, it is preferable that resin which comprises the shell of a resin balloon consists of resin chosen from the group which consists of acrylonitrile resin, a phenol resin, and vinylidene chloride resin. In the present specification, the resin selected from the group consisting of acrylonitrile resin, phenol resin, and vinylidene chloride resin is selected from the group consisting of acrylonitrile resin, phenol resin, and vinylidene chloride resin as long as the effects of the present invention are not impaired. It is meant to include a modified resin, for example, a copolymer.
When the shell of the resin balloon contains a resin selected from the group consisting of acrylonitrile resin, phenol resin, and vinylidene chloride resin, it is possible to effectively suppress the collapse of expandable graphite during pressure kneading. Further, it is considered that the shell tends to cause incomplete combustion at the time of combustion, and the generated soot acts as a binder and acts to suppress the putty of the putty after thermal expansion.

本発明に用いる樹脂バルーンの平均粒子径は、通常は10〜150μmであり、50〜80μmであることがより好ましい。当該平均粒子径は、レーザー回折法(測定器:SALD−2000/島津製作所)により、粒度分布を測定し、累積体積が50%となるときの粒子径とした。
本発明に用いる樹脂バルーンの真比重は、好ましくは0.02〜0.07である。そのため、樹脂バルーンを用いることによりパテ組成物を軽量化し、搬送性ないし施工性を高めることができる。
樹脂バルーンはそのまま使用してもよく、また、取り扱いやすいように無機粉体と複合化して真比重0.1〜0.3程度とした製品を用いてもよい。
The average particle diameter of the resin balloon used in the present invention is usually 10 to 150 μm, and more preferably 50 to 80 μm. The average particle diameter was determined by measuring the particle size distribution by a laser diffraction method (measuring instrument: SALD-2000 / Shimadzu Corporation), and was the particle diameter when the cumulative volume was 50%.
The true specific gravity of the resin balloon used in the present invention is preferably 0.02 to 0.07. Therefore, by using a resin balloon, the putty composition can be reduced in weight, and transportability or workability can be improved.
The resin balloon may be used as it is, or a product having a true specific gravity of about 0.1 to 0.3 may be used by combining with an inorganic powder for easy handling.

上記の作用を効果的に発現させるために、本発明のパテ組成物中、樹脂バルーンの含有量は、0.4〜15.0質量%が好ましく、2.0〜14.0質量%がより好ましく、2.5〜13.0質量%がさらに好ましい。
また、同様の観点から、本発明のパテ組成物中、樹脂バルーンの含有量は、3.0〜61.0体積%が好ましく、4.0〜45.0体積%がより好ましく、10.0〜40.0体積%がさらに好ましい。
In order to effectively express the above action, the content of the resin balloon in the putty composition of the present invention is preferably 0.4 to 15.0 mass%, more preferably 2.0 to 14.0 mass%. Preferably, 2.5-13.0 mass% is more preferable.
From the same viewpoint, the content of the resin balloon in the putty composition of the present invention is preferably 3.0 to 61.0% by volume, more preferably 4.0 to 45.0% by volume, and 10.0. More preferred is ˜40.0% by volume.

本発明に用いる樹脂バルーンは常法により製造することができ、市販品を用いることもできる。樹脂バルーンの市販品として、例えば、EMC40(商品名、日本フィライト社製)、フェノセット・マイクロスフィア BJO−930(商品名、Malayan Adhesive&Chemicals社製)、マツモトマイクロスフェアー(商品名、松本油脂製薬社製)等を挙げることができる。   The resin balloon used for this invention can be manufactured by a conventional method, and a commercial item can also be used for it. Commercially available resin balloons include, for example, EMC40 (trade name, manufactured by Nippon Philite), Fenoset Microsphere BJO-930 (trade name, manufactured by Malayan Adhesive & Chemicals), Matsumoto Microsphere (trade name, Matsumoto Yushi Seiyaku Co., Ltd.) Manufactured).

[膨張性黒鉛]
本発明に用いる膨張性黒鉛は、二次元的に広がる六員環構造の網平面の層と層とがC軸方向に積層している六方晶結晶の前記各層間に、熱分解性の物質を挿入した層間化合物である。例えば発煙硫酸や硫酸と濃硝酸、各種の硝酸塩、過塩素酸、各種の過塩素酸塩、クロム酸、各種のクロム酸塩、重クロム酸などを含む酸化性溶液に黒鉛を浸漬した後、水洗、乾燥して製造される。
膨張性黒鉛は、急激に加熱されると、層間に挿入されている化合物や結晶粒界に挿入された化合物が熱分解し、そのときに発生する分解ガスの圧力で各層の間が押し広げられ、膨張する。
[Expandable graphite]
The expansive graphite used in the present invention has a thermally decomposable substance between the layers of hexagonal crystals in which two-dimensionally spreading six-membered ring network plane layers are laminated in the C-axis direction. Intercalation compound inserted. For example, after immersing graphite in an oxidizing solution containing fuming sulfuric acid, sulfuric acid and concentrated nitric acid, various nitrates, perchloric acid, various perchlorates, chromic acid, various chromates, dichromic acid, etc., then rinse with water Manufactured by drying.
When expansive graphite is heated rapidly, the compound inserted between the layers and the compound inserted into the crystal grain boundary are thermally decomposed, and the pressure of the decomposition gas generated at that time pushes the space between the layers. Swell.

膨張性黒鉛は粉末状のものを使用することが好ましい。熱膨張性黒鉛の熱膨張性を効果的に発現させる観点から、本発明のパテ組成物中、膨張性黒鉛の含有量は、5.0〜40.0質量%が好ましく、6.0〜35.0質量%がより好ましく、7.0〜30.0質量%がさらに好ましい。
また、同様の観点から、本発明のパテ組成物中、膨張性黒鉛の含有量は、3.0〜25.0体積%が好ましく、4.0〜20.0体積%がより好ましく、5.0〜15.0体積%がさらに好ましい。本明細書において「体積%」は25℃における値である。
It is preferable to use expansive graphite in powder form. In the putty composition of the present invention, the content of the expandable graphite is preferably 5.0 to 40.0% by mass from the viewpoint of effectively expressing the heat expandability of the heat expandable graphite, and 6.0 to 35. 0.0 mass% is more preferable, and 7.0 to 30.0 mass% is further more preferable.
From the same viewpoint, the content of expandable graphite in the putty composition of the present invention is preferably 3.0-25.0% by volume, more preferably 4.0-20.0% by volume, and 5. 0-15.0 volume% is further more preferable. In the present specification, “volume%” is a value at 25 ° C.

本発明のパテ組成物において、膨張性黒鉛の含有量に対する樹脂バルーンの含有量の比(樹脂バルーンの含有量/膨張性黒鉛の含有量(体積比))は、0.2〜14.0が好ましく、2.0〜13.0がより好ましく、2.1〜12.0がより好ましく、2.3〜10.0がさらに好ましい。
膨張性黒鉛と樹脂バルーンの含有量の比を上記好ましい範囲とすることにより、製造時における膨張性黒鉛の破壊をより効果的に抑制でき、パテ組成物の熱膨張性能をより高めることができる。
In the putty composition of the present invention, the ratio of the resin balloon content to the expandable graphite content (resin balloon content / expandable graphite content (volume ratio)) is 0.2 to 14.0. Preferably, 2.0-13.0 are more preferable, 2.1-12.0 are more preferable, and 2.3-10.0 are further more preferable.
By making the ratio of the contents of expandable graphite and resin balloon within the above preferred range, the destruction of expandable graphite during production can be more effectively suppressed, and the thermal expansion performance of the putty composition can be further enhanced.

膨張性黒鉛は商業的に入手可能であり、例えば、SS−3(商品名、エアー・ウォーター社製)、955025L (商品名、伊藤黒鉛工業社製)等を用いることができる。   Expandable graphite is commercially available. For example, SS-3 (trade name, manufactured by Air Water), 955025L (trade name, manufactured by Ito Graphite Industries, Ltd.) and the like can be used.

[無機充填材]
本発明のパテ組成物は、無機充填剤として、水酸化アルミニウム、水酸化マグネシウム、タルク、クレー、炭酸カルシウム、無機バルーン、酸化アルミニウム、酸化マグネシウム、及びシリカからなる群から選ばれる1種又は2種類以上を含んでもよく、この場合、水酸化アルミニウム、水酸化マグネシウム、タルク、及び炭酸カルシウムからなる群より選ばれる1種又は2種以上を含むことがより好ましい。
パテ組成物の比重をあまり上げずに、且つ、パテ組成物が火災時に、形状を良好に保持できるようにするために、本発明のパテ組成物中、無機充填剤の含有量は50.0質量%以下が好ましく、40.0質量%以下がより好ましい。また、本発明のパテ組成物は無機充填剤を含有しなくてもよいが、パテ組成物中に無機充填剤を5質量%以上含有することが好ましく、10質量%以上含有することがより好ましく、15質量%以上含有することがさらに好ましい。
[Inorganic filler]
The putty composition of the present invention has one or two kinds selected from the group consisting of aluminum hydroxide, magnesium hydroxide, talc, clay, calcium carbonate, inorganic balloon, aluminum oxide, magnesium oxide, and silica as the inorganic filler. In this case, it is more preferable to include one or more selected from the group consisting of aluminum hydroxide, magnesium hydroxide, talc, and calcium carbonate.
In order to allow the putty composition to maintain a good shape during a fire without significantly increasing the specific gravity of the putty composition, the content of the inorganic filler in the putty composition of the present invention is 50.0. % By mass or less is preferable, and 40.0% by mass or less is more preferable. Further, the putty composition of the present invention may not contain an inorganic filler, but the putty composition preferably contains 5% by mass or more of an inorganic filler, more preferably 10% by mass or more. More preferably, the content is 15% by mass or more.

[難燃剤(型崩れ抑制剤)]
本発明のパテ組成物は難燃剤を含有することが好ましい。難燃剤には火災時におけるパテ組成物の型崩れを抑制する作用がある。難燃剤は、好ましくは、ポリフェニレンエーテル、リン酸エステル、赤燐、及びポリリン酸アンモニウムからなる群より選ばれる1種又は2種以上が好ましく、ポリリン酸アンモニウム及びポリフェニレンエーテルから選ばれる1種又は2種が好ましい。
本発明のパテ組成物中、難燃剤の含有量は、40.0質量%以下が好ましく、5.0〜35.0質量%がより好ましく、10.0〜35.0質量%がさらに好ましい。なお、難燃剤の含有量は多いほど型崩れ抑制効果は高まるが、前記好ましい範囲であれば十分に型崩れを抑制できる。
[Flame retardant (deformation inhibitor)]
The putty composition of the present invention preferably contains a flame retardant. The flame retardant has the effect of suppressing the deformation of the putty composition during a fire. The flame retardant is preferably one or more selected from the group consisting of polyphenylene ether, phosphate ester, red phosphorus, and ammonium polyphosphate, and one or two selected from ammonium polyphosphate and polyphenylene ether Is preferred.
In the putty composition of the present invention, the flame retardant content is preferably 40.0% by mass or less, more preferably 5.0 to 35.0% by mass, and even more preferably 10.0 to 35.0% by mass. Note that, as the content of the flame retardant increases, the effect of suppressing the deformation of the shape increases.

[可塑剤]
本発明のパテ組成物には、組成物の柔らかさ、接着性、手触りなどを改善するために可塑剤を使用することができる。また可塑剤を使用した場合、パテの接触する対象が可塑剤入りのPVCシースなどの場合、相互における可塑剤の移行を防ぎ、可塑剤の移行による影響を抑えることができる。可塑剤としては安息香酸エステル化合物、エポキシ化合物、リン酸エステル化合物、塩素化パラフィン化合物、アジピン酸化合物、フタル酸エステル化合物などが好適である。
本発明のパテ組成物が可塑剤を含有する場合、パテ組成物中の可塑剤の含有量は5.0〜20.0質量%が好ましく、7.0〜16.0質量%がより好ましい。
[Plasticizer]
In the putty composition of the present invention, a plasticizer can be used to improve the softness, adhesiveness, touch and the like of the composition. Further, when a plasticizer is used, when the target with which the putty contacts is a PVC sheath containing a plasticizer, it is possible to prevent the migration of the plasticizer between them and to suppress the influence of the migration of the plasticizer. As the plasticizer, benzoic acid ester compounds, epoxy compounds, phosphoric acid ester compounds, chlorinated paraffin compounds, adipic acid compounds, phthalic acid ester compounds, and the like are suitable.
When the putty composition of the present invention contains a plasticizer, the content of the plasticizer in the putty composition is preferably 5.0 to 20.0 mass%, more preferably 7.0 to 16.0 mass%.

本発明のパテ組成物では、上記した成分の他に、製造を容易にするための加工補助剤として界面活性剤や滑材等を添加してもよい。また保管性・耐候性改善のための老化防止剤や、施工時の形状保持性改善のための繊維チップなどを適量配合してもよい。
また、本発明のパテ組成物は無機バルーンを含有してもよいが、シート状への成形性をより高める観点から、パテ組成物中の無機バルーンの含有量は0〜5体積%が好ましく、0〜4体積%がより好ましく、0〜3体積%がさらに好ましく、0〜2体積%がさらに好ましい。本発明のパテ組成物は無機バルーンを含有しないことがより好ましい。無機バルーンとしては、例えば、ガラスバルーン、シリカバルーン、アルミナバルーン、シラスバルーンを挙げることができる。
In the putty composition of the present invention, in addition to the above-described components, a surfactant or a lubricant may be added as a processing aid for facilitating production. Moreover, you may mix | blend an appropriate quantity with the anti-aging agent for a storage property and a weather resistance improvement, the fiber chip for the shape retention property improvement at the time of construction, etc.
Further, the putty composition of the present invention may contain an inorganic balloon, but from the viewpoint of further improving the formability into a sheet, the content of the inorganic balloon in the putty composition is preferably 0 to 5% by volume, 0-4 volume% is more preferable, 0-3 volume% is further more preferable, and 0-2 volume% is further more preferable. More preferably, the putty composition of the present invention does not contain an inorganic balloon. Examples of inorganic balloons include glass balloons, silica balloons, alumina balloons, and shirasu balloons.

本発明のパテ組成物は、比重が0.4〜1.5であることが好ましく、0.5〜1.3であることがより好ましい。比重を上記好ましい範囲内とすることにより、パテ組成物がより軽量となり、搬送性ないし施工性が向上する。   The putty composition of the present invention preferably has a specific gravity of 0.4 to 1.5, more preferably 0.5 to 1.3. By setting the specific gravity within the above preferred range, the putty composition becomes lighter and the transportability or workability is improved.

本発明のパテ組成物は、成形性の観点から、パテの硬さが50N(ニュートン)以下が好ましく、46N以下がより好ましく、44N以下がさらに好ましく、42N以下がさらに好ましく、40N以下がさらに好ましく、36N以下がさらに好ましく、31N以下がさらに好ましい。本発明のパテ組成物の硬さは通常は10N以上であり、15N以上がより好ましい。本発明で規定するパテ組成物の硬さ(N)は、後述する実施例に記載の方法で測定される。   From the viewpoint of moldability, the putty composition of the present invention preferably has a putty hardness of 50N (Newton) or less, more preferably 46N or less, further preferably 44N or less, further preferably 42N or less, and further preferably 40N or less. 36N or less is more preferable, and 31N or less is more preferable. The hardness of the putty composition of the present invention is usually 10N or more, and more preferably 15N or more. The hardness (N) of the putty composition defined in the present invention is measured by the method described in the examples described later.

本発明のパテ組成物は、特にシート状への成形性(シート状に成形した際の破断抑制)の観点から、グリーン強度が0.020MPa以上が好ましく、0.025MPa以上がより好ましく、0.028MPa以上がさらに好ましく、0.030MPa以上がさらに好ましく、0.035MPa以上がさらに好ましい。また、本発明のパテ組成物のグリーン強度は通常は0.100MPa以下であり、0.080MPa以下、さらに0.070MPa以下であっても、シート状への良好な成形性を実現できる。
パテ組成物のグリーン強度(MPa)は、後述する実施例に記載の方法により測定される。
The putty composition of the present invention has a green strength of preferably 0.020 MPa or more, more preferably 0.025 MPa or more, particularly from the viewpoint of formability into a sheet (inhibition of breakage when formed into a sheet). 028 MPa or more is more preferable, 0.030 MPa or more is more preferable, and 0.035 MPa or more is more preferable. Moreover, the green strength of the putty composition of the present invention is usually 0.100 MPa or less, 0.080 MPa or less, and even 0.070 MPa or less, it is possible to realize good moldability into a sheet shape.
The green strength (MPa) of the putty composition is measured by the method described in the examples described later.

本発明のパテ組成物は、防火性能をより効果的に発現するために、熱膨張倍率が4倍以上であることが好ましく、4.5倍以上でることがより好ましく、5倍以上であることがさらに好ましい。
パテ組成物の熱膨張倍率は、後述する実施例に記載の方法で測定される。
The putty composition of the present invention preferably has a thermal expansion ratio of 4 times or more, more preferably 4.5 times or more, and more preferably 5 times or more in order to more effectively express fire prevention performance. Is more preferable.
The thermal expansion ratio of the putty composition is measured by the method described in the examples described later.

[パテ組成物の製造方法]
本実施の形態に係るパテ組成物は、各原料を公知のニーダーミキサー、バンバリーミキサーなどを用いて、常法により混練し、均質なパテ状の組成物とすることにより得ることができる。すなわち、少なくともバインダー樹脂と、樹脂製マイクロバルーンと、膨張性黒鉛とを混合してパテ状の組成物とすることにより得ることができる。
混練時の温度は60〜70℃とすることが好ましい。また、混練時間は、5〜20分とすることが好ましい。
[Method for producing putty composition]
The putty composition according to the present embodiment can be obtained by kneading each raw material by a conventional method using a known kneader mixer, Banbury mixer or the like to obtain a homogeneous putty-like composition. That is, it can be obtained by mixing at least a binder resin, a resin-made microballoon, and expandable graphite into a putty-like composition.
The temperature during kneading is preferably 60 to 70 ° C. The kneading time is preferably 5 to 20 minutes.

以下に、本発明を実施例に基づき更に詳しく説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

[調製例] パテ組成物の調製
本実施例において使用した原料は下記の通りである。
・ブチルゴム:商品名:JSR BUTYL 065、JSR社製、比重0.92
・ポリブテンオイル:商品名:LV−50、JX日鉱日石エネルギー社製、数平均分子量2400、40℃での動粘度206000mm/s、100℃での動粘度4700mm/s
・可塑剤A:アジピン酸系可塑剤(商品名:DOA、ジェイプラス社製)
・可塑剤B:フタル酸エステル系可塑剤(商品名:DINP、ジェイプラス社製)
・樹脂バルーンA:アクリロニトリル樹脂の殻を持ち、炭酸カルシウムの無機粉体でコーティングされている樹脂製マイクロバルーン(商品名:MFL−HD60CA、松本油脂製薬社製、平均粒子径が50〜70μm、真比重が0.12±0.02)
・樹脂バルーンB:フェノール樹脂の殻を持つ樹脂製マイクロバルーン(商品名、フェノセット・マイクロスフィアBJO−930、Malayan Adhesive&Chemicals社製)、平均粒子径が平均粒子径65μm(レーザー法)、真比重が0.2)
・無機バルーン:商品名:フライアッシュバルーン、日本フィライト社製
・炭酸カルシウム:炭酸カルシウムの粉末(商品名:ホワイトン、備北粉化工業社製)
・熱膨張性黒鉛:固定炭素95%、粒度+50mesh 80%以上(商品名:955025L、伊藤黒鉛工業社製)
・型崩れ抑制剤A:ポリフェニレンエーテル(表1中のPPE、商品名:ユーピロン、三菱エンジニアリングプラスチック社製)
・型崩れ抑制剤B:ポリリン酸アンモニウム(商品名:EXOLIT AP422、クラリアントジャパン社製)
[Preparation Example] Preparation of Putty Composition The raw materials used in this example are as follows.
-Butyl rubber: Trade name: JSR BUTYL 065, manufactured by JSR, specific gravity 0.92
Polybutene oil: Trade name: LV-50, manufactured by JX Nippon Oil & Energy, number average molecular weight 2400, kinematic viscosity at 40 ° C. 206000 mm 2 / s, kinematic viscosity at 100 ° C. 4700 mm 2 / s
Plasticizer A: Adipic acid plasticizer (trade name: DOA, manufactured by J-Plus)
・ Plasticizer B: Phthalate ester plasticizer (trade name: DINP, manufactured by JPLUS)
Resin balloon A: Resin microballoon having a shell of acrylonitrile resin and coated with calcium carbonate inorganic powder (trade name: MFL-HD60CA, manufactured by Matsumoto Yushi Seiyaku Co., Ltd., average particle size 50-70 μm, true Specific gravity is 0.12 ± 0.02)
Resin balloon B: Resin microballoon having a phenolic resin shell (trade name, Phenoset Microsphere BJO-930, manufactured by Malayan Adhesive & Chemicals), average particle diameter is 65 μm (laser method), true specific gravity is 0.2)
・ Inorganic balloon: Product name: Fly ash balloon, manufactured by Nihon Philite ・ Calcium carbonate: Calcium carbonate powder (Product name: Whiten, manufactured by Bihoku Powder Chemical Co., Ltd.)
-Thermally expandable graphite: Fixed carbon 95%, particle size + 50 mesh 80% or more (trade name: 955025L, manufactured by Ito Graphite Industries Co., Ltd.)
Mold loss inhibitor A: Polyphenylene ether (PPE in Table 1, trade name: Iupilon, manufactured by Mitsubishi Engineering Plastics)
Mold loss inhibitor B: ammonium polyphosphate (trade name: EXOLIT AP422, manufactured by Clariant Japan)

上記各原料を、下記表1に示す割合(単位:質量%、樹脂バルーンと膨張性黒鉛についてはパテ組成物中の体積%も表1中に括弧書きで併記した)で配合し、1L型加圧双腕型ニーダー(モリヤマ社製)を用いて混練し、パテ組成物を得た。原料の配合順序は、膨張性黒鉛を最後に配合し、膨張性黒鉛を配合してからの混練は、加圧しながら60秒間の混練とした。   Each raw material is blended in the proportions shown in Table 1 below (unit: mass%, and for resin balloons and expansive graphite, the volume% in the putty composition is also shown in parentheses in Table 1), and the 1L type additive is added. A putty composition was obtained by kneading using a pressure double arm type kneader (manufactured by Moriyama Co., Ltd.). The mixing order of the raw materials was that the expansive graphite was blended last, and the kneading after blending the expansive graphite was performed for 60 seconds while applying pressure.

[試験例1] 比重の測定
JIS K7112のA法(水中置換法)により測定した。結果を表1に示す。表1に示されるように、実施例のパテ組成物は、樹脂バルーンを含有しない比較例1〜5、7〜10のパテ組成物に比べて比重が小さく軽量であることがわかる。
[Test Example 1] Measurement of specific gravity The specific gravity was measured according to JIS K7112 Method A (in-water replacement method). The results are shown in Table 1. As shown in Table 1, it can be seen that the putty compositions of the examples have a smaller specific gravity and are lighter than the putty compositions of Comparative Examples 1 to 5 and 7 to 10 that do not contain a resin balloon.

[試験例2] 熱膨張試験
上記調製例で得られたパテ組成物を直径26mm、高さ10mmの円柱状に成形した後、図1に示すように試験治具にセットし、450℃の電気炉内で30分放置した。その後、電気炉から試験治具を取り出し、放冷し、電気炉内で熱膨張したパテ組成物成形品の高さを1mm単位で測定し、次式により熱膨張倍率を求めた。図1中、外側パイプの内径は26mm、内側パイプの外径は22mmである。また、内側パイプの質量は60gである。

熱膨張倍率(倍)=h/h (h及びhは図1参照)

結果を下記表1に示す。表1中、予測膨張倍率は、実験値から導かれる予測値であり、膨張黒鉛の含有量が5体積%の場合4倍、10体積%の場合5倍、15体積%の場合6倍である。この予測値は、種々の組成のパテ組成物を用いて、試験例2と同じ条件で測定して得られた熱膨張倍率に基づく経験的な数値であり、製品設計時に参考とする数値である。
表1に示されるように、樹脂バルーンを含まない比較例1〜5、7〜10のパテ組成物は、熱膨張倍率が予測値を下回っているのに対し、実施例1〜17のパテ組成物はいずれも、得られた実際の熱膨張倍率が予測値を上回り、優れた熱膨張性を示すことがわかった。
[Test Example 2] Thermal Expansion Test After the putty composition obtained in the above preparation example was formed into a cylindrical shape having a diameter of 26 mm and a height of 10 mm, it was set on a test jig as shown in FIG. Left in the furnace for 30 minutes. Thereafter, the test jig was taken out from the electric furnace, allowed to cool, and the height of the putty composition molded product thermally expanded in the electric furnace was measured in units of 1 mm, and the thermal expansion magnification was obtained by the following formula. In FIG. 1, the inner diameter of the outer pipe is 26 mm, and the outer diameter of the inner pipe is 22 mm. The mass of the inner pipe is 60 g.

Thermal expansion ratio (times) = h 1 / h 0 (see FIG. 1 for h 1 and h 0 )

The results are shown in Table 1 below. In Table 1, the predicted expansion ratio is a predicted value derived from experimental values, and is 4 times when the expanded graphite content is 5% by volume, 5 times when the content is 10% by volume, and 6 times when the content is 15% by volume. . This predicted value is an empirical numerical value based on the thermal expansion ratio obtained by measuring under the same conditions as in Test Example 2 using putty compositions of various compositions, and is a numerical value used as a reference during product design. .
As shown in Table 1, the putty compositions of Comparative Examples 1 to 5 and 7 to 10 that do not contain a resin balloon have a thermal expansion ratio lower than the predicted value, whereas the putty compositions of Examples 1 to 17 It was found that the actual thermal expansion ratio obtained for each of the products exceeded the predicted value and showed excellent thermal expansion properties.

[試験例3] 型崩れ性試験
上記調製例で得られたパテ組成物を直径26mm、高さ10mmの円柱状に成形した後、450℃の電気炉内で30分放置し、その後、電気炉から試験治具を取り出し、放冷した。型崩れの程度を下記評価基準に基づき評価した。A〜Cが合格レベルである。
<評価基準>
A:まとまりがあり、手で楽に持ち上げることができ、向きを変えても型崩れしない
B:まとまりがあり、手で持ち上げることができる
C:まとまりがあるが、手で持ち上げると崩れてしまう
D:ある程度まとまりも残っているが、全体的には崩れている
E:まとまりがなく、バラバラに崩れている
結果を下記表1に示す。
表1に示されるように、実施例のパテ組成物はいずれも、熱膨張後も型崩れしにくいことがわかった。
[Test Example 3] Mold Loss Test After the putty composition obtained in the above preparation example was formed into a cylindrical shape having a diameter of 26 mm and a height of 10 mm, it was left in an electric furnace at 450 ° C. for 30 minutes, and then the electric furnace The test jig was taken out of the product and allowed to cool. The degree of shape loss was evaluated based on the following evaluation criteria. A to C are acceptable levels.
<Evaluation criteria>
A: There is a unit, it can be lifted easily by hand, and it does not lose its shape even if the orientation is changed B: There is a unit, it can be lifted by hand C: There is a unit, but it collapses when lifted by hand D: A certain amount of unity remains, but it is broken as a whole. E: There is no unity and it is broken apart. The results are shown in Table 1 below.
As shown in Table 1, it was found that all the putty compositions of the examples were not easily deformed after thermal expansion.

[試験例4] パテの性状評価
上記調製例で調製したパテ組成物について、その性状を評価し、下記表1に記した。表1に示されるように、実施例のパテ組成物はいずれも、柔軟性と形状保持性を両立した適度な硬さ(柔らかさ)を有し、施工しやすい性状であった。すなわち、本発明のパテ組成物は施工性に優れるものであった。
[Test Example 4] Evaluation of Putty Properties The properties of the putty compositions prepared in the above preparation examples were evaluated and are shown in Table 1 below. As shown in Table 1, all of the putty compositions of the examples had moderate hardness (softness) that achieved both flexibility and shape retention, and were easy to construct. That is, the putty composition of the present invention was excellent in workability.

[試験例5] 混練工程後の膨張性黒鉛の状態観察
パテ組成物調製時の混練工程において、樹脂バルーンによる膨張性黒鉛の潰れ防止性に関し、より直接的な目視観察により評価した。具体的には、実施例7と同じ配合組成のパテ組成物と、このパテ組成物において樹脂バルーンに代えて同体積の炭酸カルシウムを配合したパテ組成物とを、上記調製例に準じて調製し(膨張性黒鉛配合後の混練を加圧しながら120秒の混練とした)、キーエンス社製マイクロスコープにより目視観察した。
その結果、樹脂バルーンに代えて同体積の炭酸カルシウムを配合して調製したパテ組成物では、膨張性黒鉛が潰れて破壊されていたのに対し、樹脂バルーンを配合したパテ組成物では、膨張性黒鉛は初期の形状をほぼ維持していることがわかった。
[Test Example 5] Observation of state of expandable graphite after kneading step In the kneading step at the time of preparing the putty composition, the collapse resistance of the expandable graphite by the resin balloon was evaluated by more direct visual observation. Specifically, a putty composition having the same composition as that of Example 7 and a putty composition containing the same volume of calcium carbonate in place of the resin balloon in this putty composition were prepared according to the above preparation example. (The kneading after the expansive graphite blending was carried out for 120 seconds while applying pressure) and was visually observed with a microscope manufactured by Keyence Corporation.
As a result, in the putty composition prepared by blending the same volume of calcium carbonate instead of the resin balloon, the expandable graphite was crushed and destroyed, whereas in the putty composition blended with the resin balloon, the expansibility was expanded. It was found that graphite maintained almost the initial shape.

[試験例6] パテ組成物熱膨張性能の加圧混練時間依存性
パテ組成物調製時の加圧混練時間と、パテ組成物の熱膨張倍率との関係を調べた。具体的には、実施例7と同じ配合組成のパテ組成物と、比較例4と同じ配合組成のパテ組成物のそれぞれを、膨張性黒鉛を配合してからの加圧混練時間を振って(15秒、30秒、45秒、60秒、120秒、360秒、660秒)調製し、パテ組成物の熱膨張性能に対する加圧混練時間の影響を調べた。
[Test Example 6] Pressure kneading time dependence of putty composition thermal expansion performance The relationship between the press kneading time at the time of preparing the putty composition and the thermal expansion ratio of the putty composition was examined. Specifically, each of the putty composition having the same blending composition as Example 7 and the putty composition having the same blending composition as Comparative Example 4 was shaken for a pressure kneading time after blending expansive graphite ( 15 seconds, 30 seconds, 45 seconds, 60 seconds, 120 seconds, 360 seconds, 660 seconds), and the influence of pressure kneading time on the thermal expansion performance of the putty composition was examined.

結果を図2に示す。図2に示されるように、同じ体積分の膨張黒鉛を含んでいるにも関わらず、樹脂バルーンを含有するパテ組成物(破線)では、樹脂バルーンを含有しないパテ組成物(実線)よりも熱膨張倍率が大きく高められていた。この結果は、段落[0016]に記載したように、樹脂バルーンが膨張黒鉛の近傍に存在することにより、熱膨張倍率を効果的に高められることを実証した実験結果である。
また、樹脂バルーンに代えて炭酸カルシウムを配合した比較例4のパテ組成物では、加圧混練時間が長くなるにつれて熱膨張倍率が低下いくのに対し、樹脂バルーンを含有するパテ組成物では、加圧混練時間の長さに伴う熱膨張倍率の低下はほとんど認められなかった。この結果は、本発明のパテ組成物が、その製造において加熱混練時間を厳密に制御しなくても品質のバラツキが生じないことを示している。すなわち、本発明のパテ組成物はその製造面においても優位性を有するものであった。
The results are shown in FIG. As shown in FIG. 2, the putty composition containing the resin balloon (broken line), although containing the same volume of expanded graphite, has a higher heat than the putty composition containing no resin balloon (solid line). The expansion ratio was greatly increased. This result is an experimental result demonstrating that the thermal expansion ratio can be effectively increased by the presence of the resin balloon in the vicinity of the expanded graphite as described in paragraph [0016].
Further, in the putty composition of Comparative Example 4 in which calcium carbonate is blended instead of the resin balloon, the thermal expansion ratio decreases as the pressure kneading time becomes longer, whereas in the putty composition containing the resin balloon, Almost no decrease in the thermal expansion ratio with the length of the pressure kneading time was observed. This result shows that the putty composition of the present invention does not cause quality variations without strictly controlling the heating and kneading time in the production. That is, the putty composition of the present invention has an advantage in terms of production.

[試験例7] 燃焼試験
上記試験例5で用いたパテ組成物を、電気炉を用いて450℃で30分間加熱することにより燃焼させた。燃焼後のパテ組成物を観察したところ、樹脂バルーンを含むパテ組成物では燃焼後にすすが発生していたのに対し、樹脂バルーンに代えて炭酸カルシウムを用いたパテ組成物ではすすは発生していなかった。そして、樹脂バルーンを含むパテ組成物では、燃焼後のパテ組成物にまとまりがあった。この結果から、樹脂バルーンを用いることで燃焼時に樹脂バルーンが不完全燃焼し、発生したすすが燃え残ったもののバインダーとして機能し、型崩れを防止する作用を発揮していると推定される。
Test Example 7 Combustion Test The putty composition used in Test Example 5 was combusted by heating at 450 ° C. for 30 minutes using an electric furnace. When the putty composition after combustion was observed, soot was generated after combustion in the putty composition including the resin balloon, whereas soot was generated in the putty composition using calcium carbonate instead of the resin balloon. There wasn't. And in the putty composition containing a resin balloon, the putty composition after combustion was organized. From this result, it is presumed that by using a resin balloon, the resin balloon is incompletely burned at the time of combustion, so that the generated soot remains unburned, functions as a binder, and exhibits an effect of preventing the shape loss.

[試験例8] パテの硬さ
パテ組成物を押し潰すのに要する力を、普及型メカニカルフォースゲージ(型番:FB−100N 株式会社イマダ)を使用して評価を行った。パテ組成物をφ29mm×高さ40mmの円筒状に成形し、得られた成形体を20℃に設定した恒温槽で3時間静置した後、この成形体円筒の軸方向に10mm押しつぶすのに必要な力(N)を測定した。より詳細には、パテに接する面をφ30mmの円形とした冶具を取り付けたメカニカルフォースゲージを用いて、円筒状のパテ組成物を円筒軸方向に10mm押しつぶすのに要した力(N)を測定した。測定された力の数値が小さいほど、パテ組成物を充填する際に必要な力が小さくなるため、施工性に優れたパテ組成物といえる。
下記表1に示される通り、本発明のパテ組成物はパテ組成物を充填する際に必要な力が小さくてすみ、装置を用いた硬さの測定においても、施工性に優れた性状であることが示された。
[Test Example 8] Hardness of putty The force required to crush the putty composition was evaluated using a popular mechanical force gauge (model number: FB-100N Imada Co., Ltd.). Necessary to form a putty composition into a cylindrical shape with a diameter of 29 mm and a height of 40 mm, and leave the resulting molded body in a thermostatic bath set at 20 ° C. for 3 hours, and then crush 10 mm in the axial direction of the cylindrical body of the molded body Force (N) was measured. More specifically, the force (N) required to crush the cylindrical putty composition by 10 mm in the direction of the cylinder axis was measured using a mechanical force gauge attached with a jig having a circular surface of φ30 mm in contact with the putty. . Since the force required when filling the putty composition is smaller as the measured force is smaller, it can be said that the putty composition is excellent in workability.
As shown in Table 1 below, the putty composition of the present invention requires less force when filling the putty composition, and is excellent in workability even in the measurement of hardness using an apparatus. It was shown that.

[試験例9] シート状成形性
パテ組成物を、押出機を用いて幅:95mm、厚さ:3mmのシート状に押出延伸して成型後、圧延ロールでシート厚さを調整し、長さ:285mmの平面視長方形のシート状になるようにカットした。前記各工程は全て連続して行われ、いずれの工程においても、シート表面又は内部に破断、空隙、ささくれのいずれも生じなかったものを○、破断、空隙、ささくれのいずれか1つでも生じたものを×とした。
[Test Example 9] Sheet-form formability The putty composition was extruded and stretched into a sheet having a width of 95 mm and a thickness of 3 mm using an extruder, the sheet thickness was adjusted with a rolling roll, and the length was adjusted. : Cut into a rectangular sheet of 285 mm in plan view. Each of the above steps was carried out continuously, and in any step, any one of rupture, void, and puddle occurred that did not cause any breakage, void, or puddle on the sheet surface or inside. The thing was set as x.

[試験例9] グリーン強度
実施例のパテ組成物を、図3に示すダンベル状に成形し、図3に示す通りに両端部をそれぞれ長さ50mm、幅55mmのアルミ箔で挟み込み、試験片とした。この試験片のアルミ箔部分のうち、端から25mmの部分を、図3に示す通りに引っ張り試験器のチャックで挟み、下記の試験条件で引っ張り試験を実施した。この引っ張り試験において得られた最大強度をグリーン強度(MPa)とした。
(試験条件)
・引張り速度 : 500mm/min
・チャック間 : 90mm
・試料厚 : 約2mm
・試料幅 : 約43mm
・試料数 : n=2 (2つの試料の平均値を本発明におけるグリーン強度とした)
・試験温度 : 25℃(試験片全体が当該試験温度になった状態で試験を実施した)
・引張試験機 : 島津オートグラフAGS−Xシリーズ
[Test Example 9] Green Strength The putty composition of the example was formed into a dumbbell shape shown in FIG. 3, and both ends were sandwiched between aluminum foils having a length of 50 mm and a width of 55 mm as shown in FIG. did. Of the aluminum foil portion of the test piece, a 25 mm portion from the end was sandwiched between chucks of a tensile tester as shown in FIG. 3, and a tensile test was performed under the following test conditions. The maximum strength obtained in this tensile test was defined as green strength (MPa).
(Test conditions)
・ Tensing speed: 500mm / min
・ Between chucks: 90mm
・ Sample thickness: about 2mm
・ Sample width: Approximately 43mm
-Number of samples: n = 2 (the average value of the two samples is the green strength in the present invention)
Test temperature: 25 ° C. (The test was conducted with the entire test piece at the test temperature)
・ Tensile testing machine: Shimadzu Autograph AGS-X series

下記表2に示される通り、上記実施例1〜17のパテ組成物は、樹脂バルーンを含有するにも関わらず、グリーン強度がいずれも0.029MPa以上と高く、シート状に成形した際にちぎれ(破断)が生じにくいことが、装置を用いた測定においても実証された。   As shown in Table 2 below, the putty compositions of Examples 1 to 17 above all have a high green strength of 0.029 MPa or more despite being contained in a resin balloon, and are torn when formed into a sheet shape. It was also proved in the measurement using the apparatus that (breaking) hardly occurs.

1:パテ組成物(熱膨張前)
2:パテ組成物(熱膨張後)
3:外側パイプ(銅製)
4:内側パイプ(銅製)


1: Putty composition (before thermal expansion)
2: Putty composition (after thermal expansion)
3: Outer pipe (copper)
4: Inner pipe (copper)


Claims (16)

バインダー樹脂と、樹脂製マイクロバルーンと、膨張性黒鉛とを含有してなる非硬化型熱膨張性パテ組成物であって、
前記バインダー樹脂が、ポリブテン、ポリブタジエン、スチレンブタジエンゴム、ブチルゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、クロロプレンゴム、及びイソプレンゴムからなる群より選ばれる1種又は2種以上を含み、
前記非硬化型熱膨張性パテ組成物の硬さが10N以上50N以下、比重が0.5〜1.5、熱膨張倍率が4倍以上である、非硬化型熱膨張性パテ組成物。
A non-curable thermally expandable putty composition containing a binder resin, a resin microballoon, and expandable graphite,
The binder resin includes one or more selected from the group consisting of polybutene, polybutadiene, styrene butadiene rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene rubber, chloroprene rubber, and isoprene rubber,
A non-curable thermally expandable putty composition having a hardness of 10N to 50N, a specific gravity of 0.5 to 1.5, and a thermal expansion ratio of 4 or more.
前記非硬化型熱膨張性パテ組成物中、前記膨張性黒鉛の含有量に対する前記樹脂製マイクロバルーンの含有量の比(樹脂製マイクロバルーン/膨張性黒鉛)が、体積比で0.2〜14.0である、請求項1に記載の非硬化型熱膨張性パテ組成物。   In the non-curable thermally expandable putty composition, the ratio of the resin microballoon content to the content of the expandable graphite (resin microballoon / expandable graphite) is 0.2 to 14 in volume ratio. The non-curable heat-expandable putty composition of claim 1, which is 0.0. 前記非硬化型熱膨張性パテ組成物中、前記樹脂製マイクロバルーンの含有量が3.0〜61.0体積%であり、前記膨張性黒鉛の含有量が3.0〜25.0体積%である、請求項1又は2に記載の非硬化型熱膨張性パテ組成物。   In the non-curable heat-expandable putty composition, the resin microballoon content is 3.0 to 61.0% by volume, and the expandable graphite content is 3.0 to 25.0% by volume. The non-curable heat-expandable putty composition according to claim 1 or 2. 前記非硬化型熱膨張性パテ組成物中、前記バインダー樹脂の含有量が15.0〜50.0質量%、前記樹脂製マイクロバルーンの含有量が0.4〜15.0質量%、前記膨張性黒鉛の含有量が5.0〜40.0質量%である、請求項1〜3のいずれか1項に記載の非硬化型熱膨張性パテ組成物。   In the non-curable heat-expandable putty composition, the content of the binder resin is 15.0 to 50.0 mass%, the content of the resin microballoon is 0.4 to 15.0 mass%, and the expansion The non-curable heat-expandable putty composition according to any one of claims 1 to 3, wherein the content of the functional graphite is 5.0 to 40.0 mass%. 前記非硬化型熱膨張性パテ組成物中、無機充填剤の含有量が50質量%以下である、請求項1〜4のいずれか1項に記載の非硬化型熱膨張性パテ組成物。   The non-curable heat-expandable putty composition according to any one of claims 1 to 4, wherein a content of the inorganic filler is 50% by mass or less in the non-curable heat-expandable putty composition. 前記無機充填剤が、水酸化アルミニウム、水酸化マグネシウム、タルク、クレー、炭酸カルシウム、無機バルーン、酸化アルミニウム、酸化マグネシウム、及びシリカからなる群から選ばれる1種又は2種類以上である、請求項5に記載の非硬化型熱膨張性パテ組成物。   6. The inorganic filler is one or more selected from the group consisting of aluminum hydroxide, magnesium hydroxide, talc, clay, calcium carbonate, inorganic balloon, aluminum oxide, magnesium oxide, and silica. A non-curable thermally expandable putty composition as described in 1. 前記非硬化型熱膨張性パテ組成物が、難燃剤を含有する、請求項1〜6のいずれか1項に記載の非硬化型熱膨張性パテ組成物。   The non-curable heat-expandable putty composition according to any one of claims 1 to 6, wherein the non-curable heat-expandable putty composition contains a flame retardant. 前記難燃剤が、ポリフェニレンエーテル、リン酸エステル、赤燐、及びポリリン酸アンモニウムからなる群より選ばれる1種又は2種以上である、請求項7に記載の非硬化型熱膨張性パテ組成物。   The non-curable thermally expandable putty composition according to claim 7, wherein the flame retardant is one or more selected from the group consisting of polyphenylene ether, phosphate ester, red phosphorus, and ammonium polyphosphate. 前記樹脂製マイクロバルーンの殻を構成する樹脂が、アクリロニトリル樹脂、フェノール樹脂、及び塩化ビニリデン樹脂からなる群より選ばれる1種又は2種以上を含む、請求項1〜のいずれか1項に記載の非硬化型熱膨張性パテ組成物。 Resin constituting shells of the resin microballoons, acrylonitrile resins, phenolic resins, and one or more selected from the group consisting of vinylidene chloride resin, according to any one of claims 1-8 A non-curable heat-expandable putty composition. 前記非硬化型熱膨張性パテ組成物中、無機バルーンの含有量が0〜5.0体積%である、請求項1〜のいずれか1項に記載の非硬化型熱膨張性パテ組成物。 The non-curable thermally expandable putty composition according to any one of claims 1 to 9 , wherein the non-curable thermally expandable putty composition has an inorganic balloon content of 0 to 5.0% by volume. . 可塑剤を含有する、請求項1〜10のいずれか1項に記載の非硬化型熱膨張性パテ組成物。 The non-curable heat-expandable putty composition according to any one of claims 1 to 10 , comprising a plasticizer. 前記非硬化型熱膨張性パテ組成物がシート状である、請求項1〜11のいずれか1項に記載の非硬化型熱膨張性パテ組成物。   The non-curable heat-expandable putty composition according to any one of claims 1 to 11, wherein the non-curable heat-expandable putty composition is in a sheet form. 少なくともバインダー樹脂と、樹脂製マイクロバルーンと、膨張性黒鉛とを混合することを含非硬化型熱膨張性パテ組成物の製造方法であって、
前記バインダー樹脂が、ポリブテン、ポリブタジエン、スチレンブタジエンゴム、ブチルゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、クロロプレンゴム、及びイソプレンゴムからなる群より選ばれる1種又は2種以上であり、
得られる非硬化型熱膨張性パテ組成物が、硬さが10N以上50N以下、比重が0.5〜1.5、熱膨張倍率が4倍以上である、非硬化型熱膨張性パテ組成物の製造方法
And at least a binder resin, and the resin microballoons, mixing the the expandable graphite A manufacturing method of including non-curable intumescent putty composition,
The binder resin is one or more selected from the group consisting of polybutene, polybutadiene, styrene butadiene rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene rubber, chloroprene rubber, and isoprene rubber,
The obtained non-curing type heat-expandable putty composition has a hardness of 10N or more and 50N or less, a specific gravity of 0.5 to 1.5, and a thermal expansion ratio of 4 times or more. Manufacturing method .
前記膨張性黒鉛の混合量に対する前記樹脂製マイクロバルーンの混合量の比(樹脂製マイクロバルーン/膨張性黒鉛)を、体積比で0.2〜14.0とする、請求項13に記載の非硬化型熱膨張性パテ組成物の製造方法。 The mixing amount of the ratio of the resin microballoons for mixing amount of expandable graphite (resin microballoons / expandable graphite), and 0.2 to 14.0 by volume, non of claim 13 A method for producing a curable thermally expandable putty composition. 混合する原料の総量中、前記樹脂製マイクロバルーンの割合を3.0〜61.0体積%とし、前記膨張性黒鉛の割合を3.0〜25.0体積%とする、請求項13又は14に記載の非硬化型熱膨張性パテ組成物の製造方法。 The total amount of the mixed raw material, the proportion of the resin microballoons and 3.0 to 61.0% by volume, and from 3.0 to 25.0% by volume ratio of the expandable graphite, claim 13 or 14 The manufacturing method of the non-hardening type | mold heat-expandable putty composition as described in 1 above. 得られる非硬化型熱膨張性パテ組成物中、無機バルーンの含有量が0〜5体積%である、請求項13〜15のいずれか1項に記載の非硬化型熱膨張性パテ組成物の製造方法。The non-curable thermally expandable putty composition according to any one of claims 13 to 15, wherein the content of the inorganic balloon is 0 to 5% by volume in the obtained non-curable thermally expandable putty composition. Production method.
JP2015226115A 2014-12-17 2015-11-18 Non-curing thermal expansion putty composition Active JP6117320B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014255489 2014-12-17
JP2014255489 2014-12-17

Publications (3)

Publication Number Publication Date
JP2016117882A JP2016117882A (en) 2016-06-30
JP2016117882A5 JP2016117882A5 (en) 2016-10-27
JP6117320B2 true JP6117320B2 (en) 2017-04-19

Family

ID=56242396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015226115A Active JP6117320B2 (en) 2014-12-17 2015-11-18 Non-curing thermal expansion putty composition

Country Status (1)

Country Link
JP (1) JP6117320B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6896134B1 (en) * 2020-11-20 2021-06-30 デンカ株式会社 Thermally expandable putty composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770428A (en) * 1993-09-01 1995-03-14 Natl House Ind Co Ltd Foamed fire-proofing molded products and foaming fire-proofing composition
JP3067932B2 (en) * 1993-10-19 2000-07-24 松本油脂製薬株式会社 Lightweight resin composition
JP2000212481A (en) * 1999-01-21 2000-08-02 Kansai Putty Kako Kk Lightweight putty composition
US6747074B1 (en) * 1999-03-26 2004-06-08 3M Innovative Properties Company Intumescent fire sealing composition
JP2001064481A (en) * 1999-08-24 2001-03-13 Kansai Putty Kako Kk Flexible epoxy putty composition
JP3779291B2 (en) * 2003-07-24 2006-05-24 シー・アール・ケイ株式会社 Thermally expandable fire protection composition
JP2011063783A (en) * 2009-09-18 2011-03-31 Furukawa Electric Co Ltd:The Intumescent resin composition for fire prevention
JP5644116B2 (en) * 2010-01-21 2014-12-24 株式会社ブリヂストン High flame retardant polyurethane foam
JP5598880B2 (en) * 2012-10-12 2014-10-01 株式会社古河テクノマテリアル Non-curing fire-resistant putty composition

Also Published As

Publication number Publication date
JP2016117882A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP4041149B2 (en) Thermally expandable putty composition
JP3363156B2 (en) Fire-resistant sheet-like molded product, fire-resistant laminate for steel frame coating, fire-resistant structure for wall, and method of construction of fire-resistant steel frame and fire-resistant wall
WO2013145790A1 (en) Epoxy-resin-containing thermally expandable resin composition sheet and method for constructing penetration structure for fireproof compartment
JP2007530745A (en) Self-ceramic composition for fireproof protection
JP5280987B2 (en) Fireproof compartment penetration structure
JP5002825B2 (en) Method for producing inorganic foam
JP2008138180A (en) Rubber mixture for thermally expansible joint filling material, thermally expansible joint filling material and joint for fire-resistant double-layer pipe
JP2011036290A (en) Fireproof compartment penetrating part structure
JP3133683B2 (en) Expandable resin composition for fire protection
JP6117320B2 (en) Non-curing thermal expansion putty composition
JP5842950B2 (en) A heat-expandable refractory resin composition and a method for producing the formed body.
JP2022512801A (en) Composites and fire protection elements for sealing passage openings and joints in building components
JP5598880B2 (en) Non-curing fire-resistant putty composition
JP2015214656A (en) Fireproof resin composition
JP2019127509A (en) Fire resistance resin molding body
Yasir et al. Effect of basalt fibres reinforcement and aluminum trihydrate on the thermal properties of intumescent fire retardant coatings
EP3088929A1 (en) Optical fiber cable
JP2008031799A (en) Construction method for fire-compartment penetration section, and fire-compartment penetration section structure
JP2020176206A (en) Resin-based fire-resistant composition
JP6606011B2 (en) Fire prevention structure, construction method of fire prevention structure
WO2015166583A1 (en) Non-curable refractory putty composition
JP2022035611A (en) Fire-resistant resin composition, fire-resistant material, fire-resistant laminate, partition penetration processing structure and partition penetration processing method
JP2011063783A (en) Intumescent resin composition for fire prevention
JP2000006289A (en) Fireproof multilayer sheet
JP5108400B2 (en) Method for producing refractory molded article, refractory molded article obtained by the method, and refractory measure structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160909

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160909

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R150 Certificate of patent or registration of utility model

Ref document number: 6117320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250