JP6117223B2 - Treated inorganic core particles with improved dispersibility - Google Patents

Treated inorganic core particles with improved dispersibility Download PDF

Info

Publication number
JP6117223B2
JP6117223B2 JP2014538825A JP2014538825A JP6117223B2 JP 6117223 B2 JP6117223 B2 JP 6117223B2 JP 2014538825 A JP2014538825 A JP 2014538825A JP 2014538825 A JP2014538825 A JP 2014538825A JP 6117223 B2 JP6117223 B2 JP 6117223B2
Authority
JP
Japan
Prior art keywords
core particles
slurry
inorganic core
particles
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014538825A
Other languages
Japanese (ja)
Other versions
JP2014534996A (en
Inventor
パトリック ディーボルト マイケル
パトリック ディーボルト マイケル
ルスナク エリック
ルスナク エリック
シー エギング
シー エギング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of JP2014534996A publication Critical patent/JP2014534996A/en
Application granted granted Critical
Publication of JP6117223B2 publication Critical patent/JP6117223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/025Applications of microcapsules not provided for in other subclasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/22Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/027Barium sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Description

本開示は、処理済み無機コア粒子、典型的に、二酸化チタン粒子を製造する方法、特に、分散性の改善された処理済み無機酸化物コア粒子、典型的に、二酸化チタン粒子の製造に関する。   The present disclosure relates to a method of producing treated inorganic core particles, typically titanium dioxide particles, and in particular, to producing treated inorganic oxide core particles with improved dispersibility, typically titanium dioxide particles.

顔料やナノ粒子等の二酸化チタン粒子は、塩化法か硫化法のいずれかを用いて製造される。気相塩化法による二酸化チタン顔料の製造においては、四塩化チタン、TiClを、約900℃〜約1600℃の温度で酸素含有ガスにより処理し、TiO粒子と遊離塩素の得られた高温気体状懸濁液を、リアクタから放出し、管すなわち送気管を通過させることにより、例えば、約600℃より低く即時に冷却しなければならない。そこで、二酸化チタン顔料粒子の成長と凝集がなされる。 Titanium dioxide particles such as pigments and nanoparticles are produced using either the chlorination method or the sulfidation method. In the production of titanium dioxide pigment by the gas phase chlorination method, titanium tetrachloride, TiCl 4 is treated with an oxygen-containing gas at a temperature of about 900 ° C. to about 1600 ° C., and a high-temperature gas obtained from TiO 2 particles and free chlorine. The suspension must be cooled immediately, eg, below about 600 ° C., by discharging it from the reactor and passing through a tube or air line. Therefore, the titanium dioxide pigment particles are grown and aggregated.

最終生成物の隠蔽力や耐久性を改善するために、ケイ素化合物やアルミニウム化合物等の様々な物質を反応物質に添加することは知られている。プロセス中に添加される三塩化アルミニウムは、最終生成物中のルチルを増大することが分かっており、最終生成物中でシリカとなる四塩化ケイ素は、カーボンブラックアンダートーン(CBU)、粒子サイズおよび顔料摩損を改善することが分かっている。しかしながら、添加処理やこれらの処理に追加で使われるプロセスでは、分散性のよくない処理済み二酸化チタン粒子となる。   In order to improve the hiding power and durability of the final product, it is known to add various substances such as silicon compounds and aluminum compounds to the reactants. Aluminum trichloride added during the process has been found to increase rutile in the final product, and silicon tetrachloride, which becomes silica in the final product, is carbon black undertone (CBU), particle size and It has been found to improve pigment wear. However, in addition treatments and processes additionally used for these treatments, the treated titanium dioxide particles have poor dispersibility.

無機コア粒子、典型的に、熱分解により製造された金属酸化物粒子、より具体的には、二酸化チタン粒子に元素を添加して、分散性の改善された処理済み無機コア粒子を形成する効率的な方法が求められている。   Efficiency of adding inorganic core particles, typically metal oxide particles produced by pyrolysis, more specifically titanium dioxide particles to form treated inorganic core particles with improved dispersibility Is needed.

第1の態様において、本開示は、
(a)多孔質シリカ処理済み無機コア粒子および水を含むスラリーを、少なくとも約90℃、より典型的には、約93〜約97℃、さらに典型的には、約95〜約97℃の温度で加熱するステップと、
(b)pHを約8.0〜9.5に維持しながら、可溶性アルミナ源を、工程(a)からのスラリーに添加して、多孔質シリカ処理済み無機コア粒子上にアルミナ処理物を形成するステップと、を含み、処理済み無機コア粒子は、高密度のシリカまたはアルミナの処理物を含まず、少なくとも約7%〜約14%の量で存在するシリカおよび約4.0%〜約8.0%の量で存在するアルミナを有し、表面処理物が粒子−粒子間で実質的に均質である、分散性の改善された処理済み無機コア粒子、特に処理済み二酸化チタン(TiO)を製造する方法を提供する。
In a first aspect, the present disclosure provides:
(A) A slurry comprising porous silica-treated inorganic core particles and water is at a temperature of at least about 90 ° C, more typically from about 93 to about 97 ° C, and more typically from about 95 to about 97 ° C. Heating with
(B) While maintaining the pH at about 8.0-9.5, a soluble alumina source is added to the slurry from step (a) to form an alumina treated product on the porous silica treated inorganic core particles. And wherein the treated inorganic core particles are free of high density silica or alumina treatment, and are present in an amount of at least about 7% to about 14% and from about 4.0% to about 8%. Treated inorganic core particles with improved dispersibility, in particular treated titanium dioxide (TiO 2 ), having alumina present in an amount of 0.0% and the surface treatment being substantially homogeneous from particle to particle A method of manufacturing the same is provided.

第1の態様において、本開示は、処理済み無機コア粒子、特に、処理済み二酸化チタン(TiO)粒子が、水に完全に分散されて、10分未満にスラリーを形成する方法を提供する。 In a first aspect, the present disclosure provides a method in which treated inorganic core particles, particularly treated titanium dioxide (TiO 2 ) particles, are fully dispersed in water to form a slurry in less than 10 minutes.

「均質」とは、各コア粒子を、ある量のアルミナおよびシリカの表面に付加して、全粒子が水、有機溶媒または分散剤分子と同様に相互作用するよう、粒子間の処理レベルのばらつきを低くする(すなわち、全粒子が、共通の方法で共通の範囲までその化学環境と相互作用する)ことを意味する。   “Homogeneous” means that each core particle is added to the surface of a certain amount of alumina and silica so that all particles interact in the same way as water, organic solvent or dispersant molecules, so that the level of processing between the particles varies. (Ie, all particles interact with their chemical environment in a common way to a common range).

「完全に分散」とは、水処理および/または乾燥プロセス中に形成された全凝集体を、顔料製造の粒子形成段階で作製される個々の粒子または粒子の小集団(集合体)へと縮小されたことを意味する。   “Completely dispersed” refers to the reduction of the total aggregates formed during the water treatment and / or drying process into individual particles or small populations (aggregates) of particles made during the particle formation stage of pigment production. Means that

第1の態様において、後述するように、シリカは、発熱性シリカの発熱無機コア粒子、特に、発熱性二酸化チタン(TiO)粒子への堆積により、四塩化ケイ素の四塩化チタンとの共酸素化により、または無機コア粒子、特に、発熱性二酸化チタン(TiO)粒子への凝縮相水性酸化物沈殿による堆積により施される。 In the first aspect, as described below, the silica is co-oxygenated with silicon tetrachloride and titanium tetrachloride by deposition onto the exothermic inorganic core particles of exothermic silica, in particular exothermic titanium dioxide (TiO 2 ) particles. Or by deposition by condensed phase aqueous oxide precipitation onto inorganic core particles, particularly exothermic titanium dioxide (TiO 2 ) particles.

第1の態様において、本開示は、シリカ処理済み無機コア粒子、特に、処理済み二酸化チタン(TiO)粒子および水を含むスラリーを、
(a1)無機コア粒子の水中スラリーを提供するステップと、
(a2)スラリーを、約30〜約40℃、より典型的には、33〜37℃まで加熱し、pHを約3.5〜約7.5に調整するステップと、
(a3)pHを約3.5〜約7.5に維持しながら、可溶性ケイ酸塩溶液をスラリーに添加するステップと、
(a4)少なくとも約5分間攪拌するステップと
を含むプロセスにより調製する方法を提供する。
In a first aspect, the present disclosure provides a slurry comprising silica treated inorganic core particles, particularly treated titanium dioxide (TiO 2 ) particles and water.
(A1) providing an underwater slurry of inorganic core particles;
(A2) heating the slurry to about 30 to about 40 ° C., more typically 33 to 37 ° C., and adjusting the pH to about 3.5 to about 7.5;
(A3) adding a soluble silicate solution to the slurry while maintaining the pH at about 3.5 to about 7.5;
(A4) providing a method of preparation by a process comprising stirring for at least about 5 minutes.

本開示において、「含む」とは、規定された特徴、整数、工程または参照した成分の存在を指定するものと解釈されるが、1つまたは複数の特徴、整数、工程もしくは成分またはそのグループの存在または追加を排除するものではない。さらに、「含む」という用語には、「から実質的になる」および「からなる」という用語に包含される例も含まれるものとする。同様に、「から実質的になる」という用語は、「からなる」という用語に包含される例も含まれるものとする。   In this disclosure, “comprising” is to be construed as specifying the presence of a specified feature, integer, step or referenced component, but of one or more features, integers, steps or components or groups thereof. It does not exclude existence or addition. Furthermore, the term “comprising” is intended to include examples encompassed by the terms “consisting essentially of” and “consisting of”. Similarly, the term “consisting essentially of” is intended to include examples encompassed by the term “consisting of”.

本開示において、量、濃度またはその他値やパラメータが、範囲、典型的な範囲または典型的な上限値と典型的な下限値のリストのいずれかとして与えられたときは、範囲が個別に開示されていようとなかろうと、任意の上限または典型的な値と、任意の下限または典型的な値の任意の対から作られる全ての範囲を具体的に開示するものと考えられる。ここに示した数値範囲は、特に断りのない限り、その終点、ならびにその範囲内の全ての整数および分数が含まれるものとする。開示の範囲は、範囲を定義するときに示した特定の値に限定されるものではない。   In this disclosure, when an amount, concentration or other value or parameter is given as either a range, a typical range or a list of typical upper and lower limits, the ranges are individually disclosed. Whether or not, it is considered to specifically disclose all ranges made from any upper or typical value and any pair of any lower or typical value. Unless otherwise specified, the numerical ranges shown here include their end points and all integers and fractions within the ranges. The scope of the disclosure is not limited to the particular values indicated when defining a range.

本開示において、単数および単数形態の用語「a」、「an」、および「the」には、特に断りのない限り、複数のものも含まれる。このように、例えば、「TiO粒子」、「theTiO」、または「aTiO」には単数と複数の粒子が含まれる。 In the present disclosure, the terms “a”, “an”, and “the” in the singular and singular forms also include the plural unless specifically stated otherwise. Thus, for example, “TiO 2 particles”, “theTiO 2 ”, or “aTiO 2 ” include single and plural particles.

本開示は、無機コア粒子、典型的には、無機金属酸化物または混合金属酸化物顔料粒子、より典型的には、顔料またはナノ粒子であってよい二酸化チタン粒子に関し、無機コア粒子、典型的には、無機金属酸化物または混合金属酸化物粒子、より典型的には、二酸化チタン粒子の分散性が改善されている。   The present disclosure relates to inorganic core particles, typically inorganic metal oxide or mixed metal oxide pigment particles, and more typically titanium dioxide particles, which can be pigments or nanoparticles, Have improved dispersibility of inorganic metal oxide or mixed metal oxide particles, more typically titanium dioxide particles.

無機コア粒子:
任意の無機コア粒子、特に、二酸化チタン粒子は、本開示に従って処理されるものとする。無機コア粒子とは、ポリマーメルト、コーティングまたはラミネート組成物等の最終生成物全体に分散されて、色や不透明性を付与するものを意味する。無機コア粒子は、チタン、アルミニウム、亜鉛、銅、鉄の酸化物;カルシウム、ストロンチウム、バリウムの硫酸塩;硫化亜鉛;硫化銅、ゼオライト;マイカ;タルク;カオリン、ムライト、炭酸カルシウムまたはシリカであってよい。鉛または水銀化合物も等価のコア材料と考えられるが、毒性のため望ましくはない。より典型的なコア材料は、二酸化チタンTiOおよび硫酸バリウム、最も典型的には、二酸化チタンTiOである。
Inorganic core particles:
Any inorganic core particles, in particular titanium dioxide particles, shall be treated according to the present disclosure. Inorganic core particles mean those that are dispersed throughout the final product, such as a polymer melt, coating or laminate composition, to impart color and opacity. The inorganic core particles are titanium, aluminum, zinc, copper, iron oxide; calcium, strontium, barium sulfate; zinc sulfide; copper sulfide, zeolite; mica; talc; kaolin, mullite, calcium carbonate or silica. Good. Lead or mercury compounds are also considered equivalent core materials, but are undesirable due to toxicity. More typical core materials are titanium dioxide TiO 2 and barium sulfate, most typically titanium dioxide TiO 2 .

特に、二酸化チタンは、本開示の方法および生成物に特に有用な粒子である。本開示に有用な二酸化チタン(TiO)粒子は、ルチルまたはアナターゼ結晶形である。一般的に、塩化法か硫酸法のいずれかにより作製される。塩化法においては、TiClがTiO粒子に酸化される。硫酸法においては、硫酸および鉱石含有チタンを溶解し、得られた溶液を一連の工程に通して、TiOを得る。硫酸および塩化法はともに、その教示が本明細書に参照により援用される「The Pigment Handbook」第1巻、第2版、John Wiley&Sons、NY(1988)に詳細が記載されている。粒子は、顔料またはナノ粒子であってよい。 In particular, titanium dioxide is a particularly useful particle for the methods and products of the present disclosure. Titanium dioxide (TiO 2 ) particles useful in the present disclosure are in the rutile or anatase crystal form. Generally, it is produced by either a chlorination method or a sulfuric acid method. In the chlorination method, TiCl 4 is oxidized to TiO 2 particles. In the sulfuric acid method, sulfuric acid and ore-containing titanium are dissolved, and the resulting solution is passed through a series of steps to obtain TiO 2 . Both sulfuric acid and chlorination methods are described in detail in “The Pigment Handbook”, Volume 1, Second Edition, John Wiley & Sons, NY (1988), the teachings of which are incorporated herein by reference. The particles may be pigments or nanoparticles.

「顔料」とは、平均サイズが1ミクロン未満の二酸化チタン粒子を意味する。典型的に、粒子の平均サイズは、約0.020〜約0.95ミクロン、より典型的には、約0.050〜約0.75ミクロン、最も典型的には、約0.075〜約0.50ミクロンである。「ナノ粒子」とは、液体懸濁液中粒子の粒子サイズ分布を測定する動的光散乱により求めたとき、一次二酸化チタン粒子が、約100ナノメートル(nm)未満の平均粒径を有することを意味する。粒子は、典型的に、約3nm〜約6000nmにわたり得る集合体である。   “Pigment” means titanium dioxide particles having an average size of less than 1 micron. Typically, the average particle size is from about 0.020 to about 0.95 microns, more typically from about 0.050 to about 0.75 microns, and most typically from about 0.075 to about 0.50 microns. “Nanoparticle” means that the primary titanium dioxide particles have an average particle size of less than about 100 nanometers (nm) as determined by dynamic light scattering to measure the particle size distribution of the particles in a liquid suspension. Means. The particles are typically aggregates that can range from about 3 nm to about 6000 nm.

処理済み二酸化チタン粒子の製造プロセス
分散性の改善された処理済み無機コア粒子、特に処理済み二酸化チタン(TiO)粒子の製造プロセスには、多孔質シリカ処理済み無機コア粒子と水を含むスラリーを、少なくとも約90℃、より典型的には、約93〜約97℃、さらに典型的には、約95〜約97℃の温度で加熱することが含まれる。シリカは、発熱性シリカの発熱無機コア粒子、特に、発熱性二酸化チタン(TiO)粒子への堆積により、四塩化ケイ素の四塩化チタンとの共酸素化により、または凝縮相水性酸化物の堆積により適用される。
Process for producing treated titanium dioxide particles The process for producing treated inorganic core particles with improved dispersibility, particularly treated titanium dioxide (TiO 2 ) particles, comprises a slurry comprising porous silica treated inorganic core particles and water. Heating at a temperature of at least about 90 ° C, more typically about 93 to about 97 ° C, and more typically about 95 to about 97 ° C. Silica is produced by deposition of exothermic silica on exothermic inorganic core particles, in particular on exothermic titanium dioxide (TiO 2 ) particles, by co-oxygenation of silicon tetrachloride with titanium tetrachloride, or by deposition of condensed phase aqueous oxides. Applied by

一実施形態において、シリカ処理済み無機コア粒子、特に、処理済み二酸化チタン(TiO)粒子および水を含むスラリーは、無機コア粒子の水中スラリーを提供する工程を含む方法により調製される。典型的に、TiOは、スラリーの総重量を基準として、25〜約35重量%、より典型的には、約30重量%の量で存在する。次に、スラリーを、約30〜約40℃、より典型的には、33〜37℃まで加熱し、pHを、約3.5〜約7.5、より典型的には、約5.0〜約6.5に調整する。pHを約3.5〜約7.5、より典型的には、約5.0〜約6.5に維持しながら、ケイ酸ナトリムやカリウム等の可溶性ケイ酸塩を、スラリーに添加する。その後、少なくとも約5分、典型的には、少なくとも約10分、ただし15分以下、攪拌して、無機コア粒子、特に、二酸化チタン(TiO)粒子への沈殿を促す。SiO/NaO重量比が約1.6〜約3.75、固体が32〜54重量%で、さらに希釈してもしなくてもよい市販の水溶性ケイ酸ナトリウムが最も実用的である。多孔質シリカを無機コア粒子に適用するには、有効量の可溶性ケイ酸塩の添加中、スラリーは、典型的に酸性とする。用いる酸は、シリカを沈殿させるのに十分な解離定数を有し、スラリー中の酸性条件を維持するのに十分な量で用いられる、HCl、HSO、HNOまたはHPO等任意の酸でよい。加水分解して酸を形成するTiOSOやTiCl等の化合物を用いてもよい。酸を全て最初に添加する代わりに、スラリーの酸性度が約7.5未満のpHで典型的に維持される限りは、可溶性ケイ酸塩および酸を同時に添加してもよい。酸添加後、さらに添加を進める前に、スラリーは、50℃以下の温度に少なくとも30分間保たなければならない。 In one embodiment, a silica-treated inorganic core particle, particularly a slurry comprising treated titanium dioxide (TiO 2 ) particles and water, is prepared by a method comprising providing an underwater slurry of inorganic core particles. Typically, TiO 2, based on the total weight of the slurry, 25 to about 35 wt%, and more typically present in an amount of about 30 wt%. The slurry is then heated to about 30 to about 40 ° C., more typically 33 to 37 ° C., and the pH is about 3.5 to about 7.5, more typically about 5.0. Adjust to ~ 6.5. A soluble silicate such as sodium silicate or potassium is added to the slurry while maintaining the pH at about 3.5 to about 7.5, more typically from about 5.0 to about 6.5. Thereafter, stirring is performed for at least about 5 minutes, typically at least about 10 minutes, but not more than 15 minutes, to facilitate precipitation into inorganic core particles, particularly titanium dioxide (TiO 2 ) particles. SiO 2 / Na 2 O weight ratio of from about 1.6 to about 3.75, solid in 32-54% by weight, is most practical commercial water soluble sodium silicates may or may not be further diluted . To apply porous silica to inorganic core particles, the slurry is typically acidic during the addition of an effective amount of soluble silicate. The acid used has a dissociation constant sufficient to precipitate the silica and is used in an amount sufficient to maintain acidic conditions in the slurry, such as HCl, H 2 SO 4 , HNO 3 or H 3 PO 4 Any acid may be used. A compound such as TiOSO 4 or TiCl 4 that hydrolyzes to form an acid may be used. Instead of adding all of the acid first, soluble silicate and acid may be added simultaneously as long as the acidity of the slurry is typically maintained at a pH of less than about 7.5. After the acid addition, the slurry must be kept at a temperature below 50 ° C. for at least 30 minutes before proceeding with further addition.

処理は、無機コア粒子、特に、二酸化チタンコア粒子の総重量を基準として、約7〜約14重量%、より典型的には、約9.5〜約12.0%のシリカ、に対応する。等電点を5.0〜7.0に制御すると、工場処理および最終用途における微粒子組成物の分散および/または凝集を促進するのに有利となり得る。   The treatment corresponds to about 7 to about 14 wt%, more typically about 9.5 to about 12.0% silica, based on the total weight of the inorganic core particles, particularly the titanium dioxide core particles. Controlling the isoelectric point between 5.0 and 7.0 can be advantageous in promoting dispersion and / or aggregation of the particulate composition in factory processing and end use.

シリカ処理物をTiO粒子に添加する別法は、参考文献として援用される、米国特許第5,992,120号明細書に記載されたとおり、発熱性シリカの、発熱性無機コア粒子、特に、発熱性二酸化チタン(TiO)粒子への堆積による、または米国特許第5,562,764号明細書および米国特許第7,029,648号明細書に記載されたとおり、四塩化ケイ素の四塩化チタンとの共酸素化による。 An alternative method of adding the treated silica to the TiO 2 particles is as described in US Pat. No. 5,992,120, which is incorporated by reference, with exothermic silica, particularly exothermic inorganic core particles, Of silicon tetrachloride by deposition on pyrogenic titanium dioxide (TiO 2 ) particles or as described in US Pat. No. 5,562,764 and US Pat. No. 7,029,648. By co-oxygenation with titanium chloride.

多孔質シリカ処理済み無機コア粒子および水を含むスラリーは、少なくとも約90℃、より典型的には、約93〜約97℃、さらに典型的には、約95〜約97℃の温度で加熱する。第2の処理物は、沈殿酸化アルミニウムまたはアルミナを含む。この処理物は、多孔質であり、典型的に、当業者に知られた技術を用いて、可溶アルミン酸塩等の可溶アルミナ源から適用される。特定の実施形態において、可溶アルミン酸塩等の可溶アルミナ源は、pHを約7.0〜10.0、より典型的には、8.5〜約9.5に維持しながら、シリカ処理済み二酸化チタンを含むスラリーに添加されて、多孔質シリカ処理済み無機コア粒子上にアルミナ処理物を形成する。「可溶アルミナ源」とは、例えば、アルミン酸ナトリウムやカリウム等のアルミン酸塩アニオンのアルカリ金属塩を意味する。あるいは、可溶アルミナ源は、例えば、塩化アルミニウム等、酸性であってもよい。この場合、pHは酸でなく塩基を用いて制御される。処理済み無機コア粒子は、高密度のシリカまたはアルミナの処理物を含まない。   The slurry comprising the porous silica treated inorganic core particles and water is heated at a temperature of at least about 90 ° C, more typically from about 93 to about 97 ° C, and more typically from about 95 to about 97 ° C. . The second treated product contains precipitated aluminum oxide or alumina. This treatment is porous and is typically applied from a soluble alumina source, such as a soluble aluminate, using techniques known to those skilled in the art. In certain embodiments, a soluble alumina source, such as a soluble aluminate, is used while maintaining a pH of about 7.0 to 10.0, more typically 8.5 to about 9.5. It is added to a slurry containing treated titanium dioxide to form a treated alumina on the porous silica-treated inorganic core particles. The “soluble alumina source” means, for example, an alkali metal salt of an aluminate anion such as sodium aluminate or potassium. Alternatively, the soluble alumina source may be acidic, for example, aluminum chloride. In this case, the pH is controlled using a base rather than an acid. The treated inorganic core particles do not include a high-density treated product of silica or alumina.

多孔質アルミナ処理物は、無機コア粒子、特に、二酸化チタンコア粒子の総重量を基準として、約4.0%〜約8.0%、より典型的には、約5.0%〜約7.5%の量で存在する。沈殿した実質的に全てのアルミナが、無機コア粒子での処理物になるため、典型的に、その量の可溶アルミン酸塩等の可溶アルミナ源を、沈殿後、適切な処理度となるように、スラリー液に与える必要があるだけである。   The treated porous alumina is about 4.0% to about 8.0%, more typically about 5.0% to about 7.%, based on the total weight of the inorganic core particles, particularly the titanium dioxide core particles. Present in an amount of 5%. Since substantially all of the precipitated alumina is treated with inorganic core particles, typically that amount of a soluble alumina source, such as a soluble aluminate, will have an appropriate degree of treatment after precipitation. As such, it only needs to be applied to the slurry liquid.

典型的に、粒子毎の表面処理は実質的に均質である。これは、各コア粒子が、ある量のアルミナおよびシリカの表面に付加して、全粒子が水、有機溶媒または分散剤分子と同様に相互作用するよう、粒子間のアルミナおよびシリカレベルにおける処理レベルのばらつきを低くする(すなわち、全粒子が、共通の方法で共通の範囲までその化学環境と相互作用する)ことを意味する。典型的に、処理済み無機コア粒子、特に、処理済み二酸化チタン(TiO)粒子は、水に完全に分散されて、10分未満、より典型的には、約5分未満にスラリーを形成する。「完全に分散」とは、分散液が、粒子形成段階で作製される個々の粒子または粒子の小集団(硬質集合体)で構成され、全ての軟質集合体が個々の粒子へと縮小されたことを意味する。 Typically, the particle-by-particle surface treatment is substantially homogeneous. This is because the treatment level at the alumina and silica levels between the particles so that each core particle attaches to the surface of an amount of alumina and silica so that all particles interact in the same way as water, organic solvent or dispersant molecules. (Ie, all particles interact with their chemical environment to a common extent in a common way). Typically, the treated inorganic core particles, particularly the treated titanium dioxide (TiO 2 ) particles, are fully dispersed in water to form a slurry in less than 10 minutes, more typically less than about 5 minutes. . “Completely dispersed” means that the dispersion is made up of individual particles or a small population of particles (hard aggregates) made in the particle formation stage, and all soft aggregates have been reduced to individual particles Means that.

本プロセスによる処理後、顔料は、スラリーの中和、必要であれば、濾過、洗浄、乾燥、および、しばしば、微細化などの乾燥研削工程をはじめとする公知の手順により回収される。ただし、水が液相であるエマルション塗料を作製するのに、生成物の高粘度スラリーを直接用いることができるため、乾燥は必要ない。本プロセスは、完全に分散した粒子の高固体水スラリーを得る容易かつ効率的な方法である。   After treatment by this process, the pigment is recovered by known procedures including neutralization of the slurry, if necessary, filtration, washing, drying, and often dry grinding steps such as miniaturization. However, since a high viscosity slurry of the product can be used directly to make an emulsion paint in which water is in the liquid phase, drying is not necessary. This process is an easy and efficient way to obtain a highly solid water slurry of fully dispersed particles.

本開示は、動作理論により拘束されるものではないが、本開示の多孔質処理済みTiO顔料の改善された分散性は、処理物の性質とその適用によるものと考えられる。 Although the present disclosure is not bound by theory of operation, the improved dispersibility of the porous treated TiO 2 pigments of the present disclosure is believed to be due to the nature of the treatment and its application.

用途
処理済み無機コア粒子、典型的には、無機金属酸化物または混合金属酸化物粒子、より典型的には、二酸化チタンは、塗料等のコーティング組成物、成形物品またはフィルム等のプラスチック部品、または紙ラミネートに用いてよい。本開示の紙ラミネートは、フローリング、家具、カウンタートップ、人工木材表面や人造石表面に有用である。
Use Treated inorganic core particles, typically inorganic or mixed metal oxide particles, more typically titanium dioxide, coating compositions such as paints, plastic parts such as molded articles or films, or It may be used for paper lamination. The paper laminate of the present disclosure is useful for flooring, furniture, countertops, artificial wood surfaces and artificial stone surfaces.

以下の実施例により本開示を説明する。部、パーセンテージおよび比率はすべて、断りのない限り、重量基準である。   The following examples illustrate the present disclosure. All parts, percentages and ratios are by weight unless otherwise indicated.

実施例1
2000gのTiO酸化塩基を、4520mlの脱イオン水中でスラリー化して、400gTiO/リットル(30.7wt%TiO)の濃度とした。このスラリーを35℃まで加熱し、pHを5.5に調整した。ケイ酸ナトリウム溶液(1210グラム)に、十分なHClを添加して、pHを4〜6に維持した。5分間の硬化後(混合しながら)、スラリーを55℃まで加熱した。695グラムのアルミン酸ナトリウムに、十分なHClを添加して、pHを6に維持した。pHおよび温度を維持しながら、スラリーをさらに30分間攪拌してから、濾過、洗浄、乾燥および蒸気微粉化した。得られた試料のパーセントSiO値は14%、パーセントアルミナ値は7.6%である。
Example 1
The TiO 2 oxidation bases 2000 g, was slurried in deionized water 4520Ml, to a concentration of 400gTiO 2 / liter (30.7wt% TiO 2). The slurry was heated to 35 ° C. and the pH was adjusted to 5.5. Sufficient HCl was added to sodium silicate solution (1210 grams) to maintain the pH between 4-6. After curing for 5 minutes (with mixing), the slurry was heated to 55 ° C. Sufficient HCl was added to 695 grams of sodium aluminate to maintain the pH at 6. While maintaining the pH and temperature, the slurry was stirred for an additional 30 minutes before being filtered, washed, dried and vaporized. The resulting sample has a percent SiO 2 value of 14% and a percent alumina value of 7.6%.

実施例2
下記以外は、実施例1に記載した手順を用いた。
・シリカ硬化5分後、スラリーを95℃まで加熱した。
・アルミン酸塩添加中および後、スラリーpHを9.0に、温度を95℃に維持した。
Example 2
The procedure described in Example 1 was used except as described below.
• After 5 minutes of silica curing, the slurry was heated to 95 ° C.
• During and after aluminate addition, the slurry pH was maintained at 9.0 and the temperature at 95 ° C.

試料評価
スラリー作製のし易さ:ラテックス塗料製造において、概して、他の塗料成分を含有するスラリーに混合その他組み込むことのできるTiO顔料の高固体水スラリーを調製するのが望ましい。典型的に、このTiO顔料スラリーは、サブミクロン粒子を分散するよう特別に設計された機器(例えば、Hockmeyer分散機、KatyミルまたはDispermat分散機)により、別個の分散工程で作製される。試料評価については、各顔料例のスラリーを、以下の量の成分により、Hockmeyer分散機で作製した。
・3000gのTiO顔料
・1953gの水
・0.9gのTKPP(トリポリリン酸カリウム)分散剤
・0.5gのProxel(登録商標)(殺生物剤)
Sample Evaluation slurry prepared easiness: in latex paint manufacturing, generally, it is desirable to prepare high solids water slurry of TiO 2 pigment that can be incorporated other mixed slurry containing other paint ingredients. Typically, this TiO 2 pigment slurry is made in a separate dispersion step with equipment specially designed to disperse the submicron particles (eg, Hockmeyer disperser, Katy mill or Dispermat disperser). For sample evaluation, a slurry of each pigment example was made with a Hockmeyer disperser with the following amounts of components.
• 3000 g TiO 2 pigment • 1953 g water • 0.9 g TKPP (potassium tripolyphosphate) dispersant • 0.5 g Proxel® (biocide)

1,000rpmで剪断しながら、水、TKPPおよびProxel(登録商標)の全てを含む混合ポットに、TiO顔料を増分しながら加えることにより、スラリーを作製した。分散性(分散のし易さ)を、全質量の顔料がスラリーへ完全に組み込むのに必要な時間、定量した。実施例2については、この時間は1分未満であった。実施例1の試料は、2,000rpmの剪断条件下で、さらに9グラムの分散剤(TKPP)をスラリーへ入れたにも係わらず、スラリーに完全には組み込めなかった。従って、本開示の試料の利点は明白である。 A slurry was made by incrementally adding TiO 2 pigment to a mixing pot containing all of water, TKPP and Proxel® while shearing at 1,000 rpm. Dispersibility (easy to disperse) was quantified for the time required for the total mass of pigment to be fully incorporated into the slurry. For Example 2, this time was less than 1 minute. The sample of Example 1 was not fully incorporated into the slurry under a shear condition of 2,000 rpm, although an additional 9 grams of dispersant (TKPP) was added to the slurry. Thus, the advantages of the disclosed sample are obvious.

着色力:着色力は、白色顔料の散乱能力の尺度である。白色顔料は、塗料、プラスチックまたは紙ラミネートに添加されて、可視光を散乱するため、高い着色力が望ましい。この試験においては、当該のTiOの標準白色顔料を、ポリマーバインダ(商品名AC−347)を用いて、TiO含量26%PVCにより作製した。 Color strength: Color strength is a measure of the scattering ability of a white pigment. White pigments are added to paints, plastics or paper laminates and scatter visible light, so high tinting strength is desirable. In this test, a standard white pigment of the relevant TiO 2, using a polymer binder (trade name AC-347), was prepared by TiO 2 content 26% PVC.

希釈緑色染料(GW−951P)を、1部の染料を2部の脱イオン水と混合することにより作製した。緑色染料を、白色塗料へ、塗料100グラム当たり3gの染料のレベルで加えた。このレベルで、乾燥塗料について測定されたY値は50%に近かった。   Diluted green dye (GW-951P) was made by mixing 1 part dye with 2 parts deionized water. Green dye was added to the white paint at a level of 3 grams of dye per 100 grams of paint. At this level, the Y value measured for dry paint was close to 50%.

各塗料を、0.004インチの間隙のブレードを用いて、均一白色カードでドローダウンし、空気乾燥させた。乾燥後、同じ塗料の第2のコートを、刷毛を用いてカードの一部に適用し、得られた塗料を激しくブラシで擦って、パネルに「ブラッシュアウト」部分をつくった。Y色値を、そのままにしてあるドローダウン領域とブラッシュアウト領域の両方について別々に、各ドローダウンについて三回求める。ドローダウンは、当該試料を、既知の顔料と比べる目的で、標準TiOで作製した塗料を用いても行った。 Each paint was drawn down with a uniform white card using a 0.004 inch gap blade and allowed to air dry. After drying, a second coat of the same paint was applied to a portion of the card with a brush and the resulting paint was vigorously brushed to create a “brush out” portion of the panel. The Y color value is determined three times for each drawdown, separately for both the drawdown area and the brushout area as it is. Drawdown was also performed using a paint made of standard TiO 2 for the purpose of comparing the sample with known pigments.

K/S値を、
K/S=[(1−Y)]/[2Y]
により、三刺激Y値を用いて、各ドローダウン領域について計算する。着色力値は、当該の顔料で作製した塗料についてのK/S値で除算した標準塗料のK/S値の比率として記録され、パーセンテージで記録される。塗料が乾燥する際の顔料分散安定性の尺度である剪断強度均一性を、ドローダウンのそのままにしてある領域のK/S値と、ブラッシュアウト領域のK/S値を比べることにより求めた。
K / S value
K / S = [(1-Y) 2 ] / [2 * Y]
To calculate for each drawdown region using the tristimulus Y values. The tinting strength value is recorded as the ratio of the K / S value of the standard paint divided by the K / S value for the paint made with the pigment of interest and is recorded as a percentage. Shear strength uniformity, which is a measure of pigment dispersion stability when the paint dries, was determined by comparing the K / S value in the area where the drawdown was left as it was and the K / S value in the brushout area.

実施例1のドローダウン着色力、ブラッシュアウト着色力および剪断均一性を100と定義した。実施例2のドローダウン着色力、ブラッシュアウト着色力および剪断強度均一性は、103、104および101と測定された。実施例2についての値が、実施例1より大きかったということは、実施例2はより高い着色力を与えたことを示すものであり、白色顔料においては望ましい。   The drawdown color strength, brush-out color strength and shear uniformity of Example 1 were defined as 100. The drawdown tinting strength, brush-out tinting strength and shear strength uniformity of Example 2 were measured as 103, 104 and 101. The fact that the value for Example 2 was greater than Example 1 indicates that Example 2 provided higher tinting strength and is desirable for white pigments.

重み付き隠蔽力(伝播速度):重み付き隠蔽力(伝播速度)は、基板の表面外観を覆う白色顔料の能力の尺度である。これは、コントラスト比を用いて求められ、依存光散乱の理論に基づいていた。塗料は、着色剤を添加しなかった以外は、着色力試験の説明に述べたとおりにして、異なるTiO顔料により作製した(すなわち、塗料は白色であった)。剪断速度を、一連の工程により、これらの塗料について測定した。まず、間隙が0.0025〜0.0035ミルのいくつかの異なるブレードを用いて、当該の塗料を黒色および白色カードでドローダウンすることにより、正確なブレード間隙を求めた。これらのドローダウンのコントラスト比を、パネルの白色領域で測定したY値で除算したパネルの黒色領域で反射した光(三刺激Y)の比により求めた。コントラスト比が92〜95となるように、ドローダウンブレードを選択した。 Weighted hiding power (propagation speed): Weighted hiding power (propagation speed) is a measure of the ability of a white pigment to cover the surface appearance of a substrate. This was determined using the contrast ratio and was based on the theory of dependent light scattering. The paint was made with a different TiO 2 pigment as described in the description of the tinting strength test, except that no colorant was added (ie, the paint was white). The shear rate was measured for these paints by a series of steps. First, the exact blade gap was determined by drawing down the paint with black and white cards using several different blades with a gap between 0.0025 and 0.0035 mils. These drawdown contrast ratios were determined by the ratio of the light reflected by the black area of the panel (tristimulus Y) divided by the Y value measured in the white area of the panel. The drawdown blade was selected so that the contrast ratio was 92-95.

次に、当該の各塗料および対照塗料について、4つのチャートを黒色および白色カードにドローダウンした。ドローダウン重量を即時に測定し、そこから適用した塗料の総量を求めた。塗装したカードを一晩空気乾燥させた。この後、カードの各部(黒色または白色)から測定した4つの値から、平均Y値を計算した。   The four charts were then drawn down into black and white cards for each paint and control paint of interest. The drawdown weight was measured immediately and the total amount of paint applied was determined therefrom. The painted card was allowed to air dry overnight. Thereafter, an average Y value was calculated from four values measured from each part (black or white) of the card.

カードの黒色部分で測定した反射率値を、カードの白色部分で測定した反射率値で除算することにより、塗料のコントラスト比を求めた。黒色値についてのコントラスト比および反射率をクベルカ−ムンク式を用いるコンピュータプログラムに入力して、完全な隠蔽力(完全な隠蔽とは、コントラスト比が0.98を超えるときと定義される)で1ガロンの塗料がカバーする平方フィート数を予測した。この平方フィート数は、顔料の「伝播速度」と呼ばれた。伝播速度が高いということは、隠蔽力が大きいことを示すものであるため、好ましい。実施例1の伝播速度は、1ガロン当たり308.4平方フィートと求められ、実施例2の伝播速度は、1ガロン当たり337.0平方フィートと求められ、拡散効率が略10%増えた。   The contrast ratio of the paint was determined by dividing the reflectance value measured at the black portion of the card by the reflectance value measured at the white portion of the card. The contrast ratio and reflectivity for the black value are entered into a computer program using the Kubelka-Munk equation, and a perfect hiding power (complete hiding is defined as when the contrast ratio exceeds 0.98). Estimated square feet covered by gallon paint. This square foot was called the “propagation velocity” of the pigment. A high propagation speed is preferable because it indicates a high hiding power. The propagation speed of Example 1 was determined to be 308.4 square feet per gallon and the propagation speed of Example 2 was determined to be 337.0 square feet per gallon, increasing the diffusion efficiency by approximately 10%.

Claims (8)

(a)シリカ処理済み無機コア粒子および水を含むスラリーを形成する工程と、
(b)前記シリカ処理済み無機コア粒子および水を含むスラリーを、少なくとも90℃の温度で加熱する工程と、
(c)pHを8.0〜9.5に維持しながら、可溶性アルミナ源を、前記工程(b)からの前記スラリーに添加して、前記シリカ処理済み無機コア粒子上にアルミナ処理物を形成する工程と、を含む、コーティング組成物の製造方法であって、
前記工程(a)が、
(a1)無機コア粒子の水中スラリーを提供するステップと、
(a2)前記(a1)からの水中スラリーを、30〜40℃まで加熱し、pHを3.5〜7.5に調整するステップと、
(a3)前記pHを3.5〜7.5に維持しながら、可溶性ケイ酸塩溶液を前記(a2)からの水中スラリーに添加するステップと、
(a4)前記(a3)からの水中スラリーを少なくとも5分間攪拌するステップと、を含み、
前記工程(c)からの処理済み無機コア粒子は、前記無機コア粒子の全重量を基準として、少なくとも7重量%〜14重量%の量で存在するシリカおよび4.0重量%〜8.0重量%の量で存在するアルミナを有し、
表面処理物が粒子−粒子間で実質的に均質である、製造方法。
(A) forming a slurry containing silica-treated inorganic core particles and water;
(B) heating the slurry containing the silica-treated inorganic core particles and water at a temperature of at least 90 ° C .;
(C) While maintaining the pH at 8.0-9.5, a soluble alumina source is added to the slurry from step (b) to form an alumina treated product on the silica treated inorganic core particles. A process for producing a coating composition comprising the steps of:
The step (a)
(A1) providing an underwater slurry of inorganic core particles;
(A2) heating the underwater slurry from (a1) to 30-40 ° C. and adjusting the pH to 3.5-7.5;
(A3) adding a soluble silicate solution to the underwater slurry from (a2) while maintaining the pH at 3.5-7.5;
(A4) stirring the underwater slurry from (a3) for at least 5 minutes;
The treated inorganic core particles from step (c) are silica present in an amount of at least 7 wt% to 14 wt% and 4.0 wt% to 8.0 wt%, based on the total weight of the inorganic core particles. % Alumina present in an amount of
A manufacturing method in which a surface treatment product is substantially homogeneous between particles.
前記無機コア粒子が、チタン、アルミニウム、亜鉛、銅または鉄の酸化物、カルシウム、ストロンチウムもしくはバリウムの硫酸塩、硫化亜鉛、硫化銅、ゼオライト、マイカ、タルク、カオリン、ムライト、炭酸カルシウムまたはシリカである請求項1に記載の方法。   The inorganic core particles are titanium, aluminum, zinc, copper or iron oxide, calcium, strontium or barium sulfate, zinc sulfide, copper sulfide, zeolite, mica, talc, kaolin, mullite, calcium carbonate or silica. The method of claim 1. 前記無機コア粒子が、二酸化チタン、TiO2または硫酸バリウムである請求項2に記載の方法。 The method according to claim 2 , wherein the inorganic core particles are titanium dioxide, TiO 2 or barium sulfate. 前記無機コア粒子が、二酸化チタン、TiO2である請求項3に記載の方法。 The method according to claim 3, wherein the inorganic core particles are titanium dioxide and TiO 2 . 工程()の前記スラリーが、9397℃の温度まで加熱される請求項1に記載の方法。 The method of claim 1 wherein the slurry of step (b) is heated to a temperature of 93 ~ 97 ° C.. 工程()の前記スラリーが、9597℃の温度まで加熱される請求項5に記載の方法。 The slurry of step (b) A method according to claim 5 which is heated to a temperature of 95 ~ 97 ° C.. 前記可溶性アルミナ源が、アルミン酸塩アニオンのアルカリ金属塩である請求項1に記載の方法。   The method of claim 1, wherein the soluble alumina source is an alkali metal salt of an aluminate anion. 前記可溶性アルミナ源が、アルミン酸ナトリウムまたはアルミン酸カリウムである請求項7に記載の方法。   The method according to claim 7, wherein the soluble alumina source is sodium aluminate or potassium aluminate.
JP2014538825A 2011-10-28 2012-10-11 Treated inorganic core particles with improved dispersibility Active JP6117223B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161552691P 2011-10-28 2011-10-28
US61/552,691 2011-10-28
PCT/US2012/059760 WO2013062779A1 (en) 2011-10-28 2012-10-11 Treated inorganic core particles having improved dispersability

Publications (2)

Publication Number Publication Date
JP2014534996A JP2014534996A (en) 2014-12-25
JP6117223B2 true JP6117223B2 (en) 2017-04-19

Family

ID=47073548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014538825A Active JP6117223B2 (en) 2011-10-28 2012-10-11 Treated inorganic core particles with improved dispersibility

Country Status (8)

Country Link
US (1) US9573108B2 (en)
EP (1) EP2771409B1 (en)
JP (1) JP6117223B2 (en)
CN (1) CN104105761B (en)
AU (1) AU2012329204B2 (en)
CA (1) CA2849773C (en)
ES (1) ES2618206T3 (en)
WO (1) WO2013062779A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105761B (en) * 2011-10-28 2016-01-20 纳幕尔杜邦公司 There is the inorganic core particle of the process of the dispersiveness of improvement
CA2849758C (en) * 2011-10-28 2020-10-20 Michael Patrick Diebold Treated inorganic pigments having improved dispersability and use thereof in coating compositions
JP5881840B2 (en) * 2011-10-28 2016-03-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Treated inorganic pigments with improved dispersibility and their use in paper products
DE102015115421A1 (en) * 2015-09-14 2017-03-16 Sma Solar Technology Ag Inverter with a multi-part housing and internal cooling air duct
US20190249014A1 (en) * 2018-02-14 2019-08-15 Tronox Llc Stir-in titanium dioxide pigment composition
US20230151144A1 (en) * 2021-11-15 2023-05-18 Ticona Llc Polymer Composition for Use in an Electronic Device

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL235038A (en) 1958-01-15 1900-01-01
US3410708A (en) * 1964-08-05 1968-11-12 Du Pont Porous silica coated titanium dioxide pigment
US3409501A (en) 1965-12-10 1968-11-05 Nat Lead Co Pyrogenic tio2 pigment and method for producing same
US3506466A (en) 1967-04-13 1970-04-14 Titan Gmbh Titanium dioxide pigment having improved pigmentary properties
US3437502A (en) 1968-03-28 1969-04-08 Du Pont Titanium dioxide pigment coated with silica and alumina
USRE30233E (en) 1971-05-28 1980-03-18 The Mead Corporation Multiple layer decorated paper, laminate prepared therefrom and process
USRE27818E (en) 1972-06-02 1973-11-27 Titanium dioxide pigment coated with silica and alumina
US3928057A (en) * 1974-05-30 1975-12-23 Du Pont TiO{HD 2 {B Pigment coated with porous alumina/silica and dense silica
US4125412A (en) 1976-09-09 1978-11-14 E. I. Du Pont De Nemours And Company Process for the production of durable titanium dioxide pigment
US4075031A (en) * 1976-09-30 1978-02-21 E. I. Du Pont De Nemours And Company TiO2 Pigment coated with dense silica and porous alumina/silica
AU526110B2 (en) 1978-12-21 1982-12-16 Tioxide Group Ltd. Titanium dioxide pigment
US4599124A (en) 1979-11-16 1986-07-08 General Electric Company High impact resistant laminate surface for a bowling lane
JPS5950604B2 (en) 1981-11-27 1984-12-10 三菱マテリアル株式会社 Manufacturing method of titanium oxide powder
US4689102A (en) 1985-01-25 1987-08-25 Technographics Fitchburg Coated Products, Inc. Method for the production of abrasion-resistant decorative laminates
US4781761A (en) 1986-04-30 1988-11-01 E. I. Du Pont De Nemours And Company Titanium dioxide pigment coated with boria-modified silica
JPH02194065A (en) 1989-01-20 1990-07-31 Teika Corp Minute titanium dioxide composition
WO1993011286A1 (en) 1991-12-04 1993-06-10 Allied-Signal Inc. Anatase titanium dioxide-delustered polymer having improved photostability
US5425986A (en) 1992-07-21 1995-06-20 Masco Corporation High pressure laminate structure
US5696109A (en) 1992-12-07 1997-12-09 Eukarion, Inc. Synthetic catalytic free radical scavengers useful as antioxidants for prevention and therapy of disease
US5464887A (en) 1994-04-08 1995-11-07 Ppg Industries, Inc. Crosslinked unsaturated polyesters as flatting agents in aqueous electrocoating compositions
US5562764A (en) 1994-06-28 1996-10-08 E. I. Du Pont De Nemours And Company Process for preparing improved TIO2 by silicon halide addition
US5787671A (en) 1994-09-28 1998-08-04 Nippon Telegraph And Telephone Corp. Modular deployable antenna
DE4437118A1 (en) 1994-10-05 1996-04-11 Technocell Dekor Gmbh & Co Kg Base paper for decorative coating systems
TW370552B (en) * 1994-11-09 1999-09-21 Du Pont Process for making rutile titanium dioxide pigment comprising coated titanium dioxide particles
ATE237031T1 (en) 1996-01-15 2003-04-15 Arjo Wiggins ABRASION-RESISTANT LAMINATE PANELS
US5700318A (en) 1996-04-16 1997-12-23 Kerr-Mcgee Chemical Corporation Durable pigments for plastic
JP3898792B2 (en) 1996-10-02 2007-03-28 石原産業株式会社 Method for producing surface-treated titanium oxide sol
JP4271736B2 (en) 1997-04-29 2009-06-03 シュトックハウゼン ゲゼルシャフト ミット ベシュレンクテル ハフツング Superabsorbent polymer with excellent processability
FR2771759B1 (en) 1997-12-02 1999-12-31 Arjo Wiggins Sa DECORATIVE PAPER SHEET AND DECORATIVE LAMINATE COMPRISING SAME
US5922120A (en) 1997-12-23 1999-07-13 E. I. Du Pont De Nemours And Company Process for producing coated TiO2 pigment using cooxidation to provide hydrous oxide coatings
FR2773167A1 (en) 1997-12-30 1999-07-02 Rhodia Chimie Sa PROCESS FOR THE PREPARATION OF MIXED MINERAL FLOCKS BASED ON TIO2, COMPOSITION BASED ON TIO2 AND SIO2 AND ITS USE AS AN OPACIFYING AGENT IN PARTICULAR IN THE PAPER INDUSTRY
US5993533A (en) 1998-07-02 1999-11-30 E. I. Du Pont De Nemours And Company Continuous wet treatment process to prepare durable, high gloss titanium dioxide pigment
DE19916546C2 (en) 1999-04-13 2001-05-03 Technocell Dekor Gmbh & Co Kg Inkjet recording layer
US6413618B1 (en) 1999-05-11 2002-07-02 Congoleum Corporation Laminated glass floor tile and flooring made therefrom and method for making same
US6287681B1 (en) 1999-07-20 2001-09-11 The Mead Corporation Preparation of wear-resistant laminates using mineral pigment composites
DE19955081C1 (en) 1999-11-15 2001-08-09 Schoeller Felix Jun Foto Base paper for a recording material for the ink jet printing process
US6761979B2 (en) 2000-03-31 2004-07-13 Dai Nippon Printing Co., Ltd. Decorative sheet and decorative material
US6695906B2 (en) 2000-04-12 2004-02-24 Millennium Inorganic Chemicals, Inc. Continuous processes for producing titanium dioxide pigments
WO2001081480A2 (en) 2000-04-27 2001-11-01 E.I. Dupont De Nemours And Company Process for making durable titanium dioxide pigment by vapor phase deposition
ATE286556T1 (en) 2000-11-17 2005-01-15 Technocell Dekor Gmbh & Co Kg DECORATIVE PAPER WITH HIGH OPACITY
US6551455B2 (en) 2001-02-27 2003-04-22 The Mead Corporation Multi-layer printable wear resistant papers including particle rich interior layer
WO2002079571A1 (en) 2001-03-30 2002-10-10 Kronospan Technical Company Ltd. Paper for producing panels and paper-making method
US7285162B2 (en) * 2001-07-30 2007-10-23 Millennium Inorganic Chemicals, Inc. Titanium dioxide pigment having improved light stability
US6783586B2 (en) 2001-11-01 2004-08-31 E. I. Du Pont De Nemours And Company Easy to disperse, high durability TiO2 pigment and method of making same
CN1228396C (en) * 2002-05-20 2005-11-23 中山市华铿喷涂有限公司 Silver phosphate antibacterial modified barium sulphate composite particle and its preparation mothod and use
CN1228397C (en) * 2002-05-20 2005-11-23 中山市华铿喷涂有限公司 Silver phosphate antibacterial modified titanium dioxide composite particle and its preparation method and use
CN1286923C (en) * 2004-03-03 2006-11-29 中国科学院理化技术研究所 Antibacterial nano supported materials capable of releasing anion and preparation method and use thereof
TWI381024B (en) 2004-06-24 2013-01-01 Ishihara Sangyo Kaisha Titanium dioxide pigment and method for producing the same, and resin composition comprising the same
US8951608B1 (en) * 2004-10-22 2015-02-10 Imaging Systems Technology, Inc. Aqueous manufacturing process and article
US7601780B2 (en) 2005-07-18 2009-10-13 E.I. Du Pont De Nemours And Company Increased bulk density of fatty acid-treated silanized powders and polymers containing the powders
US20070028806A1 (en) 2005-08-03 2007-02-08 Piro Bonnie D Coating compositions having improved appearance containing coated titanium dioxide pigments
ES2812250T3 (en) * 2005-11-28 2021-03-16 Marinus Pharmaceuticals Inc Ganaxolone formulations and procedures for their preparation and use
CN100506922C (en) * 2006-05-18 2009-07-01 攀钢集团攀枝花钢铁研究院 Method for producing high covering power titanium dioxide pigment
JP5075385B2 (en) 2006-09-28 2012-11-21 株式会社 資生堂 Porous titanium oxide and method for producing the same
JP5382723B2 (en) 2007-02-01 2014-01-08 ソル − ゲル テクノロジーズ リミテッド Method for producing particles comprising a metal oxide coating and particles having a metal oxide coating
US8951607B2 (en) 2007-05-03 2015-02-10 Tronox, Llc Making co-precipitated mixed oxide-treated titanium dioxide pigments
CN101255288B (en) 2007-11-29 2011-09-21 江苏河海纳米科技股份有限公司 Nano titanium oxide inorganic surface treatment method
DE102008026300A1 (en) 2008-06-02 2009-12-03 Kronos International, Inc. Process for the surface coating of inorganic solid particles, in particular titanium dioxide pigment particles
FI122244B (en) 2008-07-07 2011-10-31 Sachtleben Pigments Oy Process for the preparation of rutile-shaped titanium oxide of small crystal size and product manufactured by the process
CN101367548B (en) 2008-09-12 2011-06-29 江苏工业学院 Method of preparing hydrophobic nano-titanium dioxide powder
US7846337B2 (en) * 2009-02-17 2010-12-07 Agilent Technologies, Inc. Superficially porous particles and methods of making and using same
CN102803607A (en) 2009-06-26 2012-11-28 阿克佐诺贝尔化学国际公司 Coated Substrate And Method For The Preparation Thereof
JP5455501B2 (en) * 2009-08-07 2014-03-26 日揮触媒化成株式会社 Dispersion of core-shell composite oxide fine particles, method for producing the dispersion, coating composition containing the core-shell composite oxide fine particles, curable coating, and substrate with curable coating
CN101885926A (en) * 2010-07-16 2010-11-17 四川龙蟒钛业股份有限公司 Method for producing rutile type titanium white powder with high hiding power
US8840719B2 (en) 2011-03-09 2014-09-23 Tronox Llc Titanium dioxide pigments and manufacturing method
CN102199367B (en) 2011-03-30 2013-12-25 中国科学院宁波材料技术与工程研究所 Method for preparing titanium dioxide pigment with high-temperature resistance
WO2012148877A1 (en) 2011-04-28 2012-11-01 E. I. Du Pont De Nemours And Company Treated inorganic pigments having improved bulk flow
CA2849758C (en) * 2011-10-28 2020-10-20 Michael Patrick Diebold Treated inorganic pigments having improved dispersability and use thereof in coating compositions
CN104105761B (en) * 2011-10-28 2016-01-20 纳幕尔杜邦公司 There is the inorganic core particle of the process of the dispersiveness of improvement
JP5881840B2 (en) * 2011-10-28 2016-03-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Treated inorganic pigments with improved dispersibility and their use in paper products

Also Published As

Publication number Publication date
AU2012329204B2 (en) 2016-06-16
EP2771409B1 (en) 2016-12-14
CN104105761B (en) 2016-01-20
JP2014534996A (en) 2014-12-25
AU2012329204A1 (en) 2014-04-03
CA2849773C (en) 2020-10-20
ES2618206T3 (en) 2017-06-21
US9573108B2 (en) 2017-02-21
US20140342087A1 (en) 2014-11-20
CA2849773A1 (en) 2013-05-02
WO2013062779A1 (en) 2013-05-02
EP2771409A1 (en) 2014-09-03
CN104105761A (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP6117223B2 (en) Treated inorganic core particles with improved dispersibility
AU2012203265B2 (en) Improved titanium dioxide pigment composite and method of making same
JP5250558B2 (en) Improved process for the production of zirconia treated titanium dioxide pigments
JP5209861B2 (en) Titanium dioxide white pigment and method for producing the same
JP2000500515A (en) TiO 2 pigment coated with small inorganic particles
TWI749193B (en) Stir-in titanium dioxide pigment composition
US9539557B2 (en) Treated inorganic pigments having improved dispersability and use thereof in coating compositions
JP4668705B2 (en) Method for producing titanium dioxide pigment
AU2014228204B2 (en) Manufacture of titanium dioxide pigments using ultrasonication
JP2739227B2 (en) Titanium dioxide pigment and method for producing the same
EP0035076A1 (en) High dry hide TiO2 slurries
JPH0124732B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R150 Certificate of patent or registration of utility model

Ref document number: 6117223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250