JP6116165B2 - Aluminum brazing method - Google Patents

Aluminum brazing method Download PDF

Info

Publication number
JP6116165B2
JP6116165B2 JP2012202499A JP2012202499A JP6116165B2 JP 6116165 B2 JP6116165 B2 JP 6116165B2 JP 2012202499 A JP2012202499 A JP 2012202499A JP 2012202499 A JP2012202499 A JP 2012202499A JP 6116165 B2 JP6116165 B2 JP 6116165B2
Authority
JP
Japan
Prior art keywords
gas
brazing
switching
aluminum
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012202499A
Other languages
Japanese (ja)
Other versions
JP2014054667A (en
Inventor
岩井 一郎
一郎 岩井
長野 喜隆
喜隆 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2012202499A priority Critical patent/JP6116165B2/en
Publication of JP2014054667A publication Critical patent/JP2014054667A/en
Application granted granted Critical
Publication of JP6116165B2 publication Critical patent/JP6116165B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Details (AREA)

Description

本発明は雰囲気加熱によるアルミニウムのろう付方法に関する。   The present invention relates to a method for brazing aluminum by atmospheric heating.

雰囲気加熱によるアルミニウムのろう付では、加熱による酸化膜の生成を抑制して良好なろう付をするために、雰囲気ガスとして窒素ガスまたは希ガスの不活性ガスが用いられている。これらの不活性ガスはフラックスろう付においてもフラックスを使わないフラックスレスろう付においても使用される(非特許文献1参照)。   In the brazing of aluminum by atmospheric heating, nitrogen gas or a rare gas inert gas is used as the atmospheric gas in order to suppress the formation of an oxide film by heating and perform good brazing. These inert gases are used both in flux brazing and in fluxless brazing that does not use flux (see Non-Patent Document 1).

「アルミニウムのノンフラックス法」、野村祐司、池田明夏里、大陽日酸技報、第30巻(2011)、P43−44“Non-flux method of aluminum”, Yuji Nomura, Akinori Ikeda, Taiyo Nippon Sanso Technical Report, Volume 30 (2011), P43-44

しかしながら、窒素ガスや希ガスの使用によって雰囲気ガスにコストがかかりろう付品の製造コストを押し上げている。   However, the use of nitrogen gas or noble gas increases the manufacturing cost of the brazing product, which adds cost to the atmospheric gas.

本発明は、上述した背景技術に鑑み、ろう付性を低下させることなく雰囲気ガスのコストを低減できるアルミニウムのろう付方法の提供を目的とする。   In view of the background art described above, an object of the present invention is to provide an aluminum brazing method capable of reducing the cost of atmospheric gas without reducing brazing properties.

即ち、本発明は下記[1]〜[7]に記載の構成を有する。   That is, this invention has the structure as described in following [1]-[7].

[1]雰囲気加熱によるアルミニウムのろう付において、
被ろう付品の実体温度が昇温する過程で雰囲気ガスを少なくとも1回他のガスに切り換えることを特徴とするアルミニウムのろう付方法。
[1] In brazing aluminum by atmospheric heating,
A method of brazing aluminum characterized in that the atmospheric gas is switched to another gas at least once in the process of raising the substantial temperature of the brazed product.

[2]前記雰囲気ガスを大気から窒素ガスまたは希ガスの不活性ガスに切り換える前項1に記載のアルミニウムのろう付方法。   [2] The aluminum brazing method according to [1], wherein the atmospheric gas is switched from the atmosphere to an inert gas such as nitrogen gas or a rare gas.

[3]フラックスろう付において、雰囲気ガスの切り換えを被ろう付品の実体温度が250〜350℃の間に行う前項2に記載のアルミニウムのろう付方法。   [3] The aluminum brazing method according to item 2 above, wherein in the flux brazing, the atmospheric gas is switched while the actual temperature of the brazed product is 250 to 350 ° C.

[4]フラックスレスろう付において、雰囲気ガスの切り換えを被ろう付品の実体温度が30〜100℃の間に行う前項2に記載のアルミニウムのろう付方法。   [4] The aluminum brazing method according to item 2 above, wherein in the fluxless brazing, the atmospheric gas is switched while the actual temperature of the brazed product is 30 to 100 ° C.

[5]前記雰囲気ガスを窒素ガスから希ガスに切り換える前項1〜4のいずれかに記載のアルミニウムのろう付方法
[6]前記雰囲気ガスの切り換えを被ろう付品の実体温度が450〜550℃の間に行う前項5に記載のアルミニウムのろう付方法。
[5] The method of brazing aluminum as described in any one of 1 to 4 above, wherein the atmospheric gas is switched from nitrogen gas to rare gas. [6] The atmospheric temperature of the brazed product is 450 to 550 ° C. 6. The method for brazing aluminum as described in 5 above, which is carried out during

[7]加圧ガスを加熱して熱風を生成し、この熱風をチャンバー内に送り込んで被ろう付品を加熱するろう付方法であり、加熱する加圧ガスを切り換えてチャンバー内に送り込む熱風のガス種を切り換えることによりチャンバー内の雰囲気ガスを切り換える前項1〜6のいずれかに記載のアルミニウムのろう付方法。   [7] A brazing method in which hot gas is generated by heating a pressurized gas and this hot air is sent into the chamber to heat the brazed article. The hot air is sent into the chamber by switching the pressurized gas to be heated. 7. The aluminum brazing method according to any one of items 1 to 6, wherein the atmospheric gas in the chamber is switched by switching the gas type.

上記[1]に記載のアルミニウムのろう付方法によれば、ろう付性を低下させない範囲で安価なガスを雰囲気ガスを使用し、高価なガスの使用量を減らすことによりろう付コストを低減できる。   According to the aluminum brazing method described in [1] above, it is possible to reduce the brazing cost by using an atmospheric gas as an inexpensive gas and reducing the amount of the expensive gas used within a range that does not lower the brazing property. .

上記[2]に記載のアルミニウムのろう付方法によれば、大気から不活性ガスに切り換えることによって酸化膜の生成が抑制され、ろう付性を低下させることなくろう付コストを低減できる。   According to the aluminum brazing method described in [2] above, the generation of an oxide film is suppressed by switching from the atmosphere to an inert gas, and the brazing cost can be reduced without reducing the brazing property.

上記[3]に記載のアルミニウムのろう付方法によれば、フラックスろう付においてろう付性を低下させることなくろう付コストを十分に低減できる。   According to the aluminum brazing method described in [3] above, the brazing cost can be sufficiently reduced without lowering the brazing property in flux brazing.

上記[4]に記載のアルミニウムのろう付方法によれば、フラックスレスろう付においてろう付性を低下させることなくろう付コストを十分に低減できる。   According to the aluminum brazing method described in [4] above, the brazing cost can be sufficiently reduced without lowering the brazing property in fluxless brazing.

上記[5]に記載のアルミニウムのろう付方法によれば、窒素ガスから希ガスに切り換えることによって窒化物の生成が回避され、ろう付性を低下させることなくろう付コストを低減できる。   According to the aluminum brazing method described in [5] above, the production of nitride is avoided by switching from nitrogen gas to rare gas, and brazing cost can be reduced without degrading brazing.

上記[6]に記載のアルミニウムのろう付方法によれば、窒化物の生成が回避され、ろう付性を低下させることなくろう付コストを十分に低減できる。   According to the aluminum brazing method described in [6] above, the formation of nitrides is avoided, and the brazing cost can be sufficiently reduced without reducing the brazing property.

上記[7]記載のアルミニウムのろう付方法によれば、短時間で雰囲気を昇温できかつ雰囲気温度を低下させることなく雰囲気ガスの切り換えを行うことができる。   According to the aluminum brazing method described in [7] above, the atmosphere can be raised in a short time and the atmosphere gas can be switched without lowering the atmosphere temperature.

本発明のアルミニウムのろう付方法を実施するための熱風加熱装置の模式図である。It is a schematic diagram of the hot air heating apparatus for implementing the brazing method of aluminum of this invention.

図1は本発明のアルミニウムのろう付方法を実施するために熱風加熱装置(1)である。   FIG. 1 shows a hot air heating device (1) for carrying out the aluminum brazing method of the present invention.

熱風加熱装置(1)は、ガス供給部(11)(12)(13)から供給される加圧ガスをヒーター(14)で加熱して熱風(15)を生成し、この熱風(15)をチャンバー(16)に送り込むことによってチャンバー(16)内の雰囲気を強制的に対流させて被ろう付品(20)を加熱する装置である。また、図示例の熱風加熱装置(1)は3つのガス供給部、即ち第1ガス供給部(11)、第2ガス供給部(12)、第3ガス供給部(13)を備え、これらにそれぞれ異なるガスを配備し、切換弁(17)の切り換えによってヒーター(14)に供給する加圧ガスを3種のガスのうちから1種を選択することができる。これにより、チャンバー(16)内の雰囲気ガスは随時切り換えられる。このような熱風加熱によれば、被ろう付品(20)に接触している気体が速やかに入れ替わるので被ろう付品(20)が短時間で昇温し、フラックスおよびろう材が短時間で溶融してろう付が達成される。   The hot air heating device (1) heats the pressurized gas supplied from the gas supply units (11), (12) and (13) with a heater (14) to generate hot air (15), and this hot air (15) It is a device that heats the brazed article (20) by forcibly convection of the atmosphere in the chamber (16) by feeding into the chamber (16). The illustrated hot air heating device (1) includes three gas supply units, that is, a first gas supply unit (11), a second gas supply unit (12), and a third gas supply unit (13). Different gases can be provided, and one of the three types of pressurized gas to be supplied to the heater (14) by switching the switching valve (17) can be selected. Thereby, the atmospheric gas in the chamber (16) is switched at any time. According to such hot air heating, the gas in contact with the brazed product (20) is quickly replaced, so that the brazed product (20) is heated in a short time, and the flux and brazing material are heated in a short time. Melting and brazing are achieved.

熱風加熱は、気体を加圧せずに自然対流と輻射熱とで加熱する加熱方法に比べると昇温が速く短時間でろう付を行うことができる。雰囲気ガスは熱風(15)としてチャンバー(16)内に導入されるので、雰囲気ガスに切り換えによってチャンバー(16)内の雰囲気温度が低下することなく被ろう付品(20)の加熱が続行される。   Hot air heating is faster in temperature and can be brazed in a shorter time than a heating method in which gas is not pressurized and heated by natural convection and radiant heat. Since the atmospheric gas is introduced into the chamber (16) as hot air (15), heating to the brazed product (20) is continued without switching to the atmospheric gas without lowering the atmospheric temperature in the chamber (16). .

なお、本発明は加熱方法を熱風加熱に限定するものではないが、雰囲気ガスの切り換えを迅速に行える点で熱風加熱を推奨できる。   In the present invention, the heating method is not limited to hot air heating, but hot air heating can be recommended because the atmosphere gas can be switched quickly.

アルミニウムのろう付に使用する雰囲気ガスは、大気、窒素ガス、アルゴンガスまたはヘリウムガス等の希ガスであり、ガスコストは大気<窒素ガス<希ガスである。本実施形態においては、これらのガスのうちの2種または3種を第1〜第3ガス供給部(11)(12)(13)に配備して随時切り換えるものとする。   The atmospheric gas used for brazing aluminum is a rare gas such as air, nitrogen gas, argon gas, or helium gas, and the gas cost is air <nitrogen gas <rare gas. In the present embodiment, two or three of these gases are arranged in the first to third gas supply units (11), (12), and (13) and switched as needed.

本発明のアルミニウムのろう付方法は、ろう付性を低下させない範囲で安価な雰囲気ガスを使用し、高価なガスの使用量を減らすことによってろう付コストを低減する。   The aluminum brazing method of the present invention uses an inexpensive atmosphere gas as long as the brazing performance is not lowered, and reduces the brazing cost by reducing the amount of expensive gas used.

[大気から不活性ガスへの切り換え]
雰囲気ガスとして大気よりもコストのかかる不活性ガス(窒素ガスまたは希ガス)を使用するのは酸化膜の生成を抑制することが目的である。しかし、開始直後の室温に近い低い温度域では酸化膜の成長が遅く、温度が上昇するにつれて酸化膜の成長が速くなる。従って、酸化膜が成長しにくい低い温度域では大気を用い、所定温度に上昇した時点で不活性ガスに切り換える。大気から不活性ガスへの切り換えは、フラックスろう付の場合は被ろう付品の実体温度として250〜350℃の間で行うことが好ましく、フラックスレスろう付の場合は30〜100℃の間で行うのが好ましい。いずれの場合も下限値よりも低い温度での切り換えではガスコストの低減効果が小さく、上限値を超える高温での切り換えでは酸化膜の成長によってろう付性が低下するおそれがある。特に好ましい切り換え温度はフラックスろう付の場合が300〜330℃の間、フラックスレスろう付の場合が70〜90℃の間である。
[Switching from atmosphere to inert gas]
The purpose of using an inert gas (nitrogen gas or rare gas) that is more expensive than the atmosphere as the atmospheric gas is to suppress the formation of an oxide film. However, the growth of the oxide film is slow in the low temperature range close to room temperature immediately after the start, and the growth of the oxide film becomes faster as the temperature rises. Therefore, the atmosphere is used in a low temperature range where the oxide film is difficult to grow, and the gas is switched to an inert gas when the temperature rises to a predetermined temperature. In the case of flux brazing, switching from the atmosphere to an inert gas is preferably performed between 250 to 350 ° C. as the actual temperature of the brazed product, and in the case of fluxless brazing, between 30 to 100 ° C. It is preferred to do so. In any case, switching at a temperature lower than the lower limit has a small effect of reducing gas cost, and switching at a high temperature exceeding the upper limit may reduce brazing by growth of the oxide film. Particularly preferred switching temperatures are between 300 and 330 ° C. for flux brazing and between 70 and 90 ° C. for fluxless brazing.

なお、上記の温度よりも低い温度で大気から不活性ガスに切り換えた場合も良好なろう付が達成されることは言うまでもなく、またこのような雰囲気ガスの切り換えを行うろう付方法も本発明に含まれる。ただし、酸化膜成長の遅い低い温度で不活性ガスに切り換えればコストの低減効果が小さくなる。   Needless to say, good brazing is achieved even when the atmosphere is switched from the atmosphere to an inert gas at a temperature lower than the above temperature, and a brazing method for switching the atmosphere gas is also included in the present invention. included. However, if the gas is switched to an inert gas at a low temperature at which the oxide film grows slowly, the cost reduction effect is reduced.

また、フラックスレスろう付ではフラックスろう付よりもろう付け時に酸化膜が除去されにくいので、窒素ガスで昇温を開始して希ガスに切り換えても良く、このようなろう付も本発明に含まれる。   In addition, in fluxless brazing, the oxide film is harder to remove during brazing than in flux brazing, so it is possible to start heating with nitrogen gas and switch to a rare gas, and such brazing is also included in the present invention. It is.

[窒素ガスから希ガスへの切り換え]
被ろう付品の化学組成によっては窒素ガス雰囲気で加熱すると合金成分と窒素とが反応して窒化物を生成してろう付性が低下するおそれがある。窒化反応は500℃以上の高温域で起こるため、より良いろう付性を目指す場合あるいは表面窒化を嫌う被ろう付品に対しては、窒素ガスを希ガスに切り換えることが好ましい。窒素ガスから希ガスへの切り換えは、フラックス使用の有無にかかわらず被ろう付品の実体温度として450〜550℃の間で行うことが好ましい。450℃未満の切り換えではではガスコストの低減効果が少なく、550℃を超える高温での切り換えでは窒化反応を抑制する効果が少ない。窒素ガスから希ガスへの切り換えの好ましい温度は480〜520℃の間である。
[Switching from nitrogen gas to rare gas]
Depending on the chemical composition of the product to be brazed, when heated in a nitrogen gas atmosphere, the alloy components and nitrogen react to produce nitrides, which may reduce brazing properties. Since the nitriding reaction occurs in a high temperature range of 500 ° C. or higher, it is preferable to switch the nitrogen gas to a rare gas when aiming for better brazing or for a brazed product that dislikes surface nitriding. Switching from nitrogen gas to rare gas is preferably performed between 450 and 550 ° C. as the actual temperature of the brazed product regardless of whether or not flux is used. Switching at less than 450 ° C. has little effect of reducing the gas cost, and switching at a high temperature exceeding 550 ° C. has little effect on suppressing the nitriding reaction. The preferred temperature for switching from nitrogen gas to noble gas is between 480 and 520 ° C.

窒素ガスから希ガスへの切り換え温度は上述した大気から不活性ガス(窒素ガスまたは希ガス)への切り換え温度よりも高い。このため、昇温過程において、大気から窒素ガスに切り換え、さらに窒素ガスを希ガスに切り換える3段階切り換えも選択することができる。希ガスは窒素ガスよりも高価であるから、このような3段階切り換えは窒化物の生成を避けて大気から希ガスに切り換える2段切り換えよりもガスコストを低減できる。   The switching temperature from the nitrogen gas to the rare gas is higher than the switching temperature from the atmosphere to the inert gas (nitrogen gas or rare gas) described above. For this reason, in the temperature rising process, switching from the atmosphere to nitrogen gas and switching from nitrogen gas to rare gas can also be selected. Since the rare gas is more expensive than the nitrogen gas, such a three-stage switching can reduce the gas cost than the two-stage switching that switches from the atmosphere to the rare gas while avoiding the formation of nitrides.

図1に示した高温熱風加熱装置(1)を用いてフラックスろう付およびフラックスレスろう付によるろう付試験をおこなった。   A brazing test using flux brazing and fluxless brazing was performed using the high-temperature hot air heating apparatus (1) shown in FIG.

使用したガスは大気、窒素ガス(露点−70℃、酸素濃度5ppm以下)、アルゴンガス(露点−60℃、酸素濃度5ppm以下)、ヘリウムガス(露点−60℃、酸素濃度5ppm以下)の4種類である。1つの試験材に対しては、1種(切り換えなし)〜3種のガスを用い、それぞれのガスを3つのガス供給部(11)(12)(13)に配備し、切換弁(17)で雰囲気ガスを選択してヒーター(16)に導入した。ヒーター(16)には加圧したガスを導入し、風速3m/sec、700℃の熱風としてチャンバー(16)内に送り込んだ。   Four types of gases were used: air, nitrogen gas (dew point −70 ° C., oxygen concentration 5 ppm or less), argon gas (dew point −60 ° C., oxygen concentration 5 ppm or less), and helium gas (dew point −60 ° C., oxygen concentration 5 ppm or less). It is. For one test material, one type (no switching) to three types of gas is used, and each gas is arranged in three gas supply units (11), (12), (13), and a switching valve (17) The atmosphere gas was selected and introduced into the heater (16). Pressurized gas was introduced into the heater (16) and sent into the chamber (16) as hot air at a wind speed of 3 m / sec and 700 ° C.

[フラックスろう付]
ろう付試験として図2に示す逆T字型継ぎ手(20)を作製した。
[Flux brazing]
As a brazing test, an inverted T-shaped joint (20) shown in FIG. 2 was produced.

前記継ぎ手(20)において、水平材(21)はA3003からなる心材(22)の片面にAl−10%Si合金ろう材(23)をクラッドしたブレージングシートであり、寸法は50mm×25mm×厚み1.0mm、クラッド率が10%である。垂直材(24)はA3003のベア材からなり、寸法は幅50mm×25mm×厚み1.0mmである。前記水平材(21)および垂直材(24)の全面にKAlFを水に溶いたフラックス液を塗布し、乾燥後に逆T字型継ぎ手(20)を組み立てた。フラックス付着量は5g/mである。 In the joint (20), the horizontal member (21) is a brazing sheet in which an Al-10% Si alloy brazing material (23) is clad on one side of a core material (22) made of A3003, and the dimensions are 50 mm × 25 mm × thickness 1 0.0 mm and the cladding rate is 10%. The vertical member (24) is made of A3003 bare material, and the dimensions are width 50 mm × 25 mm × thickness 1.0 mm. A flux solution in which KAlF 4 was dissolved in water was applied to the entire surface of the horizontal member (21) and the vertical member (24), and an inverted T-shaped joint (20) was assembled after drying. The flux adhesion amount is 5 g / m 2 .

前記逆T字型継ぎ手(20)をチャンバー(16)内に置き、表1に示すように、試験No.1〜3(発明例)は大気で昇温を開始し、実体温度350℃でそれぞれ窒素ガス、アルゴンガス、ヘリウムガスに切り換えて620℃まで昇温させて、昇温開始から3分間加熱した。また、試験No.4、5(比較例)は窒素ガスまたは大気で3分間加熱した。   The inverted T-shaped joint (20) is placed in the chamber (16), and as shown in Table 1, test Nos. 1 to 3 (invention examples) start to heat up in the atmosphere, and the actual temperature is 350 ° C. The temperature was raised to 620 ° C. by switching to nitrogen gas, argon gas, and helium gas, and the mixture was heated for 3 minutes from the start of the temperature rise. Test Nos. 4 and 5 (comparative examples) were heated for 3 minutes with nitrogen gas or air.

[フラックスレスろう付]
試験用の逆T字型継手(20)の水平材(21)として、A3003からなる心材(22)の片面にAl−10%Si−0.2%Mg−0.1%Bi合金ろう材(23)をクラッドしたブレージングシートを用い、垂直材(24)としてA3003のベア材を用いた。各材の寸法はフラックスろう付用試験材と同じである。ろう付の前処理として、前記水平材(21)および垂直材(24)は5%の苛性液でエッチングし、30%硝酸で中和した。
[Fluxless brazing]
As a horizontal material (21) of the inverted T-shaped joint (20) for testing, an Al-10% Si-0.2% Mg-0.1% Bi alloy brazing material (on one side of a core material (22) made of A3003 ( The brazing sheet clad 23) was used, and A3003 bare material was used as the vertical member (24). The dimensions of each material are the same as the flux brazing test material. As a pretreatment for brazing, the horizontal member (21) and the vertical member (24) were etched with 5% caustic solution and neutralized with 30% nitric acid.

前記逆T字型継ぎ手(20)をチャンバー(16)内に置き、表2に示すように、試験No.11〜17、19は、大気または窒素ガスで昇温を開始して実体温度100℃および/または500℃で雰囲気ガスを切り換え、620℃まで昇温させて昇温開始から3分間加熱した。また、試験No.18、20はアルゴンガスまたは窒素ガスで3分間加熱した。   The inverted T-shaped joint (20) is placed in the chamber (16), and as shown in Table 2, the test Nos. 11 to 17 and 19 are started to be heated with air or nitrogen gas, and the actual temperature is 100 ° C. And / or atmosphere gas was switched at 500 ° C., the temperature was raised to 620 ° C., and heating was started for 3 minutes. Test Nos. 18 and 20 were heated with argon gas or nitrogen gas for 3 minutes.

ろう付した逆T字型継ぎ手(20)について、目視観察により下記の基準でろう付性を評価した。評価結果を表1、2に示す。
◎:大きなフィレットが形成された
○:正常なフィレットが形成された
×:フィレットが形成されなかった。
The brazed reverse T-shaped joint (20) was evaluated for brazing performance by visual observation according to the following criteria. The evaluation results are shown in Tables 1 and 2.
A: A large fillet was formed. B: A normal fillet was formed. X: A fillet was not formed.

Figure 0006116165
Figure 0006116165

Figure 0006116165
Figure 0006116165

表1、2に示すように、ろう付の昇温過程で雰囲気ガスを切り換えることにより、ろう付性を低下させることなくガスコストを低減できることを確認することができた。   As shown in Tables 1 and 2, it was confirmed that the gas cost can be reduced without lowering the brazing property by switching the atmospheric gas during the temperature raising process of brazing.

本発明はアルミニウムのろう付品の製造に利用できる。   The present invention can be used for the production of aluminum brazing products.

1…熱風加熱装置
11…第1ガス供給部
12…第2ガス供給部
13…第3ガス供給部
14…ヒーター
15熱風
16チャンバー
17切換弁
20逆T字型継手(被ろう付品)
1… Hot air heating device
11 ... 1st gas supply part
12 ... Second gas supply section
13 ... Third gas supply section
14… Heater
15 hot air
16 chambers
17 selector valve
20 inverted T-shaped joint (brazed)

Claims (2)

雰囲気加熱によるアルミニウムのろう付において、加圧ガスを加熱して熱風を生成し、この熱風をチャンバー内に送り込んで被ろう付品を加熱するろう付方法であり、
被ろう付品の実体温度が昇温する過程で、加熱する加圧ガスを切り換えてチャンバー内に送り込む熱風のガス種を切り換えることにより、チャンバー内の雰囲気ガスを大気から窒素ガスに切り換え、さらに窒素ガスから希ガスに切り換えることを特徴とするアルミニウムのろう付方法。
In brazing of aluminum by atmospheric heating, a pressurized gas is heated to generate hot air, and this hot air is sent into the chamber to heat the brazed product,
In the process of raising the actual temperature of the brazed product, the atmosphere gas in the chamber is switched from the atmosphere to nitrogen gas by switching the pressurized gas to be heated and switching the gas type of hot air sent into the chamber. A method of brazing aluminum characterized by switching from gas to rare gas .
前記窒素ガスから希ガスの切り換えを被ろう付品の実体温度が450〜550℃の間に行う請求項に記載のアルミニウムのろう付方法。 The aluminum brazing method according to claim 1 , wherein switching from the nitrogen gas to the rare gas is performed while an actual temperature of the brazed product is between 450 and 550 ° C.
JP2012202499A 2012-09-14 2012-09-14 Aluminum brazing method Expired - Fee Related JP6116165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012202499A JP6116165B2 (en) 2012-09-14 2012-09-14 Aluminum brazing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012202499A JP6116165B2 (en) 2012-09-14 2012-09-14 Aluminum brazing method

Publications (2)

Publication Number Publication Date
JP2014054667A JP2014054667A (en) 2014-03-27
JP6116165B2 true JP6116165B2 (en) 2017-04-19

Family

ID=50612456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012202499A Expired - Fee Related JP6116165B2 (en) 2012-09-14 2012-09-14 Aluminum brazing method

Country Status (1)

Country Link
JP (1) JP6116165B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6110173B2 (en) * 2013-03-22 2017-04-05 三菱アルミニウム株式会社 Brazing method and brazing structure of aluminum material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113969A (en) * 1982-12-21 1984-06-30 Kobe Steel Ltd Fluxless soldering method of large-sized plate fin type heat exchanger
JPH06102266B2 (en) * 1987-08-08 1994-12-14 日本電装株式会社 Vacuum brazing method
US5147083A (en) * 1991-09-25 1992-09-15 General Motors Corporation Method and apparatus for convection brazing of aluminum heat exchangers
JP3480605B2 (en) * 1994-09-13 2003-12-22 本田技研工業株式会社 Brazing method of aluminum alloy material
JP3556827B2 (en) * 1998-04-01 2004-08-25 古河スカイ株式会社 Method of producing flux-free brazing material in non-oxidizing gas atmosphere and brazing method
JP3809806B2 (en) * 2002-03-29 2006-08-16 富士電機デバイステクノロジー株式会社 Manufacturing method of semiconductor device
JP5343988B2 (en) * 2011-01-31 2013-11-13 株式会社デンソー Brazing equipment

Also Published As

Publication number Publication date
JP2014054667A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
CN203938720U (en) The online bright annealing device of a kind of copper alloy wire
JPS58151478A (en) Manufacture of furnace metal member for metal and ceramic product manufacturing furnace
JP2007000915A5 (en)
CN101928897B (en) Annealing of cold rolled metal strip
JP6116165B2 (en) Aluminum brazing method
CN105798409A (en) Welding method of target module
CN104259629A (en) Method for welding aluminum alloy cavity
JP2016083699A (en) Brazing furnace and brazing method for aluminium material
JPWO2013153791A1 (en) Method for reducing dew point of atmospheric gas in annealing furnace, apparatus therefor, and method for producing cold-rolled annealed steel sheet
MX2007013181A (en) Method for forming a tight-fitting silver surface on an aluminium piece.
JP2014037576A (en) Brazing sheet made of aluminum alloy, and method for brazing the same
JP2014073519A (en) Aluminum brazing sheet and blazing method using the same
JP2008266729A (en) Method for heating steel-made workpiece
CN101954539A (en) Friction welding process for copper material and aluminum alloy material
JP7108433B2 (en) Fluxless brazing method for aluminum materials
JP2012236201A (en) Aluminum alloy brazing sheet
CN202989260U (en) Clean and pollution-free ultra-soft tin-coated solder strip production system
KR100859177B1 (en) Brazing method of products containing stainless steel parts
CN107586998A (en) A kind of high temperature resistant titanium alloy plate and its method for annealing
JP6339310B2 (en) Brazing method
CN112338190A (en) Heat treatment process method for high-temperature alloy additive manufactured part
CN105014173A (en) Aluminum alloy vacuum brazing method capable of reducing corrosion
JP2009228943A (en) Indirect cooling device of smoking box
CN207918693U (en) A kind of stress disconnecting device of Xiao Te glass-tubes
JP2013215735A (en) Aluminum alloy brazing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R150 Certificate of patent or registration of utility model

Ref document number: 6116165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees