JP6114676B2 - Hydrogen station - Google Patents

Hydrogen station Download PDF

Info

Publication number
JP6114676B2
JP6114676B2 JP2013227185A JP2013227185A JP6114676B2 JP 6114676 B2 JP6114676 B2 JP 6114676B2 JP 2013227185 A JP2013227185 A JP 2013227185A JP 2013227185 A JP2013227185 A JP 2013227185A JP 6114676 B2 JP6114676 B2 JP 6114676B2
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
accumulator
valve mechanism
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013227185A
Other languages
Japanese (ja)
Other versions
JP2014111984A (en
Inventor
祐一 田中
祐一 田中
康之 高井
康之 高井
英二 根岸
英二 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2013227185A priority Critical patent/JP6114676B2/en
Publication of JP2014111984A publication Critical patent/JP2014111984A/en
Application granted granted Critical
Publication of JP6114676B2 publication Critical patent/JP6114676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池自動車(FCV)等の水素燃料タンクに水素を充填するための水素ステーションに関する。   The present invention relates to a hydrogen station for filling a hydrogen fuel tank such as a fuel cell vehicle (FCV) with hydrogen.

水素ステーションには、他の場所で製造された水素が輸送されるオフサイト型と、その場で水素を製造するオンサイト型がある。オフサイト型水素ステーションは、水素の製造設備を備える必要がなく、オンサイト型水素ステーションに比べて設備投資等が少なくて済む。しかし、水素の製造場所から水素ステーションまで水素を効率的に輸送するためには、水素を高圧に圧縮するか、極低温に冷却して液化する必要があり輸送コストが高い。
一方、オンサイト型水素ステーションは、水素の製造設備を備えるための建設コストがかかるが、水素の輸送コストに比べて水素製造の原料の輸送コストが低いというメリットがある。水素の製造原料としては都市ガス、液化石油ガス(LPG)、ナフサ、灯油、メタノール、有機ハイドライド(脱水素反応により容易に水素ガスを生成する液体であり、シクロヘキサン、メチルシクロヘキサン、デカリンおよびその誘導体、2−プロパノール等が好適に挙げられる)が挙げられる。これらの原料はガス又は液体であり、パイプライン、ボンベ、ローリー等で容易に輸送できる。このため、燃料電池自動車の普及を図るため、或いは、燃料電池自動車の普及に伴って、今後、オフサイト型水素ステーション、オンサイト型水素ステーションともに設置数が増加すると考えられる。
There are two types of hydrogen stations: an off-site type in which hydrogen produced elsewhere is transported, and an on-site type in which hydrogen is produced in situ. The off-site type hydrogen station does not need to be equipped with a hydrogen production facility and requires less capital investment than the on-site type hydrogen station. However, in order to efficiently transport the hydrogen from the hydrogen production site to the hydrogen station, it is necessary to compress the hydrogen to a high pressure or to cool it to a cryogenic temperature and to liquefy it, resulting in high transportation costs.
On the other hand, the on-site type hydrogen station requires a construction cost for providing a hydrogen production facility, but has an advantage that the transportation cost of raw materials for hydrogen production is lower than the transportation cost of hydrogen. As raw materials for producing hydrogen, city gas, liquefied petroleum gas (LPG), naphtha, kerosene, methanol, organic hydride (a liquid that easily generates hydrogen gas by dehydrogenation reaction, cyclohexane, methylcyclohexane, decalin and its derivatives, 2-propanol etc. are mentioned suitably). These raw materials are gas or liquid, and can be easily transported by pipelines, cylinders, lorries and the like. For this reason, it is considered that the number of installed off-site hydrogen stations and on-site hydrogen stations will increase in the future in order to promote the spread of fuel cell vehicles or with the spread of fuel cell vehicles.

従来の水素ステーションとして、例えば特許文献1に記載されたものが開示されている。この水素ステーションは、互いに異なる圧力値の水素を貯留する複数の蓄圧器バンクを有する蓄圧ユニットを備え、圧力値の低い蓄圧器バンクから圧力値の高い蓄圧器バンクへ順次切替えて、燃料電池自動車の水素燃料タンクに水素を充填するよう構成されている。そして、蓄圧器バンクの最高圧力値を、燃料電池自動車の水素燃料タンクの最高使用圧力(満タン)より高い圧力値として、燃料電池自動車の水素燃料タンクに水素を満タンまで充填できるようにしている。   As a conventional hydrogen station, for example, one described in Patent Document 1 is disclosed. The hydrogen station includes a pressure accumulator unit having a plurality of pressure accumulator banks that store hydrogen of different pressure values, and sequentially switches from a low pressure value accumulator bank to a high pressure value accumulator bank. The hydrogen fuel tank is configured to be filled with hydrogen. Then, the maximum pressure value of the accumulator bank is set to a pressure value higher than the maximum use pressure (full tank) of the hydrogen fuel tank of the fuel cell vehicle so that the hydrogen fuel tank of the fuel cell vehicle can be filled with hydrogen to the full tank. Yes.

特開2008−64160号公報JP 2008-64160 A

しかしながら、特許文献1に記載された従来の水素ステーションでは、燃料電池自動車への水素充填が行われる度に各蓄圧バンク内の圧力値は低下する。このため、例えば、燃料電池自動車が来店した際に、当該燃料電池自動車の水素燃料タンクの残圧値より高い残圧値を維持している蓄圧器バンクがない場合、それぞれの蓄圧器バンク内には水素が残存しているにも拘わらず、燃料電池自動車の水素燃料タンクへ水素を充填できないという課題がある。
一方、オンサイト型水素ステーションにおいても、水素の製造設備を起動させてから製品水素を製造するまでには一般に数時間以上の時間がかかるため、短時間に多くの燃料電池自動車が来店すると上記の課題が発生する。また、水素の製造設備の起動、停止の際には製品水素の製造以外に原料、電力、ユーティリティ等が消費されるため、燃料電池自動車の来店の頻度に応じて頻繁な起動、停止を行うと経済的に不利となるという課題がある。
However, in the conventional hydrogen station described in Patent Document 1, the pressure value in each accumulator bank decreases each time hydrogen is filled into the fuel cell vehicle. For this reason, for example, when there is no accumulator bank that maintains a residual pressure value higher than the residual pressure value of the hydrogen fuel tank of the fuel cell automobile when the fuel cell automobile comes to the store, each accumulator bank Has a problem that hydrogen cannot be filled into the hydrogen fuel tank of a fuel cell vehicle despite the fact that hydrogen remains.
On the other hand, in an on-site type hydrogen station, since it takes more than several hours to start producing hydrogen after starting up the hydrogen production facility, when many fuel cell vehicles come to the store in the short time, the above-mentioned Challenges arise. In addition, when starting and stopping hydrogen production facilities, raw materials, electric power, utilities, etc. are consumed in addition to the production of product hydrogen, so if you start and stop frequently depending on the frequency of fuel cell vehicle visits There is a problem that it is economically disadvantageous.

そこで、本発明は、複数の蓄圧器間で残存水素を融通し合うことにより、水素燃料タンクへ充填可能な内圧(残圧)を有する蓄圧器を常時確保できるようにした水素ステーションを提供することを目的とする。   Accordingly, the present invention provides a hydrogen station that can always secure a pressure accumulator having an internal pressure (residual pressure) that can be charged into a hydrogen fuel tank by interchanging residual hydrogen among a plurality of pressure accumulators. With the goal.

このため、本発明は、水素を昇圧する圧縮機と、この圧縮機で昇圧された水素を貯留可能な複数の蓄圧器を有する蓄圧ユニットとを備え、前記蓄圧ユニットに貯留された水素を水素燃料タンクに充填する水素ステーションであって、前記複数の蓄圧器のうち残圧が最も低い蓄圧器内の水素を、前記圧縮機で昇圧して他の蓄圧器へと移送するように構成されたことを特徴とする。 For this reason, the present invention includes a compressor for boosting hydrogen and a pressure accumulating unit having a plurality of pressure accumulators capable of storing the hydrogen boosted by the compressor, and the hydrogen stored in the pressure accumulating unit is converted into hydrogen fuel. a hydrogen station for filling the tank, the hydrogen residual pressure in the lowest accumulator of the plurality of pressure accumulator, and pressurized by the compressor is configured to transfer to another accumulator It is characterized by.

本発明の水素ステーションによれば、複数の蓄圧器のうちの一部の蓄圧器内の水素を、圧縮機で昇圧して他の蓄圧器へと移送できるので、残圧が低い蓄圧器の水素を他の蓄圧器へ昇圧して移送することで高圧の蓄圧器を用意できるようになる。この結果、全ての蓄圧器の残圧が水素燃料タンクの最高使用圧力未満になっても蓄圧器間で水素を融通することで、水素燃料タンクの最高使用圧力(満タン)より高い圧力値の蓄圧器を用意できるようになる。このため、例えば、水素ステーションに燃料電池自動車が来店しても蓄圧器に水素が残存しているにも拘わらず残圧不足で水素燃料タンクに充填できないという問題を解消でき、蓄圧器内に残存する水素を有効に利用できるようになる。   According to the hydrogen station of the present invention, hydrogen in a part of the pressure accumulators of the plurality of pressure accumulators can be boosted by a compressor and transferred to other pressure accumulators. It becomes possible to prepare a high-pressure accumulator by increasing the pressure to another accumulator and transferring it. As a result, even if the residual pressure of all the pressure accumulators is less than the maximum operating pressure of the hydrogen fuel tank, hydrogen can be exchanged between the accumulators, so that the pressure value higher than the maximum operating pressure (full tank) of the hydrogen fuel tank can be obtained. A pressure accumulator can be prepared. For this reason, for example, even if a fuel cell vehicle arrives at the hydrogen station, the problem that the hydrogen fuel tank cannot be filled due to insufficient residual pressure even though hydrogen remains in the accumulator can be solved. Hydrogen can be used effectively.

本発明の第1実施形態によるオフサイト型水素ステーションの構成を示す図である。It is a figure which shows the structure of the off-site type hydrogen station by 1st Embodiment of this invention. 上記第1実施形態によるオフサイト型水素ステーションの蓄圧器間における水素移送処理の一例を示すフローチャートである。It is a flowchart which shows an example of the hydrogen transfer process between the pressure accumulators of the off-site type hydrogen station by the said 1st Embodiment. 水素輸送用容器から上記第1実施形態によるオフサイト型水素ステーションへの水素の移送処理の一例を示すフローチャートである。It is a flowchart which shows an example of the transfer process of the hydrogen from the container for hydrogen transport to the off-site type hydrogen station by the said 1st Embodiment. 水素輸送用容器から上記第1実施形態によるオフサイト型水素ステーションへの水素の移送処理の別の例を示すフローチャートである。It is a flowchart which shows another example of the transfer process of the hydrogen from the container for hydrogen transport to the off-site type hydrogen station by the said 1st Embodiment. 本発明の第2実施形態によるオフサイト型水素ステーションの構成を示す図である。It is a figure which shows the structure of the off-site type | mold hydrogen station by 2nd Embodiment of this invention. 第1実施形態の変形例によるオフサイト型水素ステーションの構成を示す図である。It is a figure which shows the structure of the off-site type hydrogen station by the modification of 1st Embodiment. 本発明の第3実施形態によるオフサイト型水素ステーションの構成を示す図である。It is a figure which shows the structure of the off-site type | mold hydrogen station by 3rd Embodiment of this invention. 上記第3実施形態によるオフサイト型水素ステーションの蓄圧器間における水素移送処理の一例を示すフローチャートである。It is a flowchart which shows an example of the hydrogen transfer process between the pressure accumulators of the off-site type hydrogen station by the said 3rd Embodiment. 本発明の第4実施形態による液体水素を用いるオオフサイト型水素ステーションの構成を示す図である。It is a figure which shows the structure of the off-site type | mold hydrogen station using liquid hydrogen by 4th Embodiment of this invention. 第4実施形態の変形例による液体水素を用いるオフサイト型水素ステーションの構成を示す図である。It is a figure which shows the structure of the off-site type | mold hydrogen station using the liquid hydrogen by the modification of 4th Embodiment. 本発明の第5実施形態によるオンサイト型水素ステーションの構成を示す図である。It is a figure which shows the structure of the on-site type hydrogen station by 5th Embodiment of this invention.

以下、本発明の実施形態を添付図面に基づいて説明する。
図1は、本発明の第1実施形態によるオフサイト型水素ステーションの構成を示している。図1に示すように、本実施形態のオフサイト型水素ステーション(以下単に「水素ステーション」という)1は、水素を昇圧する圧縮機2と、圧縮機2で昇圧された水素を貯留可能な蓄圧ユニット3と、蓄圧ユニット3に貯留された水素を、例えば燃料電池自動車(FCV)等に搭載された水素燃料タンクに充填するディスペンサー4と、制御装置8と、を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows the configuration of an off-site hydrogen station according to the first embodiment of the present invention. As shown in FIG. 1, an off-site type hydrogen station (hereinafter simply referred to as “hydrogen station”) 1 of the present embodiment includes a compressor 2 that boosts hydrogen, and an accumulator that can store hydrogen boosted by the compressor 2. A unit 3, a dispenser 4 that fills hydrogen stored in the pressure accumulating unit 3 into, for example, a hydrogen fuel tank mounted on a fuel cell vehicle (FCV), and the control device 8 are provided.

蓄圧ユニット3は、当該蓄圧ユニット3に水素が流入する入口部3aと、当該蓄圧ユニット3から水素が流出する出口部3bと、を有している。蓄圧ユニット3の入口部3aには、連結管7の一端が接続される。連結管7の他端は水素輸送用容器50に着脱可能に構成されており、この連結管7の他端が水素輸送用容器50に装着されることによって、連結管7を介して水素輸送用容器50と蓄圧ユニット3とが接続される。上記連結管7は、圧縮機2が介装された直管部71と、直管部71の途中で分岐して圧縮機2を迂回する分岐管部72とで構成され、水素輸送用容器50内の水素を水素ステーション1へと移送する水素移送管としての機能を有する。ここで、連結管7における直管部71の一部及び圧縮機2を迂回している分岐管部72が、圧縮機2を介在させずに水素輸送用容器50内の水素を後述の蓄圧器311へ差圧で移送可能な、本発明の「移送ライン」に相当する。尚、分岐管部72には、水素が圧縮機2の出口側から入口側へ流れることを防止する逆止弁60が設けられている。
また、蓄圧ユニット3の出口部3bには、接続管9の一端が接続されており、この接続管9の他端はディスペンサー4に接続されている。
The pressure accumulating unit 3 has an inlet part 3 a through which hydrogen flows into the pressure accumulating unit 3 and an outlet part 3 b through which hydrogen flows out from the pressure accumulating unit 3. One end of the connecting pipe 7 is connected to the inlet 3 a of the pressure accumulating unit 3. The other end of the connecting pipe 7 is configured to be detachable from the hydrogen transporting container 50, and the other end of the connecting pipe 7 is attached to the hydrogen transporting container 50, so The container 50 and the pressure accumulation unit 3 are connected. The connecting pipe 7 includes a straight pipe portion 71 in which the compressor 2 is interposed, and a branch pipe portion 72 that branches in the middle of the straight pipe portion 71 and bypasses the compressor 2. It has a function as a hydrogen transfer pipe for transferring the hydrogen inside to the hydrogen station 1. Here, a part of the straight pipe portion 71 in the connecting pipe 7 and the branch pipe portion 72 that bypasses the compressor 2 store the hydrogen in the hydrogen transport container 50 without the compressor 2, as will be described later. This corresponds to the “transfer line” of the present invention, which can be transferred to 311 with a differential pressure. The branch pipe portion 72 is provided with a check valve 60 that prevents hydrogen from flowing from the outlet side to the inlet side of the compressor 2.
One end of the connection pipe 9 is connected to the outlet 3 b of the pressure accumulating unit 3, and the other end of the connection pipe 9 is connected to the dispenser 4.

蓄圧ユニット3は、複数(ここでは四つ)の蓄圧器バンク31を含み、各蓄圧器バンク31は、例えば貯留する水素の圧力(充填圧力)を異ならせた複数(ここでは三つ)の蓄圧器311で構成されている。例えば、各蓄圧器バンク31は、40MPaの水素を貯留するように設定された蓄圧器、70MPaの水素を貯留するように設定された蓄圧器、及び、82MPaの水素を貯留するように設定された蓄圧器で構成されている。尚、本実施形態では、蓄圧器バンク31の各蓄圧器311の設定圧を異ならせるものとしたが、一部又は全ての蓄圧器311の設定圧を同じに設定してもよい。   The accumulator unit 3 includes a plurality (four in this case) of accumulator banks 31, and each accumulator bank 31 has a plurality (three in this case) of accumulators, for example, having different pressures (filling pressures) of hydrogen to be stored. The device 311 is configured. For example, each pressure accumulator bank 31 was set to store 40 MPa of hydrogen, a pressure accumulator set to store 70 MPa of hydrogen, and 82 MPa of hydrogen. It is composed of a pressure accumulator. In this embodiment, the set pressures of the pressure accumulators 311 in the pressure accumulator bank 31 are made different, but the set pressures of some or all of the pressure accumulators 311 may be set to be the same.

各蓄圧器311の水素の充填口と放出口を兼ねる出入口部には、専用の弁機構(例えば、電磁弁)313及び圧力検知部101が設けられている。各蓄圧器311は、その出入口部に設けられた専用の弁機構313と、蓄圧器バンク31毎に設けられた逆止弁312及び弁機構314を介して蓄圧ユニット3の入口部3aに接続されている。また、各蓄圧器311は、その出入口部に設けられた専用の弁機構313と、蓄圧器バンク31毎に設けられた弁機構315及び逆止弁316を介して蓄圧ユニット3の出口部3bに接続されている。尚、前記逆止弁312は各蓄圧バンク31側から入口部3a側へ水素が流れること防止するものであり、前記逆止弁316は出口部3b側から各蓄圧バンク31側へ水素が流れること防止するものである。   A dedicated valve mechanism (for example, an electromagnetic valve) 313 and a pressure detection unit 101 are provided at an inlet / outlet portion serving as a hydrogen filling port and a discharge port of each pressure accumulator 311. Each pressure accumulator 311 is connected to the inlet portion 3a of the pressure accumulating unit 3 via a dedicated valve mechanism 313 provided at the inlet / outlet portion thereof, and a check valve 312 and a valve mechanism 314 provided for each of the pressure accumulator banks 31. ing. Each pressure accumulator 311 is connected to the outlet 3b of the pressure accumulating unit 3 via a dedicated valve mechanism 313 provided at the inlet / outlet portion, and a valve mechanism 315 and check valve 316 provided for each pressure accumulator bank 31. It is connected. The check valve 312 prevents hydrogen from flowing from the respective accumulator bank 31 side to the inlet portion 3a side, and the check valve 316 allows hydrogen to flow from the outlet portion 3b side to each accumulator bank 31 side. It is to prevent.

これにより、蓄圧ユニット3では、弁機構315が閉じた状態で、弁機構314と弁機構313を選択的に開くと、圧縮機2で昇圧された水素が所定の蓄圧器バンク31における所定の蓄圧器311に充填され、開弁した弁機構314又は弁機構313を閉じると所定の蓄圧器311への水素の充填が停止される。ここで、上記弁機構313と弁機構314とで本発明の第1の弁機構を構成している。また、弁機構314が閉じた状態で、弁機構315と弁機構313を選択的に開くと、所定の蓄圧器バンク31における所定の蓄圧器311から水素が放出され、開弁した弁機構315又は弁機構313を閉じると所定の蓄圧器311からの水素の放出が停止される。ここで、上記弁機構313と弁機構315とで本発明の第2の弁機構を構成している。尚、上記各弁機構313〜315は、例えば、電磁式の開閉弁と流量調整弁を備えて構成されている。   As a result, in the pressure accumulating unit 3, when the valve mechanism 314 and the valve mechanism 313 are selectively opened in a state where the valve mechanism 315 is closed, the hydrogen boosted by the compressor 2 is stored in the predetermined pressure accumulator bank 31. When the valve mechanism 314 or the valve mechanism 313 that has been filled in the vessel 311 and opened is closed, the filling of hydrogen into the predetermined pressure accumulator 311 is stopped. Here, the valve mechanism 313 and the valve mechanism 314 constitute a first valve mechanism of the present invention. When the valve mechanism 315 and the valve mechanism 313 are selectively opened while the valve mechanism 314 is closed, hydrogen is released from the predetermined pressure accumulator 311 in the predetermined pressure accumulator bank 31, and the valve mechanism 315 opened or opened When the valve mechanism 313 is closed, the release of hydrogen from the predetermined pressure accumulator 311 is stopped. Here, the valve mechanism 313 and the valve mechanism 315 constitute a second valve mechanism of the present invention. Each of the valve mechanisms 313 to 315 includes, for example, an electromagnetic on-off valve and a flow rate adjustment valve.

ディスペンサー4は、上記水素燃料タンクに水素を充填することができる装置であり、具体的には、蓄圧器311から放出された水素を上記水素燃料タンクに充填する。また、ディスペンサー4には、上記燃料電池自動車(FCV)等から上記水素燃料タンクに関する情報(残圧、最高使用圧力等)が入力されるようになっている。尚、本実施形態において、上記水素燃料タンクは、例えば70MPaの水素を充填可能に構成されている。   The dispenser 4 is a device that can fill the hydrogen fuel tank with hydrogen. Specifically, the dispenser 4 fills the hydrogen fuel tank with hydrogen released from the pressure accumulator 311. The dispenser 4 receives information (residual pressure, maximum working pressure, etc.) on the hydrogen fuel tank from the fuel cell vehicle (FCV) or the like. In the present embodiment, the hydrogen fuel tank is configured to be able to be filled with, for example, 70 MPa hydrogen.

また、水素ステーション1は、蓄圧ユニット3の出口部3bとディスペンサー4を接続する接続管9から分岐して蓄圧ユニット3の出口部3bを圧縮機2の入口側に接続する接続管5と、接続管5を開閉する弁機構(例えば、電磁弁)6と、を備えている。上記接続管5は、各蓄圧器311から放出された水素を圧縮機2の入口側へと戻す水素移送管としての機能を有し、本発明の「戻しライン」に相当する。尚、本実施形態において、水素輸送用容器50は、例えば45MPaの水素を充填可能に形成されている。ここで、水素輸送用容器50とは、主に他の場所で水素が充填されてトラクタやトラック等の輸送用車両によって搬送される容器のことをいい、水素トレーラー、水素カードル、水素タンク等が含まれる。   Further, the hydrogen station 1 is connected to a connecting pipe 5 that branches from a connecting pipe 9 that connects the outlet 3b of the pressure accumulating unit 3 and the dispenser 4 and connects the outlet 3b of the accumulating unit 3 to the inlet side of the compressor 2. And a valve mechanism (for example, an electromagnetic valve) 6 that opens and closes the pipe 5. The connecting pipe 5 has a function as a hydrogen transfer pipe for returning hydrogen released from each pressure accumulator 311 to the inlet side of the compressor 2 and corresponds to a “return line” of the present invention. In the present embodiment, the hydrogen transport container 50 is formed so as to be filled with, for example, 45 MPa hydrogen. Here, the hydrogen transport container 50 refers to a container that is mainly filled with hydrogen in another place and is transported by a transport vehicle such as a tractor or a truck, such as a hydrogen trailer, a hydrogen curdle, or a hydrogen tank. included.

制御装置8には、圧力検知部101によって検知された各蓄圧器311の内圧(残圧)やディスペンサー4に入力された上記水素燃料タンクに関する情報(残圧、最高使用圧力等)を含む各種情報が入力される。そして、制御装置8は、入力された各種情報やオペレータによる動作指令等に基づいて、圧縮機2及び各弁機構6,313〜315等を適宜制御する。尚、本実施形態では、デフォルト状態において、各弁機構6,313,315は閉じており、弁機構314は開いているものとする。   The control device 8 includes various information including internal pressure (residual pressure) of each accumulator 311 detected by the pressure detector 101 and information (residual pressure, maximum operating pressure, etc.) regarding the hydrogen fuel tank input to the dispenser 4. Is entered. And the control apparatus 8 controls the compressor 2 and each valve mechanism 6,313-315 grade | etc., Suitably based on the input various information, the operation command by an operator, etc. FIG. In the present embodiment, it is assumed that the valve mechanisms 6, 313, 315 are closed and the valve mechanism 314 is open in the default state.

ここで、制御装置8が実施する処理について簡単に説明する。
(1)水素燃料タンクへの充填処理
制御装置8には、充填対象の上記水素燃料タンクに水素の充填を行う前に、当該水素燃料タンクに関する情報(残圧や最高使用圧力等)及び各蓄圧器311の内圧(残圧)が入力される。そして、制御装置8は、入力された水素燃料タンクに関する情報及び各蓄圧器311の内圧(残圧)に基づいて、蓄圧ユニット3の有する複数の蓄圧器バンク31のうち適切な蓄圧器バンク31を選択する。具体的には、制御装置8は、上記水素燃料タンクの残圧及び最高使用圧力、各蓄圧器バンク31を構成する蓄圧器311の残圧状態に基づき、その時点で充填対象の水素燃料タンクに対して最も効率的に水素を充填することができる蓄圧器バンク31を選択する。但し、これに限るものではなく、オペレータによる選択指令に基づいて制御装置8が蓄圧器バンク31を選択するように構成してもよい。
Here, the process which the control apparatus 8 implements is demonstrated easily.
(1) Filling process into hydrogen fuel tank Before the hydrogen filling of the hydrogen fuel tank to be filled, the control device 8 includes information on the hydrogen fuel tank (residual pressure, maximum operating pressure, etc.) and each accumulated pressure. The internal pressure (residual pressure) of the vessel 311 is input. Then, the control device 8 selects an appropriate accumulator bank 31 among the plurality of accumulator banks 31 of the accumulator unit 3 based on the input information on the hydrogen fuel tank and the internal pressure (residual pressure) of each accumulator 311. select. Specifically, based on the residual pressure and the maximum operating pressure of the hydrogen fuel tank, and the residual pressure state of the pressure accumulator 311 constituting each pressure accumulator bank 31, the control device 8 sets the hydrogen fuel tank to be filled at that time. On the other hand, the accumulator bank 31 that can be filled with hydrogen most efficiently is selected. However, the present invention is not limited to this, and the control device 8 may be configured to select the accumulator bank 31 based on a selection command from the operator.

次に、制御装置8は、選択した蓄圧器バンク31の各蓄圧器311の内圧(残圧)及び上記水素燃料タンクの内圧(残圧)を監視しながら、上記水素燃料タンクの内圧よりも高く、かつ、上記水素燃料タンクの内圧に最も近い残圧の蓄圧器311から水素を放出させるように弁機構313と弁機構315を制御する(即ち、対応する弁機構313と弁機構315を開く)。従って、制御装置8は、上記水素燃料タンクへの水素の充填中に、水素を放出していた蓄圧器311の残圧が充填により昇圧した水素燃料タンクの内圧近くになると、当該蓄圧器311からの水素の放出を停止し、当該蓄圧器311よりも残圧が高く昇圧した水素燃料タンクの内圧に最も近い残圧の別の蓄圧器311から水素を放出させるように弁機構313を制御する。即ち、水素を放出させる蓄圧器311を切替える。このようにして上記水素燃料タンクへの水素の充填を行うことにより、水素の圧力エネルギーの損失を抑制して効率的な水素の充填を行うことができる。   Next, the control device 8 monitors the internal pressure (residual pressure) of each accumulator 311 of the selected accumulator bank 31 and the internal pressure (residual pressure) of the hydrogen fuel tank, while higher than the internal pressure of the hydrogen fuel tank. In addition, the valve mechanism 313 and the valve mechanism 315 are controlled so as to release hydrogen from the pressure accumulator 311 having a residual pressure closest to the internal pressure of the hydrogen fuel tank (that is, the corresponding valve mechanism 313 and valve mechanism 315 are opened). . Therefore, when the residual pressure of the pressure accumulator 311 that has released hydrogen becomes close to the internal pressure of the hydrogen fuel tank that has been increased by filling during the filling of hydrogen into the hydrogen fuel tank, the control device 8 Then, the valve mechanism 313 is controlled so as to release hydrogen from another pressure accumulator 311 having a residual pressure closest to the internal pressure of the hydrogen fuel tank whose residual pressure is higher than that of the pressure accumulator 311. That is, the pressure accumulator 311 that releases hydrogen is switched. By filling the hydrogen fuel tank with hydrogen in this way, it is possible to perform efficient hydrogen filling while suppressing loss of hydrogen pressure energy.

その後、制御装置8は、上記水素燃料タンクの内圧がその最高使用圧力に応じて設定される所定圧力となると、蓄圧器311からの水素の放出を停止させるように弁機構313と弁機構315を制御して(即ち、対応する弁機構313と弁機構315を閉じて)上記水素燃料タンクへの水素の充填を終了する。   Thereafter, when the internal pressure of the hydrogen fuel tank reaches a predetermined pressure set according to the maximum operating pressure, the control device 8 causes the valve mechanism 313 and the valve mechanism 315 to stop releasing hydrogen from the pressure accumulator 311. Control (that is, close the corresponding valve mechanism 313 and valve mechanism 315) ends the filling of hydrogen into the hydrogen fuel tank.

(2)蓄圧器311間における水素の移送処理
複数の水素燃料タンクに対して水素の充填を行うと、各蓄圧器311の残圧が低くなってしまい、どの蓄圧器バンク31を選択しても充填対象の上記水素燃料タンクに十分な水素を充填できなくなる虞れがある。そこで、このような虞れを可能な限り解消するため、本実施形態による水素ステーション1では、蓄圧器311間における水素の移送を可能としている。この蓄圧器311間における水素の移送は、制御装置8によって、圧縮機2及び各弁機構6,313〜315を適宜制御することによって実施される。
(2) Hydrogen transfer processing between the pressure accumulators 311 When hydrogen is filled in a plurality of hydrogen fuel tanks, the residual pressure of each pressure accumulator 311 becomes low, and any pressure accumulator bank 31 is selected. There is a possibility that the hydrogen fuel tank to be filled cannot be filled with sufficient hydrogen. Therefore, in order to eliminate such fears as much as possible, the hydrogen station 1 according to the present embodiment enables hydrogen transfer between the pressure accumulators 311. The transfer of hydrogen between the pressure accumulators 311 is performed by appropriately controlling the compressor 2 and the valve mechanisms 6, 313 to 315 by the control device 8.

例えば、制御装置8は、少なくとも一つの蓄圧器311の残圧が所定値(例えば、最高設定圧力である82MPa)以上の状態を維持するように蓄圧器311間で水素を移送させる。この場合、制御装置8は、例えば全ての蓄圧器311の残圧が上記所定値未満となった場合に、残圧の低い側の一つ又は複数の蓄圧器311から残圧の高い側の一つ又は複数の蓄圧器311へと水素を移送させるように、圧縮機2及び各弁機構6,313〜315を制御する。具体的には、制御装置8は、弁機構6及び残圧の最も低い蓄圧器311に対応する弁機構313と弁機構315を開くと共に、残圧の最も高い蓄圧器311のみが圧縮機2に接続されるように対応する弁機構313と弁機構314を制御した上で、圧縮機2を稼働する。これにより、上記残圧の最も低い蓄圧器311内の水素は、蓄圧ユニット3の出口部3bから放出されて接続管5を介して圧縮機2の入口側へと導かれ、圧縮機2で昇圧され、連結管7を介して入口部3aから蓄圧ユニット3に導入されて上記残圧の最も高い蓄圧器311へと移送される。   For example, the control device 8 transfers hydrogen between the pressure accumulators 311 so that the residual pressure of at least one pressure accumulator 311 maintains a state equal to or higher than a predetermined value (for example, 82 MPa which is the maximum set pressure). In this case, for example, when the residual pressures of all the pressure accumulators 311 are less than the predetermined value, the control device 8 selects one of the pressure accumulators 311 on the side having a higher residual pressure from one or more pressure accumulators 311. The compressor 2 and the valve mechanisms 6, 313 to 315 are controlled so that hydrogen is transferred to one or a plurality of pressure accumulators 311. Specifically, the control device 8 opens the valve mechanism 313 and the valve mechanism 315 corresponding to the valve mechanism 6 and the pressure accumulator 311 having the lowest residual pressure, and only the pressure accumulator 311 having the highest residual pressure is supplied to the compressor 2. The compressor 2 is operated after controlling the corresponding valve mechanism 313 and valve mechanism 314 to be connected. As a result, the hydrogen in the pressure accumulator 311 having the lowest residual pressure is discharged from the outlet 3b of the pressure accumulating unit 3 and led to the inlet side of the compressor 2 through the connecting pipe 5, and is boosted by the compressor 2. Then, it is introduced into the pressure accumulating unit 3 from the inlet 3a through the connecting pipe 7 and transferred to the pressure accumulator 311 having the highest residual pressure.

そして、制御装置8は、上記残圧の最も高い蓄圧器311内の圧力が上記所定値(最高設定圧力である82MPa)以上となると、蓄圧器311間における水素の移送処理を終了する。尚、上記残圧の最も低い蓄圧器311内の水素だけでは上記残圧の最も高い蓄圧器311内の圧力が上記所定値以上とならない場合には、二番目に残圧の低い蓄圧器311内の水素を上記残圧の最も高い蓄圧器311に移送させるようにする。   Then, when the pressure in the pressure accumulator 311 having the highest residual pressure becomes equal to or higher than the predetermined value (the maximum set pressure is 82 MPa), the control device 8 ends the hydrogen transfer process between the pressure accumulators 311. In the case where the pressure in the pressure accumulator 311 having the highest residual pressure does not exceed the predetermined value with only the hydrogen in the pressure accumulator 311 having the lowest residual pressure, the pressure in the pressure accumulator 311 having the second lowest residual pressure is determined. Is transferred to the pressure accumulator 311 having the highest residual pressure.

制御装置8は、このような蓄圧器311間における水素の移送処理を実施することにより、少なくとも一つの蓄圧器311の残圧が所定値(例えば、最高設定圧力である82MPa)以上の状態を維持する。但し、これに限るものではなく、制御装置8は、様々な態様での蓄圧器311間における水素の移送処理が可能である。   The controller 8 maintains the state in which the residual pressure of at least one of the pressure accumulators 311 is equal to or higher than a predetermined value (for example, 82 MPa, which is the maximum set pressure) by performing such a hydrogen transfer process between the pressure accumulators 311. To do. However, it is not restricted to this, The control apparatus 8 can perform the transfer process of the hydrogen between the pressure accumulators 311 in various aspects.

図2は、制御装置8によって実施される上記蓄圧器311間における水素の移送処理の一例を示すフローチャートである。
ステップS1では、圧力検知部101から各蓄圧器311の残圧(内圧)が制御装置8に入力される。
ステップS2では、ステップS1で入力された各蓄圧器311の残圧(内圧)に基づいて少なくとも2つ以上の蓄圧器311の残圧が上記所定値(最高設定圧力である82MPa)未満か否かを判断し、少なくとも2つ以上の蓄圧器311の残圧が上記所定値未満の場合、ステップS3に進む。
FIG. 2 is a flowchart illustrating an example of a hydrogen transfer process between the pressure accumulators 311 performed by the control device 8.
In step S <b> 1, the residual pressure (internal pressure) of each accumulator 311 is input from the pressure detection unit 101 to the control device 8.
In step S2, based on the residual pressure (internal pressure) of each pressure accumulator 311 input in step S1, whether or not the residual pressure of at least two pressure accumulators 311 is less than the predetermined value (82 MPa which is the maximum set pressure). If the residual pressure of at least two pressure accumulators 311 is less than the predetermined value, the process proceeds to step S3.

ステップS3では、ステップS1で入力された各蓄圧器311の残圧(内圧)に基づいて水素を放出させる移送元の蓄圧器バンク31と水素を充填する移送先の蓄圧器バンク31を決定する。例えば、各蓄圧器311の残圧(内圧)に基づき各蓄圧器バンク31における水素消費量を推定し、最も水素消費量が多い(残留水素が少ない)蓄圧器バンク31を、水素を移送(放出)させる移送元の蓄圧器バンク31として決定し、最も水素消費量が少ない(残留水素が多い)蓄圧器バンク31を、水素を充填する移送先の蓄圧器バンク31として決定する。この際、全ての蓄圧器バンク31において残圧が上記所定値(最高設定圧力である82MPa)以上の蓄圧器311が存在しない場合は、全ての蓄圧器バンク31について水素消費量の推定を行い、残圧が上記所定値(最高設定圧力である82MPa)以上の蓄圧器311が存在する蓄圧器バンク31がある場合は、当該蓄圧器バンク31を除いた他の蓄圧器バンク31(残圧が上記所定値(最高設定圧力である82MPa)以上の蓄圧器311が存在しない)について水素消費量の推定を行い、移送元の蓄圧器バンク31と移送先の蓄圧器バンク31を決定する。尚、残圧が上記所定値(最高設定圧力である82MPa)以上の蓄圧器311が存在する蓄圧器バンク31であっても、その蓄圧器バンク31の他の蓄圧器311のいずれか1つでも設定圧力未満であれば、水素消費量の推定対象とするようにしてもよい。言い換えれば、蓄圧器バンク31内の全ての蓄圧器311がそれぞれの設定圧力以上である場合にその蓄圧器バンク31を水素消費量の推定対象から除外するようしてもよい。   In step S3, based on the residual pressure (internal pressure) of each accumulator 311 input in step S1, the transfer source accumulator bank 31 from which hydrogen is released and the transfer destination accumulator bank 31 to be filled with hydrogen are determined. For example, the hydrogen consumption in each accumulator bank 31 is estimated based on the residual pressure (internal pressure) of each accumulator 311, and hydrogen is transferred (released) to the accumulator bank 31 having the largest hydrogen consumption (low residual hydrogen). ) And the pressure accumulator bank 31 that consumes the least amount of hydrogen (the amount of residual hydrogen is large) is determined as the pressure accumulator bank 31 that is the transfer destination to be filled with hydrogen. At this time, if there is no accumulator 311 having a residual pressure equal to or higher than the predetermined value (the maximum set pressure of 82 MPa) in all the accumulator banks 31, hydrogen consumption is estimated for all the accumulator banks 31, When there is an accumulator bank 31 in which the accumulator 311 having a residual pressure equal to or greater than the predetermined value (82 MPa which is the maximum set pressure) is present, the other accumulator banks 31 other than the accumulator bank 31 (the residual pressure is The hydrogen consumption is estimated for a predetermined value (there is no pressure accumulator 311 having a maximum set pressure of 82 MPa) or more, and the source accumulator bank 31 and the destination accumulator bank 31 are determined. In addition, even if it is the accumulator bank 31 in which the accumulator 311 whose residual pressure is more than the said predetermined value (82MP which is the maximum setting pressure) exists, any one of the other accumulators 311 of the accumulator bank 31 may be sufficient. If the pressure is less than the set pressure, the hydrogen consumption may be estimated. In other words, when all the pressure accumulators 311 in the pressure accumulator bank 31 are equal to or higher than the respective set pressures, the pressure accumulator bank 31 may be excluded from the hydrogen consumption estimation target.

ステップS4では、決定した移送元の蓄圧器バンク31を構成する各蓄圧器311に対応する弁機構313,315を開く。具体的には、まず、移送元の蓄圧器バンク31に対応する弁機構315を開くと共に、その蓄圧器バンク31の複数(本実施形態では三つ)の蓄圧器311のうち残圧が最も低い蓄圧器311に対応する弁機構313を開く。
ステップS5では、接続管5を開閉する弁機構6を開いて、蓄圧ユニット3の出口部3bと圧縮機2の入口側とを連通させる。
ステップS6では、弁機構314を制御して、圧縮機2と移送先の蓄圧器バンク31以外の他の蓄圧器バンク31との接続を解除する。
ステップS7では、圧縮機2を稼働させる。
In step S4, the valve mechanisms 313 and 315 corresponding to the respective pressure accumulators 311 constituting the determined transfer source pressure accumulator bank 31 are opened. Specifically, first, the valve mechanism 315 corresponding to the transfer-source pressure accumulator bank 31 is opened, and the residual pressure is the lowest among a plurality (three in this embodiment) of the pressure-accumulator banks 31. The valve mechanism 313 corresponding to the pressure accumulator 311 is opened.
In step S <b> 5, the valve mechanism 6 that opens and closes the connection pipe 5 is opened, and the outlet portion 3 b of the pressure accumulating unit 3 and the inlet side of the compressor 2 are communicated with each other.
In step S6, the valve mechanism 314 is controlled to disconnect the compressor 2 from the other accumulator bank 31 other than the transfer destination accumulator bank 31.
In step S7, the compressor 2 is operated.

上記ステップS1〜S7の処理により、水素を移送させる移送元の蓄圧器バンク31と水素の充填対象となる移送先の蓄圧器バンク31が決定され、当該移送元の蓄圧器バンク31を構成する各蓄圧器311内の水素が、移送先の蓄圧器バンク31を構成する各蓄圧器311へと移送される。   By the processes of steps S1 to S7, the transfer source accumulator bank 31 for transferring hydrogen and the transfer destination accumulator bank 31 to be charged with hydrogen are determined, and each of the transfer source accumulator banks 31 constituting the transfer source accumulator bank 31 is determined. Hydrogen in the pressure accumulator 311 is transferred to each pressure accumulator 311 constituting the pressure accumulator bank 31 of the transfer destination.

ステップS8では、上記決定した移送先の蓄圧器バンク31を構成する各蓄圧器311内の内圧値(残圧値)に基づいて水素の充填が完了したか否かを判断する。例えば、圧力検知部101による上記移送先の蓄圧器バンク31を構成する各蓄圧器311の検知圧力に基づいて、設定圧力が82MPa(最高設定圧力)である蓄圧器311だけでなく、他の蓄圧器311も上述したそれぞれの設定圧力70MPa、40MPaに達した場合に当該移送先の蓄圧器バンク31の水素充填が完了したと判断する。この場合、例えば、移送先の蓄圧器バンク31を構成する各蓄圧器311の内圧(残圧)が水素の充填でそれぞれの設定値に達したときに、対応する蓄圧器バンク31の弁機構314を制御して圧縮機2との接続を解除する。移送先の蓄圧器バンク31を構成する各蓄圧器311への水素の充填が完了するとステップS10に進む。一方、ステップS4で開弁した弁機構313に対応する残圧の最も低い蓄圧器311の残圧が所定圧力以下(例えば略0)となったにも拘わらず、水素の充填が完了しない場合は、ステップS9に進む。   In step S8, it is determined whether or not hydrogen filling is completed based on the internal pressure value (residual pressure value) in each accumulator 311 constituting the determined accumulator bank 31 of the transfer destination. For example, not only the pressure accumulator 311 having a set pressure of 82 MPa (maximum set pressure) based on the pressure detected by each pressure accumulator 311 constituting the pressure accumulator bank 31 of the transfer destination by the pressure detector 101, but also other pressure accumulators The container 311 also determines that the hydrogen filling of the transfer destination accumulator bank 31 has been completed when the set pressures of 70 MPa and 40 MPa are reached. In this case, for example, when the internal pressure (residual pressure) of each of the pressure accumulators 311 constituting the pressure accumulator bank 31 of the transfer destination reaches each set value by filling with hydrogen, the valve mechanism 314 of the corresponding pressure accumulator bank 31 is obtained. Is disconnected from the compressor 2. When the filling of hydrogen into each pressure accumulator 311 constituting the transfer destination pressure accumulator bank 31 is completed, the process proceeds to step S10. On the other hand, when the filling of hydrogen is not completed even though the residual pressure of the pressure accumulator 311 having the lowest residual pressure corresponding to the valve mechanism 313 opened in step S4 is equal to or lower than a predetermined pressure (for example, approximately 0). The process proceeds to step S9.

ステップS9では、移送元の蓄圧器バンク31における次の蓄圧器311、即ち、二番目に残圧の低い蓄圧器311に対応する弁機構313を開弁して水素の充填を継続する。このようにして移送元の蓄圧器バンク31を構成する蓄圧器311のうち残圧の低い蓄圧器311から順次水素を放出し、移送先の蓄圧器バンク31を構成する各蓄圧器311がそれぞれの設定圧力に達するまで(ステップS8の判定がYESとなるまで)充填を継続する。尚、最初に移送元に決定した蓄圧器バンク31だけで充填が完了しない場合、残圧が上記所定値(最高設定圧力である82MPa)未満の蓄圧器311が存在する蓄圧器バンク31が他に存在すれば、二番目に水素消費量が多い(残留水素が少ない)蓄圧器バンク31を移送元の蓄圧器バンク31とし、同様にして水素の放出を行い、移送先の蓄圧器バンク31の各蓄圧器311が設定値に達するまで水素の充填を継続する。また、残圧が上記所定値(最高設定圧力である82MPa)未満の蓄圧器311がある蓄圧器バンク31が他に存在しなければ、移送先の蓄圧器バンク31を構成する各蓄圧器311への水素の充填処理終了と判断してステップS10に進む。尚、移送先の蓄圧器バンク31において設定圧力が最高設定圧力82MPaである蓄圧器311がその設定圧力以上になった時点で充填処理完了と判断するようにしてもよい。   In step S9, the valve mechanism 313 corresponding to the next accumulator 311 in the transfer-source accumulator bank 31, that is, the second accumulator 311 having the second lowest residual pressure is opened to continue the hydrogen filling. In this way, hydrogen is sequentially released from the pressure accumulator 311 having a low residual pressure among the pressure accumulators 311 constituting the transfer source pressure accumulator bank 31, and each pressure accumulator 311 constituting the transfer destination pressure accumulator bank 31 has its own pressure. Filling is continued until the set pressure is reached (until the determination in step S8 is YES). In addition, when filling is not completed only with the pressure accumulator bank 31 determined as the transfer source first, there are other accumulator banks 31 in which the pressure accumulator 311 having a residual pressure less than the predetermined value (82 MPa which is the maximum set pressure) exists. If present, the pressure accumulator bank 31 having the second largest hydrogen consumption (low residual hydrogen) is used as the transfer source accumulator bank 31, and hydrogen is discharged in the same manner. The hydrogen filling is continued until the pressure accumulator 311 reaches the set value. Moreover, if there is no other accumulator bank 31 with the accumulator 311 having a residual pressure less than the predetermined value (82 MPa, which is the maximum set pressure), to each accumulator 311 constituting the accumulator bank 31 of the transfer destination. It is determined that the hydrogen filling process is completed, and the process proceeds to step S10. Note that it may be determined that the filling process is completed when the pressure accumulator 311 having the set pressure of 82 MPa at the transfer destination pressure accumulator bank 31 becomes equal to or higher than the set pressure.

ステップS10では、ステップS4(又はステップS4とステップS9)で開いた弁機構313,315、及びステップS5で開いた弁機構6を閉じる。
ステップS11では、圧縮機2を停止する。
ステップS12では、弁機構314を制御し、圧縮機2と上記移送先の蓄圧器バンク31以外の他の蓄圧器バンク31とを再び接続する。
In step S10, the valve mechanisms 313 and 315 opened in step S4 (or steps S4 and S9) and the valve mechanism 6 opened in step S5 are closed.
In step S11, the compressor 2 is stopped.
In step S12, the valve mechanism 314 is controlled, and the compressor 2 and the other accumulator bank 31 other than the transfer destination accumulator bank 31 are connected again.

尚、上述の蓄圧器間水素移送処理では、蓄圧器バンク31を単位とし蓄圧器バンク31間で水素を融通し合うようにしたが、蓄圧器バンク31を構成する各蓄圧器311を単位とし各蓄圧器311間で水素を移送し、少なくとも1つの蓄圧器バンク31の各蓄圧器311がそれぞれ設定圧力まで充填されるようにしてもよい。この際、移送元となる蓄圧器311は、第1実施形態では移送先の蓄圧器311と異なる蓄圧器バンク31の各蓄圧器311となるが、後述ずる図7の実施形態のように、同じ蓄圧器バンク31内の各蓄圧器311も移送元になれる構成とするとよい。   In the above-described inter-accumulator hydrogen transfer process, hydrogen is exchanged between the accumulator banks 31 as a unit. However, each accumulator 311 constituting the accumulator bank 31 is a unit. Hydrogen may be transferred between the accumulators 311 so that each accumulator 311 of at least one accumulator bank 31 is filled up to a set pressure. At this time, the pressure accumulator 311 serving as the transfer source is the respective pressure accumulator 311 in the accumulator bank 31 different from the pressure accumulator 311 as the transfer destination in the first embodiment, but is the same as in the embodiment of FIG. Each pressure accumulator 311 in the pressure accumulator bank 31 may be configured to be a transfer source.

次に、上述した蓄圧器311間における水素の移送処理等によって、水素輸送用容器50内の圧力(例えば45MPa)よりも残圧が低い状態となった蓄圧器バンク31を構成する蓄圧器311を、水素ステーション1に到着した水素輸送用容器50内の水素を貯留する貯留容器として利用し、上記水素輸送用容器50内の水素を、蓄圧器バンク31を構成する蓄圧器311へ移送して貯留する水素の移送処理について説明する。   Next, the accumulator 311 constituting the accumulator bank 31 in which the residual pressure is lower than the pressure in the hydrogen transport container 50 (for example, 45 MPa) by the above-described transfer process of hydrogen between the accumulators 311 or the like. The hydrogen in the hydrogen transport container 50 arriving at the hydrogen station 1 is used as a storage container for storing the hydrogen, and the hydrogen in the hydrogen transport container 50 is transferred to the pressure accumulator 311 constituting the accumulator bank 31 and stored. The hydrogen transfer process will be described.

図3に、水素ステーション1への水素の移送処理の一例を示すフローチャートを示す。
ステップS21では、水素ステーション1に到着した水素輸送用容器50の水素供給口に連結管7を装着する。これにより、水素輸送用容器50は、連結管7の直管部71を介して圧縮機2と接続されると共に、連結管7の直管部71の一部及び分岐管部72を介して蓄圧ユニット3の入口部3aと接続される。ここで、連結管7は、上記輸送用車両に搭載又は連結された状態の水素輸送用容器50の水素供給口に装着される。
FIG. 3 is a flowchart illustrating an example of a process for transferring hydrogen to the hydrogen station 1.
In step S <b> 21, the connecting pipe 7 is attached to the hydrogen supply port of the hydrogen transport container 50 that has arrived at the hydrogen station 1. As a result, the hydrogen transport container 50 is connected to the compressor 2 via the straight pipe portion 71 of the connecting pipe 7 and also accumulates pressure via a part of the straight pipe portion 71 of the connecting pipe 7 and the branch pipe portion 72. It is connected to the inlet 3a of the unit 3. Here, the connecting pipe 7 is attached to the hydrogen supply port of the hydrogen transport container 50 mounted or connected to the transport vehicle.

ステップS22では、水素輸送用容器50の水素供給弁と貯留容器として利用可能な所定の蓄圧器311に対応する弁機構313を開く。水素供給弁は、例えば上記水素供給口又はその近傍に設けられており、当該水素供給弁と貯留容器として利用可能な蓄圧器311に対応する弁機構313を開くことによって水素輸送用容器50内の水素が貯留容器として利用可能な蓄圧器311へと差圧によって移送される。即ち、水素ステーション1への水素の移送が開始される。具体的には、水素輸送用容器50内の水素が、連結管7の直管部71の一部及び分岐管部72を介して、前述した蓄圧器311間における水素の移送処理において移送元となった蓄圧器バンク31の各蓄圧器311へと差圧によって移送され、当該各蓄圧器311に貯留される。   In step S22, a valve mechanism 313 corresponding to a predetermined pressure accumulator 311 that can be used as a hydrogen supply valve and a storage container of the hydrogen transport container 50 is opened. The hydrogen supply valve is provided at, for example, the hydrogen supply port or in the vicinity thereof, and opens the valve mechanism 313 corresponding to the hydrogen supply valve and the pressure accumulator 311 that can be used as a storage container. Hydrogen is transferred by differential pressure to a pressure accumulator 311 that can be used as a storage container. That is, the transfer of hydrogen to the hydrogen station 1 is started. Specifically, the hydrogen in the hydrogen transport container 50 is transferred from the transfer source in the hydrogen transfer process between the pressure accumulators 311 described above via a part of the straight pipe part 71 of the connecting pipe 7 and the branch pipe part 72. The accumulated pressure is transferred to each pressure accumulator 311 of the accumulator bank 31 by differential pressure and stored in each pressure accumulator 311.

ステップS23では、水素が差圧によって移送されている蓄圧器311に対応する圧力検知部101で検知される圧力値に基づいて圧力変化率が所定値以下となったか否かを判断し、所定値以下になるとステップS24に進む。この圧力変化率の所定値は、水素輸送用容器50の圧力と移送先の蓄圧器311の圧力が略同じとなり水素の移送速度が略零となる値として設定されるものである。   In step S23, it is determined whether or not the pressure change rate is equal to or less than a predetermined value based on the pressure value detected by the pressure detection unit 101 corresponding to the pressure accumulator 311 to which hydrogen is transferred by the differential pressure. If it becomes below, it will progress to step S24. The predetermined value of the rate of change in pressure is set as a value at which the pressure of the hydrogen transport container 50 and the pressure of the accumulator 311 at the transfer destination are approximately the same, and the hydrogen transfer rate is approximately zero.

ステップS24では、制御装置8によって圧縮機2を稼働させる。圧縮機2が稼働すると、水素輸送用容器50内の水素が圧縮機2で昇圧されて蓄圧ユニット3に移送される。具体的には、水素輸送用容器50内の水素が連結管7の直管部71を介して圧縮機2へと導かれ、貯留されることなく圧縮機2で昇圧されて蓄圧ユニット3へと移送される。   In step S <b> 24, the compressor 2 is operated by the control device 8. When the compressor 2 is operated, the hydrogen in the hydrogen transport container 50 is increased in pressure by the compressor 2 and transferred to the pressure accumulating unit 3. Specifically, the hydrogen in the hydrogen transport container 50 is guided to the compressor 2 through the straight pipe portion 71 of the connecting pipe 7, and is boosted by the compressor 2 without being stored to the pressure accumulating unit 3. Be transported.

ステップS25では、水素輸送用容器50が水素ステーション1に到着してから所定時間が経過したか否かを判断し、所定時間が経過するとステップS26に進む。この所定時間は、例えば水素ステーション1が水素輸送用容器50を滞在させることのできる時間(例えば、2時間)に基づいて予め設定される。   In step S25, it is determined whether or not a predetermined time has elapsed since the hydrogen transport container 50 arrived at the hydrogen station 1. When the predetermined time has elapsed, the process proceeds to step S26. This predetermined time is set in advance based on, for example, the time during which the hydrogen station 1 can stay the hydrogen transport container 50 (for example, 2 hours).

ステップS26では、上記水素供給弁を閉じる。
ステップS27では、圧縮機2を停止させる。
ステップS28では、連結管7を水素輸送用容器50の水素供給口から外す。
これにより、水素輸送用容器50から水素ステーション1への水素の移送(荷卸し)が完了する。また、水素輸送用容器50が搭載又は連結された輸送用車両の当該水素ステーション1からの移動が可能となる。このため、例えば、水素輸送用容器50を別の水素ステーションへと移動させて当該別の水素ステーションに水素を供給することができる。
In step S26, the hydrogen supply valve is closed.
In step S27, the compressor 2 is stopped.
In step S <b> 28, the connecting pipe 7 is removed from the hydrogen supply port of the hydrogen transport container 50.
Thereby, the transfer (unloading) of hydrogen from the hydrogen transport container 50 to the hydrogen station 1 is completed. Further, the transport vehicle on which the hydrogen transport container 50 is mounted or connected can be moved from the hydrogen station 1. Therefore, for example, the hydrogen transport container 50 can be moved to another hydrogen station and hydrogen can be supplied to the other hydrogen station.

尚、蓄圧器バンク31を構成する蓄圧器311を貯留容器として利用するために、蓄圧器間で水素を融通し合う水素移送処理は、全ての蓄圧器バンク31に残圧が所定値(最高設定圧力である82MPa)以上である蓄圧器311が存在する場合でも、水素輸送用容器50が水素ステーション1に到着する前に実施するとよい。この場合、移送先の蓄圧器は、その設定圧力が上記所定値(82MPa)のものである必要はなく、前記所定値より低い設定圧力(40MPaや70MPa)の蓄圧器であってもよい。尚、貯留容器として利用する移送元の蓄圧器バンクとしては、各蓄圧器311の残圧(内圧)に基づいて各蓄圧器バンク31の水素消費量又は残留水素を推定し、水素消費量が最も多い又は残留水素が最も少ない蓄圧器バンク31を選択すればよい。   In addition, in order to use the pressure accumulator 311 constituting the pressure accumulator bank 31 as a storage container, a hydrogen transfer process in which hydrogen is interchanged between the pressure accumulators, the residual pressure is set to a predetermined value (maximum setting) in all the pressure accumulator banks 31. Even when the pressure accumulator 311 having a pressure equal to or higher than 82 MPa is present, it may be performed before the hydrogen transport container 50 arrives at the hydrogen station 1. In this case, the transfer destination accumulator need not have the set pressure of the predetermined value (82 MPa), and may be an accumulator having a set pressure (40 MPa or 70 MPa) lower than the predetermined value. In addition, as a pressure accumulator bank used as a storage container, the hydrogen consumption or residual hydrogen of each accumulator bank 31 is estimated based on the residual pressure (internal pressure) of each accumulator 311, and the hydrogen consumption is the highest. The pressure accumulator bank 31 having the largest amount or the smallest residual hydrogen may be selected.

かかる構成の水素ステーション1によれば、水素消費量の多い蓄圧器バンク31から水素消費量の少ない蓄圧器バンク31へ水素を昇圧して移送することで、燃料電池自動車に搭載された水素燃料タンクの最高使用圧力(例えば70MPa)より高い最高設定圧力(例えば82MPa)の蓄圧器311を備えた蓄圧器バンク31を常に準備しておくことが可能になる。従って、例えば、水素ステーション1に燃料電池自動車が来店したとき、蓄圧器に水素が残存しているにも拘わらず残圧不足で燃料電池自動車に水素を補給できないという問題を回避することができ、各蓄圧器内に残存する水素を有効利用して水素燃料タンクへの水素充填能力の向上を図ることができるようになる。   According to the hydrogen station 1 having such a configuration, the hydrogen fuel tank mounted on the fuel cell vehicle is boosted and transferred from the accumulator bank 31 having a high hydrogen consumption to the accumulator bank 31 having a low hydrogen consumption. It is possible to always prepare the accumulator bank 31 including the accumulator 311 having a maximum set pressure (for example, 82 MPa) higher than the maximum operating pressure (for example, 70 MPa). Therefore, for example, when a fuel cell vehicle comes to the hydrogen station 1, it is possible to avoid the problem that hydrogen cannot be replenished to the fuel cell vehicle due to insufficient residual pressure even though hydrogen remains in the accumulator. It is possible to improve the hydrogen filling capacity of the hydrogen fuel tank by effectively using the hydrogen remaining in each pressure accumulator.

また、蓄圧器間で残留水素を融通し合うことにより残留水素の有効利用が図れることに加えて、蓄圧器間の水素移送処理で生じた残圧の低い蓄圧器を貯留容器として利用して、水素輸送用容器内の水素を差圧によって蓄圧器に移送して貯留できるので、従来に比べて、水素輸送用容器からオフサイト型ステーションへと短時間で水素を荷卸しすることができる。この結果、水素輸送用容器をオフサイト型水素ステーションに長時間留置しておく必要がなく、例えば一つの水素輸送用容器が複数のオフサイト型水素ステーションに対して水素を供給することが可能となるので、従来に比べて、水素の輸送コストを大幅に低減できる。また、オフサイト型水素ステーションの設備面での負担も軽減できるようになる。   Moreover, in addition to being able to effectively use the residual hydrogen by interchanging the residual hydrogen between the pressure accumulators, using a pressure accumulator having a low residual pressure generated by the hydrogen transfer process between the pressure accumulators as a storage container, Since the hydrogen in the hydrogen transport container can be transferred to the accumulator by a differential pressure and stored, the hydrogen can be unloaded from the hydrogen transport container to the off-site type station in a shorter time than before. As a result, it is not necessary to leave the hydrogen transport container in the off-site hydrogen station for a long time. For example, one hydrogen transport container can supply hydrogen to a plurality of off-site hydrogen stations. Therefore, the transportation cost of hydrogen can be greatly reduced compared to the conventional case. In addition, the burden on the facility of the off-site type hydrogen station can be reduced.

図4に、水素ステーション1への水素の移送処理の別の例を示すフローチャートを示す。
この水素移送処理は、水素ステーション1への水素の移送(荷卸し)を、差圧だけで行い、圧縮機2を利用しない例である。
FIG. 4 is a flowchart showing another example of the process of transferring hydrogen to the hydrogen station 1.
This hydrogen transfer process is an example in which the transfer (unloading) of hydrogen to the hydrogen station 1 is performed only by the differential pressure and the compressor 2 is not used.

即ち、ステップS31〜33までは図3のステップ21〜23と同様であり、ステップS31で水素ステーション1に到着した水素輸送用容器50の水素供給口に連結管7を装着し、ステップS32で水素輸送用容器50の水素供給弁と貯留容器として利用可能な所定の蓄圧器311に対応する弁機構313を開いて水素ステーション1への水素の移送を開始し、ステップS33で圧力検知部101で検知される圧力値に基づいて圧力変化率が所定値以下となったか否かを判断する。ステップS33で圧力変化率が所定値以下と判断された場合はステップS34に進む。   That is, steps S31 to S33 are the same as steps 21 to 23 in FIG. 3, and the connecting pipe 7 is attached to the hydrogen supply port of the hydrogen transport container 50 that has arrived at the hydrogen station 1 in step S31. The hydrogen supply valve of the transport container 50 and the valve mechanism 313 corresponding to a predetermined pressure accumulator 311 that can be used as a storage container are opened to start the transfer of hydrogen to the hydrogen station 1 and detected by the pressure detection unit 101 in step S33. It is determined whether or not the pressure change rate is equal to or less than a predetermined value based on the pressure value. If it is determined in step S33 that the pressure change rate is equal to or less than the predetermined value, the process proceeds to step S34.

ステップS34では、図3のステップS28と同様に、連結管7を水素輸送用容器50の水素供給口から外す。これにより、水素輸送用容器50から水素ステーション1への水素の移送(荷卸し)を完了する。   In step S34, the connecting pipe 7 is removed from the hydrogen supply port of the hydrogen transport container 50, as in step S28 of FIG. Thereby, the transfer (unloading) of hydrogen from the hydrogen transport container 50 to the hydrogen station 1 is completed.

次に、本発明の第2実施形態について説明する。
図5は、第2実施形態による水素ステーション10の構成を示す。尚、以下の説明においては、第1実施形態による水素ステーション1と共通する要素については同一の符号を付し、その機能も同一であるものとする。
図5に示すように、第2実施形態による水素ステーション10は、図1に示す第1実施形態による水素ステーション1と大略同様の構成であるが、水素輸送用容器50内の水素を水素ステーション1へと移送する水素移送管の機能を有する連結管7を、直管部のみとし、圧縮機2をバイパスする分岐管部72を省いた構成である。上記連結管7は、水素輸送用容器50に装着されることによって、水素輸送用容器50と圧縮機2とを接続する。
Next, a second embodiment of the present invention will be described.
FIG. 5 shows a configuration of the hydrogen station 10 according to the second embodiment. In the following description, elements common to the hydrogen station 1 according to the first embodiment are denoted by the same reference numerals and the functions thereof are also the same.
As shown in FIG. 5, the hydrogen station 10 according to the second embodiment has substantially the same configuration as the hydrogen station 1 according to the first embodiment shown in FIG. 1, but the hydrogen in the hydrogen transport container 50 is transferred to the hydrogen station 1. The connecting pipe 7 having the function of a hydrogen transfer pipe for transferring to the right side is only a straight pipe section, and the branch pipe section 72 that bypasses the compressor 2 is omitted. The connecting pipe 7 connects the hydrogen transport container 50 and the compressor 2 by being attached to the hydrogen transport container 50.

かかる構成の水素ステーション10は、蓄圧器313間の水素の移送処理については第1実施形態と同様である。また、水素輸送用容器50から水素ステーション10への水素の移送処理は、差圧ではなく圧縮機2を介して昇圧した水素を各蓄圧器313に移送することになる。   In the hydrogen station 10 having such a configuration, the transfer process of hydrogen between the pressure accumulators 313 is the same as that of the first embodiment. Further, in the hydrogen transfer process from the hydrogen transport container 50 to the hydrogen station 10, not the pressure difference but the hydrogen pressure increased via the compressor 2 is transferred to each pressure accumulator 313.

図6は、第1実施形態の変形例による水素ステーション20を示している。尚、以下の説明において、第1実施形態による水素ステーション1と共通する要素については同一の符号を付し、その機能も同一であるものとする。   FIG. 6 shows a hydrogen station 20 according to a modification of the first embodiment. In the following description, elements common to the hydrogen station 1 according to the first embodiment are denoted by the same reference numerals and the functions thereof are also the same.

図6の第1実施形態の変形例による水素ステーション20は、蓄圧器バンク31に加えて中圧容器(中圧バンク)も貯留容器として利用し、水素輸送用容器50の水素を貯留できる構成としたものである。この第1実施形態の変形例による水素ステーション20は、図6に示すように、二つの圧縮機11,12と、二つの圧縮機11,12の間に配置された中圧容器(中圧バンク)13と、連結管7の分岐管部72の中間位置と中圧容器13の入口側とを接続する接続管14と、を有する点で、第1実施形態による水素ステーション1と相違する(その他の構成については第1実施形態による水素ステーション1と同じである)。尚、分岐管部72には、接続管14の接続部分より手前側部分と先側部分に、それぞれ逆止弁60A,60Bが介装されており、逆止弁60A,60Bは、第1実施形態における逆止弁60に相当するものである。   The hydrogen station 20 according to the modification of the first embodiment of FIG. 6 uses a medium pressure vessel (medium pressure bank) in addition to the accumulator bank 31 as a storage vessel, and can store hydrogen in the hydrogen transport vessel 50. It is a thing. As shown in FIG. 6, the hydrogen station 20 according to the modification of the first embodiment includes two compressors 11 and 12 and an intermediate pressure vessel (intermediate pressure bank) disposed between the two compressors 11 and 12. ) 13 and the connecting pipe 14 that connects the intermediate position of the branch pipe portion 72 of the connecting pipe 7 and the inlet side of the intermediate pressure vessel 13, which is different from the hydrogen station 1 according to the first embodiment (others) Is the same as the hydrogen station 1 according to the first embodiment). The branch pipe portion 72 is provided with check valves 60A and 60B on the front side and the front side of the connecting portion of the connecting pipe 14, respectively. The check valves 60A and 60B are provided in the first embodiment. This corresponds to the check valve 60 in the embodiment.

圧縮機11,12は、第1実施形態における圧縮機2に相当する。中圧容器13は、第1圧縮機11によって昇圧された水素を貯留する。中圧容器13は例えば30〜40MPaの水素を貯留する。第2圧縮機12は、中圧容器13内の水素を昇圧して蓄圧ユニット3に供給する。この水素ステーション20では、水素燃料タンクへの水素の充填によって蓄圧器バンク31の水素が減ると、蓄圧器バンク31に対して中圧容器13内の水素を補給できるようになっている。   The compressors 11 and 12 correspond to the compressor 2 in the first embodiment. The intermediate pressure vessel 13 stores hydrogen that has been pressurized by the first compressor 11. The intermediate pressure vessel 13 stores, for example, 30 to 40 MPa of hydrogen. The second compressor 12 boosts the hydrogen in the intermediate pressure vessel 13 and supplies it to the pressure accumulating unit 3. In the hydrogen station 20, when the hydrogen in the accumulator bank 31 is reduced by filling the hydrogen fuel tank with hydrogen, the hydrogen in the intermediate pressure vessel 13 can be supplied to the accumulator bank 31.

上記変形例による水素ステーション20に対して水素輸送用容器50から水素を供給する場合、図3のステップS22において水素輸送用容器50側の水素供給弁と貯留容器として利用可能な蓄圧器311に対応する弁機構313を開くと、水素輸送用容器50内の水素が、連結管7の直管部71の一部及び分岐管部72を介して蓄圧器間の水素移送処理で貯留可能となった蓄圧器バンク31の各蓄圧器311へと差圧によって移送されると共に、蓄圧器バンク31への水素補給によって圧力が低くなった中圧容器13へと接続管14を介して差圧によって移送される。その後、図3のステップS24において第1圧縮機11及び第2圧縮機12を稼働させると、中圧容器13内の水素が第2圧縮機12で昇圧されて蓄圧ユニット3に移送され、水素輸送用容器50内の水素が第1圧縮機11及び第2圧縮機12で昇圧されて蓄圧ユニット3に移送される。   When hydrogen is supplied from the hydrogen transport container 50 to the hydrogen station 20 according to the above modification, the hydrogen supply valve on the hydrogen transport container 50 side and the pressure accumulator 311 that can be used as a storage container in step S22 of FIG. When the valve mechanism 313 is opened, the hydrogen in the hydrogen transport container 50 can be stored in the hydrogen transfer process between the accumulators through a part of the straight pipe portion 71 of the connecting pipe 7 and the branch pipe portion 72. While being transferred to each pressure accumulator 311 of the accumulator bank 31 by differential pressure, it is transferred to the intermediate pressure vessel 13 whose pressure has been lowered by hydrogen supply to the accumulator bank 31 via the connection pipe 14. The After that, when the first compressor 11 and the second compressor 12 are operated in step S24 of FIG. 3, the hydrogen in the intermediate pressure vessel 13 is boosted by the second compressor 12 and transferred to the pressure accumulating unit 3 to transfer hydrogen. Hydrogen in the container 50 is pressurized by the first compressor 11 and the second compressor 12 and transferred to the pressure accumulating unit 3.

かかる構成の水素ステーション20によれば、蓄圧器間で残留水素を融通し合うことにより残留水素の有効利用が図れることに加えて、蓄圧器間の水素移送処理で生じた残圧の低い蓄圧器及び中圧容器を貯留容器として利用できるので、水素輸送用容器からオフサイト型ステーションへと短時間でより一層多くの水素を移送(荷卸し)することができるようになる。   According to the hydrogen station 20 having such a configuration, in addition to the effective utilization of the residual hydrogen by interchanging the residual hydrogen between the pressure accumulators, the pressure accumulator having a low residual pressure generated by the hydrogen transfer process between the pressure accumulators. In addition, since the intermediate pressure vessel can be used as a storage vessel, more hydrogen can be transferred (unloaded) in a short time from the hydrogen transport vessel to the off-site type station.

次に、本発明の第3実施形態について説明する。
図7は、本発明の第3実施形態によるオフサイト型水素ステーションの構成を示している。尚、以下の説明においては、第1実施形態による水素ステーション1と共通する要素については同一の符号を付し、その機能も同一であるものとする。
図7に示すように、第3実施形態による水素ステーション30は、図1に示す第1実施形態による水素ステーション1と蓄圧ユニット3の構成が異なる。
Next, a third embodiment of the present invention will be described.
FIG. 7 shows the configuration of an off-site hydrogen station according to the third embodiment of the present invention. In the following description, elements common to the hydrogen station 1 according to the first embodiment are denoted by the same reference numerals and the functions thereof are also the same.
As shown in FIG. 7, the hydrogen station 30 according to the third embodiment is different from the hydrogen station 1 according to the first embodiment shown in FIG.

第3実施形態による水素ステーション30の蓄圧ユニット3Aは、蓄圧器バンク31Aを構成する各蓄圧器311Aが、水素を充填する入口と水素を放出する出口が別々である。各蓄圧器311Aの入口側(圧縮機2側)には、逆止弁322が設けられている。また、各蓄圧機311Aの出口側(ディスペンサー4側)には、各蓄圧器311Aからの水素の放出を許容し又は停止する弁機構323と圧力検知部101とが設けられており、各弁機構323が開くと、対応する蓄圧器311Aから水素が接続管を介して放出される。本実施形態では、前記弁機構323が本発明の第2の弁機構に相当している。   In the accumulator unit 3A of the hydrogen station 30 according to the third embodiment, each accumulator 311A constituting the accumulator bank 31A has a separate inlet for filling hydrogen and an outlet for discharging hydrogen. A check valve 322 is provided on the inlet side (compressor 2 side) of each pressure accumulator 311A. In addition, on the outlet side (dispenser 4 side) of each pressure accumulator 311A, a valve mechanism 323 for allowing or stopping the release of hydrogen from each pressure accumulator 311A and a pressure detection unit 101 are provided. When 323 is opened, hydrogen is released from the corresponding pressure accumulator 311A through the connecting pipe. In the present embodiment, the valve mechanism 323 corresponds to the second valve mechanism of the present invention.

また、蓄圧ユニット3Aは、圧縮機2に接続される一つ又は複数の蓄圧器311Aを選択可能な選択装置320を備えており、選択装置320と蓄圧器バンク31Aの各蓄圧器311Aとはそれぞれの接続管によって接続されており、圧縮機2で昇圧された水素は、選択装置320によって選択された蓄圧器311Aにそれぞれの接続管を通って供給される。本実施形態では、前記選択装置320が本発明の第1の弁機構に相当している。   Further, the pressure accumulating unit 3A includes a selection device 320 capable of selecting one or a plurality of pressure accumulators 311A connected to the compressor 2, and the selection device 320 and each pressure accumulator 311A in the pressure accumulator bank 31A are respectively The hydrogen boosted by the compressor 2 is supplied to the pressure accumulator 311A selected by the selection device 320 through each connection pipe. In the present embodiment, the selection device 320 corresponds to the first valve mechanism of the present invention.

第3実施形態による水素ステーション30の制御装置8Aは、圧力検知部101によって検知された各蓄圧器311Aの内圧(残圧)やディスペンサー4に入力された上記水素燃料タンクに関する情報(残圧、最高使用圧力等)を含む各種情報やオペレータによる動作指令等に基づいて、圧縮機2、弁機構6、弁機構323及び選択装置320等を適宜制御する。尚、本実施形態では、デフォルト状態において、弁機構6及び弁機構323は閉じており、選択装置320は圧縮機2と全ての蓄圧器311Aとを接続するものとする。   The control device 8A of the hydrogen station 30 according to the third embodiment includes the internal pressure (residual pressure) of each accumulator 311A detected by the pressure detection unit 101 and information (residual pressure, maximum pressure) input to the dispenser 4 The compressor 2, the valve mechanism 6, the valve mechanism 323, the selection device 320, and the like are appropriately controlled based on various types of information including operating pressure and the like, and an operation command by the operator. In the present embodiment, in the default state, the valve mechanism 6 and the valve mechanism 323 are closed, and the selection device 320 connects the compressor 2 and all the pressure accumulators 311A.

図8に、第3実施形態による水素ステーション30で実施される蓄圧器311A間における水素の移送処理の一例を示すフローチャートを示す。
第3実施形態による水素ステーション30で実施される蓄圧器311A間における水素の移送処理は、図2に示す第1実施形態による水素ステーション1の蓄圧器311間における水素の移送処理と大略同じであり、弁機構314,316の代わりに選択装置320,弁機構323を制御することが異なる。
FIG. 8 is a flowchart showing an example of a hydrogen transfer process between the pressure accumulators 311A performed in the hydrogen station 30 according to the third embodiment.
The hydrogen transfer process between the pressure accumulators 311A performed in the hydrogen station 30 according to the third embodiment is substantially the same as the hydrogen transfer process between the pressure accumulators 311 of the hydrogen station 1 according to the first embodiment shown in FIG. The control device 320 and the valve mechanism 323 are controlled in place of the valve mechanisms 314 and 316.

ステップS41では、制御装置8Aに圧力検知部101から各蓄圧器311Aの残圧(内圧)が入力される。
ステップS42では、ステップS41で入力された各蓄圧器311Aの残圧(内圧)に基づいて少なくとも2つ以上の蓄圧器311Aの残圧が上記所定値(最高設定圧力である82MPa)未満か否かを判断し、少なくとも2つ以上の蓄圧器311Aの残圧が上記所定値未満の場合、ステップS43に進む。
In step S41, the residual pressure (internal pressure) of each accumulator 311A is input from the pressure detection unit 101 to the control device 8A.
In step S42, based on the residual pressure (internal pressure) of each pressure accumulator 311A input in step S41, whether or not the residual pressure of at least two pressure accumulators 311A is less than the predetermined value (82 MPa which is the maximum set pressure). If the residual pressure of at least two pressure accumulators 311A is less than the predetermined value, the process proceeds to step S43.

ステップS43では、ステップS41で入力された各蓄圧器311Aの残圧(内圧)に基づいて図2のステップS3と同様にして水素を放出させる移送元の蓄圧器バンク31Aと移送先の蓄圧器バンク31Aを決定する。   In step S43, the source accumulator bank 31A and the destination accumulator bank that release hydrogen based on the residual pressure (internal pressure) of each accumulator 311A input in step S41 in the same manner as in step S3 of FIG. 31A is determined.

ステップS44では、決定された移送元の蓄圧器バンク31Aを構成する各蓄圧器311Aに対応する弁機構323を開く。具体的には、その蓄圧器バンク31Aの複数(本実施形態では三つ)の蓄圧器311Aのうち残圧が最も低い蓄圧器311Aに対応する弁機構323を開く。
ステップS45では、弁機構6を開いて、蓄圧ユニット3Aの出口側と圧縮機2の入口側とを連通させる。
ステップS46では、選択装置320を制御して、圧縮機2と移送先の蓄圧器バンク31A以外の他の蓄圧器バンク31Aとの接続を解除する。
ステップS47では、圧縮機2を稼働させる。
In step S44, the valve mechanism 323 corresponding to each pressure accumulator 311A that constitutes the determined transfer source pressure accumulator bank 31A is opened. Specifically, the valve mechanism 323 corresponding to the pressure accumulator 311A having the lowest residual pressure among a plurality of (three in the present embodiment) pressure accumulators 311A of the accumulator bank 31A is opened.
In step S45, the valve mechanism 6 is opened, and the outlet side of the pressure accumulating unit 3A and the inlet side of the compressor 2 are communicated.
In step S46, the selection device 320 is controlled to release the connection between the compressor 2 and the other accumulator bank 31A other than the destination accumulator bank 31A.
In step S47, the compressor 2 is operated.

ステップS48では、図2のステップS8と同様にして水素の充填が完了したか否かを判断する。水素充填が完了したと判断すると、選択装置320を制御して移送先の蓄圧器311Aと圧縮機2との接続を解除する。移送先の蓄圧器バンク31Aを構成する各蓄圧器311Aへの水素の充填が完了するとステップS50に進む。一方、移送元の蓄圧器311Aの残圧が所定圧力以下(例えば略0)となったにも拘わらず、水素の充填が完了しない場合は、ステップS49に進む。   In step S48, it is determined whether or not hydrogen filling is completed as in step S8 of FIG. When it is determined that hydrogen filling is completed, the selection device 320 is controlled to disconnect the transfer destination pressure accumulator 311A from the compressor 2. When the filling of hydrogen into each of the pressure accumulators 311A constituting the destination pressure accumulator bank 31A is completed, the process proceeds to step S50. On the other hand, when the filling of hydrogen is not completed even though the residual pressure of the pressure accumulator 311A as the transfer source is equal to or lower than a predetermined pressure (for example, approximately 0), the process proceeds to step S49.

ステップS49では、図2のステップS9と同様にして水素の充填を継続する。
ステップS50に進むと、ステップS44(又はステップS44とステップS49)で開いた弁機構323及びステップS45で開いた弁機構6を閉じる。
ステップS51では、圧縮機2を停止する。
ステップS52では、選択装置320を制御し、圧縮機2と上記移送先の蓄圧器バンク31A以外の他の蓄圧器バンク31Aとを再び接続する。
In step S49, hydrogen filling is continued in the same manner as in step S9 of FIG.
In step S50, the valve mechanism 323 opened in step S44 (or step S44 and step S49) and the valve mechanism 6 opened in step S45 are closed.
In step S51, the compressor 2 is stopped.
In step S52, the selection device 320 is controlled to reconnect the compressor 2 and the other accumulator bank 31A other than the transfer destination accumulator bank 31A.

かかる構成の水素ステーション30によれば、水素消費量の多い蓄圧器バンク31Aから水素消費量の少ない蓄圧器バンク31Aへ水素を昇圧して移送することで、燃料電池自動車に搭載された水素燃料タンクの最高使用圧力(例えば70MPa)より高い最高設定圧力(例えば82MPa)の蓄圧器311Aを備えた蓄圧器バンク31Aを常に準備しておくことが可能になる。また、同じ蓄圧器バンク31A内の各蓄圧器311A間でも水素の移送が可能であるので、より一層各蓄圧器内に残存する水素を有効利用して水素燃料タンクへの水素充填能力の向上を図ることができるようになる。   According to the hydrogen station 30 having such a configuration, the hydrogen fuel tank mounted on the fuel cell vehicle is boosted and transferred from the accumulator bank 31A having a high hydrogen consumption to the accumulator bank 31A having a low hydrogen consumption. It is possible to always prepare an accumulator bank 31A including an accumulator 311A having a maximum set pressure (for example, 82 MPa) higher than the maximum operating pressure (for example, 70 MPa). In addition, since hydrogen can be transferred between the respective accumulators 311A in the same accumulator bank 31A, the hydrogen remaining capacity in each accumulator can be effectively used to further improve the hydrogen filling capacity to the hydrogen fuel tank. It becomes possible to plan.

尚、水素ステーション1,20,30のように、水素輸送用容器50から水素を差圧によって移送(荷卸し)出来る構成において、水素輸送用容器50内の圧力よりも内圧の低い貯留専用の低圧容器(低圧バンク)を別に設け、この低圧容器へも水素輸送用容器50から水素を差圧によって移送(荷卸し)出来る構成としてもよい。この場合、水素輸送用容器からオフサイト型ステーションへと短時間で更に多くの水素を移送(荷卸し)することができるようになる。   Note that, in a configuration in which hydrogen can be transferred (unloaded) from the hydrogen transport container 50 by a differential pressure as in the hydrogen stations 1, 20, and 30, a low pressure dedicated to storage whose internal pressure is lower than the pressure in the hydrogen transport container 50. It is good also as a structure which can provide a container (low pressure bank) separately, and can transfer (unload) hydrogen to the low pressure container from the hydrogen transport container 50 by a differential pressure. In this case, more hydrogen can be transferred (unloaded) from the hydrogen transport container to the off-site station in a short time.

第3実施形態の蓄圧ユニットの構成を、図5に示す第2実施形態や図6に示す第1実施形態の変形例に適用してもよい。   You may apply the structure of the pressure accumulation unit of 3rd Embodiment to the modification of 2nd Embodiment shown in FIG. 5, and 1st Embodiment shown in FIG.

ここまで、オフサイト型水素ステーションについて、水素の製造場所から水素ステーションまで水素を圧縮水素ガスで輸送する方法について説明したが、液体水素で輸送する方法による場合も同様である。
図9は、本発明の第4実施形態による液体水素で輸送する方法を用いたオフサイト型水素ステーションの構成を示している。
図9において、本実施形態の水素ステーション40は、第1実施形態の水素ステーション1と比べて、水素輸送用容器50の代わりに液体水素貯蔵容器51と、液体水素昇圧機52と、気化器53と、水素容器54と、気化器53と蓄圧ユニット3の入口部3aを結ぶ配管55と、液体水素貯蔵容器51から発生するボイルオフガス(水素)を水素容器54に供給するボイルオフガス供給管56とを備えた点が異なる。水素容器54は連結管7の直管部71に接続されている。連結管7より下流側の構成は、図1に示す第1実施形態の水素ステーション1と同じ構成である。
Up to this point, the method of transporting hydrogen with compressed hydrogen gas from the hydrogen production site to the hydrogen station has been described for the off-site type hydrogen station, but the same applies to the case of transporting with liquid hydrogen.
FIG. 9 shows the configuration of an off-site type hydrogen station using the method of transporting with liquid hydrogen according to the fourth embodiment of the present invention.
In FIG. 9, the hydrogen station 40 of this embodiment is different from the hydrogen station 1 of the first embodiment in that a liquid hydrogen storage container 51, a liquid hydrogen booster 52, and a vaporizer 53 are used instead of the hydrogen transport container 50. A hydrogen container 54, a pipe 55 connecting the vaporizer 53 and the inlet 3 a of the pressure accumulating unit 3, and a boil-off gas supply pipe 56 that supplies boil-off gas (hydrogen) generated from the liquid hydrogen storage container 51 to the hydrogen container 54. Is different. The hydrogen container 54 is connected to the straight pipe portion 71 of the connecting pipe 7. The configuration downstream of the connecting pipe 7 is the same as the configuration of the hydrogen station 1 of the first embodiment shown in FIG.

液体水素貯蔵容器51に外部から液体水素が供給される。液体水素貯蔵容器51からは蒸発した水素ガスがボイルオフガスとなってボイルオフガス供給管56を通り水素容器54に貯められる。水素容器54の圧力が蓄圧器311の圧力よりも高い場合には、水素容器54から分岐管部72を介して蓄圧器311へ差圧で水素を移送可能である。液体水素は液体水素貯蔵容器51から液体水素昇圧機52に送られ所定の圧力に昇圧された後、気化器53で水素ガスになり、蓄圧器311へ送られる。蓄圧器間の水素の移送処理については第1実施形態と同様であり、説明を省略する。   Liquid hydrogen is supplied to the liquid hydrogen storage container 51 from the outside. The evaporated hydrogen gas is boiled off from the liquid hydrogen storage container 51 and stored in the hydrogen container 54 through the boiloff gas supply pipe 56. When the pressure of the hydrogen container 54 is higher than the pressure of the pressure accumulator 311, hydrogen can be transferred from the hydrogen container 54 to the pressure accumulator 311 via the branch pipe portion 72 with a differential pressure. The liquid hydrogen is sent from the liquid hydrogen storage container 51 to the liquid hydrogen booster 52 and boosted to a predetermined pressure, and then becomes hydrogen gas in the vaporizer 53 and sent to the pressure accumulator 311. The hydrogen transfer process between the pressure accumulators is the same as in the first embodiment, and a description thereof will be omitted.

尚、図9の変形例として図10に示すオフサイト型水素ステーション40′のように、液体水素昇圧機52を省略すると共に、配管55を水素容器54に接続し、気化器53で気化した水素ガスを水素容器54に貯めるよう構成してもよい。その他の構成は図9に示す第4実施形態の水素ステーション40と同じ構成である。   As a modification of FIG. 9, like the off-site type hydrogen station 40 ′ shown in FIG. 10, the liquid hydrogen booster 52 is omitted, and the pipe 55 is connected to the hydrogen container 54, and the hydrogen vaporized by the vaporizer 53. The gas may be stored in the hydrogen container 54. Other configurations are the same as the hydrogen station 40 of the fourth embodiment shown in FIG.

図11は、本発明の第5実施形態によるオンサイト型水素ステーションの構成を示している。
図11において、このオンサイト型水素ステーション60は、第1実施形態の水素ステーション1と比べて、水素輸送用容器50の代わりに、水素製造設備61と水素容器62を備えた点が異なり、水素容器62が連結管7の直管部71に接続される。連結管7より下流側の構成は、図1に示す第1実施形態の水素ステーション1と同じ構成である。
FIG. 11 shows a configuration of an on-site hydrogen station according to the fifth embodiment of the present invention.
In FIG. 11, this on-site type hydrogen station 60 differs from the hydrogen station 1 of the first embodiment in that a hydrogen production facility 61 and a hydrogen container 62 are provided instead of the hydrogen transport container 50. The container 62 is connected to the straight pipe portion 71 of the connecting pipe 7. The configuration downstream of the connecting pipe 7 is the same as the configuration of the hydrogen station 1 of the first embodiment shown in FIG.

水素製造設備61は任意の水素製造設備で良いが、水素の製造原料として都市ガス、液化石油ガス(LPG)、ナフサ、灯油、メタノール、有機ハイドライド(脱水素反応により容易に水素ガスを生成する液体であり、シクロヘキサン、メチルシクロヘキサン、デカリンおよびその誘導体、2−プロパノール等が好適に挙げられる)を用いる水素製造設備が好適に挙げられる。これらの原料はガス又は液体であり、パイプライン、ボンベ、ローリー等で容易に輸送できる。   The hydrogen production facility 61 may be any hydrogen production facility, but city gas, liquefied petroleum gas (LPG), naphtha, kerosene, methanol, organic hydride (a liquid that easily generates hydrogen gas by dehydrogenation reaction) may be used as the hydrogen production raw material. And a hydrogen production facility using cyclohexane, methylcyclohexane, decalin and its derivatives, 2-propanol and the like. These raw materials are gas or liquid, and can be easily transported by pipelines, cylinders, lorries and the like.

一般に水素製造設備61は水素製造装置と水素精製装置からなり、水素製造装置は上記の原料から水蒸気改質反応、脱水素反応等により水素を製造し、水素精製装置はその水素を精製して製品水素を製造する。製造された製品水素は水素容器62に貯められる。   In general, the hydrogen production facility 61 is composed of a hydrogen production device and a hydrogen purification device. The hydrogen production device produces hydrogen from the above raw materials by a steam reforming reaction, a dehydrogenation reaction, etc., and the hydrogen purification device purifies the hydrogen to produce a product. Produce hydrogen. The produced product hydrogen is stored in the hydrogen container 62.

本実施形態のオンサイト型水素ステーション60では、連結管7を介して蓄圧ユニット3と連結されている。水素容器62の圧力が蓄圧器311の圧力よりも高い場合には、水素容器62から分岐管部72を介して蓄圧器311へ差圧で水素を移送可能である。蓄圧器間の水素の移送処理については第1実施形態と同様であり、説明を省略する。   In the on-site type hydrogen station 60 of the present embodiment, the pressure accumulation unit 3 is connected via a connecting pipe 7. When the pressure in the hydrogen container 62 is higher than the pressure in the pressure accumulator 311, hydrogen can be transferred from the hydrogen container 62 to the pressure accumulator 311 through the branch pipe portion 72 with a differential pressure. The hydrogen transfer process between the pressure accumulators is the same as in the first embodiment, and a description thereof will be omitted.

尚、本発明の第2実施形態によるオフサイト型水素ステーション10、第3実施形態によるオフサイト型水素ステーション30及び第1実施形態の変形例によるオフサイト型水素ステーション20を、本実施形態のオンサイト型水素ステーションに置き換えることが可能である。第3実施形態のオフサイト型水素ステーション30をオンサイト型水素ステーションに置き換えた場合及び第1実施形態の変形例によるオフサイト型水素ステーション20を、本実施形態のオンサイト型水素ステーションに置き換えても、水素容器62の圧力が蓄圧器311の圧力よりも高い場合には、水素容器62から分岐管部72を介して蓄圧器311へ差圧で水素を移送可能である。   The off-site type hydrogen station 10 according to the second embodiment of the present invention, the off-site type hydrogen station 30 according to the third embodiment, and the off-site type hydrogen station 20 according to the modification of the first embodiment are turned on. It can be replaced with a site-type hydrogen station. When the off-site type hydrogen station 30 of the third embodiment is replaced with an on-site type hydrogen station and the off-site type hydrogen station 20 according to the modification of the first embodiment is replaced with the on-site type hydrogen station of the present embodiment. However, when the pressure in the hydrogen container 62 is higher than the pressure in the accumulator 311, hydrogen can be transferred from the hydrogen container 62 to the accumulator 311 through the branch pipe portion 72 with a differential pressure.

1,10,20,30,40,40′…オフサイト型水素ステーション、2,11,12…圧縮機、3,3A…蓄圧ユニット、4…ディスペンサー、5…接続管(戻しライン)、6…弁機構、7…連結管、8,8A…制御装置、31,31A…蓄圧器バンク、50…水素輸送用容器、51…液体水素貯蔵容器、52…液体水素昇圧機、53…気化器、54,62…水素容器、55…配管、56…ボイルオフガス供給管、60…オンサイト型水素ステーション、61…水素製造設備、71…直管部、72…分岐管部(移送ライン)、311,311A…蓄圧器、60,60A,60B,312,316,322…逆止弁、313〜315,323…弁機構、320…選択装置   1,10,20,30,40,40 '... off-site type hydrogen station, 2,11,12 ... compressor, 3,3A ... accumulation unit, 4 ... dispenser, 5 ... connecting pipe (return line), 6 ... Valve mechanism, 7 ... Connecting pipe, 8, 8A ... Control device, 31, 31A ... Pressure accumulator bank, 50 ... Hydrogen transport container, 51 ... Liquid hydrogen storage container, 52 ... Liquid hydrogen booster, 53 ... Vaporizer, 54 62 ... Hydrogen container, 55 ... Piping, 56 ... Boil-off gas supply pipe, 60 ... On-site hydrogen station, 61 ... Hydrogen production equipment, 71 ... Straight pipe part, 72 ... Branch pipe part (transfer line), 311 and 311A ... pressure accumulator, 60, 60A, 60B, 312, 316, 322 ... check valve, 313-315, 323 ... valve mechanism, 320 ... selection device

Claims (7)

水素を昇圧する圧縮機と、この圧縮機で昇圧された水素を貯留可能な複数の蓄圧器を有する蓄圧ユニットとを備え、前記蓄圧ユニットに貯留された水素を水素燃料タンクに充填する水素ステーションであって、
前記複数の蓄圧器のうち残圧が最も低い蓄圧器内の水素を、前記圧縮機で昇圧して他の蓄圧器へと移送するように構成された水素ステーション。
A hydrogen station comprising a compressor for boosting hydrogen and a pressure accumulating unit having a plurality of pressure accumulators capable of storing hydrogen boosted by the compressor, and filling a hydrogen fuel tank with hydrogen stored in the pressure accumulating unit. There,
A hydrogen station configured to boost hydrogen in a pressure accumulator having the lowest residual pressure among the plurality of pressure accumulators and transfer the hydrogen to another pressure accumulator.
各蓄圧器への水素の充填を許容し又は停止する第1の弁機構と、
各蓄圧器からの水素の放出を許容し又は停止する第2の弁機構と、
各蓄圧器から放出された水素を前記圧縮機の入口側へと戻す戻しラインと、
各蓄圧器の残圧を検知する圧力検知部と、
前記複数の蓄圧器のうち前記圧力検知部によって検知された残圧が最も低い蓄圧器内の水素を昇圧して他の蓄圧器へと移送させるように前記圧縮機、前記第1の弁機構及び前記第2の弁機構を制御する制御装置と、
を備えた請求項1に記載の水素ステーション。
A first valve mechanism that allows or stops filling of each accumulator with hydrogen;
A second valve mechanism that allows or stops the release of hydrogen from each accumulator;
A return line for returning hydrogen released from each pressure accumulator to the inlet side of the compressor;
A pressure detector that detects the residual pressure of each accumulator;
The compressor boosts the hydrogen in the lowest accumulator residual pressure detected by the pressure detecting portion of the plurality of accumulator as cause feed transfer to other accumulator, the first valve mechanism And a control device for controlling the second valve mechanism;
The hydrogen station according to claim 1, comprising:
記制御装置は、前記複数の蓄圧器の全ての残圧が所定値未満となった場合に、残圧が最も低い蓄圧器内の水素を昇圧して残圧が最も高い蓄圧器へと移送させるように前記圧縮機、前記第1の弁機構及び前記第2の弁機構を制御する請求項2に記載の水素ステーション。 Before SL controller if all residual pressure of the plurality of pressure accumulator is less than the predetermined value, residual pressure to the lowest accumulator in the highest pressure accumulator residual pressure boosts the hydrogen transfer The hydrogen station according to claim 2, wherein the compressor, the first valve mechanism, and the second valve mechanism are controlled so as to be sent. 前記制御装置は、前記残圧が最も低い蓄圧器内の水素だけでは前記残圧が最も高い蓄圧器内の圧力が前記所定値以上とならない場合には、さらに残圧が二番目に低い蓄圧器内の水素を前記残圧が最も高い蓄圧器へと移送させるように前記圧縮機、前記第1の弁機構及び前記第2の弁機構を制御する請求項3に記載の水素ステーション。When the pressure in the pressure accumulator with the highest residual pressure does not exceed the predetermined value only with hydrogen in the pressure accumulator with the lowest residual pressure, the control device further has the second lowest residual pressure. 4. The hydrogen station according to claim 3, wherein the compressor, the first valve mechanism, and the second valve mechanism are controlled so as to transfer hydrogen therein to the pressure accumulator having the highest residual pressure. オフサイト型水素ステーションであって、
水素移送後の前記残圧が最も低い蓄圧器が、水素輸送用容器から移送される水素を貯留する貯留容器として利用される請求項1〜4のいずれか1つに記載の水素ステーション。
An off-site hydrogen station,
The hydrogen station according to any one of claims 1 to 4, wherein the pressure accumulator having the lowest residual pressure after hydrogen transfer is used as a storage container for storing hydrogen transferred from a hydrogen transport container .
前記水素輸送用容器に装着されることによって前記水素輸送用容器と前記蓄圧ユニットとを前記圧縮機を介在させずに接続して、前記水素輸送用容器内の水素を前記貯留容器に差圧によって移送可能な移送ラインを備えた請求項に記載の水素ステーション。 By attaching to the hydrogen transport container, the hydrogen transport container and the pressure accumulating unit are connected without interposing the compressor, and the hydrogen in the hydrogen transport container is connected to the storage container by a differential pressure. The hydrogen station according to claim 5 , further comprising a transfer line that can be transferred. 前記水素輸送用容器に代えて、外部から輸送される液体水素を貯蔵する液体水素貯蔵容器と、前記液体水素からガス化した水素を蓄える水素容器とを備える請求項又はに記載の水素ステーション The hydrogen station according to claim 5 or 6 , comprising a liquid hydrogen storage container for storing liquid hydrogen transported from the outside and a hydrogen container for storing hydrogen gasified from the liquid hydrogen, instead of the hydrogen transport container.
JP2013227185A 2012-10-31 2013-10-31 Hydrogen station Active JP6114676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013227185A JP6114676B2 (en) 2012-10-31 2013-10-31 Hydrogen station

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012240323 2012-10-31
JP2012240323 2012-10-31
JP2013227185A JP6114676B2 (en) 2012-10-31 2013-10-31 Hydrogen station

Publications (2)

Publication Number Publication Date
JP2014111984A JP2014111984A (en) 2014-06-19
JP6114676B2 true JP6114676B2 (en) 2017-04-12

Family

ID=51169234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013227185A Active JP6114676B2 (en) 2012-10-31 2013-10-31 Hydrogen station

Country Status (1)

Country Link
JP (1) JP6114676B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111197695A (en) * 2018-11-16 2020-05-26 国家能源投资集团有限责任公司 Fluid bypass method and system for controlling temperature of non-petroleum fuels

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6487668B2 (en) * 2014-11-04 2019-03-20 Jxtgエネルギー株式会社 Hydrogen station and hydrogen filling method
JP6526984B2 (en) * 2015-02-20 2019-06-05 株式会社神戸製鋼所 Gas filling system
JP6117838B2 (en) * 2015-03-17 2017-04-19 東京瓦斯株式会社 High pressure hydrogen production system and method for operating high pressure hydrogen production system
JP6385305B2 (en) * 2015-03-25 2018-09-05 Jxtgエネルギー株式会社 Hydrogen station
JP5919547B1 (en) * 2015-05-29 2016-05-18 株式会社フクハラ Off-site hydrogen station
JP6431821B2 (en) * 2015-07-09 2018-11-28 Jxtgエネルギー株式会社 Hydrogen station management equipment
JP6688583B2 (en) * 2015-10-02 2020-04-28 株式会社神戸製鋼所 Gas supply device and gas supply method
JP6829014B2 (en) * 2016-06-09 2021-02-10 高砂熱学工業株式会社 Hydrogen supply facility and hydrogen supply method
JP6586122B2 (en) * 2017-03-15 2019-10-02 大陽日酸株式会社 Hydrogen filling method of hydrogen station
CN108775506A (en) * 2018-03-16 2018-11-09 浙江昊凡科技有限公司 A kind of method and system that hydrogenation stations hydrogen energy source quickly fills
FR3106391B1 (en) * 2020-01-17 2022-04-29 Air Liquide Installation and method for storing and distributing cryogenic fluid
JP7409903B2 (en) 2020-02-27 2024-01-09 Eneos株式会社 Hydrogen supply system, hydrogen station and hydrogen supply and demand management method
KR102590123B1 (en) * 2021-08-18 2023-10-18 일진하이솔루스 주식회사 High pressure gas storage and supply apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090151809A1 (en) * 2007-12-14 2009-06-18 Texaco Inc. Method for filling gaseous hydrogen storage tanks
JP5254152B2 (en) * 2009-08-04 2013-08-07 公益財団法人鉄道総合技術研究所 High-pressure hydrogen gas filling system using cooling by Simon expansion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111197695A (en) * 2018-11-16 2020-05-26 国家能源投资集团有限责任公司 Fluid bypass method and system for controlling temperature of non-petroleum fuels
CN111197695B (en) * 2018-11-16 2022-03-29 国家能源投资集团有限责任公司 Fluid bypass method and system for controlling temperature of non-petroleum fuels

Also Published As

Publication number Publication date
JP2014111984A (en) 2014-06-19

Similar Documents

Publication Publication Date Title
JP6114676B2 (en) Hydrogen station
KR101989722B1 (en) Gas filling system
JP6077565B2 (en) Hydrogen station and hydrogen filling method for pressure accumulator in hydrogen station
JP2010534308A (en) Filling tank with pressurized gas
JP5852948B2 (en) Offsite hydrogen station and hydrogen supply method for offsite hydrogen station
NO330021B1 (en) Installations for storage and supply of compressed gas
US9746132B2 (en) Self-saturating liquefied natural gas delivery system utilizing hydraulic pressure
DK180560B1 (en) Large-scale hydrogen refueling station
JP2011236929A (en) Lng satellite facility
CN112041610A (en) Hydrogenation station and method for operating such a hydrogenation station
WO2010151118A1 (en) System and method for the delivery of lng
JP4698301B2 (en) Natural gas supply system and supply method
JP2009168221A (en) Liquefied natural gas satellite facility
JP4562673B2 (en) Liquefied natural gas filling equipment
JP5077881B2 (en) Facility for receiving liquefied natural gas
JP2016183686A (en) Hydrogen station and pressure accumulator filling method in hydrogen station
JP6440545B2 (en) Accumulator unit, hydrogen station, and hydrogen filling method
JP6102006B2 (en) Gas filling system, gas filling method, and control device
JP6289963B2 (en) Hydrogen station
KR20220127869A (en) Equipment and methods for storing and dispensing cryogenic fluids
US20230184384A1 (en) Hydrogen compression, storage, and dispensing
JP6077566B2 (en) Hydrogen station and hydrogen supply method
JP2015055290A (en) Storage facility for low temperature liquefied gas
JP6621773B2 (en) Natural gas supply system
JP2004150503A (en) Filling method of lpg for automobile fuel, and its system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170317

R150 Certificate of patent or registration of utility model

Ref document number: 6114676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250