JP6077565B2 - Hydrogen station and hydrogen filling method for pressure accumulator in hydrogen station - Google Patents

Hydrogen station and hydrogen filling method for pressure accumulator in hydrogen station Download PDF

Info

Publication number
JP6077565B2
JP6077565B2 JP2014549853A JP2014549853A JP6077565B2 JP 6077565 B2 JP6077565 B2 JP 6077565B2 JP 2014549853 A JP2014549853 A JP 2014549853A JP 2014549853 A JP2014549853 A JP 2014549853A JP 6077565 B2 JP6077565 B2 JP 6077565B2
Authority
JP
Japan
Prior art keywords
hydrogen
accumulator
temperature
pressure accumulator
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014549853A
Other languages
Japanese (ja)
Other versions
JPWO2014084243A1 (en
Inventor
順二 岡崎
順二 岡崎
愛 蓑田
愛 蓑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Publication of JPWO2014084243A1 publication Critical patent/JPWO2014084243A1/en
Application granted granted Critical
Publication of JP6077565B2 publication Critical patent/JP6077565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/002Automated filling apparatus
    • F17C5/007Automated filling apparatus for individual gas tanks or containers, e.g. in vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0111Boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0142Two or more vessels characterised by the presence of fluid connection between vessels bundled in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0335Check-valves or non-return valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/01Intermediate tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0443Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refueling vehicle fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池自動車(FCV)の車載タンクなどの水素燃料タンクに水素を供給する水素ステーション及び水素ステーションにおける蓄圧器への水素充填方法に関する。   The present invention relates to a hydrogen station for supplying hydrogen to a hydrogen fuel tank such as an on-vehicle tank of a fuel cell vehicle (FCV), and a method for filling a pressure accumulator in the hydrogen station.

一般的な水素ステーションは、水素を昇圧する圧縮機と、圧縮機で昇圧された水素を貯蔵する蓄圧器とを有しており、蓄圧器から差圧を利用して前記水素燃料タンクに水素を供給するようになっている(例えば特許文献1参照)。ここで、蓄圧器から前記水素燃料タンクに水素を供給すると当該蓄圧器内の圧力が低下する。このため、水素ステーションにおいては、圧縮機で昇圧した水素を蓄圧器に充填することによって蓄圧器内の圧力を所定圧力以上とする処理(蓄圧器への水素充填処理)が実施される。   A general hydrogen station has a compressor that boosts hydrogen and a pressure accumulator that stores hydrogen boosted by the compressor, and uses the differential pressure from the accumulator to supply hydrogen to the hydrogen fuel tank. (See, for example, Patent Document 1). Here, when hydrogen is supplied from the pressure accumulator to the hydrogen fuel tank, the pressure in the pressure accumulator decreases. For this reason, in the hydrogen station, a process for increasing the pressure in the accumulator to a predetermined pressure or higher by filling the pressure accumulator with hydrogen boosted by the compressor (hydrogen filling process for the accumulator) is performed.

特開2008−202619号公報JP 2008-202619 A

しかしながら、何ら制限を設けることなく圧縮機で昇圧した水素を蓄圧器に充填してしまうと、蓄圧器温度が過剰に上昇して蓄圧器の耐久性等を低下させるおそれがある。
そこで、本発明は、蓄圧器への水素充填によって蓄圧器温度が過剰に上昇してしまうことを防止することのできる水素ステーションを提供することを目的とする。
However, if the accumulator is filled with hydrogen that has been boosted by the compressor without any limitation, the accumulator temperature may increase excessively and the durability of the accumulator may be reduced.
Then, an object of this invention is to provide the hydrogen station which can prevent that an accumulator temperature rises excessively by hydrogen filling to an accumulator.

本発明の一側面によると、水素供給源からの水素を昇圧して蓄圧器に充填し、蓄圧器内の水素を水素燃料タンクに供給可能な水素ステーションは、前記蓄圧器内の水素温度、前記蓄圧器の温度、又は前記蓄圧器周囲の外気温が所定温度以上である場合における前記蓄圧器への水素充填は、前記所定温度未満である場合に比べて、前記蓄圧器内の水素増加又は圧力上昇を抑制するように制御して行うように構成されている。   According to one aspect of the present invention, a hydrogen station capable of boosting hydrogen from a hydrogen supply source and filling the pressure accumulator, and supplying hydrogen in the pressure accumulator to the hydrogen fuel tank includes: a hydrogen temperature in the accumulator; When the temperature of the pressure accumulator or the outside air temperature around the pressure accumulator is equal to or higher than a predetermined temperature, the hydrogen filling to the pressure accumulator is more than the case where the temperature is lower than the predetermined temperature. It is configured to perform control so as to suppress the rise.

本発明の他の側面によると、水素供給源からの水素を昇圧して蓄圧器に充填し、蓄圧器内の水素を水素燃料タンクに供給可能な水素ステーションにおける前記蓄圧器への水素充填方法は、前記蓄圧器内の水素温度、前記蓄圧器の温度、又は前記蓄圧器周囲の外気温を検出し、検出温度が所定温度以上である場合における前記蓄圧器への水素充填は、前記検出温度が所定温度未満である場合に比べて、前記蓄圧器内の水素増加又は圧力上昇を抑制するように制御して行う。   According to another aspect of the present invention, a method for filling the pressure accumulator in a hydrogen station capable of boosting hydrogen from a hydrogen supply source and filling the pressure accumulator and supplying the hydrogen in the pressure accumulator to the hydrogen fuel tank is as follows. The hydrogen temperature in the pressure accumulator, the temperature of the pressure accumulator, or the outside air temperature around the pressure accumulator is detected, and when the detected temperature is equal to or higher than a predetermined temperature, hydrogen filling into the pressure accumulator is performed when the detected temperature is Compared to the case where the temperature is lower than the predetermined temperature, control is performed so as to suppress an increase in hydrogen or a pressure increase in the accumulator.

前記水素ステーション及び前記ステーションにおける前記蓄圧器への水素充填方法によると、前記蓄圧器内の水素温度、前記蓄圧器の温度、又は前記蓄圧器周囲の外気温が所定温度以上である場合における前記蓄圧器への水素充填は、前記所定温度未満である場合に比べて、前記蓄圧器内の水素増加又は圧力上昇が抑制されるので、前記蓄圧器の温度が過剰に上昇してしまうことが防止され、蓄圧器の耐久性等の低下を抑制できる。   According to the hydrogen station and the hydrogen filling method for the pressure accumulator in the station, the pressure accumulation when the hydrogen temperature in the pressure accumulator, the temperature of the pressure accumulator, or the outside air temperature around the pressure accumulator is equal to or higher than a predetermined temperature. Since the hydrogen filling in the pressure vessel suppresses an increase in hydrogen or pressure in the pressure accumulator as compared with the case where the temperature is lower than the predetermined temperature, it is prevented that the temperature of the pressure accumulator rises excessively. , A decrease in the durability of the pressure accumulator can be suppressed.

第1実施形態による水素ステーションの構成を示す図である。It is a figure which shows the structure of the hydrogen station by 1st Embodiment. 第1実施形態による水素ステーションにおける蓄圧器への水素充填処理を示すフローチャートである。It is a flowchart which shows the hydrogen filling process to the pressure accumulator in the hydrogen station by 1st Embodiment. 第1実施形態の変形例による水素ステーションの構成を示す図である。It is a figure which shows the structure of the hydrogen station by the modification of 1st Embodiment. 第2実施形態による水素ステーションの構成を示す図である。It is a figure which shows the structure of the hydrogen station by 2nd Embodiment. 第2実施形態による水素ステーションにおける蓄圧器への水素充填処理を示すフローチャートである。It is a flowchart which shows the hydrogen filling process to the pressure accumulator in the hydrogen station by 2nd Embodiment. 第3実施形態による水素ステーションの構成を示す図である。It is a figure which shows the structure of the hydrogen station by 3rd Embodiment.

以下、添付図面を参照しつつ本発明の実施形態について説明する。
[第1実施形態]
図1は、本発明の第1実施形態による水素ステーションの構成を示している。
図1に示すように、水素ステーション1Aは、水素を昇圧する昇圧装置としての圧縮機2と、圧縮機2で昇圧された水素を貯蔵可能な蓄圧ユニット3と、ディスペンサー4と、制御装置5と、を有する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[First Embodiment]
FIG. 1 shows the configuration of a hydrogen station according to the first embodiment of the present invention.
As shown in FIG. 1, the hydrogen station 1A includes a compressor 2 as a booster for boosting hydrogen, a pressure accumulating unit 3 capable of storing hydrogen boosted by the compressor 2, a dispenser 4, and a controller 5. Have.

圧縮機2は、水素供給源としての水素貯蔵容器60から供給された水素を昇圧して蓄圧ユニット3へと供給する。水素貯蔵容器60は、主として他の場所で水素が充填されて水素ステーション1に搬送されてきたものであり、例えば、水素トレーラー、水素カードル、水素タンクが該当する。但し、これに限るものではなく、圧縮機2は、オンサイトで製造されて水素供給管等を介して供給された水素を昇圧して蓄圧ユニット3に供給してもよい。圧縮機2の作動は、制御装置5によって制御される。   The compressor 2 pressurizes the hydrogen supplied from the hydrogen storage container 60 as a hydrogen supply source and supplies it to the pressure accumulating unit 3. The hydrogen storage container 60 is mainly filled with hydrogen at another place and transported to the hydrogen station 1, and corresponds to, for example, a hydrogen trailer, a hydrogen curdle, and a hydrogen tank. However, the present invention is not limited to this, and the compressor 2 may increase the pressure of the hydrogen produced on-site and supplied via a hydrogen supply pipe or the like and supply it to the pressure accumulating unit 3. The operation of the compressor 2 is controlled by the control device 5.

蓄圧ユニット3は、圧縮機2で昇圧された水素(高圧水素)を貯蔵する蓄圧器31と、蓄圧ユニット3の入口部3aと蓄圧器31の間に設けられた逆止弁32及び第1開閉弁(電磁弁)33と、蓄圧器31と蓄圧ユニット3の出口部3bの間に設けられた第2開閉弁(電磁弁)34及び逆止弁35と、を有する。入口部3aは、接続管を介して圧縮機2の出口側に接続され、出口部3bは、接続管を介してディスペンサー4に接続されている。逆止弁32は、蓄圧器31から圧縮機2に向かって水素が流れることを防止する。第1開閉弁33は、その開閉によって、圧縮機2で昇圧された水素の蓄圧器31への充填を許容し又は停止する。第2開閉弁34は、その開閉によって、蓄圧器31からの水素の放出を許容し又は停止する。逆止弁35は、ディスペンサー4から蓄圧器31に向かって水素が流れることを防止する。すなわち、蓄圧器31は、その水素充填口が逆止弁32及び第1開閉弁33を介して圧縮機2の出口側に接続され、その水素放出口が第2開閉弁34及び逆止弁35を介してディスペンサー4に接続されている。第1開閉弁33及び第2開閉弁34の作動は、制御ユニット5によって制御される。なお、本実施形態において、第1、2開閉弁33,34は、その非作動時には閉状態となる常閉式の弁として構成されているものとする。   The pressure accumulating unit 3 includes a pressure accumulator 31 that stores hydrogen boosted by the compressor 2, a check valve 32 provided between the inlet 3 a of the pressure accumulating unit 3 and the pressure accumulator 31, and a first opening / closing. It has a valve (electromagnetic valve) 33, a second on-off valve (electromagnetic valve) 34 and a check valve 35 provided between the pressure accumulator 31 and the outlet 3 b of the pressure accumulating unit 3. The inlet 3a is connected to the outlet side of the compressor 2 via a connecting pipe, and the outlet 3b is connected to the dispenser 4 via a connecting pipe. The check valve 32 prevents hydrogen from flowing from the pressure accumulator 31 toward the compressor 2. The first on-off valve 33 allows or stops the filling of the pressure accumulator 31 with the hydrogen boosted by the compressor 2 by opening and closing. The second on-off valve 34 allows or stops the release of hydrogen from the pressure accumulator 31 by opening and closing. The check valve 35 prevents hydrogen from flowing from the dispenser 4 toward the pressure accumulator 31. That is, the pressure accumulator 31 has its hydrogen filling port connected to the outlet side of the compressor 2 via the check valve 32 and the first on-off valve 33, and its hydrogen discharge port on the second on-off valve 34 and the check valve 35. It is connected to the dispenser 4 via. The operation of the first on-off valve 33 and the second on-off valve 34 is controlled by the control unit 5. In the present embodiment, it is assumed that the first and second on-off valves 33 and 34 are configured as normally closed valves that are closed when not operated.

ディスペンサー4は、蓄圧器31に貯蔵された水素、より具体的には蓄圧器3から放出された水素を、燃料電池自動車(FCV)の車載タンクなどの水素燃料タンクに供給することのできる装置であり、前記水素燃料タンクに装着されるノズル部(図示省略)を有している。また、ディスペンサー4には、前記燃料電池自動車(FCV)などから前記水素燃料タンクに関する情報(内圧、最高使用圧力など)が入力されるようになっている。   The dispenser 4 is a device that can supply hydrogen stored in the pressure accumulator 31, more specifically, hydrogen released from the pressure accumulator 3, to a hydrogen fuel tank such as an on-vehicle tank of a fuel cell vehicle (FCV). And having a nozzle portion (not shown) attached to the hydrogen fuel tank. Further, information (internal pressure, maximum working pressure, etc.) relating to the hydrogen fuel tank is inputted to the dispenser 4 from the fuel cell vehicle (FCV) or the like.

制御装置5は、圧力センサ51などの圧力検知部によって検知された蓄圧器内の圧力(蓄圧器内圧)Pa、温度センサ52などの温度検知部によって検知された蓄圧器31の温度(蓄圧器温度)Ta、前記水素燃料タンクに関する情報などの各種情報やオペレータによる動作指令などを入力する。そして、制御装置5は、入力された各種情報やオペレータによる動作指令に基づいて、圧縮機2、第1開閉弁33及び第2開閉弁34を適宜制御する。例えば、オペレータがディスペンサー4の前記ノズル部を前記水素燃料タンクに装着した後に、当該水素燃料タンクへの水素供給指令を入力すると、制御装置5は、第2開閉弁34を開いて蓄圧器31から水素を放出させる。そして、蓄圧器31から放出された水素がディスペンサー4を介して前記水素燃料タンクへと供給される。   The control device 5 includes a pressure in the accumulator (accumulator pressure) Pa detected by a pressure detector such as the pressure sensor 51, and a temperature of the accumulator 31 detected by a temperature detector such as the temperature sensor 52 (accumulator temperature). ) Input various information such as information on Ta and the hydrogen fuel tank, an operation command by an operator, and the like. And the control apparatus 5 controls the compressor 2, the 1st on-off valve 33, and the 2nd on-off valve 34 suitably based on the input various information and the operation command by an operator. For example, when an operator inputs a hydrogen supply command to the hydrogen fuel tank after the nozzle portion of the dispenser 4 is mounted on the hydrogen fuel tank, the control device 5 opens the second on-off valve 34 and opens the second accumulator 31. Hydrogen is released. Then, hydrogen released from the pressure accumulator 31 is supplied to the hydrogen fuel tank via the dispenser 4.

ここで、前記水素燃料タンクへの水素供給は、主に蓄圧器31と前記水素燃料タンクの差圧を利用して行われる。前記水素燃料タンクへの水素供給によって蓄圧器31内の圧力は低下する。そこで、制御装置5は、例えば、前記水素燃料タンクへの水素供給を行った後に、圧縮機2で昇圧した水素を蓄圧器31に充填することによって蓄圧器31内の圧力を所定圧力以上とする処理(蓄圧器31への水素充填処理)を実施する。   Here, the hydrogen supply to the hydrogen fuel tank is performed mainly using the differential pressure between the pressure accumulator 31 and the hydrogen fuel tank. The pressure in the pressure accumulator 31 is reduced by supplying hydrogen to the hydrogen fuel tank. Therefore, for example, after supplying hydrogen to the hydrogen fuel tank, the control device 5 fills the pressure accumulator 31 with hydrogen increased in pressure by the compressor 2 so that the pressure in the pressure accumulator 31 becomes equal to or higher than a predetermined pressure. The process (hydrogen filling process to the pressure accumulator 31) is performed.

図2は、制御装置5によって実施される蓄圧器31への水素充填処理を示すフローチャートである。この水素充填処理は、例えば前記水素燃料タンクへの水素供給を行った後に発生する蓄圧器31への水素充填要求が維持されている間、繰り返して実行される。
図2において、ステップS1では、蓄圧器温度Taを読み込む。蓄圧器温度Taは、蓄圧器31の温度と相関のある温度であればよく、特に制限されないが、本実施形態においては、蓄圧器31の表面温度(特に、蓄圧器31を配置した状態での上部の表面温度)を蓄圧器温度Taとしている。
FIG. 2 is a flowchart showing a hydrogen filling process to the pressure accumulator 31 performed by the control device 5. This hydrogen filling process is repeatedly executed while the hydrogen filling request to the pressure accumulator 31 generated after, for example, supplying hydrogen to the hydrogen fuel tank is maintained.
In FIG. 2, the accumulator temperature Ta is read in step S1. The accumulator temperature Ta is not particularly limited as long as it is a temperature correlated with the temperature of the accumulator 31, but in the present embodiment, the surface temperature of the accumulator 31 (particularly in a state where the accumulator 31 is disposed). The upper surface temperature) is the accumulator temperature Ta.

ステップS2では、蓄圧器温度Taが所定温度Td以上であるか否かを判定する。そして、蓄圧器温度Taが所定温度Td以上であればステップS3に進み、蓄圧器温度Taが所定温度Td未満であればステップS10に進む。所定温度Tdは、水素ステーション1において使用される蓄圧器31に応じて任意に設定可能であり、例えば、蓄圧器31の許容上限温度よりも所定温度だけ低い温度とすることができる。   In step S2, it is determined whether or not the accumulator temperature Ta is equal to or higher than a predetermined temperature Td. If the accumulator temperature Ta is equal to or higher than the predetermined temperature Td, the process proceeds to step S3. If the accumulator temperature Ta is lower than the predetermined temperature Td, the process proceeds to step S10. The predetermined temperature Td can be arbitrarily set according to the pressure accumulator 31 used in the hydrogen station 1, and can be set to a temperature lower than the allowable upper limit temperature of the pressure accumulator 31 by a predetermined temperature, for example.

ステップS3では、前記水素燃料タンクへの水素供給指令が入力されているか否かを判定する。前記水素燃料タンクへの水素供給指令が入力されていればステップS4に進み、前記水素燃料タンクへの水素供給指令が入力されていなければ本処理を終了する。   In step S3, it is determined whether or not a hydrogen supply command to the hydrogen fuel tank is input. If the hydrogen supply command to the hydrogen fuel tank has been input, the process proceeds to step S4, and if the hydrogen supply command to the hydrogen fuel tank has not been input, this processing is terminated.

ステップS4では、前記水素燃料タンクへの水素供給を行う。すなわち、第2開閉弁34を開いて蓄圧器31から水素を放出させる。蓄圧器31から放出された水素はディスペンサー4によって前記水素燃料タンクに供給される。   In step S4, hydrogen is supplied to the hydrogen fuel tank. That is, the second on-off valve 34 is opened to release hydrogen from the pressure accumulator 31. Hydrogen discharged from the pressure accumulator 31 is supplied to the hydrogen fuel tank by the dispenser 4.

ステップS5では、蓄圧器31への水素充填を行う。すなわち、圧縮機2を作動させると共に第1開閉弁33を開いて、圧縮機2で昇圧した水素を蓄圧器31に充填する。このとき、制御装置5は、例えば、蓄圧器31の昇圧後の圧力(昇圧目標圧力)、蓄圧器31内の圧力(実際の圧力)、及び前記水素燃料タンク内の圧力に基づいて、第1開閉弁33の開度を制御するのが好ましい。具体的には、制御装置5は、蓄圧器31への水素の充填速度が、前記水素燃料タンクへの水素供給に伴う蓄圧器31からの水素の放出速度以下となるように、第1開閉弁33の開度を制御するのが好ましい。但し、これに限るものではない。   In step S5, the pressure accumulator 31 is filled with hydrogen. That is, the compressor 2 is operated and the first on-off valve 33 is opened to fill the accumulator 31 with the hydrogen pressure increased by the compressor 2. At this time, for example, the control device 5 determines the first pressure based on the pressure after the pressure increase of the pressure accumulator 31 (pressure increase target pressure), the pressure in the pressure accumulator 31 (actual pressure), and the pressure in the hydrogen fuel tank. It is preferable to control the opening degree of the on-off valve 33. Specifically, the control device 5 includes the first on-off valve so that the hydrogen filling speed of the pressure accumulator 31 is equal to or less than the hydrogen discharging speed from the pressure accumulator 31 accompanying the hydrogen supply to the hydrogen fuel tank. It is preferable to control the opening degree of 33. However, the present invention is not limited to this.

ステップS6では、前記水素燃料タンクへの水素供給が終了したか否かを判定する。前記水素燃料タンクへの水素供給が終了していなければステップS7に進み、終了していればステップS9に進む。例えば、図示省略した流量センサなどによって蓄圧器31から前記水素燃料タンクに向かう水素の流れをモニタし、当該水素の流れがほとんどなくなった場合に前記水素燃料タンクへの水素供給が終了したと判定することができる。なお、前記水素燃料タンクへの水素供給が終了すると、第2開閉弁34は閉じられるものとする。   In step S6, it is determined whether or not the hydrogen supply to the hydrogen fuel tank is completed. If the hydrogen supply to the hydrogen fuel tank is not completed, the process proceeds to step S7, and if completed, the process proceeds to step S9. For example, the flow of hydrogen from the pressure accumulator 31 toward the hydrogen fuel tank is monitored by a flow rate sensor (not shown), and it is determined that the supply of hydrogen to the hydrogen fuel tank is completed when the flow of hydrogen is almost lost. be able to. Note that when the supply of hydrogen to the hydrogen fuel tank is completed, the second on-off valve 34 is closed.

ステップS7では、蓄圧器内圧Paを読み込む。
ステップS8では、蓄圧器内圧Paが第1閾値Pd1以上となったか否かを判定する。そして、蓄圧器内圧Paが第1閾値Pd1以上であればステップS9に進み、蓄圧器内圧Paが第1閾値Pd1未満であればステップS6に戻る。第1閾値Pd1は、例えば蓄圧器温度Taに応じて設定することができる。
なお、蓄圧器31への水素の充填速度が前記水素燃料タンクへの水素供給に伴う蓄圧器31からの水素の放出速度以下となるように第1開閉弁33の開度を制御した場合には、ステップS7,S8の処理を省略してもよい。
ステップS9では、蓄圧器31への水素充填を終了する。すなわち、圧縮機2を停止させると共に第1開閉弁33を閉じる。
In step S7, the accumulator internal pressure Pa is read.
In step S8, it is determined whether or not the pressure accumulator internal pressure Pa is equal to or higher than the first threshold value Pd1. If the accumulator internal pressure Pa is equal to or higher than the first threshold Pd1, the process proceeds to step S9. If the accumulator internal pressure Pa is less than the first threshold Pd1, the process returns to step S6. The first threshold value Pd1 can be set, for example, according to the accumulator temperature Ta.
When the opening degree of the first on-off valve 33 is controlled so that the hydrogen filling speed to the pressure accumulator 31 is equal to or lower than the hydrogen release speed from the pressure accumulator 31 accompanying the hydrogen supply to the hydrogen fuel tank. The processes in steps S7 and S8 may be omitted.
In step S9, the hydrogen filling to the pressure accumulator 31 is finished. That is, the compressor 2 is stopped and the first on-off valve 33 is closed.

ステップS10では、蓄圧器31への通常の水素充填を行う。すなわち、圧縮機2を作動させると共に第1開閉弁33を開き、圧縮機2で昇圧した水素を蓄圧器31に充填する。ここで、ステップS10で実施される通常の水素充填においては、ステップS5で実施される水素充填とは異なり、第1開閉弁33を全開又はそれに近い開度として蓄圧器31の水素充填を速やかに行うことができる。   In step S10, normal pressure filling of the pressure accumulator 31 is performed. That is, the compressor 2 is operated and the first on-off valve 33 is opened, and the pressure accumulator 31 is filled with hydrogen boosted by the compressor 2. Here, in the normal hydrogen filling carried out in step S10, unlike the hydrogen filling carried out in step S5, the first on-off valve 33 is fully opened or the opening thereof is close to quickly filling the accumulator 31 with hydrogen. It can be carried out.

ステップS11では、蓄圧器内圧Paを読み込む。
ステップS12では、蓄圧器内圧Paが第2閾値Pd2(>第1閾値Pd1)以上となったか否かを判定する。そして、蓄圧器圧力Paが第2閾値Pd2以上となるとステップS13に進む。第2閾値Pd2は、蓄圧器31が維持しておくべき蓄圧器内圧力とすることができる。
ステップS13では、ステップS9と同様に、蓄圧器31への水素充填を終了する。
ステップS14では、蓄圧器31への前記水素充填要求を解除する。
In step S11, the accumulator internal pressure Pa is read.
In step S12, it is determined whether or not the pressure accumulator internal pressure Pa is equal to or higher than the second threshold value Pd2 (> first threshold value Pd1). Then, when the pressure accumulator pressure Pa becomes equal to or higher than the second threshold value Pd2, the process proceeds to step S13. The 2nd threshold value Pd2 can be made into the pressure-accumulator internal pressure which the pressure accumulator 31 should maintain.
In step S13, the hydrogen filling to the pressure accumulator 31 is finished as in step S9.
In step S14, the hydrogen filling request to the pressure accumulator 31 is canceled.

以上の水素充填処理により、蓄圧器温度Taが所定温度Td未満の場合には、前記水素燃料タンクへの水素供給が終了した後、速やかに蓄圧器31への水素充填が行われることになる。具体的には、第2開閉弁34を閉じた状態で、第1開閉弁33を開くと共に圧縮機2を作動させて蓄圧器31への水素充填を行う。これにより、蓄圧器内圧Paを所定圧力(第2閾値Pd2)以上に維持できる。   When the accumulator temperature Ta is lower than the predetermined temperature Td by the above hydrogen filling process, the hydrogen accumulator 31 is quickly filled with hydrogen after the hydrogen supply to the hydrogen fuel tank is completed. Specifically, with the second on-off valve 34 closed, the first on-off valve 33 is opened and the compressor 2 is operated to charge the accumulator 31 with hydrogen. Thereby, the pressure accumulator internal pressure Pa can be maintained at a predetermined pressure (second threshold value Pd2) or more.

一方、蓄圧器温度Taが所定温度Td以上の場合には、前記水素燃料タンクへの水素供給が行われるときに、換言すれば、次回の前記水素燃料タンクへの水素供給のときに蓄圧器31への水素充填が行われる。具体的には、第1開閉弁33及び第2開閉弁34を開くと共に圧縮機2を作動させて蓄圧器31から水素放出を行いながら(すなわち、前記水素燃料タンクへの水素供給を行いながら)蓄圧器31への水素充填を行う。これにより、蓄圧器温度Taが所定温度Td未満の場合に比べて、蓄圧器31への水素充填に伴う蓄圧器31内の水素増加及び/又は圧力上昇が抑制される。つまり、蓄圧器温度Taが所定温度Td以上の場合には、所定温度Td未満の場合に比べて、蓄圧器31への水素充填による蓄圧器31内の水素増加量及び/又は圧力上昇量が低く抑えられることになる。これにより、蓄圧器温度Taが所定温度Td以上の場合であっても、蓄圧器温度Taの過剰な温度上昇を防止しつつ、蓄圧器31への水素充填を行うことができる。   On the other hand, when the accumulator temperature Ta is equal to or higher than the predetermined temperature Td, the accumulator 31 is supplied when hydrogen is supplied to the hydrogen fuel tank, in other words, the next time hydrogen is supplied to the hydrogen fuel tank. Is filled with hydrogen. Specifically, the first on-off valve 33 and the second on-off valve 34 are opened and the compressor 2 is operated to release hydrogen from the pressure accumulator 31 (that is, while supplying hydrogen to the hydrogen fuel tank). The accumulator 31 is filled with hydrogen. Thereby, compared with the case where the pressure accumulator temperature Ta is less than the predetermined temperature Td, an increase in hydrogen and / or a pressure increase in the pressure accumulator 31 due to hydrogen filling into the pressure accumulator 31 is suppressed. That is, when the pressure accumulator temperature Ta is equal to or higher than the predetermined temperature Td, the amount of increase in hydrogen and / or the amount of pressure increase in the pressure accumulator 31 due to the filling of the pressure accumulator 31 with hydrogen is lower than when the pressure accumulator temperature is lower than the predetermined temperature Td. It will be suppressed. Thereby, even if the accumulator temperature Ta is equal to or higher than the predetermined temperature Td, the accumulator 31 can be filled with hydrogen while preventing an excessive temperature rise of the accumulator temperature Ta.

このように、本実施形態による水素ステーション1Aは、蓄圧器31に水素を充填する必要があるとき又は充填した方がよいときに、蓄圧器温度Taが所定温度Td以上である場合には、前記水素燃料タンクに水素を供給しているとき(すなわち、蓄圧器31から水素を放出しているとき)に蓄圧器31への水素の充填を行う。これにより、前記蓄圧器温度Taが所定温度Td未満の場合に比べて、蓄圧器31への水素充填による蓄圧器31内の水素増加及び/又は圧力上昇が抑制されることとなり、蓄圧器温度Taが過剰に上昇して蓄圧器31の耐久性等が低下してしまうことを防止できる。   As described above, when the accumulator 31 needs to be filled with hydrogen or when it is better to fill the hydrogen station 1A according to the present embodiment, when the accumulator temperature Ta is equal to or higher than the predetermined temperature Td, When the hydrogen is supplied to the hydrogen fuel tank (that is, when hydrogen is released from the pressure accumulator 31), the pressure accumulator 31 is filled with hydrogen. Thereby, compared with the case where the said pressure accumulator temperature Ta is less than predetermined temperature Td, the hydrogen increase in the pressure accumulator 31 by the hydrogen filling to the pressure accumulator 31 and / or a pressure rise will be suppressed, and pressure accumulator temperature Ta Can be prevented from excessively rising and the durability and the like of the pressure accumulator 31 being lowered.

特に、蓄圧器31への水素の充填速度が前記水素燃料タンクへの水素供給に伴う蓄圧器31からの水素の放出速度以下となるように第1開閉弁33の開度を制御すれば、前記水素燃料タンクへの水素供給(水素放出)に伴う蓄圧器31内の水素の減少分を補いつつ、蓄圧器温度Taが前記許容上限温度を超えてしまうことをより確実に防止できる。   In particular, if the opening degree of the first on-off valve 33 is controlled so that the hydrogen filling speed of the pressure accumulator 31 is equal to or lower than the hydrogen release speed from the pressure accumulator 31 accompanying the hydrogen supply to the hydrogen fuel tank, It is possible to more reliably prevent the pressure accumulator temperature Ta from exceeding the allowable upper limit temperature while compensating for the decrease in hydrogen in the pressure accumulator 31 due to hydrogen supply (hydrogen release) to the hydrogen fuel tank.

なお、上述の実施形態では、蓄圧器温度Taが所定温度Td以上である場合に、前記水素燃料タンクへの水素供給を行いながら蓄圧器31への水素充填を行っている。しかし、これに限るものではなく、外気温(例えば、蓄圧器31周囲の雰囲気温度)が所定温度Td2(≦Td)以上である場合に、前記水素燃料タンクへの水素供給を行いながら蓄圧器31への水素充填を行うようにしてもよい。この場合であっても、上述した実施形態と同様の効果を得ることができる。また、蓄圧器温度Taや蓄圧器31周囲の外気温に代えて蓄圧器31内の水素温度を用いてもよい。   In the above-described embodiment, when the accumulator temperature Ta is equal to or higher than the predetermined temperature Td, the accumulator 31 is filled with hydrogen while supplying hydrogen to the hydrogen fuel tank. However, the present invention is not limited to this, and when the outside air temperature (for example, the ambient temperature around the pressure accumulator 31) is equal to or higher than a predetermined temperature Td2 (≦ Td), the pressure accumulator 31 is supplied while supplying hydrogen to the hydrogen fuel tank. Hydrogen filling may be performed. Even in this case, the same effect as that of the above-described embodiment can be obtained. Further, the hydrogen temperature in the pressure accumulator 31 may be used instead of the pressure accumulator temperature Ta or the outside air temperature around the pressure accumulator 31.

また、上述の実施形態では、蓄圧ユニット3が一つの蓄圧器31を有しているが、複数の蓄圧器31を有してもよいことはもちろんである。この場合には、各蓄圧器31に対して上述の処理が実施されることになる。
さらに、上述の実施形態では、蓄圧器31から放出した水素をディスペンサー4によって前記水素燃料タンクに供給しているが、図示省略した水素供給手段(配管や開閉弁など)によって、水素を使用する又は必要とする水素使用装置(例えば、併設の燃料電池システム)に供給するようにしてもよい。この場合、蓄圧器温度Taが所定温度Td以上である場合における蓄圧器31への水素充填は、前記水素燃料タンク及び/又は前記水素使用装置に水素を供給しながら行うように水素ステーション1Aを構成することができる。
Moreover, in the above-mentioned embodiment, although the pressure accumulation unit 3 has one pressure accumulator 31, it is needless to say that a plurality of pressure accumulators 31 may be included. In this case, the above-described process is performed on each pressure accumulator 31.
Further, in the above-described embodiment, the hydrogen released from the pressure accumulator 31 is supplied to the hydrogen fuel tank by the dispenser 4, but hydrogen is used by a hydrogen supply means (piping, on-off valve, etc.) not shown or You may make it supply to the hydrogen usage apparatus (for example, an adjacent fuel cell system) required. In this case, the hydrogen station 1 </ b> A is configured so that hydrogen filling into the pressure accumulator 31 when the pressure accumulator temperature Ta is equal to or higher than the predetermined temperature Td is performed while supplying hydrogen to the hydrogen fuel tank and / or the hydrogen using device. can do.

[第1実施形態の変形例]
図3は、第1実施形態の変形例による水素ステーションを示している。
この水素ステーション1Bは、水素ステーション1A(図1)に対し、圧縮機2で昇圧された水素を、蓄圧ユニット3を迂回してディスペンサー4に供給できるバイパス管7をさらに有しており、このバイパス管7には、第3開閉弁(電磁弁)8及び逆止弁9が設けられている。すなわち、ディスペンサー4は、第2開閉弁34及び逆止弁35を介して蓄圧器31の前記水素放出口に接続されていると共に、バイパス管7、第3開閉弁8、及び逆止弁9を介して圧縮機2の出口側に接続されている。このため、ディスペンサー4は、蓄圧器31から放出された水素又は圧縮機2で昇圧された水素を前記水素燃料タンクに供給すること可能である。第3開閉弁8の作動は、制御装置5によって制御される。逆止弁9は、ディスペンサー4から圧縮機2に向かって水素が流れることを防止する。なお、第1、2開閉弁33,34と同様に、第3開閉弁8は常閉式の弁として構成されているものとする。
[Modification of First Embodiment]
FIG. 3 shows a hydrogen station according to a modification of the first embodiment.
The hydrogen station 1B further includes a bypass pipe 7 that can supply the hydrogen boosted by the compressor 2 to the dispenser 4 by bypassing the pressure accumulating unit 3 with respect to the hydrogen station 1A (FIG. 1). The pipe 7 is provided with a third on-off valve (electromagnetic valve) 8 and a check valve 9. That is, the dispenser 4 is connected to the hydrogen discharge port of the pressure accumulator 31 through the second on-off valve 34 and the check valve 35, and has the bypass pipe 7, the third on-off valve 8, and the check valve 9. Via the outlet side of the compressor 2. For this reason, the dispenser 4 can supply the hydrogen released from the pressure accumulator 31 or the hydrogen boosted by the compressor 2 to the hydrogen fuel tank. The operation of the third on-off valve 8 is controlled by the control device 5. The check valve 9 prevents hydrogen from flowing from the dispenser 4 toward the compressor 2. Note that, like the first and second on-off valves 33 and 34, the third on-off valve 8 is assumed to be a normally closed valve.

つまり、図3に示す第1実施形態の変形例による水素ステーション1Bは、蓄圧器31から放出された水素だけではなく、圧縮機2で昇圧した水素を、蓄圧器31を介さずに前記水素燃料タンクに直接的に供給できるように構成されている。この変形例においても、前記第1実施形態と同様、蓄圧器温度Taが所定温度Td以上である場合における蓄圧器31への水素充填は、前記水素燃料タンク及び/又は前記水素使用装置に水素を供給しながら蓄圧器31への水素の充填を行う。この変形例において、前記第1実施形態と同様の方法を用いてもよいが、第1開閉弁33及び第3開閉弁8を開くと共に圧縮機2を作動させることによって、圧縮機2で昇圧した水素を、蓄圧器31への水素充填と前記水素燃料タンクへの水素供給の両方に使用するようにしてもよい。すなわち、圧縮機2で昇圧した水素(昇圧水素)の一部を前記水素燃料タンクに供給しつつ、前記昇圧水素の残りを蓄圧器31に充填することができる。このとき、第2開閉弁34は、開いてもよいし閉じたままでもよい。このようにしても、前記水素燃料タンクへの水素供給を行いながら蓄圧器31への水素充填を行うこととなり、また、蓄圧器31への水素充填による蓄圧器31内の圧力上昇が抑制されるので、第1実施形態による水素ステーション1Aと同様の効果を得ることができる。   That is, the hydrogen station 1B according to the modified example of the first embodiment shown in FIG. 3 is not limited to the hydrogen released from the pressure accumulator 31, but also the hydrogen fuel boosted by the compressor 2 without passing through the pressure accumulator 31. It is configured so that it can be supplied directly to the tank. Also in this modified example, as in the first embodiment, when the pressure accumulator temperature Ta is equal to or higher than the predetermined temperature Td, hydrogen is charged into the pressure accumulator 31 by supplying hydrogen to the hydrogen fuel tank and / or the hydrogen using device. The pressure accumulator 31 is filled with hydrogen while being supplied. In this modified example, the same method as in the first embodiment may be used, but the pressure is increased by the compressor 2 by opening the first on-off valve 33 and the third on-off valve 8 and operating the compressor 2. Hydrogen may be used for both filling the pressure accumulator 31 and supplying hydrogen to the hydrogen fuel tank. That is, it is possible to fill the accumulator 31 with the remainder of the pressurized hydrogen while supplying a part of the hydrogen (pressurized hydrogen) boosted by the compressor 2 to the hydrogen fuel tank. At this time, the second on-off valve 34 may be opened or kept closed. Even if it does in this way, hydrogen supply to the pressure accumulator 31 will be performed while supplying hydrogen to the hydrogen fuel tank, and an increase in pressure in the pressure accumulator 31 due to hydrogen filling the pressure accumulator 31 is suppressed. Therefore, the same effect as the hydrogen station 1A according to the first embodiment can be obtained.

[第2実施形態]
次に、本発明の第2実施形態による水素ステーションを説明する。
第1実施形態による水素ステーションにおいて、蓄圧器には、水素を充填する水素充填口と水素を放出する水素放出口とが別々に設けられていた。これに対し、第2実施形態による水素ステーションでは、蓄圧器における前記水素充填口と前記水素放出口が共通(以下「水素充填・放出口」という)であり、蓄圧器への水素の充填と蓄圧器からの水素の放出とを同時に行えない点で第1実施形態による水素ステーションとは相違している。
なお、以下の説明において、第1実施形態と同種の構成要素については同一の符号を付し、その機能も同じであるものとする。
[Second Embodiment]
Next, a hydrogen station according to a second embodiment of the present invention will be described.
In the hydrogen station according to the first embodiment, the pressure accumulator is provided with a hydrogen filling port for filling hydrogen and a hydrogen discharge port for discharging hydrogen separately. On the other hand, in the hydrogen station according to the second embodiment, the hydrogen filling port and the hydrogen discharge port in the pressure accumulator are common (hereinafter referred to as “hydrogen filling / discharge port”), and hydrogen filling and pressure accumulation in the pressure accumulator are performed. This is different from the hydrogen station according to the first embodiment in that hydrogen cannot be released from the vessel at the same time.
In the following description, the same reference numerals are given to the same types of components as in the first embodiment, and the functions thereof are also the same.

図4は、第2実施形態による水素ステーションの構成を示している。
図4に示すように、第2実施形態による水素ステーション10は、水素を昇圧する昇圧装置としての圧縮機2と、圧縮機2で昇圧された水素を貯蔵可能な蓄圧ユニット30と、ディスペンサー4と、制御装置50と、を有する。
FIG. 4 shows the configuration of the hydrogen station according to the second embodiment.
As shown in FIG. 4, the hydrogen station 10 according to the second embodiment includes a compressor 2 as a booster for boosting hydrogen, a pressure accumulating unit 30 capable of storing hydrogen boosted by the compressor 2, a dispenser 4, And a control device 50.

蓄圧ユニット30は、圧縮機2で昇圧された水素を貯蔵する蓄圧器31と、蓄圧ユニット30の入口部30aと蓄圧器31の間に設けられた逆止弁32及び第1開閉弁33と、蓄圧器31と蓄圧ユニット30の出口部30bの間に設けられた第2開閉弁34及び逆止弁35と、を有する。入口部30aは、接続管を介して圧縮機2の出口側に接続され、出口部30bは、接続管を介してディスペンサー4に接続されている。逆止弁35は、ディスペンサー4から蓄圧器31に向かって水素が流れることを防止する。すなわち、本実施形態において、蓄圧器31は、その水素充填・放出口が逆止弁32及び第1開閉弁33を介して圧縮機2の出口側に接続されていると共に、第2開閉弁34及び逆止弁35を介してディスペンサー4に接続されている。   The pressure accumulating unit 30 includes a pressure accumulator 31 that stores hydrogen boosted by the compressor 2, a check valve 32 and a first on-off valve 33 provided between the inlet 30a of the pressure accumulating unit 30 and the pressure accumulator 31. A second opening / closing valve 34 and a check valve 35 are provided between the pressure accumulator 31 and the outlet 30b of the pressure accumulating unit 30. The inlet part 30a is connected to the outlet side of the compressor 2 via a connecting pipe, and the outlet part 30b is connected to the dispenser 4 via a connecting pipe. The check valve 35 prevents hydrogen from flowing from the dispenser 4 toward the pressure accumulator 31. That is, in this embodiment, the pressure accumulator 31 has its hydrogen filling / discharge port connected to the outlet side of the compressor 2 via the check valve 32 and the first on-off valve 33, and the second on-off valve 34. And connected to the dispenser 4 via a check valve 35.

この蓄圧ユニット30では、第2開閉弁34を閉じた状態で第1開閉弁33を開くことによって圧縮機2で昇圧された水素を蓄圧器31に充填する。また、第1開閉弁33を閉じた状態で第2開閉弁34を開くことによって蓄圧器31から水素を放出してディスペンサー4を介して前記水素燃料タンクに供給する。第1開閉弁33及び第2開閉弁34の作動は、制御装置50によって制御される。   In the pressure accumulating unit 30, the pressure increased by the compressor 2 by filling the pressure accumulator 31 by opening the first on-off valve 33 with the second on-off valve 34 closed. Further, by opening the second on-off valve 34 with the first on-off valve 33 closed, hydrogen is released from the pressure accumulator 31 and supplied to the hydrogen fuel tank through the dispenser 4. The operation of the first on-off valve 33 and the second on-off valve 34 is controlled by the control device 50.

また、第2実施形態による水素ステーション10では、第1実施形態の変形例による水素ステーション1Bと同様に、圧縮機2で昇圧された水素を、蓄圧ユニット30を迂回してディスペンサー4に供給できるバイパス管7を有しており、このバイパス管7には、第3開閉弁(電磁弁)8及び逆止弁9が設けられている。すなわち、本実施形態において、ディスペンサー4は、第2開閉弁34及び逆止弁35を介して蓄圧器31の前記水素充填・放出口に接続されていると共に、バイパス管7、第3開閉弁8、及び逆止弁9を介して圧縮機2の出口側に接続されている。これにより、ディスペンサー4は、蓄圧器31から放出された水素又は圧縮機2で昇圧された水素を前記水素燃料タンクに供給することが可能である。   Further, in the hydrogen station 10 according to the second embodiment, similarly to the hydrogen station 1B according to the modification of the first embodiment, the hydrogen that has been pressurized by the compressor 2 can be bypassed to bypass the pressure accumulating unit 30 and be supplied to the dispenser 4. The bypass pipe 7 is provided with a third on-off valve (electromagnetic valve) 8 and a check valve 9. In other words, in the present embodiment, the dispenser 4 is connected to the hydrogen filling / releasing port of the pressure accumulator 31 via the second on-off valve 34 and the check valve 35, and the bypass pipe 7 and the third on-off valve 8. , And a check valve 9 connected to the outlet side of the compressor 2. Thereby, the dispenser 4 can supply the hydrogen released from the pressure accumulator 31 or the hydrogen boosted by the compressor 2 to the hydrogen fuel tank.

制御装置50は、第1実施形態の制御装置5と同様に、蓄圧器内圧Pa、蓄圧器温度Ta及び前記水素燃料タンクに関する情報などの各種情報を入力する。そして、制御装置50は、入力された各種情報やオペレータによる動作指令に基づいて、圧縮機2、第1開閉弁33、第2開閉弁34及び第3開閉弁8を適宜制御して、前記水素燃料タンクへの水素供給(蓄圧器31からの水素放出)や蓄圧器31への水素充填を行う。   As with the control device 5 of the first embodiment, the control device 50 inputs various information such as information on the accumulator internal pressure Pa, the accumulator temperature Ta, and the hydrogen fuel tank. Then, the control device 50 appropriately controls the compressor 2, the first on-off valve 33, the second on-off valve 34, and the third on-off valve 8 based on various input information and an operation command by the operator, so that the hydrogen Hydrogen supply to the fuel tank (hydrogen release from the pressure accumulator 31) and hydrogen filling to the pressure accumulator 31 are performed.

図5は、制御装置50によって実施される蓄圧器31への水素充填処理を示すフローチャートである。この水素充填処理は、第1実施形態と同様、蓄圧器31に対する前記水素充填要求が維持されている間、繰り返して実行される。
図5において、ステップS21〜S23は、図2のステップS1〜S3と同様である。なお、ステップS22において、蓄圧器温度Taが所定温度Td以上であればステップS23に進み、蓄圧器温度Taが所定温度Td未満であればステップS29に進む。
FIG. 5 is a flowchart showing a hydrogen filling process to the pressure accumulator 31 performed by the control device 50. This hydrogen filling process is repeatedly executed while the hydrogen filling request for the pressure accumulator 31 is maintained, as in the first embodiment.
In FIG. 5, steps S21 to S23 are the same as steps S1 to S3 in FIG. In step S22, if the pressure accumulator temperature Ta is equal to or higher than the predetermined temperature Td, the process proceeds to step S23, and if the pressure accumulator temperature Ta is lower than the predetermined temperature Td, the process proceeds to step S29.

ステップS24では、前記水素燃料タンクへの水素供給と前記蓄圧器31への水素充填とを同時に行う。すなわち、圧縮機2を作動させると共に第1開閉弁33及び第3開閉弁8を開き、圧縮機2で昇圧した水素を蓄圧器31に充填すると共にバイパス管7及びディスペンサー4を介して(蓄圧器31をバイパスして)前記水素燃料タンクに供給する。このとき、制御装置50は、第1開閉弁33の開度が第3開閉弁8の開度よりも小さくなるように、換言すれば、バイパス管7を通過する水素量が多くなるように、第1開閉弁33及び第3開閉弁8を制御するのが好ましい。なお、第2開閉弁34は閉じたままである。   In step S24, the hydrogen supply to the hydrogen fuel tank and the hydrogen filling to the pressure accumulator 31 are performed simultaneously. That is, the compressor 2 is operated and the first on-off valve 33 and the third on-off valve 8 are opened, and the hydrogen pressure increased by the compressor 2 is filled in the accumulator 31 and the bypass pipe 7 and the dispenser 4 are used (accumulator). (Bypassing 31) to the hydrogen fuel tank. At this time, the control device 50 is configured so that the opening degree of the first on-off valve 33 is smaller than the opening degree of the third on-off valve 8, in other words, the amount of hydrogen passing through the bypass pipe 7 is increased. It is preferable to control the first on-off valve 33 and the third on-off valve 8. The second on-off valve 34 remains closed.

ステップS25では、図2のステップS6と同様に、前記水素燃料タンクへの水素供給が終了したか否かを判定する。前記水素燃料タンクへの水素供給が終了していなければステップS26に進み、終了していればステップS28に進む。なお、前記水素燃料タンクへの水素供給が終了すると、第3開閉弁8は閉じられるものとする。   In step S25, as in step S6 of FIG. 2, it is determined whether or not the hydrogen supply to the hydrogen fuel tank has been completed. If the hydrogen supply to the hydrogen fuel tank is not completed, the process proceeds to step S26, and if completed, the process proceeds to step S28. Note that when the hydrogen supply to the hydrogen fuel tank is completed, the third on-off valve 8 is closed.

ステップS26では、蓄圧器内圧Paを読み込む。
ステップS27では、蓄圧器内圧Paが第1閾値Pd1以上となったか否かを判定し、蓄圧器内圧Paが第1閾値Pd1以上となるとステップS28に進み、蓄圧器内圧Paが第1閾値Pd1未満であればステップS25に戻る。
ステップS28では、蓄圧器31への水素充填を終了する。すなわち、圧縮機2を停止させる共に第1開閉弁33を閉じる。
In step S26, the accumulator internal pressure Pa is read.
In step S27, it is determined whether or not the accumulator internal pressure Pa is equal to or higher than the first threshold Pd1, and when the accumulator internal pressure Pa is equal to or higher than the first threshold Pd1, the process proceeds to step S28, where the accumulator internal pressure Pa is less than the first threshold Pd1. If so, the process returns to step S25.
In step S28, the hydrogen filling to the pressure accumulator 31 is finished. That is, the compressor 2 is stopped and the first on-off valve 33 is closed.

ステップS29では、蓄圧器31への通常の水素充填を行う。すなわち、圧縮機2を作動させると共に第1開閉弁33を開き、圧縮機2で昇圧した水素を蓄圧器31に充填する。この通常の水素充填においては、第1開閉弁33を全開又はそれに近い開度とすることができる。なお、第2開閉弁34及び第3開閉弁8は閉じたままである。   In step S29, normal hydrogen filling to the pressure accumulator 31 is performed. That is, the compressor 2 is operated and the first on-off valve 33 is opened, and the pressure accumulator 31 is filled with hydrogen boosted by the compressor 2. In this normal hydrogen filling, the first on-off valve 33 can be fully opened or close to it. The second on-off valve 34 and the third on-off valve 8 remain closed.

ステップS30では、蓄圧器内圧Paを読み込む。
ステップS31では、蓄圧器内圧Paが第2閾値Pd2(>第1閾値Pd1)以上となったか否かを判定する。そして、蓄圧器圧力Paが第2閾値Pd2以上となるとステップS32に進む。
ステップS32では、ステップS28と同様に、蓄圧器31への水素充填を終了する。
ステップS33では、蓄圧器31への水素充填要求を解除する。
In step S30, the accumulator internal pressure Pa is read.
In step S31, it is determined whether or not the pressure accumulator internal pressure Pa is equal to or higher than the second threshold value Pd2 (> first threshold value Pd1). Then, when the accumulator pressure Pa becomes equal to or higher than the second threshold value Pd2, the process proceeds to step S32.
In step S32, the hydrogen filling to the pressure accumulator 31 is ended as in step S28.
In step S33, the hydrogen filling request to the pressure accumulator 31 is canceled.

以上の水素充填処理によって、本実施形態においても、蓄圧器温度Taが所定温度Td未満の場合には、前記水素燃料タンクへの水素供給が終了した後、速やかに蓄圧器31への水素充填が行われる。具体的には、第2開閉弁34及び第3開閉弁8を閉じた状態で、第1開閉弁33を開くと共に圧縮機2を作動させて蓄圧器31への水素充填を行う。これにより、蓄圧器内圧Paを所定圧力(第2閾値Pd2)以上に維持できる。   With the above hydrogen filling process, also in this embodiment, when the accumulator temperature Ta is lower than the predetermined temperature Td, the hydrogen accumulator 31 is quickly filled with hydrogen after the hydrogen supply to the hydrogen fuel tank is completed. Done. Specifically, with the second on-off valve 34 and the third on-off valve 8 closed, the first on-off valve 33 is opened and the compressor 2 is operated to charge the pressure accumulator 31 with hydrogen. Thereby, the pressure accumulator internal pressure Pa can be maintained at a predetermined pressure (second threshold value Pd2) or more.

一方、蓄圧器温度Taが所定温度Td以上の場合には、前記水素燃料タンクへの水素供給と蓄圧器31への水素充填とが同時に行われ、圧縮機2で昇圧した水素が前記水素燃料タンクへの水素供給と蓄圧器31への水素充填との両方に使用される。具体的には、第2開閉弁34を閉じた状態で、第1開閉弁33及び第3開閉弁8を開くと共に圧縮機2を作動させて前記水素燃料タンクへの燃料供給を行いながら蓄圧器31への水素充填を行う。すなわち、圧縮機2で昇圧された水素(昇圧水素)の一部を、蓄圧器31をバイパスして前記水素燃料タンクへと供給すると共に前記昇圧水素の残りの水素を蓄圧器31に充填するようにし、また、前記水素燃料タンクへの水素供給が終了すると蓄圧器31への水素充填も終了させる。これにより、蓄圧器温度Taが所定温度Td未満の場合に比べて、蓄圧器31への水素充填による蓄圧器31内の水素増加及び/又は圧力上昇が抑制されることとなり、蓄圧器温度Taが所定温度Td以上の場合であっても、蓄圧器温度Taの過剰な温度上昇を防止しつつ、蓄圧器31への水素充填を行うことができる。   On the other hand, when the pressure accumulator temperature Ta is equal to or higher than the predetermined temperature Td, hydrogen supply to the hydrogen fuel tank and hydrogen filling to the pressure accumulator 31 are performed simultaneously, and the hydrogen boosted by the compressor 2 is converted into the hydrogen fuel tank. It is used for both supplying hydrogen to the tank and filling the pressure accumulator 31 with hydrogen. Specifically, the first on-off valve 33 and the third on-off valve 8 are opened while the second on-off valve 34 is closed, and the compressor 2 is operated to supply fuel to the hydrogen fuel tank while accumulating the pressure accumulator. 31 is filled with hydrogen. In other words, a part of the hydrogen (pressure-boosted hydrogen) boosted by the compressor 2 is supplied to the hydrogen fuel tank by bypassing the pressure accumulator 31, and the pressure accumulator 31 is filled with the remaining hydrogen of the pressure-raised hydrogen. In addition, when the hydrogen supply to the hydrogen fuel tank is finished, the hydrogen filling to the pressure accumulator 31 is also finished. Thereby, compared with the case where the pressure accumulator temperature Ta is lower than the predetermined temperature Td, the increase in hydrogen and / or pressure increase in the pressure accumulator 31 due to the hydrogen filling of the pressure accumulator 31 is suppressed, and the pressure accumulator temperature Ta is reduced. Even when the temperature is equal to or higher than the predetermined temperature Td, the pressure accumulator 31 can be filled with hydrogen while preventing an excessive temperature rise of the pressure accumulator temperature Ta.

このように、本実施形態による水素ステーション10は、蓄圧器31への水素充填を行う際に、蓄圧器温度Taが所定温度Td以上である場合には、圧縮機2で昇圧した水素を蓄圧器31と前記水素燃料タンクの両方に同時に供給する。すなわち、前記水素燃料タンクに水素を供給しているときに蓄圧器31への水素の充填を行い、圧縮機2で昇圧した水素を前記水素燃料タンクへの水度供給と前記蓄圧器31の水素充填との両方に使用する。これにより、前記蓄圧器温度Taが所定温度Td未満の場合に比べて、蓄圧器31への水素充填による蓄圧器31内の水素増加及び/又は圧力上昇が抑制され、蓄圧器温度Taが過剰に上昇して蓄圧器31の耐久性等が低下することを防止できる。   As described above, the hydrogen station 10 according to the present embodiment, when performing hydrogen filling into the pressure accumulator 31, when the pressure accumulator temperature Ta is equal to or higher than the predetermined temperature Td, the hydrogen pressure increased by the compressor 2 is stored in the pressure accumulator. 31 and the hydrogen fuel tank are supplied simultaneously. That is, when the hydrogen is supplied to the hydrogen fuel tank, the pressure accumulator 31 is filled with hydrogen, and the hydrogen pressure increased by the compressor 2 is supplied to the hydrogen fuel tank with the water content and the hydrogen of the pressure accumulator 31. Used for both filling. Thereby, compared with the case where the said accumulator temperature Ta is less than predetermined temperature Td, the hydrogen increase in the accumulator 31 by the hydrogen filling to the accumulator 31 and / or a pressure rise are suppressed, and the accumulator temperature Ta is excessive. It can prevent that the durability etc. of the pressure accumulator 31 falls and falls.

なお、本実施形態による水素ステーション10においても、第1実施形態による水素ステーション1と同様、外気温(例えば、蓄圧器31周囲の雰囲気温度)が所定温度Td2(≦Td)以上である場合に、圧縮機2で昇圧した水素を前記水素燃料タンクへの水度供給と前記蓄圧器31の水素充填との両方に使用するようにしてもよい。また、蓄圧ユニット30が複数の蓄圧器31を有してもよく、この場合には、各蓄圧器31への水素充填を行う際に上述の処理が実施されることになる。さらに、蓄圧器温度Taや蓄圧器31周囲の外気温に代えて蓄圧器31内の水素温度を用いたり、圧縮機2で昇圧した水素を前記水素燃料タンクに代えて前記水素使用装置に供給したりしてもよい。   In the hydrogen station 10 according to the present embodiment, as in the hydrogen station 1 according to the first embodiment, when the outside air temperature (for example, the ambient temperature around the pressure accumulator 31) is equal to or higher than the predetermined temperature Td2 (≦ Td), You may make it use the hydrogen pressure | voltage-risen with the compressor 2 for both the water supply to the said hydrogen fuel tank, and the hydrogen filling of the said pressure accumulator 31. FIG. Moreover, the pressure accumulation unit 30 may have a plurality of pressure accumulators 31, and in this case, the above-described processing is performed when hydrogen is filled in each pressure accumulator 31. Further, the hydrogen temperature in the pressure accumulator 31 is used in place of the accumulator temperature Ta and the ambient temperature around the accumulator 31, or the hydrogen boosted by the compressor 2 is supplied to the hydrogen using device instead of the hydrogen fuel tank. Or you may.

[第3実施形態]
次に、本発明の第3実施形態による水素ステーションを説明する。
図6は、第3実施形態による水素ステーションの構成を示している。
図6に示すように、第2実施形態による水素ステーション10との主な相違は、第3実施形態による水素ステーション20においては、バイパス管7が設けられていないこと、及び、蓄圧ユニット30が複数(ここでは、二つ)の蓄圧器(第1蓄圧器31a,第2蓄圧器31b)を有していることである。それ以外の構成については、基本的に第2実施形態による水素ステーション10(図4参照)と同様である。本実施形態において、第1蓄圧器31aは、その水素充填・放出口が第1逆止弁32a及び第1開閉弁33aを介して圧縮機2の出口側に接続されており、第2蓄圧器31bは、その水素充填・放出口が第2逆止弁32b及び第2開閉弁33bを介して圧縮機2の出口側に接続されている。また、ディスペンサー4は、第3開閉弁34a及び第3逆止弁35aを介して第1蓄圧器31aの前記水素充填・放出口に接続されていると共に、第4開閉弁34b及び第4逆止弁35bを介して第2蓄圧器31bの前記水素充填・放出口に接続されている。このため、ディスペンサー4は、第1蓄圧器31aから放出された水素又は第2蓄圧器31bから放出された水素を前記水素燃料タンクに供給することが可能である。
[Third Embodiment]
Next, a hydrogen station according to a third embodiment of the present invention will be described.
FIG. 6 shows the configuration of the hydrogen station according to the third embodiment.
As shown in FIG. 6, the main difference from the hydrogen station 10 according to the second embodiment is that the hydrogen station 20 according to the third embodiment is not provided with the bypass pipe 7, and there are a plurality of pressure accumulating units 30. This is to have two pressure accumulators (here, the first accumulator 31a and the second accumulator 31b). Other configurations are basically the same as those of the hydrogen station 10 (see FIG. 4) according to the second embodiment. In the present embodiment, the first pressure accumulator 31a has a hydrogen filling / discharge port connected to the outlet side of the compressor 2 via the first check valve 32a and the first on-off valve 33a. The hydrogen filling / releasing port 31b is connected to the outlet side of the compressor 2 via the second check valve 32b and the second on-off valve 33b. The dispenser 4 is connected to the hydrogen filling / releasing port of the first pressure accumulator 31a via a third on-off valve 34a and a third check valve 35a, and is connected to the fourth on-off valve 34b and the fourth check valve. The valve 35b is connected to the hydrogen filling / releasing port of the second pressure accumulator 31b. For this reason, the dispenser 4 can supply the hydrogen released from the first pressure accumulator 31a or the hydrogen released from the second pressure accumulator 31b to the hydrogen fuel tank.

第3実施形態による水素ステーション20においても、各蓄圧器31a,31bへの水素充填要求があり、かつ、蓄圧器温度Taが所定温度Td以上である場合には、前記水素燃料タンクへの水素供給指令が入力されているとき(すなわち、前記水素燃料タンクに水素を供給しているとき)に各蓄圧器31a,31bへの水素充填を行う。具体的には、以下のようにして各蓄圧器31a,31bへの水素充填を行うことにより、前記蓄圧器温度Taが所定温度Td未満の場合に比べて、水素充填に伴う各蓄圧器31a,31b内の圧力上昇を抑制する。   Also in the hydrogen station 20 according to the third embodiment, when there is a hydrogen filling request to the accumulators 31a and 31b and the accumulator temperature Ta is equal to or higher than a predetermined temperature Td, hydrogen supply to the hydrogen fuel tank is performed. When the command is input (that is, when hydrogen is supplied to the hydrogen fuel tank), the pressure accumulators 31a and 31b are filled with hydrogen. Specifically, by performing the hydrogen filling to each of the pressure accumulators 31a and 31b as follows, each of the pressure accumulators 31a, 31a, 31b accompanying the hydrogen filling is compared with the case where the pressure accumulator temperature Ta is lower than a predetermined temperature Td. The pressure rise in 31b is suppressed.

すなわち、本実施形態において、蓄圧器温度Taが所定温度Td以上である場合に各蓄圧器31a,31bへの水素充填を行う場合には、蓄圧器31a,31bを切り替えながら前記水素燃料タンクへの水素供給を行い、前記水素燃料タンクへの水素供給のために水素を放出した後の蓄圧器31a,31b(すなわち、水素の放出を行っていない方の蓄圧器)に対して水素充填を行う。具体的には、まず第1蓄圧器31aから水素を放出させて前記水素燃料タンクへの水素供給を行い、次に第1蓄圧器31aからの水素の放出を停止させると共に第2蓄圧器31bから水素を放出させて前記水素燃料タンクへの水素供給を行う。これを繰り返すことにより前記水素燃料タンクへの水素供給を継続する。そして、第2蓄圧器31bから水素を放出させて前記水素燃料タンクへの水素供給を行っているときに、水素の放出を停止させた第1蓄圧器31aへの水素充填を行い、第1蓄圧器31aから水素を放出させて前記水素燃料タンクへの水素供給を行っているときに、水素の放出を停止させた第2蓄圧器31bへの水素充填を行うようにする。   That is, in the present embodiment, when the pressure accumulator 31a, 31b is filled with hydrogen when the accumulator temperature Ta is equal to or higher than the predetermined temperature Td, the hydrogen fuel tank is switched to the accumulator 31a, 31b. Hydrogen is supplied to the pressure accumulators 31a and 31b (that is, the pressure accumulator that is not releasing hydrogen) after supplying hydrogen and releasing hydrogen for supplying hydrogen to the hydrogen fuel tank. Specifically, first, hydrogen is released from the first pressure accumulator 31a to supply hydrogen to the hydrogen fuel tank, and then the release of hydrogen from the first pressure accumulator 31a is stopped and from the second pressure accumulator 31b. Hydrogen is discharged to supply hydrogen to the hydrogen fuel tank. By repeating this, hydrogen supply to the hydrogen fuel tank is continued. Then, when hydrogen is released from the second pressure accumulator 31b and hydrogen is supplied to the hydrogen fuel tank, the first pressure accumulator 31a that has stopped releasing hydrogen is charged with hydrogen, When hydrogen is released from the vessel 31a and hydrogen is supplied to the hydrogen fuel tank, the second pressure accumulator 31b that has stopped releasing hydrogen is charged with hydrogen.

水素を放出させる(前記水素燃料タンクに水素を供給する)蓄圧器31a,31bの切り替えタイミングは、任意に設定することができる。例えば、水素の放出を開始してからの経過時間や水素の放出に伴う蓄圧器温度の変化量(低下量)に基づいて蓄圧器31a,31bを切り替えるように構成することができる。また、各蓄圧器31a,31bからの水素の放出は、対応する開閉弁34(第3開閉弁34a又は第4開閉弁34b)を開くことによって行い、各蓄圧器31a,31bへの水素の充填は、圧縮機2を作動させると共に、対応する開閉弁33(第1開閉弁33a又は第2開閉弁33b)を開くことによって行う。   The switching timing of the pressure accumulators 31a and 31b for releasing hydrogen (supplying hydrogen to the hydrogen fuel tank) can be arbitrarily set. For example, the pressure accumulators 31a and 31b can be switched based on the elapsed time from the start of hydrogen release or the amount of change (decrease amount) in the pressure accumulator temperature accompanying the hydrogen release. Moreover, the release of hydrogen from each pressure accumulator 31a, 31b is performed by opening the corresponding on-off valve 34 (the third on-off valve 34a or the fourth on-off valve 34b), and filling the respective accumulators 31a, 31b with hydrogen. Is performed by operating the compressor 2 and opening the corresponding on-off valve 33 (the first on-off valve 33a or the second on-off valve 33b).

第3実施形態による水素ステーション20では、蓄圧器温度Taが所定温度Td未満の場合には、第3開閉弁34a及び第4開閉弁34bを閉じた状態で、第1開閉弁33a及び第2開閉弁33bの少なくとも一方を開くと共に圧縮機2を作動させて第1蓄圧器31a及び第2蓄圧器31bの少なくとも一方への水素充填を行う。
一方、蓄圧器温度Taが所定温度Td以上の場合には、第2開閉弁33b及び第3開閉弁34aを閉じた状態で、第1開閉弁33a及び第4開閉弁34bを開くと共に圧縮機2を作動させて前記水素燃料タンクへの水素供給を行いながら(第2蓄圧器31bから水素を放出しながら)第1蓄圧器31aへの水素充填を行う。又は、第1開閉弁33a及び第4開閉弁34bを閉じた状態で、第2開閉弁33b及び第3開閉弁34aを開くと共に圧縮機2を作動させて前記水素燃料タンクへの水素供給を行いながら(第1蓄圧器31aから水素を放出しながら)第2蓄圧器31bへの水素充填を行う。
In the hydrogen station 20 according to the third embodiment, when the accumulator temperature Ta is lower than the predetermined temperature Td, the first on-off valve 33a and the second on-off valve 34a are closed with the third on-off valve 34a and the fourth on-off valve 34b closed. At least one of the valves 33b is opened and the compressor 2 is operated to charge hydrogen into at least one of the first pressure accumulator 31a and the second pressure accumulator 31b.
On the other hand, when the pressure accumulator temperature Ta is equal to or higher than the predetermined temperature Td, the first on-off valve 33a and the fourth on-off valve 34b are opened while the second on-off valve 33b and the third on-off valve 34a are closed, and the compressor 2 Is operated to supply hydrogen to the hydrogen fuel tank (while discharging hydrogen from the second pressure accumulator 31b), the first pressure accumulator 31a is filled with hydrogen. Alternatively, with the first on-off valve 33a and the fourth on-off valve 34b closed, the second on-off valve 33b and the third on-off valve 34a are opened and the compressor 2 is operated to supply hydrogen to the hydrogen fuel tank. Then, the second accumulator 31b is filled with hydrogen (while releasing hydrogen from the first accumulator 31a).

この第3実施形態による水素ステーションにおいても、各蓄圧器31a,31bについて、蓄圧器温度Taが所定温度Td以上である場合には、蓄圧器温度Taが所定温度Td未満の場合に比べて、水素充填による各蓄圧器31a,31b内の水素増加及び/圧力上昇が抑制されることとなり、蓄圧器温度Taが過剰に上昇して蓄圧器31a,31bの耐久性等が低下することを防止できる。また、第1、第2実施形態による水素ステーション1、10と同様に、蓄圧器温度Taに代えて外気温(例えば、蓄圧器31周囲の雰囲気温度)を用いてもよい。   Also in the hydrogen station according to the third embodiment, for each of the pressure accumulators 31a and 31b, when the pressure accumulator temperature Ta is equal to or higher than the predetermined temperature Td, compared to the case where the pressure accumulator temperature Ta is lower than the predetermined temperature Td, Hydrogen increase and / or pressure increase in each of the pressure accumulators 31a and 31b due to filling are suppressed, and it is possible to prevent the pressure accumulator temperature Ta from excessively rising and the durability of the pressure accumulators 31a and 31b from being lowered. Further, similarly to the hydrogen stations 1 and 10 according to the first and second embodiments, the outside air temperature (for example, the ambient temperature around the pressure accumulator 31) may be used instead of the pressure accumulator temperature Ta.

以上、本発明の実施形態及びその変形例について説明したが、本発明はこれらに限定されるものではなく、さらなる改良や変更が可能である。
例えば、水素ステーションが複数の蓄圧ユニットを含み、各蓄圧ユニットが複数の蓄圧器を有してもよい。この場合であっても各蓄圧器に対して上述の処理を適用することができる。また、蓄圧器に水素を充填したり、蓄圧器から水素を放出したりするための構成(特に弁機構)は、蓄圧ユニットの構成や蓄圧器の構造などに応じて適宜設定することができる。さらに、上記各実施形態では、前記水素供給源からの水素を昇圧する昇圧装置として圧縮機2を用いているが、これに限るものではない。前記昇圧装置は蓄圧器31に充填可能な状態に水素を昇圧できるものであればよく、圧縮機2に代えて又は加えて、昇圧ポンプ及び気化器などを設けてもよい。
As mentioned above, although embodiment of this invention and its modification were demonstrated, this invention is not limited to these, The further improvement and change are possible.
For example, the hydrogen station may include a plurality of pressure accumulating units, and each pressure accumulating unit may have a plurality of pressure accumulators. Even in this case, the above-described processing can be applied to each accumulator. Moreover, the structure (especially valve mechanism) for filling the pressure accumulator with hydrogen or releasing hydrogen from the pressure accumulator can be appropriately set according to the structure of the pressure accumulator unit, the structure of the pressure accumulator, or the like. Further, in each of the above embodiments, the compressor 2 is used as a booster that boosts the hydrogen from the hydrogen supply source. However, the present invention is not limited to this. The boosting device may be any device that can boost hydrogen so that the pressure accumulator 31 can be charged, and a booster pump and a vaporizer may be provided instead of or in addition to the compressor 2.

1A,1B,10,20…水素ステーション、2…圧縮機、3,30…蓄圧ユニット、4…ディスペンサー、5,50…制御装置、7…バイパス管、31,31a,31b…蓄圧器、51…圧力センサ(圧力検知部)、52…温度センサ(温度検知部)、60…水素貯蔵容器(水素供給源)   1A, 1B, 10, 20 ... hydrogen station, 2 ... compressor, 3, 30 ... accumulator unit, 4 ... dispenser, 5, 50 ... control device, 7 ... bypass pipe, 31, 31a, 31b ... accumulator, 51 ... Pressure sensor (pressure detection part), 52 ... Temperature sensor (temperature detection part), 60 ... Hydrogen storage container (hydrogen supply source)

Claims (13)

水素供給源からの水素を昇圧して蓄圧器に充填し、蓄圧器内の水素を水素燃料タンクに供給可能な水素ステーションであって、
前記蓄圧器内の水素温度、前記蓄圧器の温度、又は前記蓄圧器周囲の外気温が所定温度以上である場合における前記蓄圧器への水素充填は、前記所定温度未満である場合に比べて、前記蓄圧器内の水素増加又は圧力上昇を抑制するように制御して行う、水素ステーション。
A hydrogen station capable of boosting hydrogen from a hydrogen supply source, filling the pressure accumulator, and supplying hydrogen in the accumulator to the hydrogen fuel tank,
Compared to the case where the hydrogen temperature in the pressure accumulator, the temperature of the pressure accumulator, or the outside air temperature around the pressure accumulator is equal to or higher than a predetermined temperature, the hydrogen filling to the pressure accumulator is lower than the predetermined temperature, A hydrogen station that is controlled to suppress an increase in hydrogen or a pressure increase in the pressure accumulator.
前記蓄圧器内の水素温度、前記蓄圧器の温度、又は前記蓄圧器周囲の外気温が前記所定温度以上である場合における前記蓄圧器への水素充填は、前記水素燃料タンクに水素を供給しながら行う、請求項1に記載の水素ステーション。   When the hydrogen temperature in the pressure accumulator, the temperature of the pressure accumulator, or the outside air temperature around the pressure accumulator is equal to or higher than the predetermined temperature, hydrogen filling the pressure accumulator is performed while supplying hydrogen to the hydrogen fuel tank. The hydrogen station according to claim 1, which is performed. 前記蓄圧器内の水素温度、前記蓄圧器の温度、又は前記蓄圧器周囲の外気温が前記所定温度以上である場合における前記蓄圧器への水素充填は、前記蓄圧器から水素を放出しながら行う、請求項1に記載の水素ステーション。   When the hydrogen temperature in the pressure accumulator, the temperature of the pressure accumulator, or the outside air temperature around the pressure accumulator is equal to or higher than the predetermined temperature, hydrogen filling the pressure accumulator is performed while releasing hydrogen from the pressure accumulator. The hydrogen station according to claim 1. 前記蓄圧器への水素の充填速度は、前記蓄圧器からの水素の放出速度以下である、請求項3に記載の水素ステーション。   The hydrogen station according to claim 3, wherein a hydrogen filling speed of the pressure accumulator is equal to or lower than a hydrogen discharging speed from the pressure accumulator. 前記水素供給源から供給された水素を昇圧する昇圧装置と、
前記昇圧装置と前記蓄圧器との間に設けられた第1開閉弁と、
前記蓄圧器から放出された水素を前記水素燃料タンクに供給するディスペンサーと、
前記蓄圧器と前記ディスペンサーとの間に設けられた第2開閉弁と、
前記蓄圧器内の水素温度、前記蓄圧器の温度、又は前記蓄圧器周囲の外気温を検出する温度検出部と、
前記昇圧装置、前記第1開閉弁、及び前記2開閉弁の作動を制御する制御装置と、
を含み、
前記制御装置は、
前記温度検出部における検出温度が前記所定温度未満の場合には、前記第2開閉弁を閉じた状態で、前記第1開閉弁を開くと共に前記昇圧装置を作動させて前記蓄圧器への水素充填を行い、
前記温度検出部における検出温度が前記所定温度以上の場合には、前記第1開閉弁及び前記第2開閉弁を開くと共に前記昇圧装置を作動させて前記蓄圧器から水素放出を行いながら前記蓄圧器への水素充填を行う、
請求項3に記載の水素ステーション。
A booster that boosts the hydrogen supplied from the hydrogen supply source;
A first on-off valve provided between the booster and the accumulator;
A dispenser for supplying hydrogen released from the pressure accumulator to the hydrogen fuel tank;
A second on-off valve provided between the pressure accumulator and the dispenser;
A temperature detector that detects the hydrogen temperature in the accumulator, the temperature of the accumulator, or the outside air temperature around the accumulator;
A control device for controlling the operation of the booster, the first on-off valve, and the second on-off valve;
Including
The controller is
When the temperature detected by the temperature detector is lower than the predetermined temperature, the first on-off valve is opened and the booster is operated while the second on-off valve is closed, and the pressure accumulator is charged with hydrogen. And
When the temperature detected by the temperature detector is equal to or higher than the predetermined temperature, the pressure accumulator is opened while opening the first on-off valve and the second on-off valve and operating the booster to release hydrogen from the accumulator. Filling hydrogen into
The hydrogen station according to claim 3.
前記水素供給源からの水素を昇圧して前記蓄圧器に充填すると共に前記蓄圧器をバイパスして前記水素燃料タンクに供給することが可能であり、
前記蓄圧器内の水素温度、前記蓄圧器の温度、又は前記蓄圧器周囲の外気温が前記所定温度以上である場合には、昇圧水素の一部を、前記蓄圧器をバイパスして前記水素燃料タンクに供給し、前記昇圧水素の他の一部を前記蓄圧器に充填するように構成された、請求項2に記載の水素ステーション。
It is possible to boost the hydrogen from the hydrogen supply source, fill the accumulator and supply the hydrogen fuel tank by bypassing the accumulator,
When the hydrogen temperature in the pressure accumulator, the temperature of the pressure accumulator, or the outside air temperature around the pressure accumulator is equal to or higher than the predetermined temperature, a part of the boosted hydrogen is bypassed by the pressure accumulator and the hydrogen fuel The hydrogen station according to claim 2, wherein the hydrogen station is configured to supply a tank and fill the accumulator with another part of the pressurized hydrogen.
前記水素供給源から供給された水素を昇圧する昇圧装置と、
前記昇圧装置と前記蓄圧器との間に設けられた第1開閉弁と、
前記蓄圧器から放出された水素又は前記昇圧装置によって昇圧された水素を前記水素燃料タンクに供給するディスペンサーと、
前記昇圧装置で昇圧された水素を、前記蓄圧器を迂回して前記ディスペンサーに供給するバイパス管と、
前記蓄圧器と前記ディスペンサーとの間に設けられた第2開閉弁と、
前記バイパス管に設けられた第3開閉弁と、
前記蓄圧器内の水素温度、前記蓄圧器の温度、又は前記蓄圧器周囲の外気温を検出する温度検出部と、
前記昇圧装置、前記第1開閉弁、前記第2開閉弁、及び前記第3開閉弁の作動を制御する制御装置と、
を含み、
前記制御装置は、
前記温度検出部における検出温度が前記所定温度未満の場合には、前記第2開閉弁及び前記第3開閉弁を閉じた状態で、前記第1開閉弁を開くと共に前記昇圧装置を作動させて前記蓄圧器への水素充填を行い、
前記温度検出部における検出温度が前記所定温度以上の場合には、前記第2開閉弁を閉じた状態で、前記第1開閉弁及び前記第3開閉弁を開くと共に前記昇圧装置を作動させて前記水素燃料タンクへの水素供給を行いながら前記蓄圧器への水素充填を行う、
請求項6に記載の水素ステーション。
A booster that boosts the hydrogen supplied from the hydrogen supply source;
A first on-off valve provided between the booster and the accumulator;
A dispenser for supplying hydrogen released from the pressure accumulator or hydrogen boosted by the booster to the hydrogen fuel tank;
A bypass pipe for supplying hydrogen boosted by the booster device to the dispenser by bypassing the accumulator;
A second on-off valve provided between the pressure accumulator and the dispenser;
A third on-off valve provided in the bypass pipe;
A temperature detector that detects the hydrogen temperature in the accumulator, the temperature of the accumulator, or the outside air temperature around the accumulator;
A control device for controlling the operation of the booster, the first on-off valve, the second on-off valve, and the third on-off valve;
Including
The controller is
When the temperature detected by the temperature detector is lower than the predetermined temperature, the first on-off valve is opened and the booster is operated while the second on-off valve and the third on-off valve are closed. Fill the accumulator with hydrogen,
When the temperature detected by the temperature detector is equal to or higher than the predetermined temperature, the first on-off valve and the third on-off valve are opened while the second on-off valve is closed, and the booster is operated to Filling the accumulator with hydrogen while supplying hydrogen to the hydrogen fuel tank,
The hydrogen station according to claim 6.
前記蓄圧器は、複数の蓄圧器によって構成され、
前記複数の蓄圧器の切り替えを行って前記水素燃料タンクに水素を供給可能であり、
前記蓄圧器内の水素温度、前記蓄圧器の温度、又は前記蓄圧器周囲の外気温が前記所定温度以上である場合には、前記複数の蓄圧器の切り替えを行って前記水素燃料タンクへの水素供給を行いつつ、前記水素燃料タンクへの水素供給のために水素を放出した後の蓄圧器に対して水素充填を行うように構成された、請求項2に記載の水素ステーション。
The accumulator is constituted by a plurality of accumulators,
It is possible to supply hydrogen to the hydrogen fuel tank by switching the plurality of pressure accumulators,
When the hydrogen temperature in the pressure accumulator, the temperature of the pressure accumulator, or the outside air temperature around the pressure accumulator is equal to or higher than the predetermined temperature, the plurality of pressure accumulators are switched to supply hydrogen to the hydrogen fuel tank. 3. The hydrogen station according to claim 2, wherein the hydrogen station is configured to charge the pressure accumulator after discharging hydrogen for supplying hydrogen to the hydrogen fuel tank while supplying the hydrogen.
前記蓄圧器は、第1蓄圧器及び第2蓄圧器を備え、
前記水素供給源から供給された水素を昇圧する昇圧装置と、
前記昇圧装置と前記第1蓄圧器との間に設けられた第1開閉弁と、
前記昇圧装置と前記第2蓄圧器との間に設けられた第2開閉弁と、
前記第1蓄圧器から放出された水素又は前記第2蓄圧器から放出された水素を前記水素燃料タンクに供給するディスペンサーと、
前記第1蓄圧器と前記ディスペンサーとの間に設けられた第3開閉弁と、
前記第2蓄圧器と前記ディスペンサーとの間に設けられた第4開閉弁と、
前記蓄圧器内の水素温度、前記蓄圧器の温度、又は前記蓄圧器周囲の外気温を検出する温度検出部と、
前記昇圧装置、前記第1開閉弁、前記第2開閉弁、前記第3開閉弁、及び前記4開閉弁の作動を制御する制御装置と、
を含み、
前記制御装置は、
前記温度検出部における検出温度が前記所定温度未満の場合には、前記第3開閉弁及び前記第4開閉弁を閉じた状態で、前記第1開閉弁及び前記第2開閉弁の少なくとも一方を開くと共に前記昇圧装置を作動させて前記第1蓄圧器及び前記第2蓄圧器の少なくとも一方への水素充填を行い、
前記温度検出部における検出温度が前記所定温度以上である場合には、前記第2開閉弁及び前記第3開閉弁を閉じた状態で、前記第1開閉弁及び前記第4開閉弁を開くと共に前記昇圧装置を作動させて前記第2蓄圧器から水素放出を行いながら前記第1蓄圧器への水素充填を行い、又は、前記第1開閉弁及び前記第4開閉弁を閉じた状態で、前記第2開閉弁及び前記第3開閉弁を開くと共に前記昇圧装置を作動させて前記第1蓄圧器から水素放出を行いながら前記第2蓄圧器への水素充填を行う、
請求項8に記載の水素ステーション。
The accumulator includes a first accumulator and a second accumulator,
A booster that boosts the hydrogen supplied from the hydrogen supply source;
A first on-off valve provided between the booster and the first accumulator;
A second on-off valve provided between the booster and the second accumulator;
A dispenser for supplying hydrogen released from the first pressure accumulator or hydrogen released from the second pressure accumulator to the hydrogen fuel tank;
A third on-off valve provided between the first pressure accumulator and the dispenser;
A fourth on-off valve provided between the second pressure accumulator and the dispenser;
A temperature detector that detects the hydrogen temperature in the accumulator, the temperature of the accumulator, or the outside air temperature around the accumulator;
A control device for controlling the operation of the booster, the first on-off valve, the second on-off valve, the third on-off valve, and the fourth on-off valve;
Including
The controller is
When the temperature detected by the temperature detector is lower than the predetermined temperature, at least one of the first on-off valve and the second on-off valve is opened with the third on-off valve and the fourth on-off valve closed. And at least one of the first pressure accumulator and the second pressure accumulator is operated by operating the pressure boosting device,
When the temperature detected by the temperature detector is equal to or higher than the predetermined temperature, the first on-off valve and the fourth on-off valve are opened while the second on-off valve and the third on-off valve are closed, and the The first pressure accumulator is filled with hydrogen while operating the pressure booster to release hydrogen from the second pressure accumulator, or the first on-off valve and the fourth on-off valve are closed. Opening the second on-off valve and the third on-off valve and operating the booster to release hydrogen from the first accumulator while filling the second accumulator with hydrogen;
The hydrogen station according to claim 8.
前記蓄圧器の温度は、前記蓄圧器を配置した状態での上部の表面温度である、請求項1に記載の水素ステーション。   The hydrogen station according to claim 1, wherein the temperature of the pressure accumulator is an upper surface temperature in a state where the pressure accumulator is arranged. 水素ステーションにおける蓄圧器への水素充填方法であって、
前記水素ステーションは、水素供給源からの水素を昇圧して前記蓄圧器に充填し、前記蓄圧器内の水素を水素燃料タンクに供給可能であり、
前記蓄圧器内の水素温度、前記蓄圧器の温度、又は前記蓄圧器周囲の外気温を検出し、
検出温度が所定温度以上である場合における前記蓄圧器への水素充填は、前記所定温度未満である場合に比べて、前記蓄圧器内の水素増加又は圧力上昇を抑制するように制御して行う、方法。
A hydrogen filling method for a pressure accumulator in a hydrogen station,
The hydrogen station can boost the hydrogen from a hydrogen supply source and fill the accumulator, and supply the hydrogen in the accumulator to a hydrogen fuel tank.
Detecting the hydrogen temperature in the pressure accumulator, the temperature of the pressure accumulator, or the outside air temperature around the pressure accumulator,
Filling the pressure accumulator when the detected temperature is equal to or higher than a predetermined temperature is performed in a controlled manner so as to suppress an increase in hydrogen or a pressure increase in the pressure accumulator as compared to when the temperature is lower than the predetermined temperature. Method.
前記検出温度が前記所定温度以上である場合における前記蓄圧器への水素充填は、前記水素燃料タンクに水素を供給しながら行う、請求項11に記載の方法。   The method according to claim 11, wherein hydrogen filling the pressure accumulator when the detected temperature is equal to or higher than the predetermined temperature is performed while supplying hydrogen to the hydrogen fuel tank. 前記検出温度が前記所定温度以上である場合における前記蓄圧器への水素充填は、前記蓄圧器から水素を放出しながら行う、請求項11に記載の方法。   The method according to claim 11, wherein filling of the pressure accumulator when the detected temperature is equal to or higher than the predetermined temperature is performed while releasing hydrogen from the pressure accumulator.
JP2014549853A 2012-11-27 2013-11-27 Hydrogen station and hydrogen filling method for pressure accumulator in hydrogen station Active JP6077565B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012258793 2012-11-27
JP2012258793 2012-11-27
PCT/JP2013/081875 WO2014084243A1 (en) 2012-11-27 2013-11-27 Hydrogen station and method for filling hydrogen in to pressure accumulator in hydrogen station

Publications (2)

Publication Number Publication Date
JPWO2014084243A1 JPWO2014084243A1 (en) 2017-01-05
JP6077565B2 true JP6077565B2 (en) 2017-02-08

Family

ID=50827875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014549853A Active JP6077565B2 (en) 2012-11-27 2013-11-27 Hydrogen station and hydrogen filling method for pressure accumulator in hydrogen station

Country Status (2)

Country Link
JP (1) JP6077565B2 (en)
WO (1) WO2014084243A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6279340B2 (en) 2014-02-14 2018-02-14 株式会社神戸製鋼所 Gas supply device, hydrogen station and gas supply method
DE102014216371A1 (en) * 2014-08-19 2016-02-25 Bayerische Motoren Werke Aktiengesellschaft Charging device and system for loading a motor vehicle
US9772068B2 (en) 2014-10-28 2017-09-26 CNG Services, LLC Compressed gas delivery system
JP6429085B2 (en) * 2015-04-16 2018-11-28 日立オートモティブシステムズメジャメント株式会社 Gas supply device
US9863583B2 (en) 2015-09-21 2018-01-09 Air Products And Chemicals, Inc. Method of operating a hydrogen dispensing unit
EP3144577B1 (en) * 2015-09-21 2018-08-01 Air Products And Chemicals, Inc. Method of operating a hydrogen dispensing unit
KR102364880B1 (en) * 2017-07-31 2022-02-18 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Hydrogen refueling system and hydrogen refueling method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209980A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Gas supply device and gas station equipped with gas supply device
JP2011099468A (en) * 2009-11-04 2011-05-19 Toyota Motor Corp Gas filling device and method of filling gas
JP5261408B2 (en) * 2010-01-25 2013-08-14 トヨタ自動車株式会社 Fuel gas station, fuel gas filling system, and fuel gas supply method

Also Published As

Publication number Publication date
WO2014084243A1 (en) 2014-06-05
JPWO2014084243A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6077565B2 (en) Hydrogen station and hydrogen filling method for pressure accumulator in hydrogen station
JP6114676B2 (en) Hydrogen station
US10480715B2 (en) Gas supply device and method for starting operation of gas supply device
JP6526984B2 (en) Gas filling system
US20150167895A1 (en) Gas-filling apparatus and method for filling gas
JP5368733B2 (en) Control method of hydrogen supply device for fuel cell
CA3010999C (en) Gas supply device and method for stopping operation of gas supply device
JP6391428B2 (en) Hydrogen filling method and hydrogen station
JP5852948B2 (en) Offsite hydrogen station and hydrogen supply method for offsite hydrogen station
JP5387846B2 (en) Gas station and gas filling system
JP2012047234A (en) Gas filling device
AU2019259382A1 (en) Gas charging device
US20190178448A1 (en) Method for Operating a Valve of a Pressure Vessel System, and Pressure Vessel System
JP2016183686A (en) Hydrogen station and pressure accumulator filling method in hydrogen station
JP6440545B2 (en) Accumulator unit, hydrogen station, and hydrogen filling method
JP6413532B2 (en) Fuel cell system
JP2016161071A (en) Hydrogen filling system
JP6102006B2 (en) Gas filling system, gas filling method, and control device
JP2008281108A (en) Gas supply device
JP6429085B2 (en) Gas supply device
JP6077566B2 (en) Hydrogen station and hydrogen supply method
JP6378632B2 (en) Hydrogen unloading method and hydrogen station
JP2015169221A (en) Gas filling device
JP2008240983A (en) Compressed hydrogen gas filling device and compressed hydrogen gas filling method
JP2006275153A (en) Gas supply device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170112

R150 Certificate of patent or registration of utility model

Ref document number: 6077565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250