JP6108330B2 - Silicon carbide semiconductor device and manufacturing method thereof - Google Patents

Silicon carbide semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP6108330B2
JP6108330B2 JP2011246096A JP2011246096A JP6108330B2 JP 6108330 B2 JP6108330 B2 JP 6108330B2 JP 2011246096 A JP2011246096 A JP 2011246096A JP 2011246096 A JP2011246096 A JP 2011246096A JP 6108330 B2 JP6108330 B2 JP 6108330B2
Authority
JP
Japan
Prior art keywords
silicon carbide
epitaxial layer
mosfet
sic
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011246096A
Other languages
Japanese (ja)
Other versions
JP2013102106A (en
Inventor
俵 武志
武志 俵
原田 信介
信介 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fuji Electric Co Ltd
Priority to JP2011246096A priority Critical patent/JP6108330B2/en
Publication of JP2013102106A publication Critical patent/JP2013102106A/en
Application granted granted Critical
Publication of JP6108330B2 publication Critical patent/JP6108330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、炭化珪素半導体からなるMOSFETの低抵抗化を実現する炭化珪素半導体装置の製造方法、及び該製造方法で製造された炭化珪素半導体装置に関する。   The present invention relates to a method for manufacturing a silicon carbide semiconductor device that realizes low resistance of a MOSFET made of a silicon carbide semiconductor, and a silicon carbide semiconductor device manufactured by the manufacturing method.

炭化珪素(以下SiC)を材料に用いた半導体は、シリコン(以下Si)の次の世代の半導体素子として期待されている。SiC半導体は、Siを材料に用いた従来の半導体素子と比較して、オン状態における素子の抵抗を数百分の1に低減できること、また、より高温(200℃以上)の環境下で使用可能なこと等、様々な利点がある。これは、SiCのバンドギャップがSiに対して3倍程度大きく、絶縁破壊電界強度がSiより1桁近く大きいという材料自体の特性による。   A semiconductor using silicon carbide (hereinafter referred to as SiC) as a material is expected as a semiconductor element of the next generation of silicon (hereinafter referred to as Si). SiC semiconductors can reduce the resistance of the device in the on state to hundreds of times compared to conventional semiconductor devices using Si as a material, and can be used in higher temperature (200 ° C or higher) environments. There are various advantages. This is due to the characteristics of the material itself that the band gap of SiC is about three times as large as that of Si, and that the breakdown field strength is nearly an order of magnitude greater than that of Si.

SiCデバイスとしては、現在までに、ショットキーバリアダイオード、プレーナー型縦型MOSFETが製品化されている。   As SiC devices, Schottky barrier diodes and planar type vertical MOSFETs have been commercialized so far.

SiCのMOSFETでは、高耐圧で低いオン抵抗が期待されるものの、現在実現できていない。SiC−MOSFETに関して、例えば特許文献1〜5がある。   SiC MOSFETs are expected to have a high breakdown voltage and a low on-resistance, but have not been realized at present. For example, there are Patent Documents 1 to 5 regarding SiC-MOSFETs.

国際公開2004−036655International Publication 2004-036655 特開2003−86792号公報JP 2003-86792 A 特表2004−511101号公報Special table 2004-511101 gazette 特開平11−121748号公報JP-A-11-121748 特開平11−251592号公報Japanese Patent Laid-Open No. 11-251592

SiC−MOSFETは、主としてチャネル移動度が低いため、チャネル抵抗が高く、期待される低いオン抵抗が得られていない。その理由は、次のように考えられる。第一には、SiCは不純物の拡散係数が小さいため、チャネル領域をイオン注入で作らざるを得ず、イオン注入によって誘起される結晶欠陥や、活性化しない格子間の不純物が、チャネル移動度を下げている。第二には、SiCでは、酸化の際に、炭素が酸化膜/SiC界面に残留してしまい、その残留炭素が界面準位を増大させ、チャネル移動度を低下させている。   Since SiC-MOSFET mainly has low channel mobility, the channel resistance is high and the expected low on-resistance cannot be obtained. The reason is considered as follows. First, because SiC has a small impurity diffusion coefficient, the channel region must be formed by ion implantation, and crystal defects induced by ion implantation and interstitial impurities that are not activated cause channel mobility. It is lowered. Second, in SiC, carbon remains at the oxide film / SiC interface during oxidation, and the residual carbon increases the interface state and decreases the channel mobility.

第一の問題については、チャネル領域をエピタキシャル成長で作成したMOSFETが知られている(特許文献1参照)。第二の問題については、ゲート酸化後に水素やN2O雰囲気のアニール(POA:Post−Oxidation Annealing)を行って、残留炭素による界面準位をパッシベートする技術が知られている(特許文献2、3参照)。 Regarding the first problem, a MOSFET in which a channel region is formed by epitaxial growth is known (see Patent Document 1). As for the second problem, a technique is known in which annealing in a hydrogen or N 2 O atmosphere (POA: Post-Oxidation Annealing) is performed after gate oxidation to passivat the interface state due to residual carbon (Patent Document 2, 3).

一方、残留炭素の発生を抑える方法がある。例えば、SiC上にSiチャネル層を形成し、その表面にゲート酸化膜を形成する方法(特許文献4参照)、Si原子でSiC表面をパッシベートしてからその上にLTO膜(Low temperature oxide膜)を堆積し、熱処理してSiのみ酸化する方法(特許文献5参照)が提案されている。しかし前者は、Siを用いているため、Siの部分で絶縁破壊電界強度が低くなりSiCの利点が失われるという問題がある。また後者はパッシベートした表面Si層のみ酸化する必要があるため、熱処理温度を低く抑える必要があり、酸化膜の品質が低下して耐圧が低くなるという問題がある。   On the other hand, there is a method for suppressing the generation of residual carbon. For example, a method of forming a Si channel layer on SiC and forming a gate oxide film on the surface thereof (refer to Patent Document 4), a SiC surface is passivated with Si atoms, and then an LTO film (Low temperature oxide film) thereon Has been proposed, in which only Si is oxidized by heat treatment (see Patent Document 5). However, since the former uses Si, there is a problem that the strength of the dielectric breakdown field is reduced at the Si portion and the advantage of SiC is lost. Moreover, since the latter needs to oxidize only the passivated surface Si layer, it is necessary to keep the heat treatment temperature low, and there is a problem that the quality of the oxide film is lowered and the breakdown voltage is lowered.

本発明は、これらの問題を解決しようとするものであり、SiC−MOSFETにおいて、MOSFETのチャネル移動度を上昇させることを目的とするものである。また、本発明は、酸化時の残留炭素を低減し、MOSFETのチャネル移動度を上昇させるための手法を提供することを目的とするものである。   The present invention is intended to solve these problems, and an object of the present invention is to increase the channel mobility of a MOSFET in a SiC-MOSFET. Another object of the present invention is to provide a technique for reducing residual carbon during oxidation and increasing the channel mobility of a MOSFET.

本発明は、SiC−MOSFETのチャネル層を形成する際に炭素の原子空孔(炭素空孔ともいう)を意図的に導入するものである。ここで炭素の原子空孔とはエピタキシャル膜を構成するSiCの単結晶の格子点で炭素原子のあるべき位置に炭素原子が存在しないことをいう。   The present invention intentionally introduces carbon atomic vacancies (also referred to as carbon vacancies) when forming a channel layer of an SiC-MOSFET. Here, the carbon vacancies means that no carbon atom exists at the position where the carbon atom should be at the lattice point of the SiC single crystal constituting the epitaxial film.

本発明のSiC−MOSFETの構造及びその製造方法を、図1及び図2を参照して説明する。図1はMOSFETの製造工程途中の断面図である。図2はMOSFETの断面図である。n+型SiC基板1の上にn−型エピタキシャル層2を形成する。その後、n−型エピタキシャル層2の上に酸化膜のマスクを形成し、Alを選択的にイオン注入してp+型ベース領域3を形成し、酸化膜を除去する。その上にチャネル領域としてp−型エピタキシャル層4を成長させる。該エピタキシャル層4の成長において、本発明では、エピタキシャル成長条件を調整し、p−型エピタキシャル層4中に炭素空孔を導入する(図1参照)。   The structure of the SiC-MOSFET of the present invention and the manufacturing method thereof will be described with reference to FIGS. FIG. 1 is a cross-sectional view in the middle of a MOSFET manufacturing process. FIG. 2 is a sectional view of the MOSFET. An n− type epitaxial layer 2 is formed on n + type SiC substrate 1. Thereafter, an oxide film mask is formed on the n − type epitaxial layer 2, Al is selectively ion-implanted to form a p + type base region 3, and the oxide film is removed. A p − type epitaxial layer 4 is grown thereon as a channel region. In the growth of the epitaxial layer 4, in the present invention, the epitaxial growth conditions are adjusted, and carbon vacancies are introduced into the p − type epitaxial layer 4 (see FIG. 1).

その後、酸化膜マスクの形成とイオン注入により、n+型ソース領域5、p+型コンタクト領域(図示せず)、低濃度n−型ベース領域6を形成する。続いて、活性化熱処理を行い、注入イオンを活性化させる。その後、ゲート絶縁膜7を形成し、続いてゲート電極8、層間絶縁膜9、ソース電極10を形成するとともに、n+型SiC基板1の裏面にドレイン電極11の形成を行うことにより、MOSFETを作製する(図2参照)。   Thereafter, an n + type source region 5, a p + type contact region (not shown), and a low concentration n − type base region 6 are formed by forming an oxide film mask and ion implantation. Subsequently, an activation heat treatment is performed to activate the implanted ions. Thereafter, a gate insulating film 7 is formed, subsequently a gate electrode 8, an interlayer insulating film 9, and a source electrode 10 are formed, and a drain electrode 11 is formed on the back surface of the n + type SiC substrate 1, thereby manufacturing a MOSFET. (See FIG. 2).

本発明は、SiC−MOSFETにおいて、チャネル層を形成する際に炭素空孔を意図的に導入することにより、SiC層中から予め炭素を除いておくことができ、酸化した際に、酸化膜/SiC界面の残留炭素を減らすことができる。しかも、チャネル層表面だけでなく、チャネル層全体に渡って炭素空孔が存在するため、酸化によって酸化膜/SiC界面がチャネル層表面から内部に移動しても、効果が得られる。   In the SiC-MOSFET, the carbon vacancies are intentionally introduced when forming the channel layer in the SiC-MOSFET, so that carbon can be previously removed from the SiC layer. Residual carbon at the SiC interface can be reduced. Moreover, since carbon vacancies exist not only on the surface of the channel layer but also on the entire channel layer, an effect can be obtained even if the oxide film / SiC interface moves from the surface of the channel layer to the inside due to oxidation.

本発明の製造方法は、従来提案されてきた水素やN2O雰囲気のPOAによる界面準位をパッシベートしてチャネル移動度を向上させる方法と組み合わせて用いることで、さらにチャネル移動度を上昇させることが可能である。 The manufacturing method of the present invention further increases the channel mobility by using it in combination with the conventionally proposed method of improving the channel mobility by passivating the interface state due to POA in an atmosphere of hydrogen or N 2 O. Is possible.

炭素空孔を導入するには、チャネル領域のエピタキシャル成長時に、Si種を含むガスとC種を含むガスの流量比率(以下、C/Si比)を、低いC/Si比に制御してエピタキシャル成長させることで実現することができる。ただし、C/Si比を下げていくにつれて成長速度が低下するため、プロセス効率に影響しない程度の成長速度3μm/h以上に抑える必要がある。   In order to introduce carbon vacancies, during the epitaxial growth of the channel region, the flow rate ratio of the gas containing Si species and the gas containing C species (hereinafter referred to as C / Si ratio) is controlled to be a low C / Si ratio. Can be realized. However, since the growth rate decreases as the C / Si ratio is lowered, it is necessary to suppress the growth rate to 3 μm / h or more that does not affect the process efficiency.

導入された炭素空孔を確認する方法としては、チャネル層がn型エピタキシャル層の場合についてはZ1/2、p型エピタキシャル層の場合についてはHK4に代表される炭素空孔に起因したトラップ準位密度を、DLTS(Deep Level Transient Spectroscopy)法で評価する方法がある。Z1/2派伝導帯から0.65eVの位置にある電子トラップ準位、HK4は価電子帯から1.44eVの位置にあるホールトラップ準位である。 As a method for confirming the introduced carbon vacancies, the trap level caused by the carbon vacancies represented by HK4 when the channel layer is an n-type epitaxial layer and Z 1/2 when the channel layer is a p-type epitaxial layer is used. There is a method of evaluating the unit density by a DLTS (Deep Level Transient Spectroscopy) method. The electron trap level at 0.65 eV from the Z 1/2 conduction band, and HK4 is the hole trap level at 1.44 eV from the valence band.

トラップ準位密度は、平均的なエピタキシャル層では2×1013cm-3以下であるが、本発明のように意図的に炭素空孔を導入した場合、概ね5×1013cm-3以上の高い密度となる。またトラップ準位密度が高すぎると結晶の不完全性により素子のリーク電流が大きくなるため、1×1014cm-3以下に抑えるのが良い。炭素空孔に起因するトラップ準位密度はC/Si比と負の相関を持つので、C/Si比を調整することでトラップ準位密度を所定値以下に抑えることができる。 The trap level density is 2 × 10 13 cm −3 or less in the average epitaxial layer, but when carbon vacancies are intentionally introduced as in the present invention, it is approximately 5 × 10 13 cm −3 or more. High density. In addition, if the trap level density is too high, the leakage current of the element increases due to crystal imperfections, so that it is preferable to suppress the density to 1 × 10 14 cm −3 or less. Since the trap level density caused by the carbon vacancies has a negative correlation with the C / Si ratio, the trap level density can be suppressed to a predetermined value or less by adjusting the C / Si ratio.

本発明は、前記目的を達成するために、以下の特徴を有するものである。本発明は、チャネル層をエピタキシャル成長により形成し、成長の際にC/Si比を意図的に小さく制御することにより、エピタキシャル膜中に炭素空孔を多数導入することを特徴とする。   The present invention has the following features in order to achieve the above object. The present invention is characterized in that a channel layer is formed by epitaxial growth, and a large number of carbon vacancies are introduced into the epitaxial film by intentionally controlling the C / Si ratio to be small during the growth.

本発明は、炭化半珪素半導体装置において、MOSFETのチャネル領域となる炭化珪素エピタキシャル膜に炭素の原子空孔が導入されて、炭素の原子空孔に起因するトラップ準位密度が5×1013cm-3以上1×1014cm-3以下であることを特徴とする。本発明は、炭化珪素半導体装置の製造方法において、MOSFETのチャネル領域となる炭化珪素エピタキシャル膜を作成する際に、炭素の原子空孔を導入する工程を有し、炭素の原子空孔に起因するトラップ準位密度が5×1013cm-3以上1×1014cm-3以下とすることを特徴とする。本発明の炭素の原子空孔を導入する工程は、Si種を含むガスとC種を含むガスの流量比率を、C/Si比が0.4以上0.8以下となるように制御して、前記炭化珪素エピタキシャル膜をエピタキシャル成長させることが望ましい。 According to the present invention, in a silicon carbide semiconductor device, carbon atomic vacancies are introduced into a silicon carbide epitaxial film that becomes a channel region of a MOSFET, and the trap state density caused by the carbon atomic vacancies is 5 × 10 13 cm. -3 or more and 1 × 10 14 cm -3 or less. The present invention includes a step of introducing carbon atomic vacancies when forming a silicon carbide epitaxial film that becomes a channel region of a MOSFET in a method for manufacturing a silicon carbide semiconductor device, resulting from carbon atomic vacancies. The trap level density is 5 × 10 13 cm −3 or more and 1 × 10 14 cm −3 or less. In the step of introducing carbon vacancies of the present invention, the flow ratio of the gas containing Si species and the gas containing C species is controlled so that the C / Si ratio is 0.4 or more and 0.8 or less. Preferably, the silicon carbide epitaxial film is epitaxially grown.

本発明の装置は、SiC−MOSFETのチャネル領域のエピタキシャル成長時に低いC/Si比で成長させることで、炭素空孔をエピタキシャル膜に導入することができ、MOSFETとして、高いチャネル移動度を得ることができ、素子を低抵抗化することができる。   The device of the present invention allows carbon vacancies to be introduced into the epitaxial film by growing at a low C / Si ratio during the epitaxial growth of the channel region of the SiC-MOSFET, and as a MOSFET, high channel mobility can be obtained. The resistance of the element can be reduced.

本発明によれば、炭素の原子空孔が炭化珪素エピタキシャル層に導入され、C/Si比が0.4以上0.8以下の範囲で、トラップ準位密度が5×1013cm-3以上の高い密度が得られる。また、本発明において、トラップ準位密度は、1×1014cm-3以下に抑えるので、結晶の不完全性による素子のリーク電流が増大することはない。 According to the present invention, carbon atomic vacancies are introduced into the silicon carbide epitaxial layer, and the trap level density is 5 × 10 13 cm −3 or more when the C / Si ratio is in the range of 0.4 or more and 0.8 or less. A high density of can be obtained. In the present invention, since the trap state density is suppressed to 1 × 10 14 cm −3 or less, the leakage current of the element due to crystal imperfection does not increase.

本発明によれば、C/Si比を0.4以上0.8以下の範囲となるよう制御してエピタキシャル成長させることにより、成膜速度を3μm/h以上に維持しつつ、従来のC/Si比1.4と比べて界面準位密度を低減することができ、その結果チャンネル移動度を向上させることができる。   According to the present invention, the conventional C / Si ratio is maintained at 3 μm / h or more by controlling the C / Si ratio to be in the range of 0.4 or more and 0.8 or less and performing epitaxial growth. Compared with the ratio of 1.4, the interface state density can be reduced, and as a result, the channel mobility can be improved.

本発明の実施例1の製造方法を示す図。The figure which shows the manufacturing method of Example 1 of this invention. 本発明及び従来のSiC−MOSFETを示す概略図。The schematic which shows this invention and the conventional SiC-MOSFET. C/Si比と界面準位密度及び成膜速度の関係を示す図。The figure which shows the relationship between C / Si ratio, an interface state density, and the film-forming speed | rate.

本発明の、SiC−MOSFETのチャネル層を形成する際に炭素の原子空孔を意図的に導入する方法及び該方法により製造されたSiC−MOSFETについて、以下詳細に説明する。   A method for intentionally introducing carbon vacancies when forming a channel layer of a SiC-MOSFET of the present invention and a SiC-MOSFET manufactured by the method will be described in detail below.

(実施の形態1)
本実施の形態は、炭化珪素エピタキシャル膜をエピタキシャル成長させる工程で、炭素空孔を意図的に導入する方法である。
(Embodiment 1)
The present embodiment is a method of intentionally introducing carbon vacancies in the step of epitaxially growing a silicon carbide epitaxial film.

まず予備実験として、エピタキシャル層を成膜する際の反応ガスのC/Si比が異なる複数の場合について、作成されたエピタキシャル層を調べた。エピタキシャル成長炉内に4H−SiC(000−1)面4°オフのn+型SiC基板を設置し、温度1670℃、圧力10000Paに保持しつつ、キャリアガスとして水素100slm、反応ガスとしてモノシラン50sccm及びプロパン23.3〜6.7sccm(C/Si比で1.4〜0.4に相当する。)、ドーパントガスとして窒素0.1sccmを流して、およそ5μm厚さ、ドーピング濃度1×1016cm-3のn−型エピタキシャル層を成膜した。その後、Wet酸化により酸化膜を50nm形成し、その上にAl電極を付けてパターンニングし、酸化膜評価用テストデバイスを作成し、容量−電圧(C−V)法測定によりSiCと酸化膜界面の界面準位密度を評価した。 First, as a preliminary experiment, the prepared epitaxial layers were examined for a plurality of cases in which the C / Si ratio of the reaction gas when forming the epitaxial layers was different. An n + type SiC substrate with 4 ° -off of 4H-SiC (000-1) plane is placed in the epitaxial growth furnace, and maintained at a temperature of 1670 ° C. and a pressure of 10000 Pa. 0.3 to 6.7 sccm (corresponding to a C / Si ratio of 1.4 to 0.4), and 0.1 sccm of nitrogen as a dopant gas, about 5 μm thickness, doping concentration 1 × 10 16 cm −3 An n-type epitaxial layer was formed. Then, an oxide film of 50 nm is formed by wet oxidation, an Al electrode is formed on the oxide film, and patterning is performed. A test device for evaluating an oxide film is created, and an interface between SiC and the oxide film is measured by capacitance-voltage (CV) method measurement. The interface state density of was evaluated.

評価の結果を図3に示す。図3は、C/Si比と、界面準位密度及び成膜速度の関係を示す図である。SiCと酸化膜界面の界面準位密度を半導体エネルギーバンドの伝導帯端(C−V法の評価条件である。)から0.1−0.2eVの深さで比較した結果、C/Si比を0.8以下に下げていくと界面準位密度が低減していくことが分かった。また成膜速度について調べたところ、C/Si比を下げるにつれて徐々に低下し、C/Si比を0.4に下げると成膜速度が3μm/hに低下することが分かった。   The evaluation results are shown in FIG. FIG. 3 is a graph showing the relationship between the C / Si ratio, the interface state density, and the film formation rate. As a result of comparing the interface state density between the SiC and the oxide film interface at a depth of 0.1 to 0.2 eV from the conduction band edge of the semiconductor energy band (which is an evaluation condition of the CV method), the C / Si ratio It has been found that the interface state density decreases as the value is lowered to 0.8 or less. Further, when the film formation rate was examined, it was found that the film formation rate gradually decreased as the C / Si ratio was decreased, and that the film formation rate decreased to 3 μm / h when the C / Si ratio was decreased to 0.4.

次に本実施の形態について、図1及び2を参照して以下説明する。図1は、SiC−MOSFETの、エピタキシャル膜の成長工程を示す図であり、図2は、SiC−MOSFET素子の断面構造を示す図である。本実施の形態の例として、1.2kV耐圧のプレーナー型縦型MOSFETを試作した。まず4H−SiC(000−1)面4°オフのn+型SiC基板1の上に窒素を1×1016cm-3にドープした、10μmの厚さのn−型エピタキシャル層2をC/Si比1.3で成膜した。続いて、その上に酸化膜のマスクを形成し、Alを選択的にイオン注入し、p+型ベース領域3を形成し、酸化膜を除去した。その上にチャネル領域として0.5μmの厚さのp−型エピタキシャル層4を成長させた。p−型エピタキシャル層4は、C/Si比が0.6となるようなC38/SiH4ガス流量比でエピタキシャル成長させることで形成した。この際の断面図が図1である。 Next, the present embodiment will be described below with reference to FIGS. FIG. 1 is a diagram showing an epitaxial film growth process of SiC-MOSFET, and FIG. 2 is a diagram showing a cross-sectional structure of the SiC-MOSFET element. As an example of this embodiment, a planar type vertical MOSFET having a withstand voltage of 1.2 kV was experimentally manufactured. First, an n − type epitaxial layer 2 having a thickness of 10 μm, doped with nitrogen at 1 × 10 16 cm −3 on an n + type SiC substrate 1 with 4 ° off of 4H—SiC (000-1) plane, is formed into C / Si. Films were formed at a ratio of 1.3. Subsequently, an oxide film mask was formed thereon, Al was selectively ion-implanted to form the p + -type base region 3, and the oxide film was removed. A p − type epitaxial layer 4 having a thickness of 0.5 μm was grown thereon as a channel region. The p-type epitaxial layer 4 was formed by epitaxial growth at a C 3 H 8 / SiH 4 gas flow rate ratio such that the C / Si ratio was 0.6. FIG. 1 is a cross-sectional view at this time.

その後、酸化膜マスクの形成と燐イオン注入によりn+型ソース領域5、アルミニウムイオン注入によりp+型コンタクト領域(図示せず)、窒素イオン注入により低濃度n−型ベース領域6を形成した。続いて、活性化熱処理を行い、注入イオンを活性化させた。その後、ゲート酸化膜7を水蒸気雰囲気中でWet酸化により形成した。続いて、ポリシリコンによるゲート電極8、堆積酸化膜による層間絶縁膜9、ニッケルによるソース電極10および、ドレイン電極11の形成を行い、MOSFET1を作製した。   Thereafter, an n + -type source region 5 was formed by forming an oxide film mask and phosphorus ions, a p + -type contact region (not shown) was formed by aluminum ion implantation, and a low-concentration n − -type base region 6 was formed by nitrogen ion implantation. Subsequently, an activation heat treatment was performed to activate the implanted ions. Thereafter, the gate oxide film 7 was formed by wet oxidation in a water vapor atmosphere. Subsequently, a gate electrode 8 made of polysilicon, an interlayer insulating film 9 made of a deposited oxide film, a source electrode 10 made of nickel, and a drain electrode 11 were formed, and the MOSFET 1 was produced.

比較のため、従来の条件であるC/Si比が1.4となるようなC38/SiH4ガス流量比で、p型エピタキシャル層(p−型エピタキシャル層4)を成長させたMOSFET(比較例)を作成した。p型エピタキシャル層の成長以外のプロセスはMOSFET1と同様である。なお、MOSFET1およびMOSFET(比較例)の断面構造は図2と同様である。 For comparison, a MOSFET in which a p-type epitaxial layer (p-type epitaxial layer 4) is grown at a C 3 H 8 / SiH 4 gas flow rate ratio such that the conventional C / Si ratio is 1.4. (Comparative example) was created. Processes other than the growth of the p-type epitaxial layer are the same as those for MOSFET 1. The cross-sectional structures of MOSFET 1 and MOSFET (comparative example) are the same as those in FIG.

試作したMOSFET1、MOSFET(比較例)について、チャネル実効移動度を比較したところ、従来のp型エピタキシャル層形成条件で作成したMOSFET(比較例)が15cm2/Vsであったのに対し、本実施の形態のエピタキシャル層形成条件でチャネル層を形成して作成したMOSFET1では、25cm2/Vsに向上した。本実施の形態の方法を用いて、従来よりもチャネル移動度を向上させた低抵抗なMOSFETを作成することができた。 Comparison of the effective channel mobility of the prototype MOSFET 1 and MOSFET (comparative example) showed that the MOSFET (comparative example) prepared under the conventional p-type epitaxial layer formation condition was 15 cm 2 / Vs. In MOSFET 1 formed by forming the channel layer under the epitaxial layer formation conditions of the form, the improvement was 25 cm 2 / Vs. Using the method of this embodiment, a low-resistance MOSFET having improved channel mobility compared to the prior art could be produced.

本実施の形態1では、反応ガスとしてモノシランとプロパンを用いたが、塩化水素を添加した場合も、C/Si比が0.4〜0.8の範囲で炭素空孔を導入する効果があった。塩化水素(HClガス)により、SiH4の分解が促進され、成膜速度が向上する。 In the first embodiment, monosilane and propane are used as the reaction gas. However, even when hydrogen chloride is added, there is an effect of introducing carbon vacancies in the range of C / Si ratio of 0.4 to 0.8. It was. Hydrogen chloride (HCl gas) accelerates the decomposition of SiH 4 and improves the deposition rate.

また、実施の形態1におけるモノシランの代わりに、ジクロロシラン、トリクロロシラン、四塩化ケイ素のいずれかを用いた場合にも、C/Si比が0.4〜0.8の範囲で炭素空孔を導入する効果があった。   Further, when dichlorosilane, trichlorosilane, or silicon tetrachloride is used instead of monosilane in the first embodiment, carbon vacancies are formed in the range of C / Si ratio of 0.4 to 0.8. There was an effect to introduce.

なお、上記実施の形態等で示した例は、発明を理解しやすくするために記載したものであり、この形態に限定されるものではない。   In addition, the example shown by the said embodiment etc. was described in order to make invention easy to understand, and is not limited to this form.

1 n+型SiC基板
2 n−型エピタキシャル層
3 p+型ベース領域
4 p−型エピタキシャル層
5 n+型ソース領域
6 低濃度n−ベース領域
7 ゲート酸化膜
8 ゲート電極
9 層間絶縁膜
10 ソース電極
11 ドレイン電極


1 n + type SiC substrate 2 n− type epitaxial layer 3 p + type base region 4 p− type epitaxial layer 5 n + type source region 6 low concentration n− base region 7 gate oxide film 8 gate electrode 9 interlayer insulating film 10 source electrode 11 drain electrode


Claims (1)

炭化珪素半導体装置であって、
炭化珪素基板と、
前記炭化珪素基板上に形成された第1の炭化珪素エピタキシャル層と、
前記第1の炭化珪素エピタキシャル層に選択的に形成された第1のベース領域と、
前記第1の炭化珪素エピタキシャル層および前記第1のベース領域の上に形成された、炭素の原子空孔が導入されたMOSFETのチャネル領域となる第2の炭化珪素エピタキシャル層と、
前記第2の炭化珪素エピタキシャル層に選択的に形成されたソース領域と、
前記第2の炭化珪素エピタキシャル層を貫通して、前記第1の炭化珪素エピタキシャル層および前記第1のベース領域に接する第2のベース領域と、
前記第2の炭化珪素エピタキシャル層、前記ソース領域および前記第2のベース領域に接するように形成されたゲート絶縁膜と、
を有し、
前記第2の炭化珪素エピタキシャル層の炭素の原子空孔に起因するトラップ準位密度が5×1013cm-3以上1×1014cm-3以下であることを特徴とする炭化珪素半導体装置。
A silicon carbide semiconductor device,
A silicon carbide substrate;
A first silicon carbide epitaxial layer formed on the silicon carbide substrate;
A first base region selectively formed in the first silicon carbide epitaxial layer;
A second silicon carbide epitaxial layer formed on the first silicon carbide epitaxial layer and the first base region and serving as a channel region of the MOSFET into which carbon atomic vacancies are introduced;
A source region selectively formed in the second silicon carbide epitaxial layer;
A second base region penetrating the second silicon carbide epitaxial layer and contacting the first silicon carbide epitaxial layer and the first base region;
A gate insulating film formed to be in contact with the second silicon carbide epitaxial layer, the source region, and the second base region;
Have
A silicon carbide semiconductor device, wherein a trap state density due to carbon vacancies in the second silicon carbide epitaxial layer is 5 × 10 13 cm −3 or more and 1 × 10 14 cm −3 or less.
JP2011246096A 2011-11-10 2011-11-10 Silicon carbide semiconductor device and manufacturing method thereof Active JP6108330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011246096A JP6108330B2 (en) 2011-11-10 2011-11-10 Silicon carbide semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011246096A JP6108330B2 (en) 2011-11-10 2011-11-10 Silicon carbide semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013102106A JP2013102106A (en) 2013-05-23
JP6108330B2 true JP6108330B2 (en) 2017-04-05

Family

ID=48622449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011246096A Active JP6108330B2 (en) 2011-11-10 2011-11-10 Silicon carbide semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6108330B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6402773B2 (en) 2014-09-08 2018-10-10 富士電機株式会社 Semiconductor device and manufacturing method thereof
JP6337969B2 (en) 2014-09-11 2018-06-06 富士電機株式会社 Semiconductor device and manufacturing method thereof
WO2016039070A1 (en) 2014-09-11 2016-03-17 富士電機株式会社 Semiconductor device and production method for semiconductor device
JP6387799B2 (en) * 2014-11-14 2018-09-12 株式会社デンソー Semiconductor substrate and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004036655A1 (en) * 2002-10-18 2006-03-16 独立行政法人産業技術総合研究所 Silicon carbide semiconductor device and manufacturing method thereof
JP4946264B2 (en) * 2006-08-23 2012-06-06 日立金属株式会社 Method for manufacturing silicon carbide semiconductor epitaxial substrate
JP5417760B2 (en) * 2008-08-01 2014-02-19 富士電機株式会社 Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
US8574528B2 (en) * 2009-09-04 2013-11-05 University Of South Carolina Methods of growing a silicon carbide epitaxial layer on a substrate to increase and control carrier lifetime

Also Published As

Publication number Publication date
JP2013102106A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP6058170B2 (en) Silicon carbide semiconductor device
EP1981076B1 (en) Method for manufacturing silicon carbide semiconductor device
JP4843854B2 (en) MOS device
US9893153B2 (en) Semiconductor device and method of manufacturing the same
JP6032831B2 (en) SiC semiconductor device and manufacturing method thereof
JP5141227B2 (en) Manufacturing method of semiconductor device
WO2010058610A1 (en) Silicon carbide semiconductor device and method for manufacturing the same
US8564017B2 (en) Silicon carbide semiconductor device and method for manufacturing same
JP6025007B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2010087397A (en) Silicon carbide semiconductor device
JP2016018861A (en) Semiconductor device manufacturing method and semiconductor device
CN108257858B (en) Preparation method of high-k gate dielectric layer and silicon carbide MOS power device
JP6108330B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
CN108257855B (en) Preparation method of high-k gate dielectric layer and silicon carbide MOS power device
US9960040B2 (en) Manufacturing method of silicon carbide semiconductor device
JPWO2010110252A1 (en) MOSFET and MOSFET manufacturing method
JP2011140429A (en) Epitaxial wafer and semiconductor element
JP6035763B2 (en) Method for forming gate oxide film and method for manufacturing silicon carbide semiconductor device
JP2017011031A (en) Silicon carbide semiconductor device and manufacturing method of the same
JP2018206872A (en) Semiconductor device
JP5417760B2 (en) Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
US10163637B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP5921089B2 (en) Epitaxial wafer manufacturing method and semiconductor device manufacturing method
JP6965499B2 (en) Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device
US20210134961A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170228

R150 Certificate of patent or registration of utility model

Ref document number: 6108330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250