JP6100583B2 - Photocurable solventless composition and method for producing the same - Google Patents

Photocurable solventless composition and method for producing the same Download PDF

Info

Publication number
JP6100583B2
JP6100583B2 JP2013071497A JP2013071497A JP6100583B2 JP 6100583 B2 JP6100583 B2 JP 6100583B2 JP 2013071497 A JP2013071497 A JP 2013071497A JP 2013071497 A JP2013071497 A JP 2013071497A JP 6100583 B2 JP6100583 B2 JP 6100583B2
Authority
JP
Japan
Prior art keywords
polymerization
weight
meth
composition
acrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013071497A
Other languages
Japanese (ja)
Other versions
JP2014196375A (en
Inventor
良隆 小山内
良隆 小山内
恭兵 松川
恭兵 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fine Chemicals Co Ltd
Original Assignee
Toray Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co Ltd filed Critical Toray Fine Chemicals Co Ltd
Priority to JP2013071497A priority Critical patent/JP6100583B2/en
Publication of JP2014196375A publication Critical patent/JP2014196375A/en
Application granted granted Critical
Publication of JP6100583B2 publication Critical patent/JP6100583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、粘着が難しいとされる発泡ウレタンや発泡ゴム等の発泡基材や、ポリプロピレン(PP)などのオレフィン基材にも好適に使用できる粘着フィルムおよび粘着層を与える光硬化型無溶剤組成物およびその製造方法に関するものである。   The present invention is a photocurable solventless composition that provides a pressure-sensitive adhesive film and a pressure-sensitive adhesive layer that can be suitably used for foamed base materials such as foamed urethane and foamed rubber, which are difficult to adhere, and olefin base materials such as polypropylene (PP). The present invention relates to a product and a manufacturing method thereof.

アクリル系粘着剤材料は、ゴム系、シリコーン系などの他材料と比較し、粘着力、凝集力などの粘着性能、耐候性、耐熱性、耐溶剤性などの膜耐性に優れていることから広く使用されている。アクリル系粘着材料は、主剤となるアクリル樹脂に必要に応じて架橋剤、粘着付与剤、老化防止剤等を加えて使用されており、有機溶剤を媒体として重合する溶液重合で得られたアクリル樹脂溶液を主剤とする溶剤タイプが主流である。近年のVOC(排出溶剤規制)などの環境配慮の観点から、水を媒体とする乳化重合でアクリル樹脂溶液を主剤とする水系タイプが一部実用化されてきているが、水系タイプの粘着材料では、水を揮発させるために使用するエネルギー量が有機溶剤系と比較して大きくなり、主剤に含まれる乳化剤の影響で有機溶剤タイプに比べ耐水性が劣るなどの粘着性能の問題もあった。これらの問題を総合的に解決するため無溶剤タイプの材料が提案されており、紫外線等の活性エネルギー線で硬化させて粘着フィルムを形成する技術が提案されている。   Acrylic adhesive materials are widely used because they are superior in adhesive performance such as adhesive strength and cohesive strength, weather resistance, heat resistance, and solvent resistance compared to other materials such as silicone. It is used. Acrylic adhesive materials are used by adding a crosslinking agent, tackifier, anti-aging agent, etc. as necessary to the acrylic resin as the main agent, and obtained by solution polymerization using an organic solvent as a medium. A solvent type mainly composed of a solution is the mainstream. From the viewpoint of environmental considerations such as VOC (emission solvent regulations) in recent years, some water-based types based on acrylic resin solutions have been put into practical use by emulsion polymerization using water as a medium. In addition, the amount of energy used for volatilizing water is larger than that of the organic solvent system, and there is also a problem of adhesive performance such as poor water resistance compared to the organic solvent type due to the influence of the emulsifier contained in the main agent. In order to solve these problems comprehensively, a solventless type material has been proposed, and a technique for forming an adhesive film by curing with an active energy ray such as ultraviolet rays has been proposed.

特許文献1には、アクリル系、メタクリル系、ビニル系モノマーと多官能モノマーの混合物を光重合開始剤と連鎖移動剤の存在下に光を照射し粘着フィルムを得る製造方法が提案されている。この方法では光照射強度を小さくする等により反応速度を遅くし、高分子量の樹脂を得なければ高い凝集力を有する粘着フィルムが得ることができないため、実生産時にラインスピードを速くできず、生産性が良いとは言い難い技術であった。   Patent Document 1 proposes a production method in which a pressure-sensitive adhesive film is obtained by irradiating a mixture of acrylic, methacrylic and vinyl monomers and a polyfunctional monomer in the presence of a photopolymerization initiator and a chain transfer agent. In this method, the reaction rate is slowed down by reducing the light irradiation intensity, etc., and a high cohesive film cannot be obtained unless a high molecular weight resin is obtained. It was a technology that was difficult to say.

特許文献2には、アクリル系モノマーと極性基を持つビニルモノマーの共重合物の側鎖にオレフィン性不飽和結合を導入した分子量が1000〜50000の重合性ポリマーが主剤の無溶剤型粘着剤組成物が提案されている。重合性ポリマーを使用することで特許文献1のような技術と比較し、反応速度を遅くすることなく硬化反応することが可能となる技術であるが、主剤樹脂の分子量が小さいため硬めの粘着フィルムになるので、特に発泡基材などの濡れ性の悪い基材に転写貼付する場合に転写不良を起こしやすい。オレフィン性不飽和結合の量を減量することでこの問題は緩和可能であるが、やはり主剤樹脂の分子量が小さいことに起因して凝集力が不足し保持力等の粘着特性が損なわれる問題が起こる。   Patent Document 2 discloses a solvent-free pressure-sensitive adhesive composition mainly composed of a polymerizable polymer having a molecular weight of 1000 to 50000 in which an olefinically unsaturated bond is introduced into a side chain of a copolymer of an acrylic monomer and a vinyl monomer having a polar group. Things have been proposed. Compared with the technique such as Patent Document 1 by using a polymerizable polymer, it is a technique that enables a curing reaction without slowing the reaction rate, but a hard adhesive film because the molecular weight of the main resin is small. As a result, transfer defects are likely to occur, particularly when a transfer substrate is applied to a substrate having poor wettability such as a foam substrate. Although this problem can be alleviated by reducing the amount of olefinically unsaturated bonds, there is still a problem that cohesive strength is insufficient due to the low molecular weight of the main resin and the adhesive properties such as holding power are impaired. .

このような現状から、一般的なプラスチックや金属はもとより、難付着性基材である発泡基材やポリプロピレン基材に対して良好な転写貼付性能及び粘着物性を発現しながらも、実生産ラインでのラインスピードの高速化、省エネルギー化を両立するような光硬化材料が望まれていた。   From such a current situation, while exhibiting good transfer sticking performance and adhesive physical properties not only for general plastics and metals, but also for foaming base materials and polypropylene base materials that are difficult to adhere, in actual production lines Therefore, there has been a demand for a photo-curing material that achieves both higher line speed and energy saving.

ところで、無溶剤のアクリル樹脂材料は、生成した重合体に溶剤が含有されないため、溶剤などを分離や揮発によって取り除く操作を要さず、また、耐水性などの特性を低下させる原因となりやすい乳化剤のような成分を含有しないことなどから、特に光硬化させる材料には好適な材料といえる。しかし、アクリル樹脂の重合反応では、一般に重合時の発熱が大きく、また重合が進むにつれ高粘度となるため、工業的には水や有機溶媒を媒体とする溶液重合や乳化重合、懸濁重合などの比較的除熱が容易な方法で製造されることが多い。特許文献2のように重合性ポリマーを溶液重合で作製した後、溶媒を除去することで無溶剤組成物の主剤とする方法が提案されているが、有機溶媒の溶液状で製造されたアクリル樹脂から有機溶媒を取り除きアクリル樹脂だけを取り出すのは大変なエネルギーと手間を必要とする。同時に収率の大幅な低下を招くため、材料の生産性の観点では満足できる方法ではない。   By the way, since the solvent-free acrylic resin material does not contain a solvent in the produced polymer, it does not require an operation of removing the solvent by separation or volatilization, and it is an emulsifier that tends to cause deterioration in properties such as water resistance. Since it does not contain such a component, it can be said that it is a suitable material particularly for a material to be photocured. However, in the polymerization reaction of acrylic resins, heat generation during polymerization is generally large, and as the polymerization proceeds, the viscosity increases, so industrially solution polymerization, emulsion polymerization, suspension polymerization, etc. using water or an organic solvent as a medium. In many cases, it is produced by a method in which heat removal is relatively easy. A method of forming a polymerizable polymer by solution polymerization as in Patent Document 2 and then using it as a main component of a solventless composition by removing the solvent has been proposed, but an acrylic resin manufactured in the form of an organic solvent solution It takes a lot of energy and effort to remove only the acrylic resin from the organic solvent. At the same time, the yield is drastically reduced, which is not a satisfactory method from the viewpoint of material productivity.

無溶剤組成物を得る方法としては、原料段階から溶剤を含まない無溶剤重合が最も反応形態として望ましいといえる。しかしながら、無溶剤重合では溶剤や可塑剤による希釈効果が期待できないことや、重合反応速度を制御しがたいことから、重合反応熱を制御することが極めて困難であり、重合反応の暴走が生じやすい。反応暴走は、反応を制御することができないことから急速に激しい発熱や粘度上昇を伴う非常に危険な状態であり、特に工業的に実現する際には大きな問題点となる。   As a method for obtaining a solvent-free composition, it can be said that solvent-free polymerization containing no solvent from the raw material stage is the most desirable reaction form. However, solvent-free polymerization cannot be expected to have a dilution effect with a solvent or plasticizer, and it is difficult to control the polymerization reaction rate, so it is extremely difficult to control the heat of polymerization reaction, and the runaway of the polymerization reaction is likely to occur. . The reaction runaway is a very dangerous state with a rapid exothermic heat and a viscosity increase because the reaction cannot be controlled, and it becomes a serious problem particularly when industrially realized.

従来の無溶剤組成物を得る製造方法としては以下のような技術が提案されている。   The following techniques have been proposed as production methods for obtaining conventional solventless compositions.

特許文献3に提案されている技術は、アクリル酸アルキルエステルを主成分とする重合性不飽和結合を有するモノマーの部分重合物、架橋剤および光重合開始剤からなる粘着剤組成物を得るにあたり、無溶剤組成の部分重合によって溶剤、可塑剤を含まない純粋なアクリル樹脂混合物を得るという技術である。前述の反応発熱問題に対しては重合開始剤の10時間半減期温度及び使用量を規定しているものの、反応開始後は重合開始剤が消費されることによる反応系の自己発熱を利用して100〜140℃に到達させて重合する技術という点からも、重合中の反応速度に関しては制御が行われておらず、工業的にスケールを大きくしていく過程で増加するであろう発熱量を調整または抑制できる技術ではないことが推察される。   The technique proposed in Patent Document 3 is to obtain a pressure-sensitive adhesive composition comprising a partially polymerized monomer having a polymerizable unsaturated bond mainly composed of an acrylic acid alkyl ester, a crosslinking agent, and a photopolymerization initiator. This is a technique of obtaining a pure acrylic resin mixture containing no solvent and plasticizer by partial polymerization with a solvent-free composition. For the above reaction exothermic problem, the 10-hour half-life temperature and the amount of polymerization initiator are defined, but after the reaction starts, the self-heating of the reaction system due to consumption of the polymerization initiator is utilized. From the point of view of the technique of polymerizing by reaching 100 to 140 ° C., the reaction rate during the polymerization is not controlled, and the calorific value that will increase in the process of increasing the scale industrially is increased. It is inferred that this is not a technique that can be adjusted or suppressed.

一方、特許文献4に提案されている技術では、2,4−ジフェニル−4−メチル−1−ペンテン(=α−メチルスチレンダイマー)、ラジカル重合開始剤の存在下にメタクリロイル基を有するエチレン性不飽和化合物(=アクリル単量体)をラジカル重合しブロック共重合体を製造する方法が提案されている。特許文献4に提案されている技術では、2,4−ジフェニル−4−メチル−1−ペンテン(=α−メチルスチレンダイマー)を付加−開裂型連鎖移動剤として用いてリビングラジカル重合を実現するものであるが、アクリル樹脂を製造する上でより重要で、安全上の根本的な課題である攪拌、重合熱の除熱についてはいっさい考慮が払われておらず、攪拌や除熱が容易な溶液重合で製造することが必要と推察される。このような観点から特許文献4に提案される方法では、例え共重合体が製造されたとしても、有機溶媒の溶液状で製造されたアクリル樹脂から有機溶媒を取り除く必要があるため、特許文献2と同様に生産性に問題が残る。   On the other hand, in the technique proposed in Patent Document 4, 2,4-diphenyl-4-methyl-1-pentene (= α-methylstyrene dimer), an ethylenic polymer having a methacryloyl group in the presence of a radical polymerization initiator. A method for producing a block copolymer by radical polymerization of a saturated compound (= acrylic monomer) has been proposed. In the technique proposed in Patent Document 4, living radical polymerization is realized using 2,4-diphenyl-4-methyl-1-pentene (= α-methylstyrene dimer) as an addition-cleavage chain transfer agent. However, no consideration is given to stirring and heat removal of polymerization heat, which are more important in manufacturing acrylic resins and are fundamental safety issues, and solutions that are easy to stir and remove heat. It is assumed that it is necessary to produce by polymerization. From such a viewpoint, in the method proposed in Patent Document 4, even if a copolymer is produced, it is necessary to remove the organic solvent from the acrylic resin produced in the form of a solution of the organic solvent. As with, productivity remains a problem.

このように無溶剤組成物を安全、かつ簡便に得る方法についても工業的生産性を考慮したうえで満足できる技術が望まれていた。   As described above, there has been a demand for a satisfactory technique for obtaining a solvent-free composition in a safe and simple manner in consideration of industrial productivity.

特開平3−84011号公報JP-A-3-84011 特開昭57−109873号公報JP-A-57-109873 特開2001−181589号公報JP 2001-181589 A 特開2000−169531号公報JP 2000-169531 A

本発明は、従来の技術では困難であった難接着基材を含む多種基材での粘着性能の発現と、製造プロセスの高速化および省エネルギー化を両立する光硬化型無溶剤組成物を提供し、その光硬化型無溶剤組成物の製造方法についても従来工業的スケールでは困難であった安全性について解決され、かつ簡便に製造可能な製造方法を提供することを目的とする。   The present invention provides a photocurable solventless composition that achieves both the manifestation of adhesive performance on various substrates including difficult-to-adhere substrates, which has been difficult with the prior art, as well as speeding up the production process and saving energy. An object of the present invention is to provide a production method that can solve the safety that has been difficult on a conventional industrial scale and can be easily produced.

前記のような粘着材料を得るべく検討した結果、特定の分子量、分散度および重合性二重結合を持つ重合性ポリマーと塩素化ポリプロピレン樹脂、および光重合開始剤の混合物が光硬化して粘着フィルムとした場合に、ポリエチレンテレフタレート(PET)基材、ステンレス鋼(SUS)等の金属基材以外にも発泡ゴム等の発泡基材やオレフィン樹脂基材に良好な転写貼付性および粘着性をバランス良く発現することを見いだし、かつ低強度、低光量の光の照射で十分な硬化性を有するためごく短時間で粘着フィルムを得ることができることを見いだし本発明に至った。   As a result of studying to obtain an adhesive material as described above, a mixture of a polymerizable polymer having a specific molecular weight, a degree of dispersion and a polymerizable double bond, a chlorinated polypropylene resin, and a photopolymerization initiator is photocured to produce an adhesive film. In addition to polyethylene terephthalate (PET) base material, stainless steel (SUS) and other metal base materials, foam transfer base materials such as foam rubber and olefin resin base materials have a good balance of transfer paste and adhesiveness. It has been found that the adhesive film can be obtained in a very short time because it has sufficient curability when irradiated with light having a low intensity and a low amount of light.

本発明の光硬化型無溶剤組成物は、溶剤、可塑剤を含まない無溶剤重合性共重合体組成物(A)、塩素化ポリプロピレン(B)および紫外線を吸収しラジカルを発生する重合開始剤(C)からなる光硬化型無溶剤組成物であって、前記無溶剤重合性共重合体組成物(A)が、炭素数が4以上のアルキル基を有する(メタ)アクリル酸エステル単量体(a)、分子内に窒素原子を有する重合性単量体(b)、下記一般式(1)で表される(メタ)アクリル酸エステル単量体(c)からなる(メタ)アクリル酸エステル共重合体および前記単量体(a)(b)(c)の混合物を含み、前記(メタ)アクリル酸エステル共重合体の重量平均分子量(Mw)が20〜40万、該重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)で表される分散度が2.0〜5.0、かつ側鎖に共重合体分子1molあたり重合性二重結合を3〜10mol有すると共に、前記塩素化ポリプロピレン(B)の配合量が1〜8重量%、前記重合開始剤(C)の配合量が0.5〜8重量%であることを特徴とする。

Figure 0006100583
(式中、R1は水素原子またはメチル基、nは0〜6の整数を表し、複数のnが混在してもよい。) The photocurable solventless composition of the present invention comprises a solvent, a solventless polymerizable copolymer composition (A) containing no plasticizer, chlorinated polypropylene (B), and a polymerization initiator that absorbs ultraviolet rays and generates radicals. (C) a photocurable solventless composition, wherein the solventless polymerizable copolymer composition (A) is a (meth) acrylic acid ester monomer having an alkyl group having 4 or more carbon atoms (A), a (meth) acrylate ester comprising a polymerizable monomer (b) having a nitrogen atom in the molecule, and a (meth) acrylate monomer (c) represented by the following general formula (1) A mixture of the copolymer and the monomers (a), (b), and (c), wherein the (meth) acrylic acid ester copolymer has a weight average molecular weight (Mw) of 200 to 400,000, and the weight average molecular weight ( Mw) and the number average molecular weight (Mn) ratio (Mw / Mn) The dispersity is 2.0 to 5.0, and the side chain has 3 to 10 mol of polymerizable double bonds per mol of copolymer molecules, and the blending amount of the chlorinated polypropylene (B) is 1 to 8% by weight. The blending amount of the polymerization initiator (C) is 0.5 to 8% by weight .
Figure 0006100583
(In the formula, R 1 represents a hydrogen atom or a methyl group, n represents an integer of 0 to 6, and a plurality of n may be mixed.)

さらに、前記の光硬化型無溶剤組成物を無溶剤重合で得る場合に問題となる発熱制御に関しては、一般的に反応の制御が困難であるラジカル重合ではなく、反応速度も制御可能なリビング重合を適用することによって解決できることを見いだし、工業的にも安全性に光硬化型無溶剤組成物を製造する方法にも想達した。   Furthermore, with respect to heat generation control, which is a problem when the photocurable solventless composition is obtained by solventless polymerization, it is not radical polymerization, which is generally difficult to control the reaction, but living polymerization that can control the reaction rate. It has been found that the problem can be solved by applying a photocatalyst, and has also come up with a method for producing a photocurable solventless composition industrially and safely.

本発明の光硬化型無溶剤組成物の製造方法は、上述した光硬化型無溶剤組成物の製造方法であって、炭素数が4以上のアルキル基を有する(メタ)アクリル酸エステル単量体(a)、分子内に窒素原子を有する重合性単量体(b)および前記一般式(1)で表される(メタ)アクリル酸エステル単量体(c)からなる単量体混合物を調整し、該単量体混合物の総量の内、転化率が20〜60重量%になるように(メタ)アクリル酸エステル共重合体を共重合することにより、溶剤、可塑剤を含まない無溶剤重合性共重合体組成物(A)を調整し、これに塩素化ポリプロピレン(B)および紫外線を吸収してラジカルを発生する重合開始剤(C)を溶解混合することを特徴とする。   The method for producing the photocurable solventless composition of the present invention is a method for producing the photocurable solventless composition described above, and is a (meth) acrylic acid ester monomer having an alkyl group having 4 or more carbon atoms. (A) A monomer mixture comprising a polymerizable monomer (b) having a nitrogen atom in the molecule and a (meth) acrylic acid ester monomer (c) represented by the general formula (1) is prepared. In the total amount of the monomer mixture, the (meth) acrylic acid ester copolymer is copolymerized so that the conversion is 20 to 60% by weight. The curable copolymer composition (A) is prepared, and a chlorinated polypropylene (B) and a polymerization initiator (C) that absorbs ultraviolet rays to generate radicals are dissolved and mixed therein.

本発明の光硬化型無溶剤組成物は、粘着フィルム材料とした際に剥離強度、保持力をバランス良く発現し、PET基材、金属基材以外にも、とりわけ粘着が難しいとされる発泡ゴム等の発泡基材やポリプロピレン等のオレフィン樹脂基材に良好な転写貼付性および粘着性をバランス良く発現し、かつ低強度、低光量の光の照射で十分な硬化性を有するためごく短時間で粘着フィルムを得ることができる。   The photocurable solventless composition of the present invention exhibits a good balance of peel strength and holding power when used as an adhesive film material, and is a foamed rubber that is particularly difficult to adhere to in addition to PET and metal substrates. In a very short time, it has a good balance of adhesiveness and adhesiveness to foamed substrates such as polypropylene and olefin resin substrates such as polypropylene, and has sufficient curability when irradiated with light of low intensity and low light intensity. An adhesive film can be obtained.

また、本発明の光硬化型無溶剤組成物を得るにあたり、溶剤、可塑剤を含まない無溶剤組成での一括重合において、急激な重合反応の進行と暴走反応に至る過程の回避とこれの制御、攪拌、除熱を含む安全、防災上の課題を解決した製造方法を得ることができる。   Further, in obtaining the photocurable solventless composition of the present invention, in batch polymerization with a solventless composition not containing a solvent and a plasticizer, avoiding and controlling the process leading to rapid polymerization reaction and runaway reaction. In addition, a production method that solves safety and disaster prevention problems including stirring and heat removal can be obtained.

以下、本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明の光硬化型無溶剤組成物は、無溶剤重合性共重合体組成物(A)、塩素化ポリプロピレン(B)および紫外線を吸収しラジカルを発生する重合開始剤(C)からなる。   The photocurable solventless composition of the present invention comprises a solventless polymerizable copolymer composition (A), a chlorinated polypropylene (B), and a polymerization initiator (C) that absorbs ultraviolet rays and generates radicals.

無溶剤重合性共重合体組成物(A)は、溶剤、可塑剤を含まない無溶剤組成であり、炭素数が4以上のアルキル基を有する(メタ)アクリル酸エステル単量体(a)、分子内に窒素原子を有する重合性単量体(b)、下記一般式(1)で表される(メタ)アクリル酸エステル単量体(c)からなる(メタ)アクリル酸エステル共重合体と前記単量体(a)(b)(c)の混合物で構成される。

Figure 0006100583
(式中、R1は水素原子またはメチル基、nは0〜6の整数であり、単一でも複数のnが混在してもよい。) Solvent-free polymerizable copolymer composition (A) is a solvent-free composition containing no solvent and plasticizer, and a (meth) acrylic acid ester monomer (a) having an alkyl group having 4 or more carbon atoms, A (meth) acrylic acid ester copolymer comprising a polymerizable monomer (b) having a nitrogen atom in the molecule and a (meth) acrylic acid ester monomer (c) represented by the following general formula (1): It is composed of a mixture of the monomers (a), (b) and (c).
Figure 0006100583
(In the formula, R 1 is a hydrogen atom or a methyl group, n is an integer of 0 to 6, and a single or a plurality of n may be mixed.)

本発明において、炭素数が4以上のアルキル基を有する(メタ)アクリル酸エステル単量体(a)としては、例えばアクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸ターシャリーブチル、アクリル酸シクロヘキシル、アクリル酸2−エチルヘキシル、アクリル酸ラウリル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸ターシャリーブチル、メタクリル酸シクロヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリルなどの(メタ)アクリル酸アルキルエステル単量体が例示できる。これらの単量体は単独で使用しても、2種類以上の混合物で使用してもよい。中でも、入手し易さ、重合性、得られるポリマーの特性等を考慮すると、アクリル酸n−ブチル、アクリル酸2−エチルヘキシルが好ましい。   In the present invention, as the (meth) acrylic acid ester monomer (a) having an alkyl group having 4 or more carbon atoms, for example, n-butyl acrylate, isobutyl acrylate, tertiary butyl acrylate, cyclohexyl acrylate, (Meth) acrylic acid alkyl esters such as 2-ethylhexyl acrylate, lauryl acrylate, n-butyl methacrylate, isobutyl methacrylate, tertiary butyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, etc. The body can be exemplified. These monomers may be used alone or in a mixture of two or more. Among these, n-butyl acrylate and 2-ethylhexyl acrylate are preferable in consideration of availability, polymerizability, characteristics of the obtained polymer, and the like.

炭素数が4以上のアルキル基を有する(メタ)アクリル酸エステル単量体(a)は、無溶剤重合性共重合体組成物(A)の好ましくは60〜95重量%、より好ましくは70〜95重量%、さらに好ましくは80〜95重量%使用するとよい。(メタ)アクリル酸エステル単量体(a)の比率が60重量%未満であるとガラス転移温度が上昇し、発泡基材への粘着性が損なわれる傾向があり、95重量%超であると凝集力が不足し保持力等の粘着性能が損なわれる傾向にある。   The (meth) acrylic acid ester monomer (a) having an alkyl group having 4 or more carbon atoms is preferably 60 to 95% by weight, more preferably 70 to 95% of the solventless polymerizable copolymer composition (A). 95% by weight, more preferably 80 to 95% by weight may be used. When the ratio of the (meth) acrylic acid ester monomer (a) is less than 60% by weight, the glass transition temperature tends to increase, and the adhesiveness to the foamed substrate tends to be impaired, and is more than 95% by weight. The cohesive force is insufficient and the adhesive performance such as holding power tends to be impaired.

本発明において、分子内に窒素原子を有する重合性単量体(b)としては、メタクリル酸N,N−ジメチルアミノエチル、メタクリル酸N,N−ジエチルアミノエチル、4−メタクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−1,2,2,6,6−ペンタメチルピペリジン、3−メタクリロイルオキシエチルエチレンウレア、N−ビニルピロリドン、N−ビニルカプロラクタム、アクリロニトリル、アクリロイルモルホリン、メタクリロイルモルホリン、アクリルアミド、N,N−ジメチルアクリルアミド、エチルアクリルアミド、イソプロピルアクリルアミド、N−メチロールアクリルアミド、2−ヒドロキシエチルアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミド、N,N−ジエチルアミノプロピルアクリルアミド、メタクリルアミド、N,N−ジメチルメタクリルアミド、エチルメタクリルアミド、イソプロピルメタクリルアミド、N−メチロールメタクリルアミド、2−ヒドロキシエチルメタクリルアミド、N,N−ジメチルアミノプロピルメタクリルアミド、N,N−ジエチルアミノプロピルメタクリルアミド,N−フェニルマレイミド、N−シクロヘキシルマレイミドなどが例示できる。これらの単量体は単独で使用しても、2種類以上の混合物で使用してもよい。中でも、入手し易さ、重合性、得られるポリマーの特性等を考慮すると、N−ビニルピロリドン及び/又はメタクリル酸−2−ジメチルアミノエチルが好ましい。   In the present invention, the polymerizable monomer (b) having a nitrogen atom in the molecule includes N, N-dimethylaminoethyl methacrylate, N, N-diethylaminoethyl methacrylate, 4-methacryloyloxy-2,2, 6,6-tetramethylpiperidine, 4-methacryloyloxy-1,2,2,6,6-pentamethylpiperidine, 3-methacryloyloxyethylethyleneurea, N-vinylpyrrolidone, N-vinylcaprolactam, acrylonitrile, acryloylmorpholine, Methacryloylmorpholine, acrylamide, N, N-dimethylacrylamide, ethylacrylamide, isopropylacrylamide, N-methylolacrylamide, 2-hydroxyethylacrylamide, N, N-dimethylaminopropylacrylamide, N, N Diethylaminopropylacrylamide, methacrylamide, N, N-dimethylmethacrylamide, ethylmethacrylamide, isopropylmethacrylamide, N-methylolmethacrylamide, 2-hydroxyethylmethacrylamide, N, N-dimethylaminopropylmethacrylamide, N, N- Examples include diethylaminopropyl methacrylamide, N-phenylmaleimide, N-cyclohexylmaleimide and the like. These monomers may be used alone or in a mixture of two or more. Among these, N-vinylpyrrolidone and / or 2-dimethylaminoethyl methacrylate are preferred in consideration of availability, polymerizability, characteristics of the obtained polymer, and the like.

本発明の分子内に窒素原子を有する重合性単量体(b)は、無溶剤重合性共重合体組成物(A)の好ましくは3〜30重量%、より好ましくは5〜25重量%、さらに好ましくは5〜20重量%使用するとよい。分子内に窒素原子を有する重合性単量体(b)の比率が3重量%未満であると凝集力が不足し、保持力等の粘着性能が損なわれる傾向があり、30重量%以上であるとガラス転移温度が上昇し、発泡基材への粘着性が損なわれる傾向にある。   The polymerizable monomer (b) having a nitrogen atom in the molecule of the present invention is preferably 3 to 30% by weight, more preferably 5 to 25% by weight of the solventless polymerizable copolymer composition (A). More preferably 5 to 20% by weight is used. When the ratio of the polymerizable monomer (b) having a nitrogen atom in the molecule is less than 3% by weight, the cohesive force is insufficient, and the adhesive performance such as holding power tends to be impaired, and is 30% by weight or more. And the glass transition temperature rises, and the adhesiveness to the foamed substrate tends to be impaired.

本発明において、前記一般式(1)で表される(メタ)アクリル酸エステル単量体(c)としては、例えばアクリル酸、メタクリル酸、2−カルボキシエチルアクリレートオリゴマーなどが例示できる。これらの(メタ)アクリル酸エステル単量体は単独で使用しても、2種類以上の混合物で使用してもよい。入手し易さではアクリル酸、メタクリル酸が好ましく、その後の変性の反応性を考慮すると、2−カルボキシエチルアクリレートオリゴマーが好ましい。   In the present invention, examples of the (meth) acrylic acid ester monomer (c) represented by the general formula (1) include acrylic acid, methacrylic acid, and 2-carboxyethyl acrylate oligomer. These (meth) acrylic acid ester monomers may be used alone or in a mixture of two or more. In terms of availability, acrylic acid and methacrylic acid are preferable, and 2-carboxyethyl acrylate oligomer is preferable in consideration of the reactivity of subsequent modification.

前記一般式(1)で表される(メタ)アクリル酸エステル単量体(c)は、無溶剤重合性共重合体組成物(A)の好ましくは1〜30重量%、より好ましくは3〜25重量%、さらに好ましくは5〜20重量%使用するとよい。(メタ)アクリル酸エステル単量体(c)の比率が1重量%未満であると凝集力が不足し、保持力等の粘着性能が損なわれる傾向があり、20重量%以上であるとガラス転移温度が上昇し、発泡基材への粘着性が損なわれる傾向にある。   The (meth) acrylic acid ester monomer (c) represented by the general formula (1) is preferably 1 to 30% by weight, more preferably 3 to 3% by weight of the solventless polymerizable copolymer composition (A). It is recommended to use 25% by weight, more preferably 5 to 20% by weight. When the ratio of the (meth) acrylic acid ester monomer (c) is less than 1% by weight, the cohesive force is insufficient, and the adhesive performance such as holding power tends to be impaired. The temperature rises and the adhesiveness to the foamed substrate tends to be impaired.

本発明では、必要に応じて上記以外の単量体も使用できる。アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸4−ヒドロキシブチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸4−ヒドロキシブチル、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリテトラメチレングリコールモノ(メタ)アクリレートなどの水酸基含有単量体、ジシクロペンタニルオキシエチルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンタニルオキシエチルメタクリレート、ジシクロペンテニルオキシエチルメタクリレートなどのジシクロペンタジエンから誘導されるアクリル単量体、アクリル酸アリル、メタクリル酸アリル、メタクリル酸ベンジル、メタクリル酸テトラヒドロフルフリルなどの(メタ)アクリル酸エステル単量体などが使用できる。本発明では、これらの単量体は単独で使用しても、2種類以上の混合物で使用してもよい。   In the present invention, monomers other than those described above can be used as necessary. 2-hydroxyethyl acrylate, hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono ( Hydroxyl group-containing monomers such as (meth) acrylate and polytetramethylene glycol mono (meth) acrylate, dicyclopentanyloxyethyl acrylate, dicyclopentenyloxyethyl acrylate, dicyclopentanyloxyethyl methacrylate, dicyclopentenyloxyethyl methacrylate Acrylic monomers derived from dicyclopentadiene such as allyl acrylate, allyl methacrylate, benzyl methacrylate, meta (Meth) acrylic acid ester monomers such as acrylic acid tetrahydrofurfuryl can be used. In the present invention, these monomers may be used alone or in a mixture of two or more.

本発明の無溶剤重合性共重合体組成物(A)に含まれる炭素数が4以上のアルキル基を有する(メタ)アクリル酸エステル単量体(a)、分子内に窒素原子を有する重合性単量体(b)、一般式(1)で表される(メタ)アクリル酸エステル単量体(c)からなる(メタ)アクリル酸エステル共重合体は、重量平均分子量(Mw)が20〜40万、好ましくは20〜35万、より好ましくは20〜30万であり、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)で表される分散度が2.0〜5.0、好ましくは2.0〜4.0、より好ましくは2.0〜3.5である。重量平均分子量(Mw)が20万未満であると凝集力が不足し、保持力等の粘着性能が損なわれる傾向があり、40万を越える場合は得られる無溶剤重合性共重合体組成物の粘度が増大し、塗工が困難となる傾向にある。Mw/Mnで表される分散度が2.0未満であるとタック性(初期粘着性)が損なわれる傾向があり、5.0を越えると凝集力が低下し、保持力等の粘着性能を損なう傾向がある。本発明において、重量平均分子量(Mw)および数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)を使用し、ポリメタクリル酸メチルをスタンダードとして検量することにより測定する。   The (meth) acrylic acid ester monomer (a) having an alkyl group having 4 or more carbon atoms, contained in the solvent-free polymerizable copolymer composition (A) of the present invention, and having a nitrogen atom in the molecule The (meth) acrylic acid ester copolymer composed of the monomer (b) and the (meth) acrylic acid ester monomer (c) represented by the general formula (1) has a weight average molecular weight (Mw) of 20 to 20%. The dispersity represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 2.0,000, preferably 200 to 350,000, more preferably 200 to 300,000. It is -5.0, Preferably it is 2.0-4.0, More preferably, it is 2.0-3.5. If the weight average molecular weight (Mw) is less than 200,000, the cohesive force tends to be insufficient, and the adhesive performance such as holding power tends to be impaired. If it exceeds 400,000, the resulting solventless polymerizable copolymer composition Viscosity increases and coating tends to be difficult. If the dispersity represented by Mw / Mn is less than 2.0, tackiness (initial tackiness) tends to be impaired, and if it exceeds 5.0, the cohesive force is lowered and the adhesive performance such as holding power is reduced. There is a tendency to lose. In the present invention, the weight average molecular weight (Mw) and number average molecular weight (Mn) are measured by using gel permeation chromatography (GPC) and calibrating with polymethyl methacrylate as a standard.

本発明での無溶剤重合性共重合体組成物(A)に含まれる(メタ)アクリル酸エステル共重合体は、共重合体側鎖に重合性二重結合を有する。この場合、共重合体部分にも重合反応性を付与することができ、無溶剤重合性共重合体組成物(A)の硬化反応時に、少ないエネルギーで硬化させることが可能となり、高分子量化による凝集力増大によって粘着性能も向上することが可能となる。   The (meth) acrylic acid ester copolymer contained in the solventless polymerizable copolymer composition (A) in the present invention has a polymerizable double bond in the copolymer side chain. In this case, polymerization reactivity can also be imparted to the copolymer part, and it can be cured with less energy during the curing reaction of the solventless polymerizable copolymer composition (A). The adhesion performance can be improved by increasing the cohesive force.

共重合体側鎖に重合性二重結合を導入する変性方法は、特に限定されるものではないが、例えば、共重合体に水酸基、エポキシ基、カルボキシル基等の官能基を有する単量体を共重合した後、それら官能基と反応しうる官能基と重合性二重結合を有する化合物を付加反応させることによって、共重合体側鎖に導入する一般的な方法が使用できる。本発明では、一般式(1)で表される(メタ)アクリル酸エステル単量体(c)を共重合することにより共重合体側鎖に導入したカルボキシル基を利用し、これと反応する化合物を付加させることが好ましく、この化合物としてはエポキシ基を有するアクリル酸グリシジルまたはメタクリル酸グリシジルが入手の容易さ、コストの観点から好適に使用できる。   The modification method for introducing a polymerizable double bond into the side chain of the copolymer is not particularly limited. For example, a monomer having a functional group such as a hydroxyl group, an epoxy group, or a carboxyl group is co-polymerized in the copolymer. After polymerization, a general method of introducing a functional group capable of reacting with these functional groups and a compound having a polymerizable double bond into a copolymer side chain by addition reaction can be used. In the present invention, a compound that reacts with the carboxyl group introduced into the side chain of the copolymer by copolymerizing the (meth) acrylic acid ester monomer (c) represented by the general formula (1) is used. It is preferable to add, and as this compound, glycidyl acrylate or glycidyl methacrylate having an epoxy group can be suitably used from the viewpoint of availability and cost.

本発明での無溶剤重合性共重合体組成物(A)に含まれる(メタ)アクリル酸エステル共重合体は、側鎖に共重合体分子1molあたり重合性二重結合を3〜10mol、好ましくは4〜10mol、より好ましくは5〜10mol有する。共重合体分子1molあたり重合性二重結合のmol数が3mol未満の際は、硬化させた場合に十分な硬化性が得られない傾向にあり、10mol超の場合には、発泡基材への粘着性能が損なわれる傾向となる。ここで、重合体mol数は、得られた重合体の重量を重量平均分子量で除したもの、重合性二重結合のmol数は、反応させたエポキシ基含有化合物のmol数とする。   The (meth) acrylic acid ester copolymer contained in the solvent-free polymerizable copolymer composition (A) in the present invention preferably has 3 to 10 mol of polymerizable double bonds per mol of copolymer molecules in the side chain. 4-10 mol, more preferably 5-10 mol. When the number of moles of the polymerizable double bond per mole of the copolymer molecule is less than 3 mol, there is a tendency that sufficient curability cannot be obtained when cured, and when it exceeds 10 mol, Adhesive performance tends to be impaired. Here, the mol number of the polymer is obtained by dividing the weight of the obtained polymer by the weight average molecular weight, and the mol number of the polymerizable double bond is the mol number of the reacted epoxy group-containing compound.

本発明において、無溶剤重合性共重合体組成物(A)に含まれる(メタ)アクリル酸エステル共重合体の製造方法は、重量平均分子量(Mw)及び分散度(Mw/Mn)並びに側鎖に有する重合性二重結合の量が上記範囲を満たすものであれば特に限定されないが、無溶剤組成物を安全、かつ簡便に得ることを考慮し、リビングラジカル重合を用いた塊状重合によって得ることが好ましい。具体的には、炭素数が4以上のアルキル基を有する(メタ)アクリル酸エステル単量体(a)、分子内に窒素原子を有する重合性単量体(b)、一般式(1)で表される(メタ)アクリル酸エステル単量体(c)が含まれる混合物の総量の内、好ましくは20〜60重量%、より好ましくは30〜55重量%、さらに好ましくは30〜50重量%を塊状重合することによって共重合体とし、無溶剤重合性共重合体組成物(A)を得ることができる。単量体(a)(b)(c)の混合物を重合体に転化する割合が20重量%未満だと粘着フィルムとした際に、重合体部分が担う粘着及び硬化機能を発現しにくい傾向があり、60重量%超とした場合は得られる無溶剤重合性共重合体組成物の粘度が増大し、塗工が困難となる傾向にある。   In the present invention, the method for producing a (meth) acrylic acid ester copolymer contained in the solvent-free polymerizable copolymer composition (A) includes a weight average molecular weight (Mw), a degree of dispersion (Mw / Mn), and a side chain. It is not particularly limited as long as the amount of the polymerizable double bond in the above satisfies the above range, but it is obtained by bulk polymerization using living radical polymerization in consideration of obtaining a solvent-free composition safely and easily. Is preferred. Specifically, a (meth) acrylic acid ester monomer (a) having an alkyl group having 4 or more carbon atoms, a polymerizable monomer (b) having a nitrogen atom in the molecule, and the general formula (1) The total amount of the mixture containing the (meth) acrylic acid ester monomer (c) is preferably 20 to 60% by weight, more preferably 30 to 55% by weight, still more preferably 30 to 50% by weight. A copolymer can be obtained by bulk polymerization to obtain a solvent-free polymerizable copolymer composition (A). When the ratio of converting the mixture of monomers (a), (b), and (c) to a polymer is less than 20% by weight, the adhesive and curing functions of the polymer part tend to be difficult to develop when the adhesive film is formed. If it exceeds 60% by weight, the viscosity of the resulting solventless polymerizable copolymer composition tends to increase, and coating tends to be difficult.

本発明における上記の製造方法では、塊状重合では困難であった発熱の制御を目的として反応速度がコントロール可能なリビングラジカル重合を適用することが好ましい。リビングラジカル重合としては不安定ラジカル重合法、原子移動重合法、付加開列型連鎖移動重合などが例示できるが、使用する触媒の入手の容易さ及びコストから付加開裂型連鎖移動重合が特に好適に使用できる。   In the above production method of the present invention, it is preferable to apply living radical polymerization in which the reaction rate can be controlled for the purpose of controlling heat generation, which has been difficult with bulk polymerization. Examples of living radical polymerization include unstable radical polymerization, atom transfer polymerization, and addition-open chain transfer polymerization, but addition-cleavage chain transfer polymerization is particularly suitable because of the availability and cost of the catalyst used. it can.

本発明での無溶剤重合性共重合体組成物(A)を得るリビングラジカル塊状重合において、付加開列型連鎖移動剤(d)を、10時間半減期温度が30〜50℃である重合開始剤(e)の2mol倍以上使用して、50℃以下で第1の重合反応をした後、60〜100℃で第2の重合反応をする方法により製造することが好ましい。これにより分子量及び分散度が上記範囲を満たす(メタ)アクリル酸エステル共重合体を得ることができる。   In the living radical bulk polymerization for obtaining the solvent-free polymerizable copolymer composition (A) in the present invention, the addition open-chain chain transfer agent (d) is a polymerization initiator having a 10-hour half-life temperature of 30 to 50 ° C. It is preferable to manufacture by the method of using 2 mol times or more of (e), performing a 1st polymerization reaction at 50 degrees C or less, and then performing a 2nd polymerization reaction at 60-100 degreeC. Thereby, a (meth) acrylic acid ester copolymer having a molecular weight and a dispersion degree satisfying the above ranges can be obtained.

付加開列型連鎖移動剤(d)としては、例えばα−メチルスチレンダイマー、2−シアノ−2−プロピルベンゾジチオネート、シアノメチルドデシルトリチオカーボネート、ビス(チオベンゾイル)ジスルフィド等が例示される。この中で、下記化学式(2)で示すα−メチルスチレンダイマーすなわち、2,4−ジフェニル−4−メチル−1−ペンテンが入手も容易で安価なことから特に好適に用いることができる。

Figure 0006100583
Examples of the addition open-chain transfer agent (d) include α-methylstyrene dimer, 2-cyano-2-propylbenzodithionate, cyanomethyldodecyltrithiocarbonate, bis (thiobenzoyl) disulfide and the like. Among these, α-methylstyrene dimer represented by the following chemical formula (2), that is, 2,4-diphenyl-4-methyl-1-pentene, is easily available and inexpensive, and thus can be particularly preferably used.
Figure 0006100583

本発明での製造方法では、重合開始剤(e)の10時間半減期温度が、好ましくは30〜50℃、より好ましくは30〜45℃、さらに好ましくは30〜40℃、特に好ましくは30〜35℃であるとよい。重合開始剤(e)の10時間半減期温度が30℃未満の場合には、重合開始剤投入直後に一時的に大きな発熱が起こる場合があり、重合開始剤(e)の10時間半減期温度が50℃超のときには、開始剤投入直後の急な発熱は抑制できるが反応が進行しない、反応時間が長い、またその後重合温度を高くした際に一時的に大きな発熱が起こる場合があるため安全な塊状重合ができない傾向がある。ここで、本発明のアクリル酸エステル共重合体の製造方法では、10時間半減期温度は、重合開始剤濃度が10時間で半減する温度を指し、重合開始剤の生産メーカーが公表している値を採用した。   In the production method of the present invention, the 10-hour half-life temperature of the polymerization initiator (e) is preferably 30 to 50 ° C, more preferably 30 to 45 ° C, still more preferably 30 to 40 ° C, and particularly preferably 30 to 30 ° C. It is good at 35 degreeC. When the 10-hour half-life temperature of the polymerization initiator (e) is less than 30 ° C., a large exotherm may occur temporarily immediately after the polymerization initiator is charged. The 10-hour half-life temperature of the polymerization initiator (e) When the temperature is over 50 ° C, sudden heat generation immediately after the initiator is charged can be suppressed, but the reaction does not proceed, the reaction time is long, and a large heat generation may occur temporarily when the polymerization temperature is raised thereafter. There is a tendency not to perform bulk polymerization. Here, in the method for producing an acrylic ester copolymer of the present invention, the 10-hour half-life temperature refers to a temperature at which the concentration of the polymerization initiator is reduced by half in 10 hours, and is a value published by the manufacturer of the polymerization initiator. It was adopted.

本発明の製造方法で使用される10時間半減期温度が30〜50℃である重合開始剤(e)としては、例えば2,2´−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)(和光純薬工業社製「V−70」)(10時間半減期温度30℃)、ジイソブチルパーオキサイド(日油社製「パーロイルIB」)(10時間半減期温度33℃)、クミルパーオキシネオデカノエート(日油社製「パークミルND」)(10時間半減期温度37℃)、ジノルマルプロピルパーオキシジカーボネート(日油社製「パーロイルNPP」)(10時間半減期温度40℃)、ジイソプロピルパーオキシジカーボネート(日油社製「パーロイルIPP」)(10時間半減期温度41℃)、ジセカンダリブチルパーオキシジカーボネート(日油社製「パーロイルSBP」)(10時間半減期温度41℃)、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート(日油社製「パーオクタND」)(10時間半減期温度41℃)、ジ(4−ターシャリブチルシクロヘキシル)パーオキシジカーボネート(日油社製「パーロイルTCP」)(10時間半減期温度41℃)、1−シクロヘキシル−1−メチルエチルパーオキシネオデカノエート(日油社製「パーシクロND」)(10時間半減期温度41℃)、ジ(2−エトキシエチル)パーオキシジカーボネート(日油社製「パーロイルEEP」)(10時間半減期温度43℃)、ジ(2−エチルヘキシル)パーオキシジカーボネート(日油社製「パーロイルOPP」)(10時間半減期温度44℃)、ターシャリヘキシルパーオキシネオデカノエート(日油社製「パーヘキシルND」)(10時間半減期温度45℃)、ジメトキシブチルパーオキシジカーボネート(日油社製「パーロイルNBP」)(10時間半減期温度46℃)、ターシャリブチルパーオキシネオデカノエート(日油社製「パーブチルND」)(10時間半減期温度46℃)などが例示できる。本発明の製造方法では、重合開始剤は単独で使用しても、2種類以上の混合物で使用してもよい。これらのなかで、特に、2,2´−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)(和光純薬工業社製「V−70」)(10時間半減期温度30℃)、ジイソブチルパーオキサイド(日油社製「パーロイルIB」)(10時間半減期温度33℃)、クミルパーオキシネオデカノエート(日油社製「パークミルND」)(10時間半減期温度37℃)が、重合温度制御が容易で、重合速度が速く、製造時間が短縮される傾向が見られ好適に用いることができる。   As the polymerization initiator (e) having a 10-hour half-life temperature of 30 to 50 ° C. used in the production method of the present invention, for example, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (“V-70” manufactured by Wako Pure Chemical Industries, Ltd.) (10-hour half-life temperature 30 ° C.), diisobutyl peroxide (“Paroyl IB” manufactured by NOF Corporation) (10-hour half-life temperature 33 ° C.), cumyl peroxyneo Decanoate (Nippon "Park Mill ND") (10-hour half-life temperature 37 ° C), Dinormalpropyl peroxydicarbonate (Nippon "Perroyl NPP") (10-hour half-life temperature 40 ° C), Diisopropyl peroxydicarbonate (“Paroyl IPP” manufactured by NOF Corporation) (10 hour half-life temperature 41 ° C.), disecondary butyl peroxydicarbonate (“PARO manufactured by NOF Corporation”) IL SBP ") (10-hour half-life temperature 41 ° C), 1,1,3,3-tetramethylbutyl peroxyneodecanoate (" Perocta ND "manufactured by NOF Corporation) (10-hour half-life temperature 41 ° C) , Di (4-tertiarybutylcyclohexyl) peroxydicarbonate (“Perroyl TCP” manufactured by NOF Corporation) (10 hour half-life temperature 41 ° C.), 1-cyclohexyl-1-methylethylperoxyneodecanoate (Japan) “Percyclo ND” (manufactured by Oil Co., Ltd.) (10-hour half-life temperature 41 ° C.), di (2-ethoxyethyl) peroxydicarbonate (“Parroyl EEP” manufactured by NOF Corporation) (10-hour half-life temperature 43 ° C.), di (2-Ethylhexyl) peroxydicarbonate (“PAROIL OPP” manufactured by NOF Corporation) (10 hours half-life temperature 44 ° C.), tertiary hexyl peroxyneode Canoate (“NOF Corporation“ Perhexyl ND ”) (10-hour half-life temperature 45 ° C.), dimethoxybutyl peroxydicarbonate (NOF“ Perroyl NBP ”) (10-hour half-life temperature 46 ° C.), tertiary butyl Examples thereof include peroxyneodecanoate (“Perbutyl ND” manufactured by NOF Corporation) (10-hour half-life temperature: 46 ° C.). In the production method of the present invention, the polymerization initiator may be used alone or in a mixture of two or more. Among these, in particular, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (“V-70” manufactured by Wako Pure Chemical Industries, Ltd.) (10 hour half-life temperature 30 ° C.), diisobutyl Peroxide ("NOVA" "Parroyl IB") (10-hour half-life temperature 33 ° C), cumyl peroxyneodecanoate (NOF "Park Mill ND") (10-hour half-life temperature 37 ° C), The polymerization temperature is easily controlled, the polymerization rate is high, and the production time tends to be shortened.

本発明の製造方法では、付加開列型連鎖移動剤(d)を10時間半減期温度が30〜50℃である重合開始剤(e)の好ましくは2mol倍以上、より好ましくは2〜50mol倍、さらに好ましくは2〜35mol倍、特に好ましくは2〜20mol倍使用した場合に、重合速度が適性に制御され、製造時の発熱量制御が容易となって、アクリル酸エステル共重合体の製造を安全に行うことが可能となり、安全な塊状重合が可能となる。付加開列型連鎖移動剤(d)が重合開始剤(e)の比率が2mol未満の場合には、アクリル単量体のアクリル酸エステル共重合体の製造中に急激で激しい発熱が起こり、反応暴走につながる可能性が高いため好ましくなく、50mol超の場合には塊状重合は安全に実施可能だが、重合速度が遅くなり、製造時間が長時間となり工業的にメリットが少ない。   In the production method of the present invention, the addition open-chain chain transfer agent (d) is preferably 2 mol times or more, more preferably 2 to 50 mol times the polymerization initiator (e) having a 10-hour half-life temperature of 30 to 50 ° C. More preferably, when used in an amount of 2 to 35 mol times, particularly preferably 2 to 20 mol times, the polymerization rate is controlled appropriately, the amount of heat generated during production becomes easy, and the production of the acrylate copolymer is safe. Therefore, safe bulk polymerization is possible. When the ratio of the addition open chain transfer agent (d) to the polymerization initiator (e) is less than 2 mol, rapid and intense heat generation occurs during the production of the acrylic ester copolymer of the acrylic monomer, and the reaction runaway occurs. In the case of more than 50 mol, bulk polymerization can be carried out safely, but the polymerization rate is slow, the production time is long, and there are few industrial advantages.

本発明の製造方法では、第1の重合反応を好ましくは50℃以下、より好ましくは25℃〜50℃で行った後、続いて第2の重合反応を好ましくは60〜100℃、より好ましくは60〜90℃、さらに好ましくは60〜80で行うとよい。このような重合方法により、第1の重合反応で重合中間物を得、次いで第2の重合反応でリビング重合を行うことで、複数のピークを有する共重合物が得られ、その結果、目的の分子量(Mw)のみでなく、通常リビング重合では小さくなりやすい分散度(Mw/Mn)を2.0〜5.0の範囲で得ることができる。   In the production method of the present invention, the first polymerization reaction is preferably performed at 50 ° C. or lower, more preferably at 25 ° C. to 50 ° C., and then the second polymerization reaction is preferably performed at 60 to 100 ° C., more preferably. It is good to carry out at 60-90 degreeC, More preferably, it is 60-80. By such a polymerization method, a polymerization intermediate is obtained by the first polymerization reaction, and then living polymerization is carried out by the second polymerization reaction, thereby obtaining a copolymer having a plurality of peaks. Not only the molecular weight (Mw) but also the degree of dispersion (Mw / Mn) that tends to be small in ordinary living polymerization can be obtained in the range of 2.0 to 5.0.

本発明での無溶剤重合性共重合体組成物(A)に含まれる(メタ)アクリル酸エステル共重合体の側鎖に重合性二重結合を導入するには、(メタ)アクリル酸エステル単量体(c)を共重合することにより共重合体側鎖に導入したカルボキシル基に、アクリル酸グリシジルまたはメタクリル酸グリシジルを付加させることが好ましい。   In order to introduce a polymerizable double bond into the side chain of the (meth) acrylic acid ester copolymer contained in the solvent-free polymerizable copolymer composition (A) in the present invention, a (meth) acrylic acid ester It is preferable to add glycidyl acrylate or glycidyl methacrylate to the carboxyl group introduced into the copolymer side chain by copolymerizing the monomer (c).

本発明の光硬化型無用剤組成物において、無溶剤重合性共重合体組成物(A)の配合量は、光硬化型無用剤組成物中、好ましくは80〜99.3重量%、より好ましくは85〜95重量%、さらに好ましくは90〜95重量%にするとよい。無溶剤重合性共重合体組成物(A)の配合量が80重量%未満であると、硬化性、粘着物性の効果が低下する傾向がある。また無溶剤重合性共重合体組成物(A)の配合量が99.3重量%超では硬化性、粘着物性の効果は得られるものの他の添加剤の効果が十分に発揮されない傾向になる。   In the photocurable unnecessary composition of the present invention, the amount of the solvent-free polymerizable copolymer composition (A) is preferably 80 to 99.3% by weight, more preferably in the photocurable unnecessary composition. Is 85 to 95% by weight, more preferably 90 to 95% by weight. When the blending amount of the solventless polymerizable copolymer composition (A) is less than 80% by weight, the effects of curability and pressure-sensitive adhesive properties tend to decrease. If the blending amount of the solventless polymerizable copolymer composition (A) exceeds 99.3% by weight, the effects of other additives will tend not to be sufficiently exhibited although the effects of curability and adhesive properties can be obtained.

本発明の光硬化型無用剤組成物は、塩素化ポリプロピレン(B)を含有する。塩素化ポリプロピレン(B)を含有することにより、通常粘着が難しいポリプロピレン基材へ良好な粘着性を発現することができる。   The photocurable unnecessary composition of the present invention contains chlorinated polypropylene (B). By containing the chlorinated polypropylene (B), it is possible to express good adhesiveness to a polypropylene substrate that is usually difficult to adhere.

塩素化ポリプロピレン(B)としては、ハードレン(東洋紡社製)、スパークロン(日本製紙ケミカル社製)など市販されているものが使用できるが、溶剤で希釈されていないペレットタイプのものを使用した場合に溶剤を含まない材料となるため好適に使用できる。ハードレンシリーズで例を挙げると13−LP、13−LLP、14LWP、15−LLP、16−LP、DX−523P、DX−526P、DX−530Pなどが例示できる。これらの違いは分子量及び塩素化度が異なるものであるため溶解性、相溶性に見合う塩素化度のグレードを任意に選択することができる。本発明では、DX−523P、DX−526P、DX−530Pが、溶解性、相溶性の観点から好適に使用できる。   As chlorinated polypropylene (B), commercially available products such as HARDLEN (manufactured by Toyobo Co., Ltd.) and Sparklon (manufactured by Nippon Paper Chemicals Co., Ltd.) can be used. However, when using a pellet type that is not diluted with a solvent, Since the material does not contain a solvent, it can be suitably used. Examples of the hard len series include 13-LP, 13-LLP, 14LWP, 15-LLP, 16-LP, DX-523P, DX-526P, DX-530P and the like. Since these differences are different in molecular weight and degree of chlorination, a grade of chlorination degree suitable for solubility and compatibility can be arbitrarily selected. In the present invention, DX-523P, DX-526P, and DX-530P can be suitably used from the viewpoints of solubility and compatibility.

本発明において、塩素化ポリプロピレン(B)の配合量は光硬化型無用剤組成物中1〜8重量%、好ましくは2〜6重量%にする。塩素化ポリプロピレン(B)の配合量が重量%未満であると、ポリプロピレン基材への粘着性向上が不足し、重量%超では光硬化型無用剤組成物の粘度が増大し、塗工が困難となる傾向にある。 In the present invention, the amount of chlorinated polypropylene (B) is photocurable solventless composition, 1-8% by weight, good Mashiku is you 2-6 wt%. When the blending amount of chlorinated polypropylene (B) is less than 1 % by weight, the adhesion to the polypropylene base material is insufficiently improved, and when it exceeds 8 % by weight, the viscosity of the photocurable unnecessary composition increases. Tend to be difficult.

塩素化ポリプロピレン(B)の混合方法は、特に限定されないが溶解性を考慮し単量体に溶解して混合することが好ましい。塊状重合前の単量体混合物に溶解してもよく、反応で得られた無溶剤重合性共重合体組成物(A)に混合してもよい。   The mixing method of the chlorinated polypropylene (B) is not particularly limited, but it is preferable to dissolve and mix in the monomer in consideration of solubility. You may melt | dissolve in the monomer mixture before block polymerization, and you may mix in the solventless polymerizable copolymer composition (A) obtained by reaction.

本発明の光硬化型無用剤組成物は、紫外線を吸収しラジカルを発生する重合開始剤(C)を含有する。紫外線を吸収しラジカルを発生する重合開始剤(C)を含有することにより、紫外線の照射により硬化反応を開始し、硬化フィルムを得ることができる。   The photocurable unnecessary composition of the present invention contains a polymerization initiator (C) that absorbs ultraviolet rays and generates radicals. By containing a polymerization initiator (C) that absorbs ultraviolet rays and generates radicals, a curing reaction can be initiated by irradiation with ultraviolet rays, and a cured film can be obtained.

本発明の紫外線を吸収しラジカルを発生する重合開始剤(C)としては、例えばベンゾフェノン、2,2′−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、2−ヒドロキシ−1−(4−(4−(2−ヒドロキシ−2−メチル−プロピオニル)−ベンジル)フェニル)−2−メチル−プロパン−1−オン、フェニルグリオキシリックアシッドメチルエステル、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)―ブタノン−1−オン、2―ジメチルアミノ−2−(4−メチル−ベンジル)−1−(4−モルフォリン−4−イル−フェニル)−ブタン−1−オン、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイドなどが例示できる。本発明の紫外線を吸収しラジカルを発生する重合開始剤(C)は、硬化時に照射する紫外線の波長や、硬化膜厚によって任意に選択可能であるが、本発明では、入手の容易さ及びコストではベンゾフェノン、2,2′−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、厚膜硬化ではビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイドが好適に使用できる。   Examples of the polymerization initiator (C) that absorbs ultraviolet rays and generates radicals according to the present invention include benzophenone, 2,2'-dimethoxy-1,2-diphenylethane-1-one, and 1-hydroxy-cyclohexyl-phenyl-ketone. 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2-hydroxy-1- (4- (4- (2-hydroxy-2-methyl-propionyl) -benzyl) phenyl) -2- Methyl-propan-1-one, phenylglyoxylic acid methyl ester, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino- 1- (4-morpholinophenyl) -butanone-1-one, 2-dimethylamino-2- (4-methyl-benzyl) -1- ( -Morpholin-4-yl-phenyl) -butan-1-one, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, etc. it can. The polymerization initiator (C) that absorbs ultraviolet rays and generates radicals according to the present invention can be arbitrarily selected according to the wavelength of ultraviolet rays irradiated during curing and the cured film thickness. Benzophenone, 2,2'-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide for thick film curing 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide can be preferably used.

本発明の紫外線を吸収しラジカルを発生する重合開始剤(C)の配合量は光硬化型無用剤組成物中0.5〜8重量%、好ましくは1〜6重量%使用する。重合開始剤(C)の配合量が0.重量%未満であると、硬化転化率が低下し、残存した未反応単量体によりフィルム臭気が悪化する傾向にあり、重量%超であると溶解性が悪くなり、硬化フィルムに濁りやブツ、黄変が発生する傾向にある。 The amount of the polymerization initiator that generates ultraviolet absorbing radical (C) of the present invention photocurable solventless composition, 0.5-8 wt%, good Mashiku is to use 1-6% by weight . The blending amount of the polymerization initiator (C) is 0. If it is less than 5 % by weight, the curing conversion rate is lowered and the film odor tends to deteriorate due to the remaining unreacted monomer. If it exceeds 8 % by weight, the solubility becomes poor and the cured film becomes cloudy. There is a tendency for tsutsu and yellowing to occur.

本発明の紫外線を吸収しラジカルを発生する重合開始剤(C)の混合方法は、特に限定されないが溶解性を考慮し単量体に溶解して混合することが好ましい。混合後は紫外線によって硬化反応が起こるため、遮光を必要とするため、反応で得られた無溶剤重合性共重合体組成物(A)及び塩素化ポリプロピレン(B)の混合物に最後に混合することが好ましい。   The method for mixing the polymerization initiator (C) that absorbs ultraviolet rays and generates radicals according to the present invention is not particularly limited, but it is preferable to dissolve and mix in a monomer in consideration of solubility. After mixing, since a curing reaction occurs due to ultraviolet rays, it is necessary to shield from light. Therefore, the mixture should be finally mixed with the solvent-free polymerizable copolymer composition (A) and chlorinated polypropylene (B) obtained by the reaction. Is preferred.

以下、実施例および比較例を用いて、本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、(メタ)アクリル酸エステル共重合体の分析値および特性は、次の方法により測定した。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example and a comparative example, this invention is not limited to a following example. In addition, the analytical value and characteristic of the (meth) acrylic acid ester copolymer were measured by the following method.

1)重合状態(主に発熱状態)
(メタ)アクリル酸エステル共重合体を重合するときの発熱状態を以下の基準で判定した。
○(合格):急激な発熱がみられず、全反応工程において設定温度±2℃を維持できた場合。
×(不合格):10秒間で3℃を越える発熱がある場合、または全反応工程において発熱または吸熱由来で設定温度±2℃を維持できない場合。
1) Polymerization state (mainly exothermic state)
The exothermic state when polymerizing the (meth) acrylic acid ester copolymer was determined according to the following criteria.
○ (Accepted): When the set temperature ± 2 ° C. can be maintained in all reaction steps without sudden exotherm.
X (failed): When there is an exotherm exceeding 3 ° C. in 10 seconds, or when the set temperature ± 2 ° C. cannot be maintained due to exotherm or endotherm in all reaction steps.

2)重合体転化率(単位:重量%)
JIS K5407:1997にしたがって加熱残分(重量%)を測定し、これを重合率(重量%)とした。ただし、加熱条件は温度140℃、時間は30分とした。
2) Polymer conversion rate (unit:% by weight)
The heating residue (% by weight) was measured according to JIS K5407: 1997, and this was defined as the polymerization rate (% by weight). However, the heating conditions were a temperature of 140 ° C. and a time of 30 minutes.

3)重量平均分子量(Mw)および数平均分子量(Mn)
ゲルパーミエーションクロマトグラフィー(GPC)「HLC−8220GPC」(東ソー(株)の試験装置)を使用し、キャリアーをテトラヒドロフランとして測定し、スタンダードとしてポリメタクリル酸メチルを用いて検量し、数平均分子量(Mn)および重量平均分子量(Mw)を算出した。なお、分散度(Mw/Mn)は、重量平均分子量(Mw)を数平均分子量(Mn)で除して求めた。
3) Weight average molecular weight (Mw) and number average molecular weight (Mn)
Using gel permeation chromatography (GPC) “HLC-8220GPC” (tester of Tosoh Corporation), the carrier was measured as tetrahydrofuran, and calibrated using polymethyl methacrylate as the standard, and the number average molecular weight (Mn ) And weight average molecular weight (Mw). The dispersity (Mw / Mn) was determined by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn).

4)(メタ)アクリル酸グリシジルの反応率(単位:重量%)
高速液体クロマトグラフィー(HPLC)(島津製作所の試験装置)を使用し、蒸留水とアセトニトリルを溶離液として、逆相カラム、紫外線検出器を使用して内部標準法(標準物質アニソール)で残存(メタ)アクリル酸グリシジルを定量した。この値を使用し、次式から(メタ)アクリル酸グリシジルの反応率を算出した。

Figure 0006100583
4) Reaction rate of glycidyl (meth) acrylate (unit: wt%)
Using high-performance liquid chromatography (HPLC) (Shimadzu test equipment), distilled water and acetonitrile as eluents, using a reverse-phase column and an ultraviolet detector, the internal standard method (standard material anisole) was used to remain (meta ) Glycidyl acrylate was quantified. Using this value, the reaction rate of glycidyl (meth) acrylate was calculated from the following formula.
Figure 0006100583

5)ポリマー1molあたりの二重結合mol数(単位:mol)
次の式によって算出した。

Figure 0006100583
5) Number of mols of double bonds per mol of polymer (unit: mol)
It was calculated by the following formula.
Figure 0006100583

6)UV硬化方法
2枚のセパレートフィルムで挟んだ厚さ60μmに調整した粘着材料を、UV照射機はCS30R1−1(GS NIPPON DENCHI社製)を高圧水銀ランプで使用し、照射強度100mW/cm2,積算光量200mJ/cm2の条件で硬化させた。
6) UV curing method Adhesive material adjusted to a thickness of 60 μm sandwiched between two separate films, using a UV irradiation machine CS30R1-1 (manufactured by GS NIPPON DENCHI) with a high-pressure mercury lamp, irradiation intensity 100 mW / cm 2 and cured under conditions of an integrated light quantity of 200 mJ / cm 2 .

7)硬化転化率(単位:%)
UV硬化させた粘着フィルムをFT−IRで二重結合由来のピーク(810cm-1)の高さを求め、硬化前の粘着材料のピーク高さに対する百分率を硬化転化率(%)とした。
7) Curing conversion rate (unit:%)
The height of the double bond-derived peak (810 cm −1 ) was determined for the UV-cured pressure-sensitive adhesive film by FT-IR, and the percentage of the peak height of the pressure-sensitive adhesive material before curing was taken as the curing conversion rate (%).

硬化転化率は高いほど硬化性が高く残存モノマーが少ないと判断できるものであり、97%以上を合格とした。   It can be judged that the higher the curing conversion rate is, the higher the curability is and the less the residual monomer is, and 97% or more is judged as acceptable.

8)ゲル分率(単位:重量%)
UV硬化させた硬化フィルム約0.3gにトルエンを50ml加えて25℃で5日間静置した。その後、溶液を400メッシュの金網で濾過し、100℃で3時間乾燥した後、金網上に残ったフィルム重量を測定した。金網上に残ったフィルム重量のトルエン浸漬前の重量に対する百分率をゲル分率とした。
8) Gel fraction (unit:% by weight)
50 ml of toluene was added to about 0.3 g of the cured film obtained by UV curing, and allowed to stand at 25 ° C. for 5 days. Thereafter, the solution was filtered through a 400 mesh wire mesh, dried at 100 ° C. for 3 hours, and then the weight of the film remaining on the wire mesh was measured. The percentage of the film weight remaining on the wire mesh with respect to the weight before immersion in toluene was defined as the gel fraction.

粘着材料としては、ゲル分率が低すぎる場合には硬化不足、高すぎる場合にはフィルムが硬すぎることを示すものであり、本発明では30〜80重量%であった場合に合格と判定した。   As the adhesive material, it indicates that the gel fraction is too low, the curing is insufficient, and when the gel fraction is too high, it indicates that the film is too hard. .

9)ボールタック
JIS Z0237のタック試験方法(球転法)に準じて測定した。ボールタックは数字が大きいほどタックが高いと判定でき、本実施例では10以上の場合に合格と判定した。
9) Ball tack Measured according to the tack test method (ball rolling method) of JIS Z0237. It can be determined that the larger the number of the ball tack, the higher the tack. In this embodiment, the ball tack is determined to be acceptable when the number is 10 or more.

10)基材転写性
セパレートフィルムに挟まれたUV硬化された硬化フィルムの片側のセパレートフィルムを剥がし、厚さ1cmの軟質ウレタンフォームに接触させ、ウレタンフォーム側からウレタンフォームの厚さが0.7cmになるよう均一に荷重を加え、1分間圧着した。その後、残ったセパレートフィルムを手で剥離する際に、ウレタンフォームと粘着層が粘着していれば合格(○)、界面剥離した場合には不合格(×)と判定した。
10) Substrate transfer property One side of a UV-cured cured film sandwiched between separate films is peeled off and brought into contact with a 1 cm thick flexible urethane foam. The thickness of the urethane foam from the urethane foam side is 0.7 cm. A load was applied uniformly so as to be 1 min. Thereafter, when the remaining separate film was peeled by hand, it was determined to be acceptable (O) if the urethane foam and the adhesive layer were adhered, and rejected (X) if the interface peeled.

11)剥離強度(単位:N/25mm)
JIS Z0237:2000「90度引き剥がし法」に準じて測定した。ただし、基材は25mm幅の軟質ウレタンフォーム、被着体は市販のポリプロピレン板(パルテック社製)を使用した。剥離強度は高い程粘着力が高いと判定でき、本発明では6N/25mm以上の場合に合格と判定した。
11) Peel strength (unit: N / 25mm)
Measured according to JIS Z0237: 2000 “90-degree peeling method”. However, a flexible urethane foam having a width of 25 mm was used as the substrate, and a commercially available polypropylene plate (manufactured by Partec Co., Ltd.) was used as the adherend. It can be determined that the higher the peel strength is, the higher the adhesive strength is. In the present invention, it is determined to be acceptable when the peel strength is 6 N / 25 mm or more.

12)保持力
JIS Z0237:2000「保持力」に準じて測定した。ただし、基材は25mm幅の軟質ウレタンフォーム、被着体は市販のポリプロピレン板(パルテック社製)を使用し、荷重は500gとした。保持力は高い程粘着維持力が高いと判定でき、24時間経過時点で初期張り付け位置からのズレが4mm以内であった場合に合格と判定した。
12) Holding power It measured according to JIS Z0237: 2000 "holding power". However, a flexible urethane foam having a width of 25 mm was used as the base material, and a commercially available polypropylene plate (manufactured by Partec Co., Ltd.) was used as the adherend, and the load was 500 g. It was determined that the higher the holding force, the higher the adhesion maintaining force, and when the deviation from the initial sticking position was within 4 mm after 24 hours, it was determined to be acceptable.

<無溶剤重合性共重合体組成物(A)の調製>
〔合成実施例1〕
窒素ガス導入管、還流冷却器、撹拌装置、仕込み口を有する2L四つ口フラスコに、アクリル酸2−エチルヘキシル 830g、N−ビニルピロリドン 120g、アクリル酸 50g、α−メチルスチレンダイマー 1g(重合開始剤の6.5mol倍)を仕込み、窒素ガスでバブリングしながら攪拌し、混合物の温度を50℃に調節した。次に2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)(和光純薬工業社製「V−70」、10時間半減期温度30℃)を0.2g投入した。温度を50℃に保ったまま2時間反応させた後、温度を70℃に昇温し、重合転化率が約45重量%となる時点で、フラスコ内の給気を窒素から空気に切り替えると共にp−メトキシフェノールを0.5g投入して反応を停止させた。次に、メタクリル酸グリシジル 3g、N,N′−ジメチルベンジルアミン 4gを加え、空気でバブリングしたまま90℃で6時間反応させ重合体組成物P−1を得た。
<Preparation of solvent-free polymerizable copolymer composition (A)>
[Synthesis Example 1]
In a 2 L four-necked flask having a nitrogen gas inlet tube, a reflux condenser, a stirring device, and a charging port, 830 g of 2-ethylhexyl acrylate, 120 g of N-vinylpyrrolidone, 50 g of acrylic acid, 1 g of α-methylstyrene dimer (polymerization initiator) 6.5 mol times) and stirred while bubbling with nitrogen gas, and the temperature of the mixture was adjusted to 50 ° C. Next, 0.2 g of 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (“V-70” manufactured by Wako Pure Chemical Industries, Ltd., 10 hour half-life temperature 30 ° C.) was added. After reacting for 2 hours while maintaining the temperature at 50 ° C., the temperature is raised to 70 ° C., and when the polymerization conversion becomes about 45% by weight, the supply air in the flask is switched from nitrogen to air and p. -The reaction was stopped by adding 0.5 g of methoxyphenol. Next, 3 g of glycidyl methacrylate and 4 g of N, N′-dimethylbenzylamine were added and reacted at 90 ° C. for 6 hours while bubbling with air to obtain a polymer composition P-1.

得られた重合体組成物P−1は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−1の重合転化率は45.0重量%、重量平均分子量(Mw)は255,000、分散度(Mw/Mn)は2.5、重合体分子1molあたりの二重結合量(mol数)は5.4molであった。   The obtained polymer composition P-1 was not observed to have a rapid exotherm within the entire reaction time, and could be produced without any problem in safety. Polymer composition P-1 had a polymerization conversion rate of 45.0% by weight, a weight average molecular weight (Mw) of 255,000, a dispersity (Mw / Mn) of 2.5, and a double per mole of polymer molecule. The binding amount (mol number) was 5.4 mol.

〔合成実施例2〕
合成実施例1の仕込み組成を、アクリル酸2−エチルヘキシル 830g、N−ビニルピロリドン 100g、アクリル酸 70gに変更した以外は合成実施例1と同様に調製し、重合転化率が約48重量%となる時点で反応を停止させた。次に、メタクリル酸グリシジル 3gを反応させ重合体組成物P−2を得た。
[Synthesis Example 2]
It was prepared in the same manner as in Synthesis Example 1 except that the charged composition in Synthesis Example 1 was changed to 830 g of 2-ethylhexyl acrylate, 100 g of N-vinylpyrrolidone, and 70 g of acrylic acid, and the polymerization conversion was about 48% by weight. The reaction was stopped at that time. Next, 3 g of glycidyl methacrylate was reacted to obtain a polymer composition P-2.

得られた重合体組成物P−2は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−2の重合転化率は48.2重量%、重量平均分子量(Mw)は305,000、分散度(Mw/Mn)は2.4、重合体分子1molあたりの二重結合量(mol数)は6.4molであった。   The obtained polymer composition P-2 was able to be produced without any problem in safety because no rapid heat generation was observed within the entire reaction time. Polymer composition P-2 has a polymerization conversion rate of 48.2% by weight, a weight average molecular weight (Mw) of 305,000, a dispersity (Mw / Mn) of 2.4, and a double per mol of polymer molecule. The binding amount (mol number) was 6.4 mol.

〔合成実施例3〕
合成実施例1と同様の装置を使用し、アクリル酸2−エチルヘキシル 250g、アクリル酸n−ブチル 550g、アクリルアミド 150g、β−CEA(ローディア日華社製) 50g、α−メチルスチレンダイマー 1g(重合開始剤の6.5mol倍)を仕込み、窒素ガスでバブリングしながら攪拌し、混合物の温度を50℃に調節した。次に2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)を0.2g投入した。温度を50℃に保ったまま2時間反応させた後、温度を70℃に昇温し、重合転化率が約45重量%となる時点で合成実施例1と同様に反応を停止させた。次に、メタクリル酸グリシジル 2.5gを反応させ重合体組成物P−3を得た。
[Synthesis Example 3]
Using the same apparatus as in Synthesis Example 1, 250 g of 2-ethylhexyl acrylate, 550 g of n-butyl acrylate, 150 g of acrylamide, 50 g of β-CEA (manufactured by Rhodia Nikka), 1 g of α-methylstyrene dimer (polymerization start) The mixture was stirred while bubbling with nitrogen gas, and the temperature of the mixture was adjusted to 50 ° C. Next, 0.2 g of 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) was added. After reacting for 2 hours while maintaining the temperature at 50 ° C., the temperature was raised to 70 ° C., and the reaction was stopped in the same manner as in Synthesis Example 1 when the polymerization conversion reached about 45% by weight. Next, 2.5 g of glycidyl methacrylate was reacted to obtain a polymer composition P-3.

得られた重合体組成物P−3は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−3の重合転化率は46.7重量%、重量平均分子量(Mw)は259,000、分散度(Mw/Mn)は2.6、重合体分子1molあたりの二重結合量(mol数)は4.6molであった。   The obtained polymer composition P-3 was able to be produced without any problem in safety because no rapid heat generation was observed within the entire reaction time. Further, the polymerization conversion rate of the polymer composition P-3 was 46.7% by weight, the weight average molecular weight (Mw) was 259,000, the dispersity (Mw / Mn) was 2.6, and the double per mol of the polymer molecule. The binding amount (mol number) was 4.6 mol.

〔合成実施例4〕
合成実施例1と同様の装置を使用し、アクリル酸2−エチルヘキシル 780g、N−ビニルピロリドン 120g、β−CEA 100g、α−メチルスチレンダイマー 1.2g(重合開始剤の7.8mol倍)を仕込み、窒素ガスでバブリングしながら攪拌し、混合物の温度を50℃に調節した。次に2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)を0.2g投入した。温度を50℃に保ったまま2時間反応させた後、温度を70℃に昇温し、重合転化率が約40重量%となる時点で合成実施例1と同様に反応を停止させた。次に、メタクリル酸グリシジル 2.0gを反応させ重合体組成物P−4を得た。
[Synthesis Example 4]
Using the same apparatus as in Synthesis Example 1, 780 g of 2-ethylhexyl acrylate, 120 g of N-vinylpyrrolidone, 100 g of β-CEA, 1.2 g of α-methylstyrene dimer (7.8 mol times the polymerization initiator) are charged. The mixture was stirred while bubbling with nitrogen gas, and the temperature of the mixture was adjusted to 50 ° C. Next, 0.2 g of 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) was added. After reacting for 2 hours while maintaining the temperature at 50 ° C., the temperature was raised to 70 ° C., and the reaction was stopped in the same manner as in Synthesis Example 1 when the polymerization conversion reached about 40% by weight. Next, 2.0 g of glycidyl methacrylate was reacted to obtain a polymer composition P-4.

得られた重合体組成物P−4は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−4の重合転化率は41.1重量%、重量平均分子量(Mw)は230,000、分散度(Mw/Mn)は2.7、重合体分子1molあたりの二重結合量(mol数)は3.2molであった。   The obtained polymer composition P-4 was able to be produced without any problem in safety because no rapid heat generation was observed within the entire reaction time. In addition, the polymerization conversion rate of the polymer composition P-4 was 41.1% by weight, the weight average molecular weight (Mw) was 230,000, the dispersity (Mw / Mn) was 2.7, and the double per mol of polymer molecule. The binding amount (mol number) was 3.2 mol.

〔合成実施例5〕
合成実施例1と同様の装置を使用し、アクリル酸2−エチルヘキシル 430g、アクリル酸n−ブチル 430g、N−ビニルピロリドン 80g、β−CEA 60g、α−メチルスチレンダイマー 1g(重合開始剤の6.5mol倍)を仕込み、窒素ガスでバブリングしながら攪拌し、混合物の温度を50℃に調節した。次に2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)を0.2g投入した。温度を50℃に保ったまま2時間反応させた後、温度を75℃に昇温し、重合転化率が約47重量%となる時点で合成実施例1と同様に反応を停止させた。次に、メタクリル酸グリシジル 2.5gを反応させ重合体組成物P−5を得た。
[Synthesis Example 5]
Using the same apparatus as in Synthesis Example 1, 430 g of 2-ethylhexyl acrylate, 430 g of n-butyl acrylate, 80 g of N-vinylpyrrolidone, 60 g of β-CEA, 1 g of α-methylstyrene dimer (6. of polymerization initiator). 5 mol times) was added and stirred while bubbling with nitrogen gas, and the temperature of the mixture was adjusted to 50 ° C. Next, 0.2 g of 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) was added. After reacting for 2 hours while maintaining the temperature at 50 ° C., the temperature was raised to 75 ° C., and the reaction was stopped in the same manner as in Synthesis Example 1 when the polymerization conversion reached about 47% by weight. Next, 2.5 g of glycidyl methacrylate was reacted to obtain a polymer composition P-5.

得られた重合体組成物P−5は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−5の重合転化率は47.0重量%、重量平均分子量(Mw)は259,000、分散度(Mw/Mn)は2.3、重合体分子1molあたりの二重結合量(mol数)は4.6molであった。   The obtained polymer composition P-5 was able to be produced without any problem in safety because no rapid heat generation was observed within the entire reaction time. In addition, the polymerization conversion rate of the polymer composition P-5 was 47.0% by weight, the weight average molecular weight (Mw) was 259,000, the dispersity (Mw / Mn) was 2.3, and the double per mol of the polymer molecule. The binding amount (mol number) was 4.6 mol.

〔合成実施例6〕
合成実施例1と同様の装置を使用し、アクリル酸2−エチルヘキシル 600g、アクリル酸n−ブチル 300g、N−ビニルピロリドン 70g、メタクリル酸 30g、α−メチルスチレンダイマー 10g(重合開始剤の13.0mol倍)を仕込み、窒素ガスでバブリングしながら攪拌し、25℃に調整した。2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)を1g投入し、温度を2.5時間かけて50℃に昇温しながら反応させた後、温度を90℃に昇温し、重合転化率が約50重量%となる時点で合成実施例1と同様に反応を停止させた。次に、メタクリル酸グリシジル 5gを反応させ重合体組成物P−6を得た。
[Synthesis Example 6]
Using the same apparatus as in Synthesis Example 1, 600 g of 2-ethylhexyl acrylate, 300 g of n-butyl acrylate, 70 g of N-vinylpyrrolidone, 30 g of methacrylic acid, 10 g of α-methylstyrene dimer (13.0 mol of polymerization initiator) The mixture was stirred while being bubbled with nitrogen gas, and adjusted to 25 ° C. 1 g of 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) was added and reacted while the temperature was raised to 50 ° C. over 2.5 hours, and then the temperature was raised to 90 ° C. The reaction was stopped in the same manner as in Synthesis Example 1 when the polymerization conversion reached about 50% by weight. Next, 5 g of glycidyl methacrylate was reacted to obtain a polymer composition P-6.

得られた重合体組成物P−6は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−6の重合転化率は51.0重量%、重量平均分子量(Mw)は202,000、分散度(Mw/Mn)は2.9、重合体分子1molあたりの二重結合量(mol数)は7.1molであった。   The obtained polymer composition P-6 was able to be produced without any problem in safety because no rapid heat generation was observed within the entire reaction time. In addition, the polymerization conversion rate of the polymer composition P-6 was 51.0% by weight, the weight average molecular weight (Mw) was 202,000, the dispersity (Mw / Mn) was 2.9, and the double per mol of polymer molecule. The binding amount (mol number) was 7.1 mol.

〔合成実施例7〕
合成実施例6において、仕込み組成をアクリル酸2−エチルヘキシル 440g、アクリル酸n−ブチル 400g、メタクリル酸メチル 100g、メタクリル酸ジメチルアミノエチル 30g、メタクリル酸 30g、α−メチルスチレンダイマー 10g(重合開始剤の13.0mol倍)に変更した以外は合成実施例6と同様に調製し、重合転化率が約55重量%となる時点で反応を停止させた。次に、メタクリル酸グリシジル 4.5gを反応させ重合体組成物P−7を得た。
[Synthesis Example 7]
In Synthesis Example 6, the charged composition was 440 g of 2-ethylhexyl acrylate, 400 g of n-butyl acrylate, 100 g of methyl methacrylate, 30 g of dimethylaminoethyl methacrylate, 30 g of methacrylic acid, 10 g of α-methylstyrene dimer (polymerization initiator) It was prepared in the same manner as in Synthesis Example 6 except that the reaction rate was changed to 13.0 mol times, and the reaction was stopped when the polymerization conversion rate was about 55% by weight. Next, 4.5 g of glycidyl methacrylate was reacted to obtain a polymer composition P-7.

得られた重合体組成物P−7は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−7の重合転化率は55.5重量%、重量平均分子量(Mw)は216,000、分散度(Mw/Mn)は3.0、重合体分子1molあたりの二重結合量(mol数)は6.8molであった。   The obtained polymer composition P-7 was able to be produced without any problem in safety because no rapid heat generation was observed within the entire reaction time. In addition, the polymerization conversion rate of the polymer composition P-7 was 55.5% by weight, the weight average molecular weight (Mw) was 216,000, the dispersity (Mw / Mn) was 3.0, and the double per mol of polymer molecule. The binding amount (mol number) was 6.8 mol.

〔合成実施例8〕
合成実施例1において、α−メチルスチレンダイマーを0.4g(重合開始剤の2.6mol倍)に変更した以外は、合成実施例1と同様に調製し、重合転化率が約20重量%となる時点で反応を停止させた。次に、メタクリル酸グリシジル 5gを反応させ重合体組成物P−8を得た。
[Synthesis Example 8]
In Synthesis Example 1, except that α-methylstyrene dimer was changed to 0.4 g (2.6 mol times the polymerization initiator), it was prepared in the same manner as in Synthesis Example 1, and the polymerization conversion rate was about 20% by weight. The reaction was stopped at some point. Next, 5 g of glycidyl methacrylate was reacted to obtain a polymer composition P-8.

得られた重合体組成物P−8は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−8の重合転化率は22.4重量%、重量平均分子量(Mw)は210,000、分散度(Mw/Mn)は2.4、重合体分子1molあたりの二重結合量(mol数)は7.4molであった。   The obtained polymer composition P-8 was not observed to be rapidly heated within the entire reaction time, and could be produced without any problem in safety. In addition, the polymerization conversion rate of the polymer composition P-8 was 22.4% by weight, the weight average molecular weight (Mw) was 210,000, the dispersity (Mw / Mn) was 2.4, and the double per mol of the polymer molecule. The binding amount (mol number) was 7.4 mol.

〔合成実施例9〕
合成実施例1において、メタクリル酸グリシジル 3gをアクリル酸グリシジル 3gに変更する以外は合成実施例1と同様にして重合体組成物P−9を得た。
[Synthesis Example 9]
In Synthesis Example 1, a polymer composition P-9 was obtained in the same manner as in Synthesis Example 1 except that 3 g of glycidyl methacrylate was changed to 3 g of glycidyl acrylate.

得られた重合体組成物P−9は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。重合体組成物P−9の重合転化率は45.0重量%、重量平均分子量(Mw)は255,000、分散度(Mw/Mn)は2.4、重合体分子1molあたりの二重結合量(mol数)は6.0molであった。   The obtained polymer composition P-9 was able to be produced without any problem in safety because no rapid heat generation was observed within the entire reaction time. Polymer composition P-9 had a polymerization conversion rate of 45.0% by weight, a weight average molecular weight (Mw) of 255,000, a dispersity (Mw / Mn) of 2.4, and double bonds per mol of polymer molecule. The amount (mol number) was 6.0 mol.

〔合成実施例10〕
合成実施例1において、重合開始剤をクミルパーオキシネオデカノエート(日油社製パークミルND、10時間半減期温度37℃) 0.2gに変更する以外は合成実施例1と同様にして重合体組成物P−1Aを得た。
[Synthesis Example 10]
In Synthesis Example 1, heavy polymerization was conducted in the same manner as in Synthesis Example 1 except that the polymerization initiator was changed to 0.2 g of cumylperoxyneodecanoate (Nippon Park Mill ND, 10 hour half-life temperature 37 ° C.). A combined composition P-1A was obtained.

得られた重合体組成物P−1Aは、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−1Aの重合転化率は44.5重量%、重量平均分子量(Mw)は251,000、分散度(Mw/Mn)は2.7、重合体分子1molあたりの二重結合量(mol数)は8.8molであった。   The obtained polymer composition P-1A could be produced without any problem in safety because no rapid heat generation was observed within the entire reaction time. In addition, the polymerization conversion rate of the polymer composition P-1A was 44.5% by weight, the weight average molecular weight (Mw) was 251,000, the dispersity (Mw / Mn) was 2.7, and the double per mol of polymer molecule. The binding amount (mol number) was 8.8 mol.

〔合成比較例1〕
合成実施例1において、α−メチルスチレンダイマーを使用しない(重合開始剤の0.0mol倍)に変更した以外は合成実施例1と同様にして、重合体組成物P−1Bの調製を試みた。しかし、重合開始剤2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)を投入した直後に急激な発熱が観測され、反応暴走が起こったため、安全性に問題がある製造条件と判断した。
[Synthesis Comparative Example 1]
In Synthesis Example 1, preparation of polymer composition P-1B was attempted in the same manner as in Synthesis Example 1 except that α-methylstyrene dimer was not used (0.0 mol times the polymerization initiator). . However, immediately after the polymerization initiator 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) was added, a rapid exotherm was observed and reaction runaway occurred. It was judged.

〔合成比較例2〕
合成実施例1において、α−メチルスチレンダイマーを0.1g(重合開始剤の0.7mol倍)に変更した以外は合成実施例1と同様にして、重合体組成物P−1Cの調製を試みた。しかし、重合開始剤2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)を投入した直後に急激な発熱が観測されたため、安全性に問題がある製造条件と判断した。
[Synthesis Comparative Example 2]
Preparation of polymer composition P-1C was attempted in the same manner as in Synthesis Example 1, except that α-methylstyrene dimer was changed to 0.1 g (0.7 mol times the polymerization initiator) in Synthesis Example 1. It was. However, since rapid heat generation was observed immediately after the polymerization initiator 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) was added, it was judged that the production conditions had a safety problem.

〔合成比較例3〕
合成実施例1において、重合開始剤を2,2′−アゾビス(2−メチルブチロニトリル)(V−59(和光純薬社製),10時間半減期温度67℃) 0.2gに変更する以外は合成実施例1と同様にして、重合体組成物P−1Dの調製を試みた。しかし、反応温度を70℃に昇温する途中で急激な発熱が観測されたため、安全性に問題がある製造条件と判断した。
[Synthesis Comparative Example 3]
In Synthesis Example 1, the polymerization initiator is changed to 0.2 g of 2,2′-azobis (2-methylbutyronitrile) (V-59 (manufactured by Wako Pure Chemical Industries, Ltd., 10 hour half-life temperature 67 ° C.)). Except for the above, an attempt was made to prepare polymer composition P-1D in the same manner as in Synthesis Example 1. However, since a sudden exotherm was observed while raising the reaction temperature to 70 ° C., it was determined that the production conditions were problematic in terms of safety.

〔合成比較例4〕
合成実施例1において、重合開始剤投入後の反応温度を90℃に変更する以外は合成実施例1と同様にして、重合体組成物P−1Eの調製を試みた。しかし、重合開始剤2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)を投入した直後に急激な発熱が観測されたため、安全性に問題がある製造条件と判断した。
[Synthesis Comparative Example 4]
In Synthesis Example 1, preparation of polymer composition P-1E was attempted in the same manner as in Synthesis Example 1 except that the reaction temperature after adding the polymerization initiator was changed to 90 ° C. However, since rapid heat generation was observed immediately after the polymerization initiator 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) was added, it was judged that the production conditions had a safety problem.

〔合成比較例5〕
合成実施例1において、反応温度を70℃に昇温する条件を、120℃に昇温する条件に変更する以外は合成実施例1と同様にして、重合体組成物P−1Fの調製を試みた。しかし、120℃昇温後は継続して発熱が観測されたため、安全性に問題がある製造条件と判断した。
[Synthesis Comparative Example 5]
In Synthesis Example 1, the preparation of polymer composition P-1F was attempted in the same manner as in Synthesis Example 1 except that the condition for raising the reaction temperature to 70 ° C. was changed to the condition for raising the temperature to 120 ° C. It was. However, since heating was continuously observed after the temperature was raised to 120 ° C., it was determined that the production conditions had a problem with safety.

〔合成比較例6〕
合成実施例7において、仕込み組成をメタクリル酸メチル 920g、メタクリル酸ジメチルアミノエチル 30g、アクリル酸 30gに変更した以外は合成実施例7と同様に調製し、重合転化率が約50重量%となる時点で反応を停止させた。次に、メタクリル酸グリシジル 2.5gを反応させ重合体組成物P−10を得た。
[Synthesis Comparative Example 6]
In Synthesis Example 7, prepared in the same manner as in Synthesis Example 7 except that the charged composition was changed to 920 g of methyl methacrylate, 30 g of dimethylaminoethyl methacrylate, and 30 g of acrylic acid, and the polymerization conversion was about 50% by weight. The reaction was stopped at. Next, 2.5 g of glycidyl methacrylate was reacted to obtain a polymer composition P-10.

得られた重合体組成物P−10は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−10の重合転化率は50.2重量%、重量平均分子量(Mw)は203,000、分散度(Mw/Mn)は2.0、重合体分子1molあたりの二重結合量(mol数)は3.6molであった。   The obtained polymer composition P-10 was able to be produced without any problem in safety because no rapid heat generation was observed within the entire reaction time. Polymer composition P-10 had a polymerization conversion of 50.2% by weight, a weight average molecular weight (Mw) of 203,000, a dispersity (Mw / Mn) of 2.0, and a double per mole of polymer molecule. The binding amount (mol number) was 3.6 mol.

〔合成比較例7〕
合成実施例1において、仕込み組成をアクリル酸2−エチルヘキシル 950g、アクリル酸50gに変更した以外は合成実施例1と同様に調製し、重合転化率が約45重量%となる時点で反応を停止させた。次に、メタクリル酸グリシジル 2.5gを反応させ重合体組成物P−11を得た。
[Synthesis Comparative Example 7]
In Synthesis Example 1, it was prepared in the same manner as in Synthesis Example 1 except that the charged composition was changed to 950 g of 2-ethylhexyl acrylate and 50 g of acrylic acid, and the reaction was stopped when the polymerization conversion was about 45% by weight. It was. Next, 2.5 g of glycidyl methacrylate was reacted to obtain a polymer composition P-11.

得られた重合体組成物P−11は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−11の重合転化率は45.0重量%、重量平均分子量(Mw)は250,000、分散度(Mw/Mn)は2.3、重合体分子1molあたりの二重結合量(mol数)は4.4molであった。   The obtained polymer composition P-11 was not observed to have a rapid exotherm within the entire reaction time, and could be produced without any problem in safety. Polymer composition P-11 had a polymerization conversion rate of 45.0% by weight, a weight average molecular weight (Mw) of 250,000, a dispersity (Mw / Mn) of 2.3, and a double per mole of polymer molecule. The binding amount (mol number) was 4.4 mol.

〔合成比較例8〕
合成実施例1において、仕込み組成をアクリル酸2−エチルヘキシル 880g、N−ビニルピロリドン 120gに変更した以外は合成実施例1と同様に調製し、重合転化率が約45重量%となる時点で反応を停止させた。次に、メタクリル酸グリシジル 2.5gを反応させ重合体組成物P−12を得た。
[Synthesis Comparative Example 8]
In Synthesis Example 1, it was prepared in the same manner as in Synthesis Example 1 except that the charged composition was changed to 880 g of 2-ethylhexyl acrylate and 120 g of N-vinylpyrrolidone, and the reaction was performed when the polymerization conversion rate was about 45% by weight. Stopped. Next, 2.5 g of glycidyl methacrylate was reacted to obtain a polymer composition P-12.

得られた重合体組成物P−12は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−12の重合転化率は44.2重量%、重量平均分子量(Mw)は240,000、分散度(Mw/Mn)は2.5、重合体分子1molあたりの二重結合量(mol数)は4.2molであった。   The obtained polymer composition P-12 was able to be produced without any problem in safety because no rapid heat generation was observed within the entire reaction time. In addition, the polymerization conversion rate of the polymer composition P-12 was 44.2% by weight, the weight average molecular weight (Mw) was 240,000, the dispersity (Mw / Mn) was 2.5, and the double per mol of polymer molecule. The binding amount (mol number) was 4.2 mol.

〔合成比較例9〕
合成実施例1において、反応を停止させた後、メタクリル酸グリシジルを反応させなかったこと以外は合成実施例1と同様にして重合体組成物P−13を得た。
[Synthesis Comparative Example 9]
In Synthesis Example 1, a polymer composition P-13 was obtained in the same manner as in Synthesis Example 1 except that the reaction was stopped and glycidyl methacrylate was not reacted.

得られた重合体組成物P−13は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−13の重合転化率は45.5重量%、重量平均分子量(Mw)は256,000、分散度(Mw/Mn)は2.6、重合体分子1molあたりの二重結合量(mol数)は0.0molであった。   The obtained polymer composition P-13 was not observed to have a rapid exotherm within the entire reaction time, and could be produced without any problem in safety. In addition, the polymerization conversion rate of the polymer composition P-13 was 45.5% by weight, the weight average molecular weight (Mw) was 256,000, the dispersity (Mw / Mn) was 2.6, and the double per mol of the polymer molecule. The binding amount (mol number) was 0.0 mol.

〔合成比較例10〕
合成実施例1において、反応を停止させた後、メタクリル酸グリシジルの仕込量を1.5gとする以外は合成実施例1同様にして重合体組成物P−14を得た。
[Synthesis Comparative Example 10]
In Synthesis Example 1, after stopping the reaction, Polymer Composition P-14 was obtained in the same manner as in Synthesis Example 1 except that the amount of glycidyl methacrylate charged was 1.5 g.

得られた重合体組成物P−14は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−14の重合転化率は45.1重量%、重量平均分子量(Mw)は253,000、分散度(Mw/Mn)は2.5、重合体分子1molあたりの二重結合量(mol数)は2.7molであった。   The obtained polymer composition P-14 was able to be produced without any problem in safety because no rapid heat generation was observed within the entire reaction time. In addition, the polymerization conversion rate of the polymer composition P-14 was 45.1% by weight, the weight average molecular weight (Mw) was 253,000, the dispersity (Mw / Mn) was 2.5, and the double per mol of polymer molecule. The binding amount (mol number) was 2.7 mol.

〔合成比較例11〕
合成実施例1において、反応を停止させた後、メタクリル酸グリシジル仕込量を10gとする以外は合成実施例1と同様にして重合体組成物P−15を得た。
[Synthesis Comparative Example 11]
In the synthesis example 1, after stopping reaction, polymer composition P-15 was obtained like the synthesis example 1 except the glycidyl methacrylate preparation amount having been 10 g.

得られた重合体組成物P−15は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−15の重合転化率は45.4重量%、重量平均分子量(Mw)は253,000、分散度(Mw/Mn)は2.9、重合体分子1molあたりの二重結合量(mol数)は17.8molであった。   The obtained polymer composition P-15 was not observed to have a rapid exotherm within the entire reaction time, and could be produced without any problem in safety. In addition, the polymerization conversion rate of the polymer composition P-15 was 45.4% by weight, the weight average molecular weight (Mw) was 253,000, the dispersity (Mw / Mn) was 2.9, and the double per mol of polymer molecule The binding amount (mol number) was 17.8 mol.

〔合成比較例12〕
合成実施例1において、α−メチルスチレンダイマーを25g(重合開始剤の4.1mol倍)、2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)を8gに変更した以外は合成実施例1と同様に調製し、重合転化率が約40重量%となる時点で反応を停止させた。次に、メタクリル酸グリシジル 5gを反応させ重合体組成物P−16を得た。
[Synthesis Comparative Example 12]
In Synthesis Example 1, except that α-methylstyrene dimer was changed to 25 g (4.1 mol times the polymerization initiator) and 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) was changed to 8 g. Prepared in the same manner as in Synthesis Example 1, and the reaction was stopped when the polymerization conversion reached about 40% by weight. Next, 5 g of glycidyl methacrylate was reacted to obtain a polymer composition P-16.

得られた重合体組成物P−16は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−16の重合転化率は40.5重量%、重量平均分子量(Mw)は152,000、分散度(Mw/Mn)は2.1、重合体分子1molあたりの二重結合量(mol数)は5.3molであった。   The obtained polymer composition P-16 was able to be produced without any problem in safety because no rapid heat generation was observed within the entire reaction time. In addition, the polymerization conversion rate of the polymer composition P-16 was 40.5% by weight, the weight average molecular weight (Mw) was 152,000, the dispersity (Mw / Mn) was 2.1, and the double per mol of polymer molecule The binding amount (mol number) was 5.3 mol.

〔合成比較例13〕
合成実施例1において、重合転化率が約30重量%となる時点で反応を停止させた以外は合成実施例1と同様に調製した。次に、メタクリル酸グリシジル 3.0gを反応させ重合体組成物P−17を得た。
[Synthesis Comparative Example 13]
In Synthesis Example 1, it was prepared in the same manner as in Synthesis Example 1 except that the reaction was stopped when the polymerization conversion rate was about 30% by weight. Next, 3.0 g of glycidyl methacrylate was reacted to obtain a polymer composition P-17.

得られた重合体組成物P−17は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−17の重合転化率は32.2重量%、重量平均分子量(Mw)は202,000、分散度(Mw/Mn)は1.7、重合体分子1molあたりの二重結合量(mol数)は4.3molであった。   The obtained polymer composition P-17 was able to be produced without any problem in safety because no rapid heat generation was observed within the entire reaction time. In addition, the polymerization conversion rate of the polymer composition P-17 was 32.2% by weight, the weight average molecular weight (Mw) was 202,000, the dispersity (Mw / Mn) was 1.7, and the double per mol of the polymer molecule was The binding amount (mol number) was 4.3 mol.

〔合成比較例14〕
合成実施例1において、重合転化率が約15重量%となる時点で反応を停止させた以外は合成実施例1と同様に調製した。次に、メタクリル酸グリシジル 2.5gを反応させ重合体組成物P−18を得た。
[Synthesis Comparative Example 14]
In Synthesis Example 1, it was prepared in the same manner as in Synthesis Example 1 except that the reaction was stopped when the polymerization conversion rate was about 15% by weight. Next, 2.5 g of glycidyl methacrylate was reacted to obtain a polymer composition P-18.

得られた重合体組成物P−18は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−17の重合転化率は18.2重量%、重量平均分子量(Mw)は102,000、分散度(Mw/Mn)は1.7、重合体分子1molあたりの二重結合量(mol数)は1.8molであった。   The obtained polymer composition P-18 was not observed to be rapidly heated within the entire reaction time, and could be produced without any problem in safety. In addition, the polymerization conversion rate of the polymer composition P-17 was 18.2% by weight, the weight average molecular weight (Mw) was 102,000, the dispersity (Mw / Mn) was 1.7, and the double per mol of the polymer molecule. The amount of bonding (mol number) was 1.8 mol.

〔合成比較例15〕
合成実施例1において、α−メチルスチレンダイマーを70g(重合開始剤の4.6mol倍)、2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)を20gに変更した以外は合成実施例1と同様に調製し、重合転化率が約95重量%となる時点で反応を停止させた。次に、メタクリル酸グリシジル 3gを反応させ重合体組成物P−19を得た。
[Synthesis Comparative Example 15]
In Synthesis Example 1, except that α-methylstyrene dimer was changed to 70 g (4.6 mol times the polymerization initiator) and 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) was changed to 20 g. Prepared in the same manner as in Synthesis Example 1, and the reaction was stopped when the polymerization conversion reached about 95% by weight. Next, 3 g of glycidyl methacrylate was reacted to obtain a polymer composition P-19.

得られた重合体組成物P−19は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−19の重合転化率は92.0重量%、重量平均分子量(Mw)は18,000、分散度(Mw/Mn)は1.7、重合体分子1molあたりの二重結合量(mol数)は0.4molであった。   The obtained polymer composition P-19 was able to be produced without any problem in safety because no rapid heat generation was observed within the entire reaction time. In addition, the polymerization conversion rate of the polymer composition P-19 was 92.0% by weight, the weight average molecular weight (Mw) was 18,000, the dispersity (Mw / Mn) was 1.7, and the double per mol of the polymer molecule was The amount of bonds (number of moles) was 0.4 mol.

〔合成比較例16〕
合成比較例15において、メタクリル酸グリシジルの仕込量を200gとする以外は合成比較例15と同様にして重合体組成物P−20を得た。
[Synthesis Comparative Example 16]
In Synthesis Comparative Example 15, a polymer composition P-20 was obtained in the same manner as in Synthesis Comparative Example 15 except that the amount of glycidyl methacrylate charged was 200 g.

得られた重合体組成物P−20は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。また重合体組成物P−20の重合転化率は91.0重量%、重量平均分子量(Mw)は17,000、分散度(Mw/Mn)は1.8、重合体分子1molあたりの二重結合量(mol数)は23.9molであった。   The obtained polymer composition P-20 was not observed to be rapidly heated within the entire reaction time, and could be produced without any problem in safety. In addition, the polymerization conversion rate of the polymer composition P-20 was 91.0% by weight, the weight average molecular weight (Mw) was 17,000, the dispersity (Mw / Mn) was 1.8, and the double per mol of the polymer molecule. The binding amount (mol number) was 23.9 mol.

〔合成比較例17〕
合成実施例1と同様の装置を使用し、メタクリル酸2−エチルヘキシル 830g、N−ビニルピロリドン 120g、アクリル酸 50g、p−メトキシフェノール 0.5g、メタクリル酸グリシジル 3g、N,N′−ジメチルベンジルアミン 4gを仕込み、フラスコ内に空気をバブリングしながら90℃で6時間反応させ、重合体を含まない組成物P−21を得た。
[Synthesis Comparative Example 17]
Using the same apparatus as in Synthesis Example 1, 830 g of 2-ethylhexyl methacrylate, 120 g of N-vinylpyrrolidone, 50 g of acrylic acid, 0.5 g of p-methoxyphenol, 3 g of glycidyl methacrylate, N, N′-dimethylbenzylamine 4 g was charged and reacted at 90 ° C. for 6 hours while bubbling air into the flask to obtain a composition P-21 containing no polymer.

重合体を含まない組成物P−21は、全反応時間内において急激な発熱は観測されず、安全性に問題なく製造することができた。   The composition P-21 not containing a polymer was not observed to have a rapid exotherm within the entire reaction time, and could be produced without any problem in safety.

以上の合成実施例および合成比較例の組成比、反応条件については、それぞれ表1〜3に示す。合成比較例1〜5のような条件では、無溶剤重合の発熱制御が不十分であるが本発明の製造条件で調製した合成実施例1〜10では発熱が制御されており、後述する実施例に示すように優れた粘着特性を発現する光硬化型無用剤組成物を安全性に問題なく、かつ簡便に調製が可能であることがわかる。   The composition ratios and reaction conditions of the above synthesis examples and synthesis comparative examples are shown in Tables 1 to 3, respectively. Under conditions such as Synthesis Comparative Examples 1 to 5, heat generation control of solventless polymerization is insufficient, but heat generation is controlled in Synthesis Examples 1 to 10 prepared under the production conditions of the present invention. It can be seen that a photocurable useless composition that exhibits excellent adhesive properties can be easily prepared without problems in safety as shown in FIG.

Figure 0006100583
Figure 0006100583

Figure 0006100583
Figure 0006100583

Figure 0006100583
Figure 0006100583

表1〜3における略号は、以下の化合物を表す。
・β−CEA: アクリル酸と2−カルボキシエチルアクリレートオリゴマー(n=1〜6)の混合物、ローディア日華社製
・V−70: 2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、10時間半減期温度30℃、和光純薬社製
・パークミルND: クミルパーオキシネオデカノエート、10時間半減期温度37℃、日油社製
・V−59: 2,2’−アゾビス(2−メチルブチロニトリル)、10時間半減期温度67℃、和光純薬社製
The abbreviations in Tables 1 to 3 represent the following compounds.
Β-CEA: A mixture of acrylic acid and 2-carboxyethyl acrylate oligomer (n = 1-6), Rhodia Nikka Co., Ltd. V-70: 2,2′-azobis (4-methoxy-2,4-dimethyl Valeronitrile), 10-hour half-life temperature 30 ° C., manufactured by Wako Pure Chemical Industries, Ltd. Parkmill ND: Cumylperoxyneodecanoate, 10-hour half-life temperature 37 ° C., NOF Corporation V-59: 2,2 ′ -Azobis (2-methylbutyronitrile), 10 hour half-life temperature 67 ° C, manufactured by Wako Pure Chemical Industries, Ltd.

[実施例1〜11、比較例1〜14]
上述した合成実施例1〜9および合成比較例6〜17で得られた無溶剤重合性重合体組成物P−1〜P−21を使用し、表4〜6に示す重量比で重合体組成物、塩素化ポリプロピレン、光重合開始剤を、空気導入管、還流冷却器、撹拌装置、仕込み口を有する2L四つ口フラスコに仕込み、空気をバブリングしながら攪拌し、温度を50℃に保ったまま1時間溶解混合し、35種類の光硬化型無溶剤組成物(実施例1〜11、比較例1〜14)を得た。
[Examples 1-11, Comparative Examples 1-14]
The solvent-free polymerizable polymer compositions P-1 to P-21 obtained in Synthesis Examples 1 to 9 and Synthesis Comparative Examples 6 to 17 were used, and the polymer compositions were used in the weight ratios shown in Tables 4 to 6. The product, chlorinated polypropylene, and photopolymerization initiator were charged into a 2 L four-necked flask having an air introduction tube, a reflux condenser, a stirring device, and a charging port, and stirred while bubbling air to keep the temperature at 50 ° C. It melted and mixed for 1 hour as it was, and obtained 35 types of photocurable solventless compositions (Examples 1-11, Comparative Examples 1-14).

得られた光硬化型無溶剤組成物の硬化特性および粘着特性を表4〜6に示す。   Tables 4 to 6 show the curing characteristics and adhesion characteristics of the obtained photocurable solventless composition.

Figure 0006100583
Figure 0006100583

Figure 0006100583
Figure 0006100583

Figure 0006100583
Figure 0006100583

表4〜6において、使用した材料は以下のとおりである。   In Tables 4 to 6, the materials used are as follows.

無溶剤重合性重合体組成物(A)
・重合体組成物P−1〜P−21: 上述した合成実施例1〜9および合成比較例6〜17で得られたもの
塩素化ポリプロピレン(B)
・DX−530P: 東洋紡社製 塩素化ポリプロピレン
・DX−523P: 東洋紡社製 塩素化ポリプロピレン
光重合開始剤(C)
・Lucirin TPO: 2,4,6−トリメチルベンゾイルジフェニルフォスフィン=オキサイド、BASFジャパン社製
・IRGACURE 184: 1−ヒドロキシシクロヘキシルフェニルケトン、chiba社製
Solvent-free polymerizable polymer composition (A)
Polymer compositions P-1 to P-21: those obtained in Synthesis Examples 1 to 9 and Synthesis Comparative Examples 6 to 17 described above Chlorinated polypropylene (B)
DX-530P: Toyobo Co., Ltd. chlorinated polypropylene DX-523P: Toyobo Co., Ltd. Chlorinated polypropylene Photopolymerization initiator (C)
・ Lucirin TPO: 2,4,6-trimethylbenzoyldiphenylphosphine = oxide, manufactured by BASF Japan ・ IRGACURE 184: 1-hydroxycyclohexyl phenyl ketone, manufactured by chiba

実施例、比較例の光硬化型無溶剤組成物の評価結果では、従来から存在する比較例10,11のような反応性二重結合を有する低分子量樹脂組成物同等のものは硬化性が不足して粘着性能が低下したり、反応性二重結合量を増量して硬化性を維持するとフィルムが硬すぎて転写性能が発現しないことがわかる。また、比較例12のようにモノマーおよび比較例11のようなオリゴマーから光硬化させたものは低強度の光(UV)照射では積算光量が不足し硬化しないことがわかる。   In the evaluation results of the photocurable solventless compositions of the examples and comparative examples, the low molecular weight resin composition equivalent to the conventional low molecular weight resin composition having the reactive double bond as in Comparative Examples 10 and 11 is insufficient in curability. Thus, it can be seen that when the adhesive performance is lowered, or the amount of reactive double bonds is increased to maintain the curability, the film is too hard and the transfer performance is not exhibited. Further, it can be seen that the photocured monomer and the oligomer as in Comparative Example 11 as in Comparative Example 12 do not cure due to insufficient accumulated light amount when irradiated with low-intensity light (UV).

これに対して、実施例1〜11に示す本発明の光硬化型組成物はごく低強度、低積算光量で十分な硬化性を有し、かつ転写性能を含む粘着性能が良好に発現していることがわかる。   On the other hand, the photocurable compositions of the present invention shown in Examples 1 to 11 have sufficient curability with very low strength and low integrated light quantity, and the adhesive performance including transfer performance is well expressed. I understand that.

また、比較例1〜6および13,14と実施例の比較から、本発明で設定した組成および量が良好な粘着性能の発現に必要であることがわかり、特に比較例4〜6で使用した重合体組成物P-13〜15との対比から、重合体分子1molあたりの二重結合mol数が適正な範囲の場合のみ、良好な転写性能が発現していることがわかる。   Moreover, it turned out that the composition and quantity which were set by this invention were required for expression of favorable adhesive performance from the comparison of Comparative Examples 1-6 and 13, 14 and an Example, and it used especially by Comparative Examples 4-6. From comparison with the polymer compositions P-13 to 15, it can be seen that good transfer performance is expressed only when the number of moles of double bonds per mole of polymer molecules is in an appropriate range.

Claims (8)

溶剤、可塑剤を含まない無溶剤重合性共重合体組成物(A)、塩素化ポリプロピレン(B)および紫外線を吸収しラジカルを発生する重合開始剤(C)からなる光硬化型無溶剤組成物であって、前記無溶剤重合性共重合体組成物(A)が、炭素数が4以上のアルキル基を有する(メタ)アクリル酸エステル単量体(a)、分子内に窒素原子を有する重合性単量体(b)、下記一般式(1)で表される(メタ)アクリル酸エステル単量体(c)からなる(メタ)アクリル酸エステル共重合体および前記単量体(a)(b)(c)の混合物を含み、前記(メタ)アクリル酸エステル共重合体の重量平均分子量(Mw)が20〜40万、該重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)で表される分散度が2.0〜5.0、かつ側鎖に共重合体分子1molあたり重合性二重結合を3〜10mol有すると共に、前記塩素化ポリプロピレン(B)の配合量が1〜8重量%、前記重合開始剤(C)の配合量が0.5〜8重量%であることを特徴とする光硬化型無溶剤組成物。
Figure 0006100583
(式中、R1は水素原子またはメチル基、nは0〜6の整数を表し、複数のnが混在してもよい。)
A photocurable solventless composition comprising a solvent, a solventless polymerizable copolymer composition (A) not containing a plasticizer, a chlorinated polypropylene (B), and a polymerization initiator (C) that absorbs ultraviolet rays to generate radicals The solvent-free polymerizable copolymer composition (A) is a (meth) acrylic acid ester monomer (a) having an alkyl group having 4 or more carbon atoms, and a polymerization having a nitrogen atom in the molecule. Monomer (b), a (meth) acrylic acid ester copolymer consisting of a (meth) acrylic acid ester monomer (c) represented by the following general formula (1), and the monomer (a) ( b) A mixture of (c), wherein the (meth) acrylic acid ester copolymer has a weight average molecular weight (Mw) of 200 to 400,000, and a ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) ( Mw / Mn) has a dispersity represented by 2.0 to 5.0, and In addition to having 3 to 10 mol of polymerizable double bonds per mol of copolymer molecules in the side chain, the amount of the chlorinated polypropylene (B) is 1 to 8% by weight, and the amount of the polymerization initiator (C) is 0. A photocurable solventless composition characterized by being 5 to 8 % by weight .
Figure 0006100583
(In the formula, R 1 represents a hydrogen atom or a methyl group, n represents an integer of 0 to 6, and a plurality of n may be mixed.)
前記分子内に窒素原子を有する重合性単量体(b)が、N−ビニルピロリドン及び/又はメタクリル酸ジメチルアミノエチルである請求項1に記載の光硬化型無溶剤組成物。   The photocurable solventless composition according to claim 1, wherein the polymerizable monomer (b) having a nitrogen atom in the molecule is N-vinylpyrrolidone and / or dimethylaminoethyl methacrylate. 前記(メタ)アクリル酸エステル共重合体が、前記単量体(a)(b)(c)からなる単量体混合物の総量の内、20〜60重量%を共重合したものであることを特徴とする請求項1または2に記載の光硬化型無溶剤組成物。   The (meth) acrylic acid ester copolymer is obtained by copolymerizing 20 to 60% by weight of the total amount of the monomer mixture composed of the monomers (a), (b) and (c). The photocurable solventless composition according to claim 1, wherein the composition is a photocurable solventless composition. 前記(メタ)アクリル酸エステル共重合体が、リビングラジカル重合によって共重合したものである請求項1〜3のいずれかに記載の光硬化型無溶剤組成物。   The photocurable solventless composition according to claim 1, wherein the (meth) acrylic acid ester copolymer is copolymerized by living radical polymerization. 請求項1〜のいずれかに記載の光硬化型無溶剤組成物の製造方法であって、炭素数が4以上のアルキル基を有する(メタ)アクリル酸エステル単量体(a)、分子内に窒素原子を有する重合性単量体(b)および下記一般式(1)で表される(メタ)アクリル酸エステル単量体(c)からなる単量体混合物を調製し、該単量体混合物の総量の内、転化率が20〜60重量%になるように(メタ)アクリル酸エステル共重合体を共重合することにより、溶剤、可塑剤を含まない無溶剤重合性共重合体組成物(A)を調製し、これに塩素化ポリプロピレン(B)および紫外線を吸収しラジカルを発生する重合開始剤(C)を溶解混合することを特徴とする光硬化型無溶剤組成物の製造方法。
Figure 0006100583
(式中、R1は水素原子またはメチル基、nは0〜6の整数を表し、複数のnが混在してもよい。)
It is a manufacturing method of the photocurable solventless composition in any one of Claims 1-4 , Comprising: The (meth) acrylic acid ester monomer (a) which has an alkyl group with 4 or more carbon atoms, intramolecular A monomer mixture comprising a polymerizable monomer (b) having a nitrogen atom and a (meth) acrylate monomer (c) represented by the following general formula (1): A solvent-free polymerizable copolymer composition containing no solvent or plasticizer by copolymerizing a (meth) acrylic acid ester copolymer so that the conversion rate is 20 to 60% by weight in the total amount of the mixture. A method for producing a photocurable solventless composition, comprising preparing (A) and dissolving and mixing chlorinated polypropylene (B) and a polymerization initiator (C) that absorbs ultraviolet rays to generate radicals.
Figure 0006100583
(In the formula, R 1 represents a hydrogen atom or a methyl group, n represents an integer of 0 to 6, and a plurality of n may be mixed.)
前記(メタ)アクリル酸エステル共重合体を、リビングラジカル重合によって共重合することを特徴とする請求項に記載の光硬化型無溶剤組成物の製造方法。 The said (meth) acrylic acid ester copolymer is copolymerized by living radical polymerization, The manufacturing method of the photocurable solventless composition of Claim 5 characterized by the above-mentioned. 前記リビングラジカル重合を付加開裂型連鎖移動重合とし、付加開列型連鎖移動剤(d)を、10時間半減期温度が30〜50℃である重合開始剤(e)の2mol倍以上使用して、50℃以下で第1の重合反応をした後、60〜100℃で第2の重合反応をすることを特徴とする請求項に記載の光硬化型無溶剤組成物の製造方法。 The living radical polymerization is addition-cleavage-type chain transfer polymerization, and the addition-open-chain-type chain transfer agent (d) is used at least 2 mol times the polymerization initiator (e) whose 10-hour half-life temperature is 30 to 50 ° C. The method for producing a photocurable solventless composition according to claim 6 , wherein after the first polymerization reaction is performed at 50 ° C. or less, the second polymerization reaction is performed at 60 to 100 ° C. 8. 前記(メタ)アクリル酸エステル共重合体を共重合した後、アクリル酸グリシジルまたはメタクリル酸グリシジルを反応させることによって、前記共重合体の側鎖に重合性二重結合を導入することを特徴とする請求項のいずれかに記載の光硬化型無溶剤組成物の製造方法。 After copolymerizing the (meth) acrylic acid ester copolymer, a polymerizable double bond is introduced into the side chain of the copolymer by reacting with glycidyl acrylate or glycidyl methacrylate. method for producing a photocurable type non solvent composition according to any one of claims 5-7.
JP2013071497A 2013-03-29 2013-03-29 Photocurable solventless composition and method for producing the same Active JP6100583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013071497A JP6100583B2 (en) 2013-03-29 2013-03-29 Photocurable solventless composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013071497A JP6100583B2 (en) 2013-03-29 2013-03-29 Photocurable solventless composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014196375A JP2014196375A (en) 2014-10-16
JP6100583B2 true JP6100583B2 (en) 2017-03-22

Family

ID=52357419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013071497A Active JP6100583B2 (en) 2013-03-29 2013-03-29 Photocurable solventless composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP6100583B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6560022B2 (en) * 2015-05-08 2019-08-14 積水化学工業株式会社 Adhesive tape
CN111040060B (en) * 2019-12-27 2020-12-29 苏州大学 Method for polymerizing 'active' free radical of vinyl monomer under near-infrared photo-thermal conversion

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714672A (en) * 1980-06-30 1982-01-25 Hitachi Chem Co Ltd Photosetting pressure sensitive adhesive composition
US5573778A (en) * 1995-03-17 1996-11-12 Adhesives Research, Inc. Drug flux enhancer-tolerant pressure sensitive adhesive composition
JP2005029774A (en) * 2003-06-19 2005-02-03 Nippon Shokubai Co Ltd Active energy beam-curable composition
JP5510701B2 (en) * 2008-05-07 2014-06-04 東レ・ファインケミカル株式会社 Adhesive composition
JP5553283B2 (en) * 2010-07-06 2014-07-16 東レ・ファインケミカル株式会社 Acrylic resin composition
JP5533406B2 (en) * 2010-08-03 2014-06-25 東レ・ファインケミカル株式会社 UV curable adhesive composition
JP6021716B2 (en) * 2013-03-29 2016-11-09 株式会社ブリヂストン Photo-curable adhesive composition

Also Published As

Publication number Publication date
JP2014196375A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
TW201420718A (en) Photocuring adhesive agent composition, cured object, adhesive sheet and display panel and producing method thereof
JP2012021148A (en) Pressure-sensitive adhesive, pressure-sensitive adhesive for optical member, optical member with pressure-sensitive adhesive layer and image display device
WO2011115224A1 (en) Pressure-sensitive adhesive composition for optical members and pressure-sensitive adhesive tape for optical members
JP2014162852A (en) Photocurable resin composition and laminated sheet using same
JP2009057550A (en) Adhesive material
JP2014009314A (en) Photopolymerizable curable adhesive composition
JP6100583B2 (en) Photocurable solventless composition and method for producing the same
JP5525379B2 (en) UV curable hot melt pressure-sensitive adhesive, pressure-sensitive adhesive sheet and pressure-sensitive adhesive label using the same
JP6021715B2 (en) Photo-curable adhesive composition
WO2016088777A1 (en) Curable composition and film
JP5533406B2 (en) UV curable adhesive composition
JP6575047B2 (en) Iodine-terminated polymer and method for producing the same, and block copolymer and method for producing the same
JP2012067250A (en) Active energy ray-curable type hot-melt adhesive composition, and adhesive sheet and adhesive label using the adhesive composition
JP2000290610A (en) Long-chain alkyl-based releasing agent, its production, separator, and tacky adhesive sheet subjected to back releasing treatment
JP6021716B2 (en) Photo-curable adhesive composition
KR101236569B1 (en) Methods for preparing resin syrup
TWI542606B (en) Curable resin composition, curing method for the same, and cured sheet
JP6044720B2 (en) Active energy ray-curable pressure-sensitive adhesive composition
TW201404848A (en) Composition for transparent adhesive/pressure-sensitive adhesive sheet, process for producing same, and transparent adhesive/pressure-sensitive adhesive sheet
JP2015074734A (en) Adhesive for optical member, optical member with adhesive layer, image display device, and active energy ray-curable and/or thermosetting adhesive composition for optical member
CN116507680A (en) Free radically polymerizable crosslinking agent, curable composition, and adhesive therefrom
CN116635452A (en) Free radically polymerizable crosslinking agent, curable composition, and adhesive therefrom
JP7302159B2 (en) Tackifier and adhesive composition
JP2016029129A (en) Adhesive composition and adhesive film
JP2016190906A (en) Laminated body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170223

R150 Certificate of patent or registration of utility model

Ref document number: 6100583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250