JP6093833B1 - 心拍数推定装置、心理状態判定装置、心拍数推定方法、及びそのプログラム - Google Patents

心拍数推定装置、心理状態判定装置、心拍数推定方法、及びそのプログラム Download PDF

Info

Publication number
JP6093833B1
JP6093833B1 JP2015207642A JP2015207642A JP6093833B1 JP 6093833 B1 JP6093833 B1 JP 6093833B1 JP 2015207642 A JP2015207642 A JP 2015207642A JP 2015207642 A JP2015207642 A JP 2015207642A JP 6093833 B1 JP6093833 B1 JP 6093833B1
Authority
JP
Japan
Prior art keywords
heart rate
exercise intensity
exercise
time
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015207642A
Other languages
English (en)
Other versions
JP2017077426A (ja
Inventor
井尻 哲也
哲也 井尻
聡貴 木村
聡貴 木村
牧夫 柏野
牧夫 柏野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015207642A priority Critical patent/JP6093833B1/ja
Application granted granted Critical
Publication of JP6093833B1 publication Critical patent/JP6093833B1/ja
Publication of JP2017077426A publication Critical patent/JP2017077426A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】心理状態の影響を受けやすい心電や脈等の生理学的データではなく、心理状態の影響を受けずらい身体活動の情報に基づき心拍数を推定する技術を提供する。【解決手段】心拍数推定装置は、ある時刻の心拍数に影響を与える過去の運動量の総和を運動強度推定値とし、時系列の対象者の運動量を用いて、推定時刻tkよりも前の期間に対象者が実施した運動の運動量に基づき、推定時刻tkの運動強度推定値を求める運動強度推定部と、運動強度推定値と、運動強度と心拍数との関係を示す心拍-運動強度関係モデルとを用いて、推定時刻tkにおける心拍数を推定する心拍数推定部とを含む。【選択図】図6

Description

本発明は、心拍数から心理状態を判定する技術、さらに、心拍数を推定する技術に関する。
心拍数が心理状態と関連があることは従来より知られており、たとえば、非特許文献1では、心拍変動の周波数解析から心理状態を示す自律神経活動のバランスを推定している。
Daniel S. Quintana, and James A. J. Heathers, "Considerations in the assessment of heart rate variability in biobehavioral research", Frontiers in Psychology, 2014, volume 5, Article 805, pp.1 - 10.
しかしながら、心電や脈から算出する心拍数には、心理状態以外にも、身体活動(たとえば、呼吸数や体動量の変動)の影響が含まれる。このため、従来技術では心理状態の推定には身体活動の制限(たとえば、安静状態を前提)が必要となっている。
本発明は、心理状態の影響を受けやすい心電や脈等の生理学的データではなく、心理状態の影響を受けずらい身体活動の情報に基づき心拍数を推定する技術を提供することを目的とする。さらに、身体活動に制限を加えずに心理状態を判定することができる技術を提供することを目的とする。
上記の課題を解決するために、本発明の他の態様によれば、心拍数推定装置は、ある時刻の心拍数に影響を与える過去の運動量の総和を運動強度推定値とし、時系列の対象者の運動量を用いて、推定時刻tkよりも前の期間に対象者が実施した運動の運動量に基づき、推定時刻tkの運動強度推定値を求める運動強度推定部と、運動強度推定値と、運動強度と心拍数との関係を示す心拍-運動強度関係モデルとを用いて、推定時刻tkにおける心拍数を推定する心拍数推定部とを含み、運動強度推定部は、推定時刻tkにおける重みを0、または、0に近似できる値とし、過去の運動量に対して重み付け加算をして運動量の総和である運動強度推定値を求める。運動強度推定部は、推定時刻t k から見て運動量が心拍数に影響を与えるまでに発生する遅延時間を経過した後の次の時刻における重みを最大とし、最大後に、重みが指数関数的に減衰するように重みを設定する。
上記の課題を解決するために、本発明の他の態様によれば、心拍数推定方法は、ある時刻の心拍数に影響を与える過去の運動量の総和を運動強度推定値とし、時系列の対象者の運動量を用いて、推定時刻tkよりも前の期間に対象者が実施した運動の運動量に基づき、推定時刻tkの運動強度推定値を求める運動強度推定ステップと、運動強度推定値と、運動強度と心拍数との関係を示す心拍-運動強度関係モデルとを用いて、推定時刻tkにおける心拍数を推定する心拍数推定ステップとを含む。運動強度推定ステップは、推定時刻t k における重みを0、または、0に近似できる値とし、過去の運動量に対して重み付け加算をして運動量の総和である運動強度推定値を求め、運動強度推定ステップは、推定時刻t k から見て運動量が心拍数に影響を与えるまでに発生する遅延時間を経過した後の次の時刻における重みを最大とし、最大後に、重みが指数関数的に減衰するように重みを設定する。
本発明によれば、心理状態の影響を受けずらい身体活動の情報に基づき心拍数を推定できるという効果を奏する。また、身体活動に制限を加えずに心理状態を判定することができるという効果を奏する。
第一実施形態に係るモデル構築部の機能ブロック図。 第一実施形態に係るモデル構築部の処理フローの例を示す図。 重みを表現する関数を説明するための図。 正規化した対数正規分布の確率密度関数f(x)を説明するための図。 関数f(x)の値をある加速度パワー値ACCpow(tk-x)にかけ合わせることで、過去に向かって加速度パワーACCpow(tk-x)を減衰させることを説明するための図。 第一実施形態に係る判定装置の機能ブロック図。 第一実施形態に係る判定装置の処理フローの例を示す図。 三軸加速度データや心電位波形の取得手段としてウェアラブル生体電極“hitoe(登録商標)"を利用する場合の構成例を示す図。 第二実施形態に係るモデル構築部の機能ブロック図。 第二実施形態に係るモデル構築部の処理フローの例を示す図。 図11Aは回帰式推定用データ記憶部に記憶されるデータの例を示す図、図11Bは心拍数記憶部に記憶されるデータの例を示す図、図11Cは加速度パワー記憶部に記憶されるデータの例を示す図。 パラメタ記憶部に記憶に記憶されるデータの例を示す図。 第三実施形態に係る判定装置の機能ブロック図。 第三実施形態に係る判定装置の処理フローの例を示す図。
以下、本発明の実施形態について、説明する。なお、以下の説明に用いる図面では、同じ機能を持つ構成部や同じ処理を行うステップには同一の符号を記し、重複説明を省略する。
<第一実施形態のポイント>
本実施形態では、身体活動の情報に基づき心拍数を推定する。本実施形態では、加速度計から得られる加速度データのみを用いて、運動量(身体活動の量)の影響を受けて変動する心拍数を推定する例を説明する。なお、本実施形態では加速度の情報を用いて身体活動の量を求めているが、身体活動の量は、加速度だけでなく、身体部位の速度や位置の変動量を定量化したものでも表現でき、加速度以外のこれらの情報を用いて身体活動の量を求めることとしても良い。さらに、推定した心拍数を利用して、身体活動の影響と心理状態の影響とが混在している心拍数から身体活動の影響を除去し、心理状態の影響による心拍数の変動量を評価する。その結果、身体活動に制限を加えずに心理状態を推定できる。
本実施形態では、過去の所定期間の身体活動の量(運動量)が心拍数に与える影響は「(身体内での遅延のため)現在の運動量は心拍数に影響を与えないが、少し前の運動量の影響は大きく影響し、それよりも過去の運動量は過去に遠ざかるにしたがって影響量が減っていく」性質を有していることに着目し、この性質をもとに、「過去の運動量が現在の心拍数に与える影響の量を上述の性質に基づきモデル化し、このモデルと過去の運動量に基づき(たとえば、過去の運動量と、上述の性質に基づくモデルとを掛け合わせた値の積により)」現在の心拍数への影響の量を定量化し、影響の量と心拍数との対応関係を定量化する。
従来手法には、心拍数と加速度データから、酸素消費量等を指標とする身体活動量を評価する手法が提案されている(参考文献1参照)。
(参考文献1)吉武 裕、「身体活動量評価のゴールデンスタンダード--二重標識水法から歩数計まで (特集:身体活動量評価の現状と意義)」、運動疫学研究会、運動疫学研究 volume3, pp.18-28, 2001.
これは運動療法などにおいて、適切な運動強度を把握することなどが目的であり、主には歩行や走行などの定常運動の評価に用いられている。しかし、スポーツ選手などの動態は、間欠的かつ多様な種類の動作を行なうため、過去の加速度データから現在の心拍数を評価することは容易ではなく、その手法も提案されていない。
本実施形態では、(1)現在の運動量の影響を受けず、過去の運動量の影響を受けるモデル(所定の要件を満たす関数により表現される重みと所定の時間T分の運動量との積の総和により表されるモデル)であり、直近の運動量に影響度合い(重み)のピークを持ち、過去に行くにしたがって影響度合い(重み)が減少するようなモデルを用いて、過去(所定の時間T分)の運動量が、現在の心拍数に与える影響(影響の度合い)をモデル化する。(2)上述の(1)のモデルを用いて得られる、過去の運動量が、現在の心拍数に与える影響の度合い(本件における運動強度推定値)を、過去の運動量が心拍数に与える影響の度合いと心拍数との関係とを表すモデル(心拍-運動強度関係モデル)に適用して得られる心拍数の推定値と、実際の心拍数の乖離から、メンタル状態(緊張状態)を推定する。
上述の(1)について、加速度データから身体活動量を推定する試みは過去にもある(参考文献1)。しかし、これは歩行や走行などの定常運動を対象にしているため、ごく直近(例えば過去1秒間)の加速度積分値と、運動中のさらに過去(例えば10分前)の加速度積分値が大きくは異ならず、直近の加速度積分値と心拍数の対応関係を求めることは容易である(つまり、実施中の運動が心拍数に与える影響は定量化しやすい)。しかし、通常の運動の多くは、間欠的であり(その運動を止めたり再び始めたりする)、また、異なる種類の動作を異なる強度で行ったりするなど、非定常である。そのため、定常運動を前提にすることはできず、定常運動を想定した定量化を利用することはできないため、たとえば、ごく直近の加速度積分値、または、現在から大きく過去までの単純な加速度積分値では現在の心拍数を精度よく推定することはできない。間欠的で多様な運動をしている計測対象者の加速度データから現在の心拍数を推定する方法は提案されていない(参考文献2)。
(参考文献2)Trost S G, McIver K L, Pate R R,"Conducting accelerometer-based activity assessments in field-based research", Medicine and Science in Sports and Exercise, 2005 Nov; 37(11 Suppl):S531-43.
本実施形態では、その限界点を克服し、高い推定結果を得ることができる。
まず、心理状態を判定する際に用いるモデルを構築する手順(モデル構築ステップ)について説明し、次に、そのモデルを用いて心理状態を判定する手順(状態判定ステップ)について説明する。
<第一実施形態に係るモデル構築部200>
図1は第一実施形態に係るモデル構築部200の機能ブロック図を、図2はその処理フローを示す。
モデル構築部200は、モデルパラメタ選択部202と、第二運動強度推定部210と、回帰式推定部220とを含む。モデル構築部200は、時系列の対象者の運動量と、対象者の心電位Y(el)(t')とを受け取り、回帰式推定部220で、後述する判定装置100で用いるモデルパラメタ{μmaxmax}、回帰式パラメタ{amax,bmax}を求める。そのために、第二運動強度推定部210では、モデルパラメタ{μmaxmax}の候補となるL個のモデルパラメタ{μii}(i=1〜L)を用いて、それぞれの組合せに対してK個の運動強度推定値S(tk)を求め、回帰式推定部220へ出力する。なお、L個のモデルパラメタ{μii}(i=1〜L)は、モデルの構築に先立ち、(例えば、このモデルを構築しようとするものにより)予め入力されており、モデルパラメタ選択部202内の図示しない記憶部にL個のモデルパラメタ{μii}(i=1〜L)が記憶されているものとする。図1では、モデルパラメタ選択部202より選択されたモデルパラメタ{μii}を第二運動強度推定部210と回帰式推定部220が受け取ることが記載されているが、モデルパラメタ{μii}(i=1〜L)の受け取り方はこの方法に限定されない。たとえば、予め図示しない記憶部にL個のモデルパラメタ{μii}(i=1〜L)が記憶されており、第二運動強度推定部210が所定の規則に従って記憶部から処理対象とするモデルパラメタ{μii}を逐次取得し、取得したモデルパラメタ{μii}をK個の運動強度推定値S(tk)とともに回帰式推定部220に受け渡すこととしても良い。他の方法としては、第二運動強度推定部210と回帰式推定部220とが、同じモデルパラメタ取得規則を有しており、各々の推定部が記憶部からモデルパラメタを逐次取得する(取得規則が同じなので、同じモデルパラメタが取得される)こととしても良い。さらに、L個のモデルパラメタ{μii}(i=1〜L)のそれぞれについて第二運動強度推定部210と回帰式推定部220を逐次実施するのではなく、記憶部に記憶されているL個のモデルパラメタ{μii}(i=1〜L)の全通りについて第二運動強度推定部210で運動強度推定を行って、回帰式推定部220に運動強度推定結果(運動強度推定値S(tk))を、L個のモデルパラメタ{μii}(i=1〜L)とL×K個の運動強度推定結果(運動強度推定値S(tk))とを対応付ける(各モデルパラメタ{μii}に対してK個の運動強度推定値S(tk)を対応付ける)ことができるように受け渡し、回帰式推定部220でL個のモデルパラメタ{μii}(i=1〜L)の全通りについて回帰式パラメタ{ai,bi}と決定係数Riを算出し、決定係数Ri(i=1〜L)に基づき回帰式パラメタ{amax,bmax}を選択して、選択した回帰式パラメタ{amax,bmax}とそれに対応するモデルパラメタ{μmaxmax}を出力することとしても良い。
本実施形態では、運動量として3軸加速度データ(ACC_x(t),ACC_y(t),ACC_z(t))を用いる。ただし、tは3軸加速度データのサンプリング時刻を表すインデックスであり、t'は心電位のサンプリング時刻を表すインデックスである。
<モデルパラメタ選択部202>
モデルパラメタ選択部202は、図示しない記憶部にL個のモデルパラメタ{μii}(i=1〜L)を記憶しておき、その中から、未選択のモデルパラメタ{μii}を1つ選択し(S202)、選択したモデルパラメタ{μii}を第二運動強度推定部210と回帰式推定部220とに出力する。
<第二運動強度推定部210>
第二運動強度推定部210は、時系列の対象者の運動量を受け取り、この値を用いて、推定時刻tkよりも前の期間に対象者が実施した運動の運動量に基づき、推定時刻tkの運動強度推定値S(tk)を求め(S210)、出力する。なお、ある時刻(ここでは推定時刻tk)の心拍数に影響を与える過去の運動量の総和を運動強度推定値と定義する。k=1,2,…,Kとし、Kは受け取った時系列の対象者の運動量から推定する運動強度推定値の総数とする。例えば、推定時刻tkとして、心電位Y(el)(t')のR波ピークを検出した時刻に対応する時刻(心電位Y(el)(t')から計測された心拍に対応する時刻)を用いる。また、所定の時間間隔Δt毎に推定時刻tkを設定してもよい。
例えば、現在(推定時刻tk)から所定の時間T(分析窓長)分の3軸加速度データ(ACC_x(tk),ACC_y(tk),ACC_z(tk)),(ACC_x(tk-1),ACC_y(tk-1),ACC_z(tk-1)),…,(ACC_x(tk-T+1),ACC_y(tk-T+1),ACC_z(tk-T+1))を使用して、運動強度推定値S(tk)を求める。例えば、分析窓長Tを15分とし、加速度データのサンプリング周波数を25Hzとする(1秒間に25個の3軸加速度データが得られる)。このとき、Tをサンプル数で表すと、T=15(分)×60(秒)×25(Hz)=22500(サンプル)である。なお、運動終了後10分以内に心拍数は運動前のレベルに回復することが報告されているため(参考文献3参照)、推定時刻tkから過去15分の加速度データを分析に用いれば推定時刻tkの心拍数に影響を与える運動量としては十分と考えられる。
(参考文献3)Hagberg, J M, R C Hickson, a a Ehsani, and J O Holloszy, “Faster Adjustment to and Recovery from Submaximal Exercise in the Trained State”, Journal of Applied Physiology 48 (2): 218-24, 2014.
まず、3軸加速度データについて二乗和平方根値を算出し、そこから重力加速度成分(ACC_g)を引くことで運動による加速度の合成成分(以下、加速度パワーともいう)ACCpow(tk)を算出する(次式参照)。
Figure 0006093833
さらに、推定時刻tkにおける重みを0、または、0に近似できる値とし、過去の運動量に対して重み付け加算をして運動量の総和である運動強度推定値を求める。これは、生体の性質により、運動量が心拍数に影響を与えるまでに、遅延があるためである。以下、この遅延を心拍時定数ともいう。心拍時定数を経過しない直近の運動は今の心拍数に影響を与え得ないため、推定時刻tkにおける重みを0、または、0に近似できる値とする。
さらに、推定時刻tkの近傍における重みが最大となるように重みを設定する。例えば、心拍時定数(運動量が心拍数に影響を与えるまでに発生する遅延時間)を経過した後の次の時刻の運動量に対する重みが最大になるように設定する。これは、心拍時定数を経過した過去においては、現在から近い時刻での運動ほど、現在の心拍数に大きな影響を与え、かつその心拍時定数は数秒であるためである。
また、最大(ピーク)後に、重みが急峻に小さくなるように重みを設定する。言い換えると、最大の重みに対応する運動量よりも過去の運動量に対する重みが急峻に小さくなるように重みを設定する。これは、心拍時定数よりも過去の運動量は過去に遠ざかるに従って影響量が減っていくという性質を表現している。
例えば、重みは、以下の条件を満たす関数により表現することができる。
(i)推定時刻tkで関数値が0、もしくは0に近似できる値であること
(ii)推定時刻tkから近い(数秒)過去において、関数値が最大(ピーク)になること
(iii)ピーク後に、関数値が急峻に(指数関数的に)減衰すること
例えば、図3に示すような関数であってもよい。また、上記の要件を満たす関数の例としては対数正規分布の確率密度関数が挙げられる。対数正規分布の確率密度関数f'(x)は以下のように定義される。
Figure 0006093833
x=0,1,…,T-1は推定時刻tkから過去に遡った経過時間を、μとσはy=ln(x)が正規分布に従うときの期待値と分散を表す。本実施形態では、次式のように、式(2)のピーク値(最大値)f'(x)maxで正規化した対数正規分布の確率密度関数f(x)(確率密度関数f'(x)のピーク値f'(x)maxを1として正規化したもの)を重みとして用いる。
Figure 0006093833
関数f(x)の例を図4に示す。なお、関数f(x)は、パラメータμ,σ(以下「モデルパラメータ{μ,σ}」ともいう)によって、形状が変わり、モデルパラメータ{μ,σ}により特定される(μとσの組合せによりf(x)のピーク位置と減衰の度合いが一意に決まる)。そこで、過去の運動量が推定時刻tkの心拍数に与える影響をより適切に表現できるように、後述の回帰式推定部220により適切なモデルパラメータ{μmaxmax}を求めるため、第二運動強度推定部210が処理対象としているモデルパラメタ{μii}に対する関数f(x)を作成し、作成した関数f(x)について以下の処理により運動強度推定値S(tk)を求め、回帰式推定部220に受け渡す。回帰式推定部220は、第二運動強度推定部210から受け取った運動強度推定値S(tk)とモデルパラメタ選択部202から受け取ったモデルパラメタ{μii}とを対応付け、適切なモデルパラメータ{μmaxmax}を選択する処理を行う。なお、予め図示しない記憶部にL個のモデルパラメタ{μii}(i=1〜L)が記憶されており、第二運動強度推定部210が所定の規則に従って記憶部から処理対象とするモデルパラメタ{μii}を逐次取得する場合、関数f(x)の作成に用いたモデルパラメタ{μii}とその関数を用いて求めた運動強度推定値S(tk)とを対応づけて回帰式推定部220に受け渡し、回帰式推定部220にて適切なモデルパラメータ{μmaxmax}を選択する処理を行う。回帰式推定部220の詳細は後述する。なお、L個のモデルパラメタ{μii}(i=1〜L)は、μ,σが取り得る範囲を十分に包含したものとする。要は、関数f(x)の形状により、過去の運動量が推定時刻tkの心拍数に与える影響を表現できるように、十分な範囲の中からL個のモデルパラメタ{μii}(i=1〜L)を設定し、モデル構築に先立ち予め用意しておく。
この関数f(x)の値をある加速度パワー値ACCpow(tk-x)にかけ合わせることで、過去に向かって加速度パワーACCpow(tk-x)を減衰させる(図5参照)。減衰後の加速度パワーACCpow_filtered(tk-x)は次式により表される。
Figure 0006093833
過去に遡って加速度パワーACCpow_filtered(tk-x)を積分し、推定時刻tkの運動強度推定値S(tk)とする。
Figure 0006093833
この処理により、ある推定時刻tkに対して、運動強度推定値S(tk)が1点のみ算出される。
関数は、過去数十分の運動量が現在の心拍数に影響を与え、かつ、その影響は現在から近い過去の運動量のほうが遠い過去の運動量より大きいことを表している。言い換えると、過去に向かって、現在の心拍数に与える影響力は小さくなる。
第二運動強度推定部210では、上述の方法で、K個の運動強度推定値S(tk)を求め、出力する。
<回帰式推定部220>
回帰式推定部220は、K個の運動強度推定値S(tk)と、S(tk)の算出に用いた(つまり、S(tk)を算出する際に用いた関数f(x)に対応する)モデルパラメタ{μi,σi}と、対象者の心電位Y(el)(t')とを受け取る。回帰式推定部220は、心電位Y(el)(t')から心拍数の測定値Y(ob)(u)を求める。ただし、uは測定値の番号を示すインデックスである。例えば、心電位Y(el)(t')からR波ピーク時刻を検出し、隣接するR波ピーク間の時間を算出し、瞬時心拍数を求め、心拍数の測定値Y(ob)(u)とする。なお、ukは推定時刻tkに対応する測定値の番号を表す。
ここで、運動強度と心拍数との関係は、瞬時心拍数を目的変数、それに対応する運動強度推定値を説明変数とした線形回帰式で表され、運動強度と心拍数との関係を表す心拍-運動強度関係モデルは、線形回帰式Y(est)(t)=a×S(t)+bで表される。Y(est)(t)は運動強度推定値から求まる心拍数の推定値を表す。回帰式推定部220は、K個の心拍数の測定値Y(ob)(uk)を目的変数とし、K個の運動強度推定値S(tk)を説明変数とした回帰式のパラメタである回帰式パラメタ{ai,bi}と、回帰式の適切さを表す決定係数riとを求める。ただし、i=1,2,…,Lとする。第二運動強度推定部210で説明したように、関数f(x)は、モデルパラメータ{μ,σ}によって、形状が変わる。そこで、過去の運動量が推定時刻tkの心拍数に与える影響をより適切に表現できるように、適切なモデルパラメータ{μmax,σmax}を求める処理を行う。図1では、回帰式推定部220が、モデルパラメタ選択部202から1個のモデルパラメタ{μi,σi}を受け取り、第二運動共同推定部210から、モデルパラメタ{μi,σi}に対応するK個の運動強度推定値S(tk)を受け取る例が記載されているが、このやり方に限定されない。例えば、予め図示しない記憶部にL個のモデルパラメタ{μii}(i=1〜L)が記憶されており、第二運動強度推定部210が所定の規則に従って記憶部から処理対象とするモデルパラメタ{μii}を逐次取得する場合、第二運動強度推定部210から1個のモデルパラメタ{μi,σi}とそれに対応するK個の運動強度推定値S(tk)を受け取る構成としてもよい。要は、第二運動強度推定部210についての説明で述べた様に、各運動強度推定値S(tk)について、その運動強度推定値S(tk)を求める際に用いたモデルパラメタ{μi,σi}を特定できるような仕組みであれば、どの様な方法であっても良い。
そして、回帰式推定部220は、L個の決定係数riの中で最も適切であることを表す決定係数rmaxに対応する回帰式パラメタ{amax,bmax}とモデルパラメタ{μmaxmax}と求め(S220)、出力する。この例では決定係数riが最大となるときに、対応する回帰式が最も適切であることを表す。
<第一実施形態に係る判定装置100>
図6は第一実施形態に係る判定装置100の機能ブロック図を、図7はその処理フローを示す。
判定装置100は、運動強度推定部110と、心拍数推定部120と、判定部130と、モデル構築部200とを含む。
判定装置100は、時系列の3軸加速度データ(ACC_x(t),ACC_y(t),ACC_z(t))と、対象者の心電位Y(el)(t)とを受け取り、心理状態z(tk)を出力する。
また、判定装置100は、モデル構築部200で求めたモデルパラメタ{μmaxmax}と回帰式パラメタ{amax,bmax}とを、それぞれ運動強度推定部110と心拍数推定部120とに設定する。
<運動強度推定部110>
運動強度推定部110は、時系列の対象者の運動量(この例では3軸加速度データ(ACC_x(t),ACC_y(t),ACC_z(t)))を受け取り、この値を用いて、推定時刻tkよりも前の期間に対象者が実施した運動の運動量に基づき、推定時刻tkの運動強度推定値S(tk)を求め(S110)、出力する。例えば、次式により推定時刻tkの運動強度推定値S(tk)を求める。
Figure 0006093833
前述の通り、式(2)、(3)のモデルパラメタ{μmaxmax}はモデル構築部200から受け取ったものを用いる。なお、運動強度推定値S(tk)を求める方法は、上記方法(対数正規分布の確率密度関数を使った方法)に限られず、第二運動強度推定部210と同様に所定の要件を満たす別の方法で求めてもよい。
<心拍数推定部120>
心拍数推定部120は、運動強度推定値S(tk)を受け取り、この値と、運動強度と心拍数との関係を示す心拍-運動強度関係モデルとを用いて、推定時刻tkにおける心拍数を推定し(S120)、推定値Y(est)(tk)を出力する。なお、心拍-運動強度関係モデルは、回帰式パラメタ{amax,bmax}を含む。例えば、心拍数推定部120は、心拍-運動強度関係モデルとして線形回帰式Y(est)(tk)=amax×S(tk)+bmaxを用い、運動強度推定値S(tk)から推定値Y(est)(tk)を求める。なお、推定値Y(est)(tk)は、運動強度推定値S(tk)に基づく値と言える。
<判定部130>
判定部130は、推定時刻tkにおける心拍数の推定値Y(est)(tk)と、推定時刻tkに対応する心拍数の測定値Y(ob)(uk)(上述の通り、心電位Y(el)(t'k)から取得可能)とに基づき、心理状態を判定し(S130)、判定結果z(tk)を出力する。
<効果>
運動強度推定部110及び心拍数推定部120により、心理状態の影響を受けにくい身体活動の情報(運動量)に基づき心拍数を推定できる。また、身体活動に制限を加えずに、実戦環境下(運動中)での心理状態を捉えることができ、判定することができる。言い換えると、非運動時(安静時)に限定されず、呼吸及び姿勢の統制を要さない。また、推定時刻tk毎に判定結果を得ることができ、非特許文献1と比べると時間分解能が高い。なお、第一実施形態では、運動量が変化することによる心拍変動を考量したうえで、心理的影響による心拍変動量を評価できる。
<変形例>
本実施形態では、ある時刻(ここでは推定時刻tk)の心拍数に影響を与える過去の運動量の総和を運動強度推定値と定義し、第二運動強度推定部210及び運動強度推定部110において、運動強度推定値を求める構成としているが、推定時刻tkよりも前の期間に対象者が実施した運動の運動量が推定時刻tkにおける心拍数に与える影響の度合いを推定することができればよく、運動強度推定値以外の値を推定値として用いてもよい。回帰式推定部220及び心拍数推定部120では、運動強度推定値に代えて、運動強度推定値以外の値を推定値を用いればよい。
本実施形態の運動強度推定部110と、心拍数推定部120とを含む構成を心拍数推定装置としてもよい。また、S110と、S120とを含む構成を心拍数推定方法としてもよい。この場合にも、心理状態の影響を受けにくい身体活動の情報に基づき心拍数を推定できるという効果を奏する。
本実施形態の判定装置100は、モデル構築部200を含むが、モデル構築部200を含まず、外部の装置によりモデルパラメタ{μmaxmax},回帰式パラメタ{amax,bmax}を求め、図示しない記憶部に記憶しておき利用してもよい。
本実施形態では、対象者の心電位Y(el)(t')を入力としているが、心拍数測定装置を別に設け、心拍数測定装置から得られる心拍数Y(ob)(u)を入力としてもよい。例えば、推定時刻tkを心拍数Y(ob)(uk)を受け取った時刻ukとすればよい。
本実施形態では、三軸加速度データや心電位波形の取得方法を限定していないが、例えば、取得手段としてウェアラブル生体電極“hitoe(登録商標)"を利用することができる(参考文献4参照)。
(参考文献4)塚田信吾、佐藤康博、中島寛、竹田恵司、佐藤雅信、"ウェアラブル電極素材‘hitoe’の開発と実用化について"、繊維製品消費科学会誌56(8)
この場合、hitoeトランスミッタ10から3軸加速度データ(ACC_x(t),ACC_y(t),ACC_z(t))と心電位Y(el)(t')とが受信用スマートホン20を介して判定装置100に伝送される(図8参照)。hitoeトランスミッタ10とは、ウェアラブル生体電極“hitoe”を搭載したインナーウェアの中央部に取り付ける生体アンプ兼、無線データ送信機のことをいう。このhitoeトランスミッタ10内部に三軸加速度計が内蔵されており、hitoe電極で計測した体動を反映する体幹中央部の加速度値を計測することができる。また、生体アンプによって増振された高精度な心電位波形を計測できる。さらに、"hitoe"を活用した同時多人数計測が可能であり、運動中の集団の心理状態を分析できる。また、分析対象はヒトに限定されず、例えば競走馬など他の動物種にも同じ分析原理が適応可能である。
<第二実施形態>
第二実施形態では、第一実施形態のモデル構築部200の処理を実現するための構成の一例を説明する。
図9はモデル構築部200の機能ブロック図を、図10はその処理フローを示す。
モデル構築部200は、入力部201と、モデルパラメタ選択部202Bと、分析対象期間決定部203と、データ取得及び格納部204と、第二運動強度推定部210Bと、分析対象時刻更新部205と、回帰式推定部220Bと、モデル選択部206と、心拍数記憶部231と、加速度パワー記憶部232と、回帰式推定用データ記憶部233と、パラメタ記憶部234とを含む。なお、第一実施形態の第二運動強度推定部210は、第二実施形態の入力部201と、分析対象期間決定部203と、データ取得及び格納部204と、第二運動強度推定部210Bと、分析対象時刻更新部205とを含む構成である。また、第一実施形態の回帰式推定部220は、回帰式推定部220Bと、モデル選択部206と、回帰式推定用データ記憶部233と、パラメタ記憶部234とを含む構成である。
<入力部201>
入力部201は、推定時刻の初期値t1を受け取ると(S201)、推定時刻の初期値t1を分析対象期間決定部203に出力し、モデルパラメタ選択部202Bに開始トリガ(パラメタ選択トリガ)を出力する。
<モデルパラメタ選択部202B>
モデルパラメタ選択部202Bは、開始トリガを受け取ると、L個のモデルパラメタ{μii}の中から、未選択のモデルパラメタ{μii}を1つ選択し、選択したモデルパラメタ{μii}を心拍-運動強度関係推定部(例えば、第二運動強度推定部210B)に出力する(S202B−1)。ただし、未選択のモデルパラメタ{μii}が存在しない場合(言い換えると、全てのモデルパラメタを既に選択した場合、S202B−2)、モデル選択部206に処理を行うように制御信号を出力する。なお、心拍-運動強度関係推定部は、分析対象期間決定部203と、データ取得及び格納部204と、第二運動強度推定部210Bと、分析対象時刻更新部205とを含む。
心拍―運動強度推定部(例えば、第二運動強度推定部210B)は、受け取ったモデルパラメタ{μii}を回帰式推定用データ記憶部233に記憶する。図11Aは、回帰式推定用データ記憶部233に記憶されるデータの例を示す。
<分析対象期間決定部203>
分析対象期間決定部203は、入力部201から推定時刻の初期値t1の情報、または分析対象時刻更新部205から推定時刻tkの情報を受け取り、「推定時刻tk-T(Tは予め定めた時間の長さであり、分析窓長を表す)」から「推定時刻tk」までの期間を分析対象期間として決定し(S203)、分析対象期間tk〜(tk-T)の情報をデータ取得及び格納部204に出力する。
<データ取得及び格納部204>
データ取得及び格納部204は、分析対象期間tk〜(tk-T)の情報を受け取り、心拍数が計測時刻と関連づけて記憶されている心拍数記憶部231から、分析対象期間tk〜(tk-T)のうち、「推定時刻tk」に対応する心拍数を取得する(S204)。図11Bは、心拍数記憶部231に記憶されるデータの例を示す。なお、加速度パワーのサンプリング周期と心拍数のサンプリング周波数は異なるため、推定時刻tkと心拍数の取得時刻ukとは必ずしも一致しないが、対応する値を用いればよい。例えば、「推定時刻tk」に直近の計測時刻に対応する心拍数ukを取得しても良いし、あるいは、「推定時刻tk」よりも過去の計測時刻のうち「推定時刻tk」に直近の計測時刻ukに対応する心拍数を取得することとしても良い。取得した心拍数を、現在のモデルパラメタ{μii}と対応付けて回帰式推定用データ記憶部233に格納する(S204)。
データ取得及び格納部204は、加速度計から算出した加速度パワーACCpow(運動量の一例)とその計測時刻tとが対応付けて記憶された加速度パワー記憶部232から、計測時刻tが分析対象期間tk〜(tk-T)に含まれるデータ(加速度パワーACCpow(tk),…,(ACCpow(tk-T+1))を取得し(S204)、取得したデータを第二運動強度推定部210Bに出力する。図11Cは加速度パワー記憶部232に記憶されるデータの例を示す。
<第二運動強度推定部210B>
第二運動強度推定部210Bは、加速度パワーACCpow(tk),…,(ACCpow(tk-T+1)とモデルパラメタ{μii}とを受け取り、分析対象期間の運動量(加速度パワーACCpow(tk),…,(ACCpow(tk-T+1))にモデルパラメタ{μii}で特定される関数f(x)により表現される重みを用いて、分析対象期間の運動量に対して重み付け加算をして運動強度推定値S(tk)を求める(S210B)。例えば、加速度パワーACCpow(tk),…,(ACCpow(tk-T+1)に関数f(x)を(時刻が逆向きになるようにして)掛け合わせて積分した値である運動強度推定値S(tk)を求め(S210B、式(2)〜(5)参照)、求めた運動強度推定値S(tk)を、データ取得及び格納部204が取得したY(ob)(uk)と対応付けて、回帰式推定用データ記憶部233に記憶し(図11A参照)、分析対象時刻更新部205に処理を進めるように制御信号を出力する。
<分析対象時刻更新部205>
分析対象時刻更新部205は、第二運動強度推定部210Bから制御信号を受け取ると、推定時刻tkを更新し(S205A)、更新後の推定時刻tk+1を分析対象期間決定部203に出力する。例えば、心拍数記憶部231に記憶されたデータ(図11B参照)のうち、処理対象とした「推定時刻tkに対応する心拍」の次に計測された心拍の測定時刻uk+1に対応する時刻を、更新された推定時刻tk+1とする。他の方法としては、推定時刻tkを予め定めた時間幅Δtだけ進めた推定時刻tk+1を新たに作成し(つまり、推定時刻を更新し)、推定時刻tk+1を分析対象期間決定部203に受け渡す。例えば、Δtは1秒や0.5秒程度を想定する。
なお、分析対象時刻更新部205は、推定時刻tkの更新回数が予め定めた回数以上となった場合には(S205B)、推定時刻tkを更新せず、回帰式推定部220Bに処理を進めるように制御信号を出力する。
<回帰式推定部220B>
回帰式推定部220Bは、回帰式推定用データ記憶部233に記憶されている、心拍数Y(ob)(uk)と運動強度推定値S(tk)との対応関係から(図11A参照)、回帰式パラメタ{ai,bi}と、当てはまりの良さを示す決定係数riを求め(S220B)、回帰式推定用データ記憶部233に記憶されている選択されたモデルパラメタ{μii}と、求めた回帰式パラメタ{ai,bi}と決定係数riとを対応付けてパラメタ記憶部234に記憶し、モデルパラメタ選択部202Bに開始トリガを通知(出力)する。図12はパラメタ記憶部234に記憶に記憶されるデータの例を示す。
<モデル選択部206>
モデル選択部206は、モデルパラメタ選択部202Bから制御信号を受け取ると、パラメタ記憶部234(図12参照)の中から、決定係数riに基づきもっともあてはまりが良いモデルパラメタ{μmaxmax}と回帰式パラメタ{amax,bmax}を選択し(S206)、モデル構築部200の出力値として出力する。言い換えると、L個の決定係数riの中で、最も適切であることを表す決定係数rmaxに対応するモデルパラメタ{μmaxmax}によって特定される関数により表現される重みを運動強度推定部110で用いるものとして選択し、決定係数rmaxに対応する回帰式パラメタ{amax,bmax}により特定される回帰式を心拍数推定部120で用いる心拍-運動強度関係モデルとして選択する。
<第三実施形態>
第一実施形態と異なる部分を中心に説明する。第三実施形態では、第一実施形態の判定装置の処理を実現するための構成の一例を説明する。
図13は第三実施形態に係る判定装置300の機能ブロック図を、図14はその処理フローを示す。
判定装置300は、通信部101と、加速度パワー算出部111と、加速度パワー記憶部112と運動強度推定部110Bと、心拍数推定部120Bと、判定部130Bと、出力部102と、パラメタ記憶部103とを含む。
第一実施形態の運動強度推定部110は、第三実施形態の加速度パワー算出部111と、加速度パワー記憶部112と運動強度推定部110Bとを含む構成である。第一実施形態の心拍数推定部120及び判定部130は、それぞれ第三実施形態の心拍数推定部120B及び判定部130Bに対応する。
判定装置300は、通信部101を介して、計測時刻付の3軸加速度データ(ACC_x(t),ACC_y(t),ACC_z(t))と対象者の心拍数Y(ob)(u)(本実施形態では、心電位ではなく、心拍数を受け取る場合の例を示す、ただし、上述の通り、心電位を受け取り、心拍数を算出してもよい)とを受け取り、3軸加速度データ(ACC_x(t),ACC_y(t),ACC_z(t))を加速度パワー算出部111に受け渡し、心拍数Y(ob)(u)を判定部130に受け渡し、運動強度推定部110に動作開始トリガを出力する。判定装置300は、モデル構築部200に代えてパラメタ記憶部103を含み、予め求めておいたモデルパラメタ{μmaxmax}、回帰式パラメタ{amax,bmax}をパラメタ記憶部103に格納しておき、運動強度推定部110B、心拍数推定部120Bにそれぞれ設定する。
<加速度パワー算出部111>
加速度パワー算出部111は、3軸加速度データ(ACC_x(t),ACC_y(t),ACC_z(t))を受け取り、この値から加速度パワーACCpow(t)(運動強度の一例)を算出し(S111、式(1)参照)、求めた加速度パワーACCpow(t)を計測時刻と対応付けて加速度パワー記憶部112に記憶する(図11C参照)。
<運動強度推定部110B>
運動強度推定部110Bは、動作開始トリガに基づき、判定装置300が心拍数Y(ob)(u)を受信する毎に動作する。ただし、所定のタイミングで定期的に動作することとしても良い。
運動強度推定部110Bは、動作開始トリガを受け取ると、加速度パワー記憶部112から取得した(動作開始トリガを受け取った時刻に対応する)推定時刻tkから過去の所定の時間tk-Tまでの期間の加速度パワーACCpow(tk),ACCpow(tk-1),…,ACCpow(tk-T+1)に、パラメタ記憶部103から取得したモデルパラメタ{μmaxmax}で特定される関数f(x)で表現されるモデルをかけあわせて得られる値の積分値(運動強度推定値S(tk))を求め(S110B、式(2)〜(5)参照)、出力する。
<心拍数推定部120B>
心拍数推定部120Bは、運動強度推定値S(tk)を受け取り、パラメタ記憶部103に記憶された回帰式パラメタ{amax,bmax}で特定される心拍-運動強度関係モデル(回帰式Y(est)(tk)=amax×S(tk)+bmax)に適用して、心拍数の推定値Y(est)(tk)を求め(S120B)、判定部130に受け渡す。
<判定部130B>
判定部130Bは、心拍数の測定値Y(ob)(u)と、心拍数の推定値Y(est)(tk)を受け取ると、心理状態を判定する(S130B)。例えば、心拍数推定部120Bから受け渡された心拍数の推定値Y(est)(uk)と、計測された心拍数の測定値Y(ob)(t'k)とのかい離(差分)が所定の閾値以内の場合には正常、それ以外の場合を異常と判断することとしても良い。また、心拍数の測定値が心拍数の推定値よりも所定の閾値以上高い値になっている場合には緊張状態と判定することとしても良い。また、乖離した絶対値そのものを判定値としてもよい。
(1)例えば、心拍数の測定値Y(ob)(uk)が、心拍数の推定値Y(est)(tk)と閾値αとの和よりも大きい場合に、心理状態が緊張状態であると判定し、緊張状態であることを示す判定結果を出力する。心拍数の測定値Y(ob)(uk)が、心拍数の推定値Y(est)(tk)と閾値αとの和以下の場合に、心理状態が緊張状態ではないと判定し、緊張状態ではないことを示す判定結果を出力する。閾値αは0以上の値であり、実験等により適宜設定すればよい。
(2)例えば、心理状態の判定処理として、心拍数の測定値Y(ob)(uk)から心拍数の推定値Y(est)(tk)を差し引き、判定結果として差(Y(ob)(uk)-Y(est)(tk))を出力する。
このような構成により、身体活動の影響と心理状態の影響とが混在している心拍数(測定値Y(ob)(uk))から身体活動の影響(推定値Y(est)(tk))を除去し、心理状態の影響による心拍数の変動量を評価することができる。
判定部130Bは、判定結果z(tk)を出力部102に出力する。
<出力部102>
出力部102は、判定結果z(tk)を受け取り、判定結果z(tk)を、画像や音などの方法で出力する(S102)。例えば、出力部102は、ディスプレイやスピーカ等からなる。判定結果z(tk)の情報(たとえば、予め記憶されている判定結果z(tk)に応じたテキスト)は、通信部101を介して所定の宛先に送信されることとしても良い。
異常や緊張状態と判定された場合のみ出力することとしても良いし、異常や緊張状態との判定が一定期間続いた場合など、所定のパターンに合致する場合のみ出力することとしても良い。
<変形例>
加速度パワーや心拍数は、予め各記憶部に記憶したものを用いても良いし、随時取得(加速度データは取得する毎に記憶部に随時記憶する)することとしても良い。
<その他の変形例>
本発明は上記の実施形態及び変形例に限定されるものではない。例えば、上述の各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。その他、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
<プログラム及び記録媒体>
また、上記の実施形態及び変形例で説明した各装置における各種の処理機能をコンピュータによって実現してもよい。その場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記各装置における各種の処理機能がコンピュータ上で実現される。
この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。
また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD−ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させてもよい。
このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶部に格納する。そして、処理の実行時、このコンピュータは、自己の記憶部に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実施形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよい。さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、プログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。
また、コンピュータ上で所定のプログラムを実行させることにより、各装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。

Claims (6)

  1. ある時刻の心拍数に影響を与える過去の運動量の総和を運動強度推定値とし、時系列の対象者の運動量を用いて、推定時刻t k よりも前の期間に対象者が実施した運動の運動量に基づき、前記推定時刻t k の運動強度推定値を求める運動強度推定部と、
    前記運動強度推定値と、運動強度と心拍数との関係を示す心拍-運動強度関係モデルと
    を用いて、前記推定時刻t k における心拍数を推定する心拍数推定部とを含み、
    前記運動強度推定部は、前記推定時刻t k における重みを0、または、0に近似できる値とし、前記過去の前記運動量に対して重み付け加算をして運動量の総和である運動強度推定値を求め
    前記運動強度推定部は、前記推定時刻tk から見て運動量が心拍数に影響を与えるまでに発生する遅延時間を経過した後の次の時刻における重みを最大とし、最大後に、重みが指数関数的に減衰するように重みを設定する、
    心拍数推定装置。
  2. 請求項の心拍数推定装置であって、
    前記運動強度推定部の重み付け加算における重みは、モデルパラメタにより特定される関数により表現されるものとし、i∈{1,2,…,L}とし、L個のモデルパラメタのうちの1つであるモデルパラメタ{μii}を選択するモデルパラメタ選択部と、
    分析窓長をTとし、(推定時刻tk-T)から前記推定時刻tkまでの期間を分析対象期間とし、前記モデルパラメタ{μii}により特定される関数により表現される重みを用いて、分析対象期間の運動量に対して重み付け加算をして運動量の総和である第二運動強度推定値を求める第二運動強度推定部と、
    k=1,2,…,Kとし、K個の推定時刻tkに対応するK個の心拍数の測定値と、K個の分析対象期間に対応するK個の第二運動強度推定値とから、前記K個の心拍数の測定値を目的変数とし、前記K個の第二運動強度推定値を説明変数とした回帰式のパラメタである回帰式パラメタ{ai,bi}と、前記回帰式の適切さを表す決定係数riとを求める回帰式推定部と、
    L個の決定係数riの中で、最も適切であることを表す決定係数rmaxに対応するモデルパラメタ{μmaxmax}によって特定される関数により表現される重みを前記運動強度推定部で用いるものとして選択し、前記決定係数rmaxに対応する回帰式パラメタ{amax,bmax}により特定される回帰式を前記心拍数推定部で用いる心拍-運動強度関係モデルとして選択するモデル選択部と、を含む、
    心拍数推定装置。
  3. 請求項1または請求項2の心拍数推定装置と、
    前記心拍数推定部で推定した前記推定時刻tkにおける心拍数の推定値と、前記推定時刻tkにおける心拍数の測定値とに基づき、心理状態を判定する判定部と、を含む、
    心理状態判定装置。
  4. 請求項の心理状態判定装置であって、
    前記判定部は、前記心拍数の測定値が、前記心拍数の推定値と閾値αとの和よりも大きい場合に、前記心理状態が緊張状態であると判定する、
    心理状態判定装置。
  5. ある時刻の心拍数に影響を与える過去の運動量の総和を運動強度推定値とし、時系列の対象者の運動量を用いて、推定時刻tkよりも前の期間に対象者が実施した運動の運動量に基づき、前記推定時刻tkの運動強度推定値を求める運動強度推定ステップと、
    前記運動強度推定値と、運動強度と心拍数との関係を示す心拍-運動強度関係モデルとを用いて、前記推定時刻tkにおける心拍数を推定する心拍数推定ステップとを含み、
    前記運動強度推定ステップは、前記推定時刻t k における重みを0、または、0に近似できる値とし、前記過去の前記運動量に対して重み付け加算をして運動量の総和である運動強度推定値を求め、
    前記運動強度推定ステップは、前記推定時刻t k から見て運動量が心拍数に影響を与えるまでに発生する遅延時間を経過した後の次の時刻における重みを最大とし、最大後に、重みが指数関数的に減衰するように重みを設定する、
    心拍数推定方法。
  6. 請求項1もしくは請求項の心拍数推定装置、または、請求項もしくは請求項の心理状態判定装置として、コンピュータを機能させるためのプログラム。
JP2015207642A 2015-10-22 2015-10-22 心拍数推定装置、心理状態判定装置、心拍数推定方法、及びそのプログラム Active JP6093833B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015207642A JP6093833B1 (ja) 2015-10-22 2015-10-22 心拍数推定装置、心理状態判定装置、心拍数推定方法、及びそのプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015207642A JP6093833B1 (ja) 2015-10-22 2015-10-22 心拍数推定装置、心理状態判定装置、心拍数推定方法、及びそのプログラム

Publications (2)

Publication Number Publication Date
JP6093833B1 true JP6093833B1 (ja) 2017-03-08
JP2017077426A JP2017077426A (ja) 2017-04-27

Family

ID=58261886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015207642A Active JP6093833B1 (ja) 2015-10-22 2015-10-22 心拍数推定装置、心理状態判定装置、心拍数推定方法、及びそのプログラム

Country Status (1)

Country Link
JP (1) JP6093833B1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554426B2 (ja) * 2016-02-15 2019-07-31 日本電信電話株式会社 運動強度推定装置、運動強度推定方法、プログラム
JP6767318B2 (ja) * 2017-07-10 2020-10-14 日本電信電話株式会社 心拍間隔モデリング装置、および異常状態判定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004073398A (ja) * 2002-08-14 2004-03-11 Rikogaku Shinkokai 画像処理による運動中の生理指標の推定方法
JP2012120206A (ja) * 2012-01-12 2012-06-21 Sony Corp 情報処理装置、撮像制御方法、プログラム
JP2014093069A (ja) * 2012-11-06 2014-05-19 Satoshi Takami 順番待ち処理装置を用いたユーザー情報処理システムの応用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004073398A (ja) * 2002-08-14 2004-03-11 Rikogaku Shinkokai 画像処理による運動中の生理指標の推定方法
JP2012120206A (ja) * 2012-01-12 2012-06-21 Sony Corp 情報処理装置、撮像制御方法、プログラム
JP2014093069A (ja) * 2012-11-06 2014-05-19 Satoshi Takami 順番待ち処理装置を用いたユーザー情報処理システムの応用

Also Published As

Publication number Publication date
JP2017077426A (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
CN105210067B (zh) 计算用户的与体育锻炼有关的生理状态
US20160081620A1 (en) Method and apparatus for health care
EP3136269A1 (en) Walking-load-degree calculation apparatus, maximum-oxygen-consumption calculation apparatus, and control method
JP6599883B2 (ja) 心拍数モニターシステム、心拍数モニタリング方法及びコンピュータプログラム
Arvidsson et al. Re‐examination of accelerometer data processing and calibration for the assessment of physical activity intensity
KR20130074459A (ko) 사용자의 상태 적용 게임 장치 및 그 게임 제공 방법
US20170351825A1 (en) Method and apparatus for quantifying and monitoring the frailty of a subject
CN106999748B (zh) 与运动数据有关的系统、设备和方法
JP2010263953A (ja) 運動分析装置、プログラム及び方法、並びに、運動分析システム
Panagiota et al. Assessment of human gait speed and energy expenditure using a single triaxial accelerometer
JP6998518B2 (ja) 運動機能推定情報生成装置、運動機能推定システム、運動機能推定情報生成方法、運動機能推定方法及び記録媒体
JP6748076B2 (ja) 心肺適応能評価
EP3391809A1 (en) Fitness level prediction device, system and method
JP2016083349A (ja) 運動管理方法及び運動管理装置
JP6257015B1 (ja) 開発支援サーバ、開発支援方法及び開発支援プログラム
JP6093833B1 (ja) 心拍数推定装置、心理状態判定装置、心拍数推定方法、及びそのプログラム
JP2020000854A (ja) 走行又は歩行している個人の実時間の歩長と速度を計算する方法
Ahamed et al. Intelligent fall detection with wearable IoT
KR20180043517A (ko) 생체/운동 신호 기반의 에너지 소모량 측정 방법 및 장치
JP6638860B2 (ja) 情報処理システム、情報処理装置、および情報処理方法
WO2022009817A1 (ja) サーバ、ユーザ支援システム、ユーザ支援方法及びプログラム
JP7476015B2 (ja) 運動強度算出装置、方法およびプログラム
JP2022048075A (ja) 情報処理システム、サーバ、情報処理方法及びプログラム
JP2022047901A (ja) 情報処理システム、サーバ、情報処理方法及びプログラム
JP7240052B1 (ja) 情報処理システム、サーバ、情報処理方法、プログラム及び学習モデル

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6093833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150