JP6091972B2 - 光学エンコーダ読取ヘッドのための多波長構成 - Google Patents

光学エンコーダ読取ヘッドのための多波長構成 Download PDF

Info

Publication number
JP6091972B2
JP6091972B2 JP2013085606A JP2013085606A JP6091972B2 JP 6091972 B2 JP6091972 B2 JP 6091972B2 JP 2013085606 A JP2013085606 A JP 2013085606A JP 2013085606 A JP2013085606 A JP 2013085606A JP 6091972 B2 JP6091972 B2 JP 6091972B2
Authority
JP
Japan
Prior art keywords
optical path
scale
light
wavelength
readhead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013085606A
Other languages
English (en)
Other versions
JP2013224936A (ja
Inventor
ダニエル トバイアソン ジョセフ
ダニエル トバイアソン ジョセフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Publication of JP2013224936A publication Critical patent/JP2013224936A/ja
Application granted granted Critical
Publication of JP6091972B2 publication Critical patent/JP6091972B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Description

本発明は、大略、変位センシング光学エンコーダに関し、特にスケールトラックの汚染に対しロバストなエンコーダを提供することに関する。
受光チャネルを用いる種々のスケール格子エンコーダが知られている。例えば、特許文献1〜4に記載される小型の光ファイバエンコーダが挙げられる。これら特許文献1〜4の各々は、参照によって本明細書に取り込まれる。このようなエンコーダは、極めて小型、非常に高い精度、電気ノイズ耐性及び非常に高速な動作といったことを含み得る特徴を組合せて提供する。
種々の用途においては、スケールトラックの汚染に因り生じる信号劣化に対してロバストなエンコーダを用いることが望ましい。参照によって本明細書に取り込まれる特許文献5に記載のエンコーダは、3つの異なる波長のソース光を用いて位置を決定する。3つの波長の各々は、3つの周期的にインタリーブされたエタロンとして機能して3つの異なる空間的な位相信号を提供する周期的な光学素子を用いた読取ヘッドにおいて、空間的にフィルタされる。このようなエンコーダは、特定の熱的効果に因る汚染又は信号ドリフトに対してロバストである。
アメリカ合衆国特許6,906,315号 アメリカ合衆国特許7,053,362号 アメリカ合衆国特許7,126,696号 アメリカ合衆国特許7,973,941号 アメリカ合衆国特許7,701,593号
しかしながら、上記のような周期的な光学素子は、"ストリップな"エタロンの表面同士間を非常に精密に離隔する一方で、同時に、エタロンを測定軸方向に沿って周期的にインタリーブするように製造しなければならない。加えて、取付には小さなギャップ(<100um)を必要とし得る。
熱的効果に因る汚染又は信号劣化に対しロバストであり、且つ製造及び取付が容易なエンコーダが望まれている。
本概要は、詳細な説明にて更に後述する概念の一部を簡素化して導入するものである。本概要は、発明主題の重要な特徴を特定することを意図するものでも、発明主題の範囲を決定するための補助として用いられることを意図するものでも無い。
簡潔に述べると、本発明は、測定軸方向に沿って互いに相対的に移動する2つのメンバ間の位置の指標を提供するのに使用可能であり、スケールトラック汚染、熱的効果及び他の信号劣化に対してロバストであり、且つ比較的容易に製造され得る読取ヘッド及びスケール配置を提供することを対象としている。種々の実施形態において、読取ヘッド及びスケール配置は、複数の個別の検出波長を含む発散ソース光を出力するよう構成された光源と、少なくとも、第1の位置信号セットを提供するよう構成された第1の光信号受光チャネルとを含む読取ヘッドと、スケールメンバ上で前記測定軸方向に沿って広がるスケール格子を含むスケールトラックと、を備える。前記スケールトラックは、前記発散ソース光を回折して、前記個別の検出波長各々の第1及び第2の回折スケール光部分を前記第1の光信号受光チャネルへ与えるよう構成される。前記読取ヘッドは、前記個別の検出波長各々の第1及び第2の回折スケール光部分が干渉して、干渉縞を、前記第1の光信号受光チャネルの入力の直近へ与えるように構成される。前記読取ヘッドは、光路長差を有する第1及び第2の光路領域を含む光路差素子を含む。前記光路差素子は、前記個別の検出波長各々の第1の回折スケール光部分が、前記第1の光路領域を通過し且つ位相シフトに依存した第1の波長を有して現れるソース光から導出されると共に、前記個別の検出波長各々の第2の回折スケール光部分が、前記第2の光路領域を通過し且つ位相シフトに依存した第2の波長を有して現れるソース光から導出され、以て前記個別の検出波長各々のために、前記第1及び第2のスケール光部分から生じる干渉縞が、波長及び前記光路差素子の光路長差に依存した空間位相シフトとは非依存の異なる位置を有するように配置される。前記第1の光信号受光チャネルの入力は、前記第1の位置信号セットの各メンバが前記個別の検出波長の一つの周期信号に依存した位置を含むように、第1の空間位相を有し且つ前記個別の検出波長の干渉縞をフィルタするよう構成された第1の空間フィルタを含む。前記周期信号に依存した位置は、当該波長及び前記第1の空間フィルタの空間位相に対応した干渉縞の空間位相シフトには依存しない位置に対応する、位相シフトとは非依存の位置を有する。
幾つかの実施形態において、前記第1の光路領域及び前記第2の光路領域は、異なる厚さの同一材料を含んでも良い。
幾つかの実施形態において、前記第1の光路領域は、前記第2の光路領域の材料とは異なる屈折率を有する材料を含んでも良い。幾つかの実施形態において、前記第2の光路領域の材料は、空気であっても良い。
幾つかの実施形態において、前記光路差素子の材料は、前記第1の光信号受光チャネルの入力を覆うように広がっても良い。幾つかの実施形態において、前記第1の空間フィルタは、前記第1の光信号受光チャネルの入力を覆うように広がる材料上に形成された周期的な位相マスクを含んでも良い。
幾つかの実施形態において、前記第1の光路領域が、前記発散ソース光の略半分を伝送し、前記第2の光路領域が、前記発散ソース光の略半分を伝送しても良い。
幾つかの実施形態において、前記発散ソース光は、少なくとも3つの検出波長を含んでも良い。
幾つかの実施形態において、前記読取ヘッド及びスケール配置は、各波長に対応する位置信号を提供するために、各波長を前記第1の位置信号セットへ分離する波長フィルタ素子を含む信号ディテクタを備えても良い。
幾つかの実施形態において、前記スケール格子は、位相格子であっても良い。
幾つかの実施形態において、前記第1の受光チャネルは、光ファイバの受光チャネルを含んでも良い。
幾つかの実施形態において、前記第1の受光チャネルは、フォトディテクタを含んでも良い。幾つかの実施形態において、前記フォトディテクタは、前記周期的な空間フィルタとして構成されたフォトディテクタアレイであっても良い。
幾つかの実施形態において、前記読取ヘッドは、第2の受光チャネルを含み、前記個別の検出波長各々の第3及び第4の回折スケール光部分が干渉して、干渉縞を、前記第2の受光チャネルの入力の直近へ与えるように構成されても良い。前記個別の検出波長各々の第3の回折スケール光部分は、前記第1の光路領域を通過し且つ位相シフトに依存した前記第1の波長を有して現れるソース光から導出されても良い。前記個別の検出波長各々の第4の回折スケール光部分は、前記第2の光路領域を通過し且つ位相シフトに依存した前記第2の波長を有して現れるソース光から導出されても良い。前記個別の検出波長各々のために、前記第3及び第4のスケール光部分から生じる干渉縞は、波長及び前記光路差素子の前記光路長差に依存した空間位相シフトとは非依存の異なる位置を有する。前記第2の受光チャネルの入力は、第2の位置信号セットの各メンバが前記個別の検出波長の一つの周期信号に依存した位置を含むように、前記第1の空間フィルタに対しシフトされた位相であり且つ前記個別の検出波長の干渉縞をフィルタするよう構成された第2の空間フィルタを含んでも良い。前記周期信号に依存した位置は、当該波長及び前記第2の空間フィルタの空間位相に対応した干渉縞の空間位相シフトには依存しない位置に対応する、位相シフトとは非依存の位置を有する。
幾つかの実施形態において、前記読取ヘッドは、少なくとも第3の受光チャネルを含み、前記個別の検出波長各々の第5及び第6の回折スケール光部分が干渉して、干渉縞を、前記第3の受光チャネルの入力の直近へ与えるように構成されても良い。前記個別の検出波長各々の第5の回折スケール光部分は、前記第1の光路領域を通過し且つ位相シフトに依存した前記第1の波長を有して現れるソース光から導出されても良い。前記個別の検出波長各々の第6の回折スケール光部分は、前記第2の光路領域を通過し且つ位相シフトに依存した前記第2の波長を有して現れるソース光から導出されても良い。前記個別の検出波長各々のために、前記第5及び第6のスケール光部分から生じる干渉縞は、波長及び前記光路差素子の前記光路長差に依存した空間位相シフトとは非依存の異なる位置を有する。前記第3の受光チャネルの入力は、第3の位置信号セットの各メンバが前記個別の検出波長の一つの周期信号に依存した位置を含むように、前記第1及び第2の空間フィルタに対しシフトされた位相であり且つ前記個別の検出波長の干渉縞をフィルタするよう構成された第3の空間フィルタを含んでも良い。前記周期信号に依存した位置は、当該波長及び前記第3の空間フィルタの空間位相に対応した干渉縞の空間位相シフトには依存しない位置に対応する、位相シフトとは非依存の位置を有する。
従来技術に関し、当然のことながら、特許文献5に開示された配置は、波長に依存した空間位相部分を有する干渉縞を提供しない。むしろ、異なる位相の信号が、各波長の干渉縞を空間的にフィルタする各エタロンの位置として判定された、測定軸に沿った異なる"空間位相"位置における異なる波長の干渉縞の検出に基づいて、提供される。実際に、特許文献5では、多重な空間フィルタが必要であり、これらの多重な空間フィルタは、幾つかのエラーのコモンモード阻止を提供するために同一のスケール領域から光を受信する場合には、更に互いにインタリーブされなければならない。
これに対し、本明細書で開示する読取ヘッド及びスケール配置においては、光路差素子が、スケールへ入力される光の2つのビーム(又は部分)同士間の相対的な位相差を変更するよう構成され、且つ後に干渉して各波長用の干渉縞を形成する2つの回折領域を有して提供される。よって、各波長の光の干渉縞は、光路差素子を介した当該波長に対する相対的な位相変化に基づき、測定軸に沿って空間位相に依存した波長を有する。よって、測定軸に沿った単一の位置において、種々の波長の光の干渉縞間で所望の空間位相関係を提供することが可能である。この結果、単一の位相マスク、又は測定軸方向に沿った同一位置において全ての波長に対し空間フィルタリングを与える空間フィルタが、同一のスケール領域から受信された光から導出される多重位相信号のセットを提供可能である。これにより、経済的に、冗長信号及び/又は幾つかのエラー(例えば、局所的なスケール汚染に因るエラー)を克服するためのコモンモード阻止が提供される。
周知の干渉縞の発生原理を採用し、且つ本明細書で開示するような干渉縞の位相シフトに依存した波長を提供する光路差素子を用いるよう構成可能な読取ヘッド及びスケール配置の等角図である。 図1の読取ヘッド及びスケール配置の動作の種々の態様を概略的に示す等角図である。 図1及び図2に示す読取ヘッド及びスケール配置の読取ヘッド部を示し、その他の詳細及び本明細書で開示する光路差素子を含む等角図である。 図3の配置に対応し、図3に示す読取ヘッド及びスケール配置の種々の態様を示し、その他の詳細を含む断面図である。 種々の読取ヘッドに用いられ、且つ本明細書で開示する原理に従って動作し得る第1及び第2の光路領域の種々の組合せを含む光路差素子の幾つかの実施形態を示す断面図である。
前述した態様、及びこれらに付随する本発明の効果の多くは、以下の詳細な説明を図面と共に参照することにより良く理解されるものと同等のものとして、より容易に理解されるであろう。
図1、図2及び図3は、周知の干渉縞の発生原理を含み、且つ上記の概説したメリットをもたらすために、後述する如く干渉縞の位相シフトに依存した波長を提供する光路差素子を用いるよう構成可能な読取ヘッド及びスケール配置の種々の態様を示している。図1、図2及び図3の説明は、本明細書で開示するような光路差素子により与えられる新規な特徴及び動作の説明内容を提供するための背景として成される。
図1は、周知の干渉縞の発生原理を採用し、且つここで開示するような干渉縞の位相シフトに依存した波長を提供する光路差素子を用いるよう構成可能な読取ヘッド・スケール配置1000の等角図である。図1に示すように、読取ヘッド・スケール配置1000は、スケール格子80を含むスケールメンバ81と、読取ヘッド100とを含む。
直交するXYZ座標系は、Y軸がスケール格子80の格子と平行であり、Z軸がスケール格子80の表面に垂直であり、X軸がY−Z平面に対して直角であるように定義され得る。測定軸82は、X軸と平行である。動作においては、スケールメンバ81が測定軸82に沿って変位し、以て読取ヘッド100が、スケール格子80を含む測定用のスケールトラック86に沿って変位する。当然のことながら、特許文献4と同様に、絶対位置検出のための参照マークが、スケールメンバ81に沿って、又は自読取ヘッドと一体となった隣接トラックに沿って含まれ得る。このことは、本明細書で開示する特徴の範囲外である。このため、参照マーク又はこれを含むトラックは図示されていない。
図1に示す実施形態において、読取ヘッド100は、特許文献3に詳細に記載された原理を組み込んだ干渉型の読取ヘッドを備えている。簡潔に述べると、動作において、読取ヘッド100は、発散コヒーレントソース光150を、光ファイバ130の中央の一つから出力する。ソース光150は、スケール格子80を照射点153にて照らし、反射且つ回折されてスケール光155を提供する。種々の実施形態において、ソース光150は、少なくとも2つの異なる波長の光を含む。種々の実施形態において、スケール格子80は、零次反射を抑制するように構成された位相格子である。スケール光155は、主として、読取ヘッド100へ反射される+/−1次の回折光を含む。干渉縞のフィールドからの+/−1次の回折光は、位相マスク素子161の受光面160に近接する。位相マスク素子161は、各波長の光用の複数の光ファイバインクリメンタル測定信号受光チャネルを提供するために、特許文献3に記載されるものと類似した方式で、複数の空間フィルタを、外側の光ファイバ130の端に異なる空間位相を有する受光面160にて提供する。空間フィルタの異なる空間位相により、光ファイバインクリメンタル測定信号受光チャネルの各々は、スケール格子80が読取ヘッド100に対して変位した場合に、空間位相を有する周期的な光信号(例えば、直交信号)を出力し得る。信号受光チャネルによる信号出力については、後段の図面にてより詳細に説明する。
図2及び図3は、読取ヘッド・スケール配置1000の動作の種々の態様を概略的に示す等角図である。図2には、読取ヘッド・スケール配置1000の動作の他の態様をより明確に示すために、読取ヘッド・スケール配置1000の空間フィルタリング素子である位相マスク素子161を示していない。位相マスク素子161については、図3を参照して後述する。
図2は、図1の統合的な読取ヘッド・スケール配置1000の幾つかの構成要素を示している。これらの構成要素には、(例えば、図示しないスケールメンバ81上の)スケール格子80に対して動作可能に設置された統合的な読取ヘッドの光ファイバ配置100(図3に示す位相マスク素子161を除く)が含まれる。簡潔に述べると、動作において、統合的な読取ヘッドの光ファイバ配置100は、発散ソース光150を、照射点153にてスケール格子80を照らす中央のファイバによる光源180から出力する。種々の実施形態において、ソース光150は、少なくとも2つの光の波長を含み且つ空間的にコヒーレントであり、更に幾つかの実施形態においては一時的にコヒーレントである。スケール格子80は、図2に中央の光線で示すように、反射的に回折された+/−1次のスケール光155A及び155Bを提供する。+/−1次のスケール光155A及び155Bは、領域155A'及び155B'をそれぞれ照らす。領域155A'及び155B'は、干渉帯156で重なり合って、統合的な読取ヘッド・スケール配置1000の受光面160の直近に干渉縞166を形成する。干渉縞は、前述した原理に従い且つ図3を参照してより詳細に説明するように、(図3に示す)位相マスク素子161により、光直交信号A、A−、B及びB−を受信する光ファイバの端で空間的にフィルタされる。
図3は、図1及び図2に示した読取ヘッド・スケール配置1000の読取ヘッド部1000'を示している。読取ヘッド部1000'は、統合的な読取ヘッド光ファイバ配置100と、位相マスク素子161とを含む。位相マスク素子161をより明確に示すため、図3には、干渉帯156における干渉縞166を示していない。しかし、当然のことながら、前述した通りに、動作中には干渉縞が存在する。図3に示すように、統合的な読取ヘッド光ファイバ配置100は、中央のソースファイバ170と、受光ファイバ190A、190A'、190B及び190B'(並びに、オプションとして190R1及び190R2)とを含む。ソースファイバ170は、光源180を提供する。幾つかの実施形態において、光源180は、ソースファイバ170のシングルモードコアによって提供され得る。受光ファイバ190A、190A'、190B、190B'、190R1及び190R2は、光信号A、−A、B、−B、REF1及びREF2をそれぞれ受信する受光チャネルを提供する。信号REF1及びREF2は、例えば特許文献4に記載されるように、アブソリュートエンコーダ用の参照マーク信号であり得る。受光ファイバ190R1及び190R2は、オプションであり、種々の実施形態においては、適所に使用され得るダミーファイバである。ここでは、参照マーク信号の動作を詳細には説明しないが、組み込まれた文献に基づき理解され得る。また、統合的な読取ヘッド光ファイバ配置100は、位相マスク120A、120B120A'、120B'を備えた位相マスク素子161と、開口マスク120R1及び120R2とを含む。
簡潔に述べると、動作において、位相マスク120A、120B、120A'及び120B'は、受光面160に位置し、干渉帯156における干渉縞を空間的にフィルタして、直交型の周期的なインクリメンタル測定信号A、A'、B及びB'をそれぞれ提供する。一の実施形態において、位相マスク120A、120B、120A'及び120B'は、相対的な0度、90度、180度及び270度の空間位相をそれぞれ有している。当然のことながら、測定信号A、A'、B及びB'の相対位置は、一例に過ぎず、限定するものでは無い。概して、位相マスクは、測定信号A、A'、B及びB'のための所望の配置を提供し得る。位相マスク素子161に関する種々の動作及び設計原理、並びに代替の空間位相配置が、組み込まれた文献に記載されている。
信号A、A'、B及びB'に関し、前示した通り、スケール格子80から生じる縞は、上述したように直交信号を継続的に生成するため、読取ヘッド・スケール配置1000の動作中に継続的に存在する。
さらに、図3は、光路差素子365を示している。光路差素子365は、(適宜に延長された点線で示される位置を有する)領域境界365RBで区分された、点線で示す第1光路領域365L及び第2光路領域365Rを含む。本実施形態において、光路領域365L及び365Rの各々は、光源180の略半分を覆い、以てスケールへのソース光出力の略半分が第1光路領域365Lを通過し、他の略半分が第2光路領域365Rを通過するようにする。第1及び第2の光路領域365L及び365Rは、ソース光に対し異なる光路長を提供し、以てより詳細に後述する如く、ソース光に含まれる異なる波長の光が、第1及び第2の光路領域365L及び365Rからの異なる位相シフトを有して現れるようにする。図3に示す実施形態は、限定では無い。例えば、幾つかの実施形態においては、第1光路領域365Lの材料が、領域境界365RBの左側のより多くの領域を覆うように伸長されても良い。幾つかの実施形態において、第1光路領域365Lの材料を受光ファイバ190A、190Bを覆うように伸長し、これらの位相マスクが当該材料上に組み上げられるようにしても良い。幾つかの実施形態において、第2光路領域365Rの材料は、同様にして、受光ファイバ190A'、190B'を含む、領域境界365RBの右側に伸長及び/又は使用されても良い。
光路差素子の種々の態様を、図4及び図5を参照してより詳細に説明する。
図4は、図3のC−C線に沿った断面1000''を含み、図3に示した読取ヘッド・スケール配置1000の動作の種々の態様を示し、その他の詳細を含む図である。図4に示す実施形態において、光路差素子365の第1光路領域365Lは、厚さtleft1及び屈折率nleft1を有する材料365LM含む。また、第2光路領域365Rは、厚さtright1及び屈折率nright1を有する第1材料365RMと、厚さtright2及び屈折率nright2を有する(本実施形態では、空気から成る)第2材料365RMとを含む。tright2を、tleft1=tright1+tright2を満たすように定義する。より詳細に後述する如く、第1光路領域365Lと第2光路領域365Rとの間の光路長の差ΔOPDEは、式(5)で与えられる。
断面1000''に示す読取ヘッド・スケール配置は、光路差素子(例えば、素子365)、及びスケールの同一領域から受信された光から導出される一組以上の多重位相信号を提供する多波長の光を用いて、測定軸方向(例えば、測定軸82)に沿って互いに相対的に移動する2つのメンバ間の位置の指標を提供するのに使用可能な一実施形態である。これにより、冗長信号及び/又は幾つかのエラー(例えば、局所的なスケール汚染に因るエラー)を克服するコモンモード阻止が提供される。
断面1000''に示す読取ヘッド・スケール配置は、光源(例えば、光ファイバ光源180)及び少なくとも第1の光信号受光チャネル(例えば、190A又は190B')を含む読取ヘッド(例えば、読取ヘッド100)と、スケール格子(例えば、スケール格子80)を含むスケールトラックとを備えている。光源は、複数の個別の検出波長を含む(限界光線150L及び150Rにより概略的に示される)発散ソース光150を出力するように構成される。第1の光信号受光チャネルは、第1の位置信号セットを提供するように構成される。スケール格子は、スケールメンバ(例えば、スケールメンバ81)上の測定軸方向に沿って広がっている。スケールトラック80は、発散ソース光150を回折して、個別の検出波長各々の第1及び第2の回折されたスケール光部分(例えば、183及び185、又は182及び184)を第1の光信号受光チャネル(例えば、190A又は190B')へ与えるように構成される。読取ヘッドは、個別の検出波長各々の第1及び第2の回折されたスケール光部分(例えば、183及び185、又は182及び184)が干渉して、受光チャネルの入力直近へ干渉縞(例えば、図4中に周期的な強度変動波形で示される干渉縞166L又は166R)を与えるように構成される。説明及び理解のために、図4は、例示的な光線185及び183の干渉から成る縞166Rを示している。光線185は、第2光路領域365Rから現れるソース光線150RPの+次回折である。光線183は、第1光路領域365Lから現れるソース光線150LMの−次回折である。類似した方法で、縞166Lは、例示的な光線184及び182の干渉から成る。光線184は、第2光路領域365Rから現れるソース光線150RMの−次回折である。光線182は、第1光路領域365Lから現れるソース光線150LPの+次回折である。
光路差素子365は、前述した第1の光路領域及び第2の光路領域(例えば、第1光路領域365L及び第2光路差領域365R)を含む。ここで、第1及び第2の光路領域、並びに光路差素子は、個別の検出波長各々の第1の回折されたスケール光部分(例えば、182又は183)が、第1の光路領域(例えば、365L)を通過し且つ位相シフトに依存した第1の波長を有して現れるソース光から導出され、個別の検出波長各々の第2の回折されたスケール光部分(例えば、184又は185)が、第2の光路領域(例えば、365R)を通過し且つ位相シフトに依存した第2の波長を有して現れるソース光から導出されるように配置される。この結果、式(3)及び式(4)を参照して後述される如く、個別の検出波長各々のために、第1及び第2のスケール光部分から生じる干渉縞(例えば、166L又は166R)は、当該波長及び光路差素子の光路差に依存した位相空間シフトΔφνには依存しない異なる位置を有する。位相空間シフトΔφνに依存しない異なる位置は、式(5)を参照して後述する通り、異なる波長で示される位相シフト同士を、1及び2と指定される波長又は振動数に関してΔφν1−2の量だけ異ならせる。第1の光信号受光チャネル(例えば、受光ファイバ190A又は190B')の入力には、第1の空間フィルタ(例えば、位相マスク120A又は120B')が含まれる。第1の空間フィルタは、第1の空間位相を有し、個別の検出波長の干渉縞をフィルタするように構成され、以て第1の位置信号セットの各メンバが、個別の検出波長の一つの周期信号に依存した位置を含むようにする。式(2)を参照して後述する通り、周期信号に依存した位置は、当該波長及び第1の空間フィルタの空間位相に対応した干渉縞の空間位相シフトに非依存の位置に対応する位相シフトには依存しない位置を有する。種々の実施形態において、読取ヘッド・スケール配置は、単一の光信号受光チャネルを備えても、多重の光信号受光チャネルを備えても良い。
複数の個別の検出波長は、ソース光において提供されても、種々の周知の方法を用いた対応する信号セットを提供するために検出されても良い。例えば、一の実施形態において、広帯域の光源を、スペクトロメータ検出器と共に用いても良い。他の実施形態において、複数の波長は、半導体レーザやLED等によって生成されても良く、二色性のビームスプリッタ等を用いて重ね合せ、多波長のソース光を形成するようにしても良い。幾つかの実施形態において、このようなソース光は、光ファイバの一端に集光されると共に多端から出力され得て、(例えば、光ファイバ光源180のような)適切な光源を提供する。いずれの場合も、各検出波長の信号は、受光チャネルで受信した空間的にフィルタされた光を、波長フィルタ及びこれに対応して各波長の光の強度を区別して測定するフォトディテクタのセットへルーティングすることによって区別且つ検出され得る。他の実施形態において、波長は、一時的に変調且つフィルタしても良い。当業者は、これらの適用方法及び他の適用方法を知っているであろう。例えば特許文献5は、これらの周知の方法の種々の態様を、より詳細に教示している。
図4に示す実施形態において、光路差素子365の材料は、光ファイバ190A及び190B'の入力を覆うように広がっている。図3から、この材料が光ファイバ190A'及び190Bを覆うように広がっているとも理解され得る。但し、これは一例であり限定では無い。各波長の干渉する光コンポーネントが、受光チャネルを覆うように配置される材料を通過するため、受光チャネルを覆うこのような材料は、干渉するコンポーネント同士間の相対的な位相シフトを伝えない。このため、光路差素子の材料は、幾つかの実施形態においてソース光に限局され、或いは他の実施形態においては受光チャネルを覆うように伸長され得る。光路差素子の材料を伸長することは、製造及び/又は組立を簡素化し得て、及び/又は種々の位相マスクを、光路差素子に用いられる同一材料上に経済的に組み上げることを可能にし得る。
本開示は、概して、(所望の検出可能な波長の放射を意味する)多重の検出波長を含むソース光について言及している。当業者は、当該波長が放射振動数に対応することを認識するであろう。数学的な便宜上、下記の式では、ソース光を、波長よりはむしろ振動数の観点から特徴づけている。光の各振動数のために、読取ヘッダ用の各受光チャネルは、振幅A、オフセットC及び位相φを有するエンコーダ信号を提供する。この信号は、式(1)の関係に従い、読取ヘッドの位置XRHに関して正弦波的に変動する。
Figure 0006091972
光の各振動数νi(例えば、ν、ν等)のために、受光チャネルの位相マスクで受信される干渉縞の各空間位相φνiは、式(2)のように表され得る。
Figure 0006091972
sigは、スケール格子80のピッチであり、pmaskは、干渉縞を受信する位相マスクのピッチである。第1項は、スケールに対する読取ヘッドの位置xに依存し、全ての振動数について同様である。第2項は、測定軸82に沿った受光チャネルに対応する位相マスクの相対位置Δxmaskに依存し、当該位相マスクを介して受信される全ての干渉縞について同様である。第3項のΔφνiは、本明細書で開示されるような光路差素子を用いて、振動数νiの光の2つの干渉コンポーネント同士間に所望の位相差を作成することに関連してもたらされる干渉縞の相対的な空間位相シフトを表している。相対的な空間位相シフトは、式(3)のように、光振動数νi用の光路長差素子によって作成される光路長差ΔOPDEを含む関係によって表され得る。
Figure 0006091972
ここで、cは、真空中の光の速さに言及している。因子ΔOPDEは、式(4)の関係に従って定義され得る。
Figure 0006091972
ここで、光路長差素子中の各材料kについて、nは、当該材料の屈折率であり、nは、当該材料の厚さである。"left"との下付き文字は、単に、干渉縞を形成する干渉コンポーネントの第1のものを与える部分光の光路における材料について言及している。また、"right"との下付き文字は、単に、干渉縞を形成する干渉コンポーネントの第2のものを与える部分光の光路における材料について言及している。当然のことながら、"left"及び"right"との記載は任意のものであり、限定では無い。例えば、同一の光路を辿って光路長差素子を介しスケールへ向かい、且つ同一の位相マスクで受信される干渉縞を生成する2つの異なる光振動数ν及びνを考慮すると、式(2)の第1項は、異なる振動数について同一レートで変化し、第2項は同一である。また、式(2)の第3項は、共有の光路長差素子により作成される干渉縞の空間位相差Δφν1−2を与える。この空間位相差Δφν1−2は、式(5)で表され得る一定の位相差である。
Figure 0006091972
式(4)及び式(5)は、任意の2つの検出波長のために、光路長差素子における材料の厚さ又は材料の屈折率を選択して、縞間の所望の空間位相差と、共有の空間フィルタを介して受光チャネルで受信される一組の光信号における、これらの位相同士間の対応する差を提供し得ることを示している。一の実施形態において、ソース光は、650nm及び670nmの波長(すなわち、462THz及び448THzの振動数)を有する光を含み得て、左光路及び右光路の屈折率は、例えば左光路における厚さtのガラス及び右光路における同一の厚さの空気を示す、1.5だけ異なり得る。式(4)及び式(5)によれば、90度の位相シフトを提供(すなわち、直交信号を生成)するためには、約11.4μmの光路差素子に依存した波長においてガラス厚tが必要となるであろう。波長におけるより小さい差、例えば1nmの差のために、約211.5μmである厚さtの値が90度の位相シフト等を提供するであろう。勿論、逆に言えば、式(4)及び式(5)は、光路長差素子における所定の光路長差のために、2つの検出波長間の差を選択して、縞間の所望の空間位相差と、共有の空間フィルタを介して受光チャネルで受信される一組の光信号における、これらの位相同士間の対応する差を提供し得ることを示している。
図3及び図4を参照して上述した実施形態は、例示のみであり、限定では無い。一の実施形態において、本明細書で開示する原理に従って構成される読取ヘッドは、単一の受光チャネルを備え得る。3つの検出波長の光が、各検出波長に関連する干渉縞が120度離隔した空間位相を有するように、特定の光路差素子の設計と組合せて選択され得る。これにより、受光チャネル用に単一の位相マスクを用いる3位相エンコーダのための信号が提供されるであろう。図3に示す受光チャネルの一部を用いる他の実施形態において、読取ヘッド・スケール配置は、特定の光路差素子の設計と組合せて選択された2つの検出波長の光を備え、以て各波長に関連する干渉縞が、90度離隔した空間位相を有し得る。これにより、2つの受光チャネルに対応する2つの位相マスク各々のために直交信号が提供されるであろう。そして、2つの位相マスクは、180度だけ異なる空間位相を有し、以て180度位相がずれた2組の直交信号を提供し得る。このような直交信号は、周知の方法に従って、オフセット及び振幅誤差を補償するために発生される信号であり得る。図3に示す一対の受光チャネル190A及び190A'、又は190B及び190B'は、このような構成において用いられ得る。よって、当然のことながら、図3の構成は、測定異常値を除去する、或いは測定精度及び/又はロバスト性を増加させるために発生される信号である補償信号の冗長セットを提供し得る。
当然のことながら、ソース光は、3つの個別の検出波長を含み得て、図3に示す4つの受光チャネルの各々は、一揃えの3相信号を提供し得る。よって、当然のことながら、図3の構成は、測定異常値を除去する、或いは測定精度及び/又はロバスト性を増加させるために発生される信号である4つの補償信号の冗長セットを提供し得る。
図4に示す実施形態において、マスク素子161は、厚さtmaskを有し得る。当然のことながら、厚さtmask及び厚さtleftは、受光チャネルで受信されるスケール光が、第1光路領域365Lと第2光路領域365Rの間の光路差素子365の縁を通過しないように選択されるべきである。実施形態において、ソース光180は、略8度で発散する発散ソース光を出力し得て、受光ファイバ190Aのコアの最接縁は、ソース光180から略125μmの距離に位置し得る。この場合、厚さtmaskは、略500μmであり得て、厚さtleftは、300μmであり得る。幾つかの実施形態において、厚さtmaskは、少なくとも250μmであり、tmask及びtleftの合計(又は、光路差素子365の最厚部分)は、多くとも1500μmである。
幾つかの実施形態において、マスク素子161は、全ての受光チャネルのための位相マスクを有する単一のガラスマスクである。図4に示す実施形態において、第1光路領域365L及び第2光路領域365Rは、マスク素子161に当接して設置される。本実施形態は例示のみであり、限定では無い。上述した通り、幾つかの実施形態において、光路差素子は、位相マスクを組み立てるための代替として用いられる材料を含み得る。
図4に示すように、第1光路領域365L及び第2光路領域365Rは、ソースファイバ並びに読取ヘッドについて対称的に設置される。本実施形態は、単に例示且つ便宜的なものであり、限定では無い。
図2、図3及び図4に示す実施形態において、読取ヘッド・スケール配置1000は、受光チャネルとして用いられる受光ファイバを備えている。当然のことながら、他の読取ヘッダ配置は、本明細書で開示するような光路差素子を用いても良い。例えば、一の実施形態において、読取ヘッドは、各波長の光を分離するフィルタ素子が後続する位相マスクと、フィルタ素子を介して分離された波長をそれぞれ受信して、対応する信号を提供するよう配置されたフォトディテクタとを備えた受光チャネルを含み得る。他の実施形態において、読取ヘッドは、各波長フィルタを介して縞光の各部を受信する隣接したコンパクトなフォトディテクタアレイを備えた受光チャネルを含み得て、フォトディテクタアレイは、位相マスクの空間フィルタリング機能を提供するよう構造化される。他の実施形態において、複数の検出波長を有するコリメートされたソース光は、光路差素子を介してコリメートレンズから出力され得る。コリメートレンズは、光ファイバからの光と共に、或いは従来の光学素子を介して供給され得る。このような実施形態は、コリメート光及び光路差素子が、図4と類似した光線を提供するのに十分広い領域へ広がり、且つ本明細書で開示する動作原理を満たすように構成される。
図5は、種々の読取ヘッド・スケール配置で用いられ且つ前述した原理に従って動作し得る、第1及び第2の光路領域の種々の組合せを含む幾つかの光路差素子の実施形態を示す断面図である。
実施形態565Aにおいて、光路差素子565Aの第1光路領域565ALは、厚さtleft1及び屈折率nleft1を有する(本実施形態では、空気から成る)材料565ALMを備え、第2光路領域565ARは、厚さtright1及び屈折率nright1を有する材料565ARMを備える。tleft1=tright1と定義し、第1光路領域565ALと第2光路領域565ARの間の光路長差ΔOPDEを式(5)で与える。本実施形態において、材料565ARMは、マスク素子161へ付加(例えば、接着又は蒸着)され得る。材料565ARMは、必要に応じて、隣接する受光チャネルを覆うように伸長され得る。
実施形態565Bにおいて、光路差素子565Bの第1光路領域565BLは、その材料部565BLMが厚さtleft1及び屈折率nleft1を有するマスク素子161の一部を備える。第2光路領域565BRは、厚さtright1を有するマスク素子を除去した部分において、屈折率nright1を有する空気565BRMを備える。tleft1=tright1と定義し、第1光路領域565BLと第2光路領域565BRの間の光路長差ΔOPDEを式(5)で与える。本実施形態において、空隙565BRMを提供するためのマスク材料は、(例えば、ウェット若しくはプラズマエッチング又は加工等によって)マスク素子161から除去され得る。
実施形態565Cにおいて、光路差素子565Cの第1光路領域565CLは、厚さtleft1及び屈折率nleft1を有する材料565CLMを備え、第2光路領域565CRは、厚さtright1及び屈折率nright1を有する異なる材料565CRMを備える。tleft1=tright1と定義し、第1光路領域565CLと第2光路領域565CRの間の光路長差ΔOPDEを式(5)で与える。ここで、差ΔOPDEは、厚さ同士間の差では無く、屈折率同士間の差で与えられる。本実施形態において、材料565CLM及び565CRMは、マスク素子161へ付加(例えば、接着又は蒸着)され得る。材料565CLM及び565CRMの一方又両者は、必要に応じて、隣接する受光チャネルを覆うように伸長され得る。
実施形態565Dは、材料が隣接する受光チャネルを覆うようには伸長されない点を除いて、図4を参照して前示且つ前述した実施形態365と実質的に同様である。
当然のことながら、図5に示した配置は例示であり、限定では無い。光路領域の種々の他の組合せは、本開示の教示に基づいて当業者にとって明らかであり、個別の検出波長各々の第1の回折スケール光部分が、第1の光路領域を通過し且つ位相シフトに依存した第1の波長を有して現れるソース光から導出されると共に、個別の検出波長各々の第2の回折スケール光部分が、第2の光路領域を通過し且つ位相シフトに依存した第2の波長を有して現れるソース光から導出され、以て個別の検出波長各々のために、第1及び第2のスケール光部分から生じる干渉縞が、波長及び光路差素子の光路長差に依存した空間位相シフトとは非依存の異なる位置を有することを提供するであろう。
本発明を、上述の実施形態と共に説明したが、上述した実施形態及び設計要素が、当業者にとって明らかな、更なる代替の実施形態、変更及びバリエーションを示していることは明白である。従って、上記の本発明の実施形態は、説明を目的としたものであり、限定では無い。本発明の精神と範囲から逸脱すること無く、種々の変更がなされ得る。
独占的な権利又は特権を主張する本発明の実施形態は、下記の特許請求の範囲にて定義される。
この出願は、2012年4月20日に出願されたアメリカ合衆国特許出願13/452,782を基礎とする優先権を主張し、その開示の全てをここに取り込む。
80 スケール格子
81 スケールメンバ
82 測定軸
100 読取ヘッド
120A, 120A', 120B, 120B' 位相マスク
120R1, 120R2 開口マスク
130 光ファイバ
150 ソース光
150L, 150LM, 150LP, 150R, 150RM, 150RP 光線
153 照射点
155, 155A, 155B スケール光
155A', 155B' 領域
156 干渉帯
160 受光面
161 位相マスク素子
166, 166L, 166R 干渉縞
170 ソースファイバ
180 光源
190A, 190A', 190B、190B', 190R1, 190R2 受光ファイバ
365, 565A 光路差素子
365L, 365R, 565AL, 565AR, 565BL, 565BR, 565CL, 565CR 光路領域
365LM, 365RM 材料
365RB 領域境界
1000 読取ヘッド・スケール配置
1000' 読取ヘッド部
1000'' 断面

Claims (15)

  1. 測定軸方向に沿って互いに相対的に移動する2つのメンバ間の位置の指標を提供するのに使用可能な読取ヘッド及びスケール配置であって、
    複数の個別の検出波長を含む発散ソース光を出力するよう構成された光源と、少なくとも、第1の位置信号セットを提供するよう構成された第1の光信号受光チャネルとを含む読取ヘッドと、
    スケールメンバ上で前記測定軸方向に沿って広がるスケール格子を含み、前記発散ソース光を回折して、前記個別の検出波長各々の第1及び第2の回折スケール光部分を前記第1の光信号受光チャネルへ与えるよう構成されたスケールトラックと、を備え、
    前記読取ヘッドは、前記個別の検出波長各々の第1及び第2の回折スケール光部分が干渉して、干渉縞を、前記第1の光信号受光チャネルの入力の直近へ与えるように構成され、
    前記読取ヘッドは、光路長差を有する第1及び第2の光路領域を含む光路差素子を含み、
    前記光路差素子は、前記個別の検出波長各々の第1の回折スケール光部分が、前記第1の光路領域を通過し且つ位相シフトに依存した第1の波長を有して現れるソース光から導出されると共に、前記個別の検出波長各々の第2の回折スケール光部分が、前記第2の光路領域を通過し且つ位相シフトに依存した第2の波長を有して現れるソース光から導出され、以て前記個別の検出波長各々のために、前記第1及び第2のスケール光部分から生じる干渉縞が、波長及び前記光路差素子の光路長差に依存した空間位相シフトとは非依存の異なる位置を有するように配置され、
    前記第1の光信号受光チャネルの入力は、前記第1の位置信号セットの各メンバが前記個別の検出波長の一つの周期信号に依存した位置を含むように、第1の空間位相を有し且つ前記個別の検出波長の干渉縞をフィルタするよう構成された第1の空間フィルタを含み、
    前記周期信号に依存した位置は、当該波長及び前記第1の空間フィルタの空間位相に対応した干渉縞の空間位相シフトには依存しない位置に対応する、位相シフトとは非依存の位置を有する、
    読取ヘッド及びスケール配置。
  2. 請求項1において、
    前記第1の光路領域及び前記第2の光路領域は、異なる厚さの同一材料を含む、
    ことを特徴とした読取ヘッド及びスケール配置。
  3. 請求項1において、
    前記第1の光路領域は、前記第2の光路領域の材料とは異なる屈折率を有する材料を含む、
    ことを特徴とした読取ヘッド及びスケール配置。
  4. 請求項3において、
    前記第2の光路領域の材料は、空気である、
    ことを特徴とした読取ヘッド及びスケール配置。
  5. 請求項1において、
    前記光路差素子の材料は、前記第1の光信号受光チャネルの入力を覆うように広がる、
    ことを特徴とした読取ヘッド及びスケール配置。
  6. 請求項5において、
    前記第1の空間フィルタは、前記第1の光信号受光チャネルの入力を覆うように広がる材料上に形成された周期的な位相マスクを含む、
    ことを特徴とした読取ヘッド及びスケール配置。
  7. 請求項1において、
    前記第1の光路領域は、前記発散ソース光の略半分を伝送し、前記第2の光路領域は、前記発散ソース光の略半分を伝送する、
    ことを特徴とした読取ヘッド及びスケール配置。
  8. 請求項1において、
    前記発散ソース光は、少なくとも3つの検出波長を含む、
    ことを特徴とした読取ヘッド及びスケール配置。
  9. 請求項1において、
    各波長に対応する位置信号を提供するために、各波長を前記第1の位置信号セットへ分離する波長フィルタ素子を含む信号ディテクタ、
    をさらに備えたことを特徴とする読取ヘッド及びスケール配置。
  10. 請求項1において、
    前記スケール格子は、位相格子である、
    ことを特徴とした読取ヘッド及びスケール配置。
  11. 請求項1において、
    前記第1の受光チャネルは、光ファイバの受光チャネルを含む、
    ことを特徴とした読取ヘッド及びスケール配置。
  12. 請求項1において、
    前記第1の受光チャネルは、フォトディテクタを含む、
    ことを特徴とした読取ヘッド及びスケール配置。
  13. 請求項12において、
    前記フォトディテクタは、前記周期的な空間フィルタとして構成されたフォトディテクタアレイである、
    ことを特徴とした読取ヘッド及びスケール配置。
  14. 請求項1において、
    前記読取ヘッドは、第2の位置信号セットを提供するよう構成された第2の受光チャネルを含み、
    前記スケールトラックは、前記発散ソース光を回折して、前記個別の検出波長各々の第3及び第4の回折スケール光部分を前記第2の受光チャネルへ与え、
    前記読取ヘッドは、前記個別の検出波長各々の第3及び第4の回折スケール光部分が干渉して、干渉縞を、前記第2の受光チャネルの入力の直近へ与えるように構成され、
    前記個別の検出波長各々の第3の回折スケール光部分は、前記第1の光路領域を通過し且つ位相シフトに依存した前記第1の波長を有して現れるソース光から導出されると共に、前記個別の検出波長各々の第4の回折スケール光部分は、前記第2の光路領域を通過し且つ位相シフトに依存した前記第2の波長を有して現れるソース光から導出され、以て前記個別の検出波長各々のために、前記第3及び第4のスケール光部分から生じる干渉縞は、波長及び前記光路差素子の前記光路長差に依存した空間位相シフトとは非依存の異なる位置を有し、
    前記第2の受光チャネルの入力は、前記第2の位置信号セットの各メンバが前記個別の検出波長の一つの周期信号に依存した位置を含むように、前記第1の空間フィルタに対しシフトされた位相であり且つ前記個別の検出波長の干渉縞をフィルタするよう構成された第2の空間フィルタを含み、
    前記周期信号に依存した位置は、当該波長及び前記第2の空間フィルタの空間位相に対応した干渉縞の空間位相シフトには依存しない位置に対応する、位相シフトとは非依存の位置を有する、
    ことを特徴とした読取ヘッド及びスケール配置。
  15. 請求項1において、
    前記第1の空間フィルタは、少なくとも250μmの厚さを有する材料上に形成され、前記第1の空間フィルタの材料の厚さと前記光路差素子の最大厚と合計は、多くとも1500μmである、
    ことを特徴とした読取ヘッド及びスケール配置。
JP2013085606A 2012-04-20 2013-04-16 光学エンコーダ読取ヘッドのための多波長構成 Active JP6091972B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/452,782 US8772706B2 (en) 2012-04-20 2012-04-20 Multiple wavelength configuration for an optical encoder readhead including dual optical path region with an optical path length difference
US13/452,782 2012-04-20

Publications (2)

Publication Number Publication Date
JP2013224936A JP2013224936A (ja) 2013-10-31
JP6091972B2 true JP6091972B2 (ja) 2017-03-08

Family

ID=47832939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085606A Active JP6091972B2 (ja) 2012-04-20 2013-04-16 光学エンコーダ読取ヘッドのための多波長構成

Country Status (3)

Country Link
US (1) US8772706B2 (ja)
EP (1) EP2653838B1 (ja)
JP (1) JP6091972B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6696748B2 (ja) * 2014-10-21 2020-05-20 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングDr. Johannes Heidenhain Gesellschaft Mit Beschrankter Haftung 光学式エンコーダ
NL2015639A (en) * 2014-11-28 2016-09-20 Asml Netherlands Bv Encoder, position measurement system and lithographic apparatus.
JP2016205968A (ja) * 2015-04-21 2016-12-08 並木精密宝石株式会社 反射型エンコーダ
US10795151B2 (en) * 2018-04-12 2020-10-06 Mitsubishi Electric Research Laboratories, Inc. Methods and systems for terahertz-based positioning

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186057A (ja) * 1992-12-21 1994-07-08 Nippon Telegr & Teleph Corp <Ntt> 光エンコーダ
GB9424969D0 (en) * 1994-12-10 1995-02-08 Renishaw Plc Opto-electronic scale reading apparatus
GB9425907D0 (en) * 1994-12-22 1995-02-22 Renishaw Plc Opto-electronic scale reading apparatus
AU2003247899A1 (en) 2002-07-08 2004-01-23 Microe Systems Corporation Multi-track optical encoder employing beam divider
US6906315B2 (en) 2002-07-16 2005-06-14 Mitutoyo Corporation High accuracy miniature grating encoder readhead using fiber optic receiver channels
JP2004212243A (ja) 2003-01-06 2004-07-29 Canon Inc 格子干渉型光学式エンコーダ
US7053362B2 (en) 2003-05-02 2006-05-30 Mitutoyo Corporation Absolute position miniature grating encoder readhead using fiber optic receiver channels
US7126696B2 (en) 2003-09-30 2006-10-24 Mitutoyo Corporation Interferometric miniature grating encoder readhead using fiber optic receiver channels
DE102007024349A1 (de) * 2007-05-24 2008-11-27 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
US7973941B2 (en) 2007-07-24 2011-07-05 Mitutoyo Corporation Reference signal generating configuration for an interferometric miniature grating encoder readhead using fiber optic receiver channels
US20090027692A1 (en) * 2007-07-24 2009-01-29 Mitutoyo Corporation Reference signal generating configuration for an interferometric miniature grating encoder readhead using fiber optic receiver channels
CN102197286B (zh) * 2008-10-23 2014-09-03 株式会社尼康 编码器

Also Published As

Publication number Publication date
EP2653838B1 (en) 2018-12-19
JP2013224936A (ja) 2013-10-31
US20130277540A1 (en) 2013-10-24
EP2653838A3 (en) 2017-07-19
EP2653838A2 (en) 2013-10-23
US8772706B2 (en) 2014-07-08

Similar Documents

Publication Publication Date Title
JP6801032B2 (ja) 光学変位センサ素子
US7573581B2 (en) Position-measuring device
JP4608274B2 (ja) 変位測定装置
CN100365379C (zh) 使用光纤接收器通道的绝对位置小型光栅编码器读头
US8604413B2 (en) Optical encoder including displacement sensing normal to the encoder scale grating surface
JP6332987B2 (ja) 光学式エンコーダ
JP5268529B2 (ja) 変位計測装置及び半導体製造装置
JP6696748B2 (ja) 光学式エンコーダ
JPH0697171B2 (ja) 変位測定装置
JP6091972B2 (ja) 光学エンコーダ読取ヘッドのための多波長構成
EP2116810B1 (en) Optical displacement measuring device
JPH0130088B2 (ja)
US10831035B2 (en) Optical encoder
US8493569B2 (en) Optical encoder readhead configuration with phosphor layer
EP2743651A2 (en) Illumination portion for an adaptable resolution optical encoder
US7973941B2 (en) Reference signal generating configuration for an interferometric miniature grating encoder readhead using fiber optic receiver channels
JP2006071535A (ja) 変位検出装置
JP2018040620A (ja) 変位計測装置及び変位計測方法
US20140146326A1 (en) Optical position-measuring device
JP2018096807A (ja) 光電式エンコーダ
EP2743650B1 (en) Illumination portion for an adaptable resolution optical encoder
JP4578210B2 (ja) 光学式変位測定装置
JPH07198424A (ja) エンコーダ装置
JP2019086296A (ja) 光学式エンコーダおよびこれを備えた測定器
JP2018091769A (ja) 変位検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170208

R150 Certificate of patent or registration of utility model

Ref document number: 6091972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250