JP6091601B2 - Plate heat exchanger and refrigeration cycle apparatus equipped with the same - Google Patents

Plate heat exchanger and refrigeration cycle apparatus equipped with the same Download PDF

Info

Publication number
JP6091601B2
JP6091601B2 JP2015506497A JP2015506497A JP6091601B2 JP 6091601 B2 JP6091601 B2 JP 6091601B2 JP 2015506497 A JP2015506497 A JP 2015506497A JP 2015506497 A JP2015506497 A JP 2015506497A JP 6091601 B2 JP6091601 B2 JP 6091601B2
Authority
JP
Japan
Prior art keywords
plate
flow path
upstream
fluid
passage hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015506497A
Other languages
Japanese (ja)
Other versions
JPWO2014147804A1 (en
Inventor
伊東 大輔
大輔 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2014147804A1 publication Critical patent/JPWO2014147804A1/en
Application granted granted Critical
Publication of JP6091601B2 publication Critical patent/JP6091601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/043Condensers made by assembling plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

本発明は、プレート式熱交換器及びそれを備えた冷凍サイクル装置に関するものである。   The present invention relates to a plate heat exchanger and a refrigeration cycle apparatus including the plate heat exchanger.

従来より、複数の伝熱プレートがインナーフィンを介して積層され、伝熱プレートと伝熱プレートとの間に形成された各流路に、交互に異なる流体を流し、伝熱プレートを介して熱交換する積層型のプレート式熱交換器がある(例えば、特許文献1、2参照)。   Conventionally, a plurality of heat transfer plates are stacked via inner fins, and different fluids are alternately passed through each flow path formed between the heat transfer plates to heat the heat transfer plates. There are stacked plate-type heat exchangers to be replaced (for example, see Patent Documents 1 and 2).

この種のプレート式熱交換器は、流体の入口となる通路孔を有しており、通路孔から流入した流体がインナーフィンを通過するが、インナーフィンにおいて通路孔から遠い側の流速は遅く、通路孔から近い側の流速は速くなる。このため、流路内において流速分布が生じ易く、速度の遅い領域は流体の滞留部となり伝熱面として機能せず、また、流れの偏流が圧力損失を増加させてしまう。よって、特許文献1〜3では、流速分布を均一にする整流部を備えている。   This type of plate heat exchanger has a passage hole that serves as an inlet for fluid, and the fluid that has flowed from the passage hole passes through the inner fin, but the flow velocity of the inner fin on the side far from the passage hole is slow, The flow velocity closer to the passage hole becomes faster. For this reason, the flow velocity distribution is likely to occur in the flow path, and the region where the speed is low becomes a fluid retaining portion and does not function as a heat transfer surface, and the flow drift increases pressure loss. Therefore, in patent documents 1-3, the rectification | straightening part which makes uniform flow velocity distribution is provided.

昭59−229193号公報(第6頁、第4図)Sho 59-229193 (6th page, Fig. 4) 昭63−140295号公報(第6頁、第1図)Sho 63-140295 (6th page, Fig. 1) 特開2001−41676号公報(第2頁、第3頁、第8〜10図)JP 2001-41676 (2nd page, 3rd page, FIGS. 8 to 10)

上記特許文献1、2の整流部は、どちらも複数の板状部材を複雑に組み合わせて構成しており、作製が難しくコストが高いという問題があった。   Both of the rectifying sections of Patent Documents 1 and 2 are configured by combining a plurality of plate-like members in a complicated manner, and there is a problem that the fabrication is difficult and the cost is high.

特許文献3の整流部材は、一枚の板状部材を切り起こし成形したり、板状部材を複数回折り曲げ加工したりして形成されており、更なる構造の簡単化が求められている。   The rectifying member of Patent Document 3 is formed by cutting and forming a single plate-like member or bending a plurality of plate-like members, and further simplification of the structure is required.

本発明はこのような点に鑑みなされたもので、簡単な構造で流速分布を均一にすることが可能な低コストのプレート式熱交換器及びそれを備えた冷凍サイクル装置を提供することを目的とする。   The present invention has been made in view of these points, and an object thereof is to provide a low-cost plate heat exchanger capable of making the flow velocity distribution uniform with a simple structure and a refrigeration cycle apparatus including the same. And

本発明に係るプレート式熱交換器は、所定の間隔で設けられた複数の伝熱プレートの間に第1流路と第2流路とが交互に形成され、第1流路及び第2流路にそれぞれインナーフィンが設けられたプレート式熱交換器であって、複数の伝熱プレートのそれぞれは、第1流路への第1流体の入口又は第2流路への第2流体の入口となる上流側通路孔と、第1流路からの第1流体の出口又は第2流路からの第2流体の出口となる下流側通路孔とを備え、第1流路及び第2流路のそれぞれには、各流路を上流側通路孔側とインナーフィン側とに仕切る上流側整流板が配置され、上流側整流板は、第1流体又は第2流体の流路となる複数の開口部を有し、上流側通路孔との距離が近い側よりも遠い側の方が上流側整流板による流路抵抗が小さくなるように複数の開口部の開口面積が調整されており、また、上流側通路孔との距離が近い側よりも遠い側の方がインナーフィン側に近づくように傾斜して配置されているものである。 In the plate heat exchanger according to the present invention, the first flow path and the second flow path are alternately formed between a plurality of heat transfer plates provided at predetermined intervals, and the first flow path and the second flow path are formed. A plate-type heat exchanger in which inner fins are respectively provided in a path, wherein each of the plurality of heat transfer plates includes a first fluid inlet to the first flow path or a second fluid inlet to the second flow path. An upstream passage hole and a downstream passage hole serving as an outlet for the first fluid from the first channel or an outlet for the second fluid from the second channel, the first channel and the second channel of each, is arranged upstream rectification plate partitioning the respective flow path into an upstream side passage hole side and the inner fin side, the upstream-side regulating plate has a plurality of openings serving as the first fluid or the second fluid flow path It has a section, so that towards the side farther from the side a short distance between the upstream passage hole the flow path resistance by the upstream-side regulating plate is reduced Is adjusted the opening area of the plurality of openings, also, in which towards the side farther from the side distance is close to the upstream side passage holes are disposed inclined so as to approach the inner fin side.

本発明のプレート式熱交換器は、整流板の配置により、簡単な構造で流速分布を均一にすることが可能な低コストのプレート式熱交換器を得ることができる。   The plate-type heat exchanger of the present invention can provide a low-cost plate-type heat exchanger that can make the flow velocity distribution uniform with a simple structure by arranging the rectifying plates.

本発明の実施の形態における一般的なインナーフィン型プレート式熱交換器を示す図である。It is a figure which shows the general inner fin type plate type heat exchanger in embodiment of this invention. 図1のインナーフィン2の一例を示す図である。It is a figure which shows an example of the inner fin 2 of FIG. 図1の要部拡大斜視図である。It is a principal part expansion perspective view of FIG. 図3の整流板30の説明図である。It is explanatory drawing of the baffle plate 30 of FIG. 図1の整流板30の変形例1の説明図である。It is explanatory drawing of the modification 1 of the baffle plate 30 of FIG. 図1の整流板30の変形例2の説明図である。It is explanatory drawing of the modification 2 of the baffle plate 30 of FIG. 図1の整流板30の変形例3の説明図である。It is explanatory drawing of the modification 3 of the baffle plate 30 of FIG. 図1の整流板30の変形例4の説明図である。It is explanatory drawing of the modification 4 of the baffle plate 30 of FIG. 図1の整流板30の変形例5の説明図である。It is explanatory drawing of the modification 5 of the baffle plate 30 of FIG. 本発明の実施の形態2に係るプレート式熱交換器の要部拡大斜視図である。It is a principal part expansion perspective view of the plate type heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係るプレート式熱交換器の斜視図である。It is a perspective view of the plate type heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係るプレート式熱交換器の変形例の斜視図である。It is a perspective view of the modification of the plate type heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷凍サイクル装置の冷媒回路を示す図である。It is a figure which shows the refrigerant circuit of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention.

実施の形態1.
図1は、本発明の実施の形態における一般的なインナーフィン型プレート式熱交換器を示す図である。図2は、図1のインナーフィン2の一例を示す図である。図3は、図1の要部拡大斜視図である。図1〜図3及び後述の図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
Embodiment 1 FIG.
FIG. 1 is a view showing a general inner fin type plate heat exchanger according to an embodiment of the present invention. FIG. 2 is a diagram illustrating an example of the inner fin 2 of FIG. 3 is an enlarged perspective view of a main part of FIG. In FIG. 1 to FIG. 3 and the drawings to be described later, the same reference numerals are the same or equivalent, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements appearing in the entire specification are merely examples and are not limited to these descriptions.

インナーフィン型プレート式熱交換器(以下、単に「プレート熱交換器」という)は、フラットな伝熱面の複数の伝熱プレート1を有している。複数の伝熱プレート1は、所定の間隔で設けられており、複数の伝熱プレート1の間に、第1流体が流れる第1流路Aと、第2流体が流れる第2流路Bとが交互に形成されている。図1において第1流体の流れ方向をx、第2流体の流れ方向をyとしている。そして、第1流路A及び第2流路Bのそれぞれには、伝熱を促進するインナーフィン2が設けられている。また、複数の伝熱プレート1の積層方向の両端部には、補強の役割を果たすサイドプレート3が設けられており、複数の伝熱プレート1及びインナーフィン2と共に全体が一体的に接合されている。   The inner fin type plate heat exchanger (hereinafter simply referred to as “plate heat exchanger”) has a plurality of heat transfer plates 1 having flat heat transfer surfaces. The plurality of heat transfer plates 1 are provided at predetermined intervals, and a first flow path A through which the first fluid flows and a second flow path B through which the second fluid flows between the plurality of heat transfer plates 1. Are formed alternately. In FIG. 1, the flow direction of the first fluid is x, and the flow direction of the second fluid is y. And each of the 1st flow path A and the 2nd flow path B is provided with the inner fin 2 which accelerates | stimulates heat transfer. Moreover, the side plate 3 which plays the role of reinforcement is provided in the both ends of the lamination direction of the several heat exchanger plate 1, and the whole is integrally joined with the several heat exchanger plate 1 and the inner fin 2. As shown in FIG. Yes.

インナーフィン2には、ここではオフセットフィンを用いている。オフセットフィンは、波形フィンにおいて板幅方向の山谷が板の長手方向の所定のピッチごとに板幅方向に半山ずつずれ、千鳥状に形成された構成を有する。   Here, offset fins are used for the inner fins 2. The offset fin has a configuration in which the peaks and valleys in the plate width direction of the corrugated fins are shifted by half a mountain in the plate width direction every predetermined pitch in the longitudinal direction of the plate and are formed in a staggered pattern.

複数の伝熱プレート1及び2枚のサイドプレート3は、金属製のほぼ矩形状の平板からなり、2枚のサイドプレート3のうちの一方の四隅には、第1流体の流入管4、第1流体の流出管5、第2流体の流入管6及び第2流体の流出管7が設けられている。   The plurality of heat transfer plates 1 and the two side plates 3 are made of a substantially rectangular flat plate made of metal, and have a first fluid inflow pipe 4 and a first fluid at one of the four side plates 3. An outflow pipe 5 for one fluid, an inflow pipe 6 for the second fluid, and an outflow pipe 7 for the second fluid are provided.

また、伝熱プレート1には、第1流体の流入管4、第1流体の流出管5、第2流体の流入管6、第2流体の流出管7に対応する位置に、それぞれ、第1開口11、第2開口12、第3開口13、第4開口14が形成されている。これら第1開口11、第2開口12、第3開口13、第4開口14は、それぞれ、第1流路Aの流入口、第1流路Aの流出口、第2流路Bの流入口、第2流路Bの流出口を形成している。   In addition, the heat transfer plate 1 has a first fluid inlet pipe 4, a first fluid outlet pipe 5, a second fluid inlet pipe 6, and a second fluid outlet pipe 7 at positions corresponding to the first fluid inlet pipe 4. An opening 11, a second opening 12, a third opening 13, and a fourth opening 14 are formed. The first opening 11, the second opening 12, the third opening 13, and the fourth opening 14 are an inlet of the first channel A, an outlet of the first channel A, and an inlet of the second channel B, respectively. The outlet of the second flow path B is formed.

伝熱プレート1において、第1開口11及び第2開口12、又は、第3開口13及び第4開口14の周りには閉塞部21(図3参照)が設けられている。この閉塞部21は、第1流体が流れる第1流路Aにおいては、第3開口13及び第4開口14がシールされており、第2流体が流れる第2流路Bにおいては、第1開口11及び第2開口12がシールされている。こうして、第1流路Aへの第2流体の流入が阻止されると共に、第2流路Bへの第1流体の流入が阻止される。   In the heat transfer plate 1, a closing portion 21 (see FIG. 3) is provided around the first opening 11 and the second opening 12 or the third opening 13 and the fourth opening 14. The blocking portion 21 has the third opening 13 and the fourth opening 14 sealed in the first flow path A through which the first fluid flows, and the first opening in the second flow path B through which the second fluid flows. 11 and the second opening 12 are sealed. In this way, the second fluid is prevented from flowing into the first flow path A, and the first fluid is prevented from flowing into the second flow path B.

以下では、伝熱プレート1に形成された4つの開口のうち、インナーフィン2に連通する開口を通路孔という。よって、第1流路Aでは、第開口1及び第開口1が通路孔となり、第2流路Bでは、第開口1及び第開口1が通路孔となる。また、以下では、1枚の伝熱プレート1に2つ設けられた通路孔のうち、流体入口となる通路孔を上流側通路孔20a、流体出口となる通路孔を下流側通路孔20bという。また、以下において第1流路Aと第2流路Bとを区別しない場合は、単に流路という。同様に、第1流体と第2流体とを区別しない場合は、単に流体という。 Hereinafter, of the four openings formed in the heat transfer plate 1, the opening communicating with the inner fin 2 is referred to as a passage hole. Thus, the first flow path A, the first opening 1 1 and a second opening 1 2 is a passage hole, the second flow path B, the third opening 1 3 and the fourth opening 1 4 is a passage hole. Hereinafter, of the two passage holes provided in one heat transfer plate 1, a passage hole serving as a fluid inlet is referred to as an upstream passage hole 20 a and a passage hole serving as a fluid outlet is referred to as a downstream passage hole 20 b. In the following, when the first flow path A and the second flow path B are not distinguished, they are simply referred to as flow paths. Similarly, when the first fluid and the second fluid are not distinguished, they are simply referred to as fluids.

上流側通路孔20aから流路に流入した流体の流速は、一般的に上流側通路孔20aの近傍は速く、遠方は遅くなる。このため、上流側通路孔20aからの距離が遠い領域Mには流体が流れ難く、流体が滞留する。よって、領域Mより下流側に流れる流体の流量が少なくなるため、有効伝熱面積が小さくなる。   The flow velocity of the fluid flowing into the flow path from the upstream side passage hole 20a is generally fast in the vicinity of the upstream side passage hole 20a, and slow in the distance. For this reason, the fluid hardly flows in the region M far from the upstream passage hole 20a, and the fluid stays. Therefore, since the flow rate of the fluid flowing downstream from the region M is reduced, the effective heat transfer area is reduced.

このような伝熱プレート1の短手方向(図3のX−Y方向)における流速分布の偏りに伴う流量分配の不均一を改善するため、以下の構成を採用している。すなわち、第1流路A及び第2流路Bのそれぞれにおいて上流側通路孔20aとインナーフィン2との間に、流速を均一化するための板状の整流板30を配置している。整流板30は、上流側通路孔20aとインナーフィン2との間を仕切るように伝熱プレート1に配置されている。   In order to improve the non-uniformity in the flow rate distribution accompanying the uneven flow velocity distribution in the short direction (XY direction in FIG. 3) of the heat transfer plate 1, the following configuration is adopted. That is, in each of the first flow path A and the second flow path B, a plate-like rectifying plate 30 for equalizing the flow velocity is disposed between the upstream passage hole 20a and the inner fin 2. The rectifying plate 30 is disposed on the heat transfer plate 1 so as to partition the upstream side passage hole 20a and the inner fin 2 from each other.

図4は、図3の整流板30の説明図で、(a)は正面図、(b)は(a)のA−A断面図、(c)は側面図である。なお、図4は図3の整流板30の特徴を説明するための説明図であり、開口部31の数、縮尺等は図3と厳密には対応していない。この点は、後述の整流板30の説明図においても同様である。
整流板30には、整流板30の仕切方向(整流板30の長手方向)に複数の開口部31が間隔を空けて形成されている。整流板30は、整流板30において上流側通路孔20aとの距離が近い側から遠い側に向かうにつれて整流板30の流路抵抗が小さくなるように、複数の開口部31の開口面積が調整されている。具体的には、整流板30において上流側通路孔20aとの距離が近い側から遠い側に位置する順に、複数の開口部31の開口面積が大きく形成されている。
4A and 4B are explanatory views of the current plate 30 in FIG. 3, in which FIG. 4A is a front view, FIG. 4B is a cross-sectional view taken along the line A-A in FIG. 4 is an explanatory diagram for explaining the characteristics of the current plate 30 in FIG. 3, and the number, scale, and the like of the openings 31 do not correspond exactly to those in FIG. 3. This is the same in the explanatory view of the current plate 30 described later.
In the rectifying plate 30, a plurality of openings 31 are formed at intervals in the partition direction of the rectifying plate 30 (longitudinal direction of the rectifying plate 30). In the rectifying plate 30, the opening areas of the plurality of openings 31 are adjusted so that the flow path resistance of the rectifying plate 30 decreases as the distance from the side closer to the upstream passage hole 20a in the rectifying plate 30 increases. ing. Specifically, the opening areas of the plurality of openings 31 are formed larger in the order in which the rectifying plate 30 is located on the side farther from the side closer to the upstream passage hole 20a.

図4では、複数の開口部31(31a、31b)がここでは円形に構成されており、上流側通路孔20aから遠い領域A1側の開口部31aの直径が、上流側通路孔20aから近い領域A2側の開口部31bの直径に比べて大きく形成されている。なお、ここでは、2段階で開口面積が調整されているが、2段階に限定するものではなく更に複数段階としてもよい。   In FIG. 4, a plurality of openings 31 (31a, 31b) are formed in a circular shape here, and the diameter of the opening 31a on the region A1 side far from the upstream passage hole 20a is close to the upstream passage hole 20a. It is formed larger than the diameter of the opening 31b on the A2 side. Here, the opening area is adjusted in two stages, but the opening area is not limited to two stages, and a plurality of stages may be used.

この構成により、上流側通路孔20aから遠い領域A1側に位置する各開口部31aの開口面積が、上流側通路孔20aから近い領域A2側に位置する各開口部31b側に比べて大きくなる。よって、整流板30において流速が遅い領域A1側の流路抵抗が、流速の速い領域A2側よりも小さくなり、領域Mに流体が流れ易くなる。これにより、X−Y方向の流速を均一化することができ、領域Mにおける流体の滞留を改善できる。その結果、伝熱プレート1において領域Mの下流部分を伝熱面として機能させることができ、有効伝熱面積を拡大することができる。   With this configuration, the opening area of each opening 31a located on the region A1 side far from the upstream passage hole 20a is larger than each opening 31b located on the region A2 side near the upstream passage hole 20a. Therefore, the flow resistance on the region A1 side where the flow velocity is slow in the rectifying plate 30 is smaller than that on the region A2 side where the flow velocity is fast, and the fluid easily flows into the region M. Thereby, the flow velocity in the XY direction can be made uniform, and the retention of fluid in the region M can be improved. As a result, the downstream portion of the region M in the heat transfer plate 1 can function as a heat transfer surface, and the effective heat transfer area can be expanded.

ここで、開口部31が大きく形成された領域A1のX−Y方向の長さL1は、閉塞部21の同方向の長さL2よりも短くするとよい。閉塞部21と整流板30で形成する流路は、上流側通路孔20aと整流板30との間の流路よりも狭く領域Mへ流れ難い。このため整流板30に抵抗の小さいL1の領域を設けているが、L1をL2よりも大きくすると、流体が領域Mへ流れ込む前に手前側のL1内の開口部31から流出してしまい、速度の均一化が難しい。L1をL2よりも小さくすることにより、L1>L2の場合よりも更なる速度の均一化が可能となる。   Here, the length L1 in the XY direction of the region A1 in which the opening 31 is formed large may be shorter than the length L2 in the same direction of the closing portion 21. The flow path formed by the blocking portion 21 and the rectifying plate 30 is narrower than the flow path between the upstream passage hole 20a and the rectifying plate 30 and hardly flows into the region M. For this reason, a region of L1 having a low resistance is provided in the rectifying plate 30, but if L1 is made larger than L2, the fluid flows out from the opening 31 in L1 on the near side before flowing into the region M, and the speed is increased. It is difficult to make uniform. By making L1 smaller than L2, the speed can be made more uniform than when L1> L2.

閉塞部21は、領域Mへ流れる流体の抵抗になるが、本発明は、整流板30における開口面積の調整を行うことで、この抵抗による圧力損失の増加分を減らす方向に調整できる。このため、流速分布の偏りの改善に有効である。なお、各開口部31の形状は円形に限らず、正方形、長方形等としてもよい。なお、図4では、領域A1の各開口部31aの直径が全て同じであり、領域A2においても、各開口部31bの直径を同じとしたが、上流側通路孔20aから離れるにつれて徐々に直径が大きくなるように構成してもよい。   The blocking portion 21 becomes a resistance of the fluid flowing into the region M. In the present invention, the opening area of the rectifying plate 30 is adjusted, so that the increase in pressure loss due to the resistance can be reduced. For this reason, it is effective in improving the deviation of the flow velocity distribution. The shape of each opening 31 is not limited to a circle, and may be a square, a rectangle, or the like. In FIG. 4, the diameters of the openings 31a in the region A1 are all the same, and the diameters of the openings 31b are also the same in the region A2, but the diameter gradually increases as the distance from the upstream passage hole 20a increases. You may comprise so that it may become large.

ここで、仮に整流板30が無い場合、偏流による流速上昇が圧力損失の増加要因となる。しかし、整流板30を配置することにより、偏流による流速上昇を抑制できるため、圧力損失の低減が可能となる。   Here, if the rectifying plate 30 is not provided, an increase in the flow velocity due to the drift causes an increase in pressure loss. However, since the flow velocity increase due to the drift can be suppressed by arranging the current plate 30, pressure loss can be reduced.

以上説明したように、本実施の形態1では、伝熱プレート1に設けられた上流側通路孔20aとインナーフィン2との間に、両者を仕切るように板状の整流板30を配置した。そして、整流板30に、仕切方向に間隔を空けて複数の開口部31を設けた。更に、流体が整流板30を通過する際の流路抵抗が、上流側通路孔20aから近い側に比べて遠い側が小さくなるように複数の開口部31の開口面積を調整した。これにより、流速分布を均一化することができ、インナーフィン2の入口側における流量の偏りを改善でき、有効伝熱面積の拡大及び圧力損失の低減を図ることができる。   As described above, in the first embodiment, the plate-like rectifying plate 30 is arranged between the upstream passage hole 20a provided in the heat transfer plate 1 and the inner fin 2 so as to partition the both. The current plate 30 was provided with a plurality of openings 31 at intervals in the partition direction. Furthermore, the opening area of the plurality of openings 31 was adjusted so that the flow resistance when the fluid passed through the rectifying plate 30 was smaller on the side farther than the side closer to the upstream passage hole 20a. Thereby, the flow velocity distribution can be made uniform, the uneven flow rate on the inlet side of the inner fin 2 can be improved, the effective heat transfer area can be increased, and the pressure loss can be reduced.

また、整流板30は、板状部材に穴を開けただけの簡単な構造であるため、作製が簡単であり、有効伝熱面積の拡大及び圧力損失の低減効果を低コストで実現でき、また、軽量化を図ることができる。   In addition, since the current plate 30 has a simple structure in which a hole is formed in the plate-like member, it is easy to manufacture, and the effect of expanding the effective heat transfer area and reducing pressure loss can be realized at a low cost. It is possible to reduce the weight.

また、整流板30は、板状部材に穴を開けただけの簡単な構造であるため、流速分布を均一にするための各開口部31の大きさの調整も容易にできる。また、整流板30を単体部品で作製しても安価であるが、インナーフィン2と一体で成形すると、部品点数が減るため、更に安価になる。また、整流板30はろう付けで伝熱プレート1に接合可能であり、プレート熱交換器を一体ろう付けで安価に製造できる。   Moreover, since the rectifying plate 30 has a simple structure in which holes are formed in the plate-like member, the size of each opening 31 for making the flow velocity distribution uniform can be easily adjusted. Further, although it is inexpensive even if the rectifying plate 30 is made of a single component, if it is molded integrally with the inner fin 2, the number of components is reduced, and therefore the cost is further reduced. Further, the rectifying plate 30 can be joined to the heat transfer plate 1 by brazing, and the plate heat exchanger can be manufactured at low cost by integral brazing.

また、整流板30では、開口部31同士の間の部分である隔壁が、開口部31を通過した流体を混合させる作用を有し、流速の均一化に好適に作用する。   Moreover, in the current plate 30, the partition which is a part between the opening parts 31 has the effect | action which mixes the fluid which passed the opening part 31, and acts on equalization of the flow rate suitably.

また、整流板30は、上流側通路孔20aとインナーフィン2との間を仕切るように立てて配置されるため、分配改善機構として機能する整流板30の設置にあたり、広いスペースを必要とせず、少ないスペースで設置できる。   Further, since the rectifying plate 30 is arranged upright so as to partition between the upstream side passage hole 20a and the inner fin 2, the installation of the rectifying plate 30 functioning as a distribution improving mechanism does not require a wide space, It can be installed in a small space.

また、滞留を生じ易い領域Mは、整流板30を設けない場合には流体の流速が遅い部分である。このため、流体が水で、プレート式熱交換器を蒸発器として使用する場合、局所的に温度低下して凍結の起点となる。しかし、本実施の形態1では、領域Mにおける流体の流速を上昇させることができるため、凍結を抑制でき、品質向上を図ることができる。   Further, the region M in which retention is likely to occur is a portion where the flow rate of the fluid is slow when the rectifying plate 30 is not provided. For this reason, when the fluid is water and the plate heat exchanger is used as an evaporator, the temperature is locally lowered and becomes a starting point of freezing. However, in the first embodiment, since the flow velocity of the fluid in the region M can be increased, freezing can be suppressed and quality can be improved.

このように、本実施の形態1のプレート熱交換器は、高伝熱、低圧損、高信頼性といった効果を有しているため、蒸発能力の小さいCO冷媒、圧力損失の大きい炭化水素、低GWP冷媒等の可燃性冷媒も使用可能となる。Thus, since the plate heat exchanger of the first embodiment has effects such as high heat transfer, low pressure loss, and high reliability, a CO 2 refrigerant having a small evaporation capacity, a hydrocarbon having a large pressure loss, A combustible refrigerant such as a low GWP refrigerant can also be used.

また、インナーフィン2にオフセットフィンを用いたので、以下の効果が得られる。オフセットフィンは、低圧損な伝熱促進体であり、抵抗が小さいため、流体は直線的に流れ易くなる。このため、仮に整流板30を設けず、領域Mに流体が流入しない場合、領域Mより下流の領域には流体がほとんど流れない。この場合、上述したように有効伝熱面積が小さくなる。しかし、低圧損なオフセットフィンを伝熱面として用い、更に整流板30と組み合わせることで、圧力損失の低減及び有効伝熱面積の拡大を図ることができる。   Moreover, since the offset fin was used for the inner fin 2, the following effects are acquired. The offset fin is a heat transfer promoting body having a low pressure loss and has a small resistance, so that the fluid easily flows linearly. For this reason, if the current plate 30 is not provided and the fluid does not flow into the region M, the fluid hardly flows into the region downstream from the region M. In this case, the effective heat transfer area is reduced as described above. However, it is possible to reduce pressure loss and expand the effective heat transfer area by using offset fins with low pressure loss as the heat transfer surface and further combining with the rectifying plate 30.

また、オフセットフィンの前縁効果により、伝熱を向上しながら圧力損失の上昇を抑えることができる。なお、前縁効果とは、平板の前縁部分において熱伝達率が良好である性質を利用して、平板の前縁部を熱伝達部として積極的に用いることにより実現できる効果をいう。つまり、流れ内に平板を置いたときに、平板の前縁では境界層の厚さが薄く、下流に行くにしたがって厚くなる。このため、境界層の厚さが薄い、平板の前縁部分において熱伝達が良好になる。   Moreover, the rise of pressure loss can be suppressed by improving the heat transfer by the leading edge effect of the offset fin. The leading edge effect refers to an effect that can be realized by actively using the leading edge portion of the flat plate as a heat transfer portion by utilizing the property that the heat transfer coefficient is good at the leading edge portion of the flat plate. That is, when a flat plate is placed in the flow, the boundary layer is thin at the leading edge of the flat plate and becomes thicker toward the downstream. For this reason, heat transfer becomes favorable in the front edge part of a flat plate where the thickness of a boundary layer is thin.

また、整流板30、オフセットフィン、フラットな伝熱面の伝熱プレート1は、それぞれプレスで作製でき、低圧損で伝熱性能が高いプレート式熱交換器を安価に製造できる。プレート式熱交換器が低圧損であると、流体の作動に必要な動力が小さくなる。このため、プレート式熱交換器に流体を流入させる動力源となるポンプ及び圧縮機の容量を小さくできる。   Further, the current plate 30, the offset fins, and the heat transfer plate 1 having a flat heat transfer surface can be manufactured by pressing, and a plate heat exchanger having high heat transfer performance with low pressure loss can be manufactured at low cost. If the plate heat exchanger has a low pressure loss, less power is required to operate the fluid. For this reason, the capacity | capacitance of the pump and compressor used as the motive power source which flows a fluid into a plate type heat exchanger can be made small.

なお、インナーフィン2にオフセットフィンを用いた場合、上記の効果が得られるが、本発明のインナーフィンはオフセットフィンに限定するものではない。また、本発明のインナーフィン2は、伝熱プレート1と別体に形成されたフィンだけでなく、伝熱プレート1の表面を例えば波形にする等して形成されたフィンも含むものとする。   In addition, when an offset fin is used for the inner fin 2, the above effect can be obtained, but the inner fin of the present invention is not limited to the offset fin. In addition, the inner fin 2 of the present invention includes not only fins formed separately from the heat transfer plate 1 but also fins formed by corrugating the surface of the heat transfer plate 1.

また、流量の均等分配は流路の入口側で必要であり、出口側には必要ない。よって、入口側と出口側の両方に設けるのではなく、入口側のみに整流板30を設けることで、低コストとすることができる。   In addition, the uniform distribution of the flow rate is necessary on the inlet side of the flow path and not on the outlet side. Therefore, it is possible to reduce the cost by providing the rectifying plate 30 only on the inlet side, not on both the inlet side and the outlet side.

なお、整流板30の開口部31の個数、形状、配置は、図1に示した構造に限定されるものではなく、例えば以下の変形例1〜4のように種々変形実施可能である。何れの変形例も、整流板30を通過する際の流路抵抗が、上流側通路孔20aに近い側に比べて遠い側が小さくなるように複数又は1つの開口部31が形成された構成を有する。何れの変形例においても、流速の均一化の効果がある。   Note that the number, shape, and arrangement of the openings 31 of the rectifying plate 30 are not limited to the structure shown in FIG. 1, and various modifications can be made, for example, as in Modifications 1 to 4 below. Each of the modifications has a configuration in which a plurality or one opening 31 is formed so that the flow resistance when passing through the rectifying plate 30 is smaller on the side farther than the side near the upstream passage hole 20a. . In any modification, there is an effect of equalizing the flow velocity.

(変形例1)
図5は、図3の整流板30の変形例1の説明図で、(a)は正面図、(b)は(a)のA−A断面図、(c)は側面図である。
では、領域A1と領域A2とのそれぞれにおいて複数の開口部31を設けていたが、領域A1と領域A2とのそれぞれに1つずつの開口部31(31a、31b)としてもよい。そして図5では開口部31の形状を長方形とした例を示している。そして、この構成においても、図4と同様、上流側通路孔20aから遠い領域A1側の開口部31aを、上流側通路孔20aから近い領域A2側の開口部31bに比べて開口面積を大きくしている。
(Modification 1)
FIGS. 5A and 5B are explanatory views of a first modification of the rectifying plate 30 in FIG. 3, where FIG. 5A is a front view, FIG. 5B is a cross-sectional view taken along line AA in FIG.
In FIG. 4 , the plurality of openings 31 are provided in each of the region A1 and the region A2, but one opening 31 (31a, 31b) may be provided in each of the region A1 and the region A2. FIG. 5 shows an example in which the shape of the opening 31 is rectangular. Also in this configuration, as in FIG. 4, the opening area 31a on the region A1 side far from the upstream passage hole 20a is made larger than the opening portion 31b on the region A2 side near the upstream passage hole 20a. ing.

(変形例2)
図6は、図3の整流板30の変形例2の説明図で、(a)は正面図、(b)は(a)のA−A断面図、(c)は側面図である。
図4では、領域A1と領域A2とのそれぞれで開口部31の直径を異ならせていたが、図6では全て同じ直径とし、開口部31の配置個数を、上流側通路孔20aから遠くなるにつれて増やすようにしている。また、上記では上流側通路孔20aとの距離が近い側から遠い側に2段階で開口部31の開口面積が大きくなるようにしていたが、段階数は2段階に限るものではなく、図6には3段階の例を示している。
(Modification 2)
6A and 6B are explanatory diagrams of a second modification of the current plate 30 in FIG. 3, in which FIG. 6A is a front view, FIG. 6B is a cross-sectional view taken along the line AA in FIG.
In FIG. 4, the diameter of the opening 31 is different in each of the region A1 and the region A2, but in FIG. 6, all the openings have the same diameter, and the number of the openings 31 is increased as the distance from the upstream passage hole 20a increases. I try to increase it. In the above description, the opening area of the opening 31 is increased in two steps from the side closer to the upstream passage hole 20a to the side farther from the side closer to the upstream side passage hole 20a. However, the number of steps is not limited to two. Shows an example of three stages.

(変形例3)
図7は、図3の整流板30の変形例3の説明図で、(a)は正面図、(b)は(a)のA−A断面図、(c)は側面図である。
図7では、開口部31を1個とし、整流板30において上流側通路孔20aとの距離が近い側から遠い側に行くにつれて開口面積が大きくなるようにしたものである。
(Modification 3)
7A and 7B are explanatory views of Modification 3 of the rectifying plate 30 in FIG. 3, in which FIG. 7A is a front view, FIG. 7B is a cross-sectional view taken along line AA in FIG.
In FIG. 7, the number of openings 31 is one, and the opening area of the rectifying plate 30 increases as the distance from the upstream passage hole 20a increases from the shorter side.

(変形例4)
変形例4は、整流板30の外型形状により、整流板30部分を通過する際の流路抵抗が、上流側通路孔20aから近い側に比べて遠い側が小さくなるようにしたものである。
(Modification 4)
In the fourth modification, the flow path resistance when passing through the rectifying plate 30 is smaller on the side farther from the upstream passage hole 20a due to the outer shape of the rectifying plate 30.

図8は、図3の整流板30の変形例4の説明図で、(a)は正面図、(b)は平面図、(c)は側面図ある。
図8の整流板30は、整流板30において上流側通路孔20aとの距離が近い側から遠い側に行くにつれて、積層方向(図1の左右方向)の整流板30の高さが低くなるように形成されている。
8A and 8B are explanatory views of a fourth modification of the current plate 30 in FIG. 3, in which FIG. 8A is a front view, FIG. 8B is a plan view, and FIG. 8C is a side view.
The rectifying plate 30 in FIG. 8 is such that the height of the rectifying plate 30 in the stacking direction (left and right direction in FIG. 1) decreases as the distance from the side closer to the upstream passage hole 20a in the rectifying plate 30 increases. Is formed.

図3〜図8に示した整流板30は、整流板30を単なる板状としたが、次の図9に示す変形例5のように構成してもよい。   Although the rectifying plate 30 shown in FIGS. 3 to 8 is a simple plate, the rectifying plate 30 may be configured as in Modification 5 shown in FIG.

(変形例5)
図9は、図3の整流板30の変形例5の説明図で、(a)は正面図、(b)は(a)のA−A切断部端面図、(c)は側面図である。
この整流板30は、整流板30の短手方向(仕切方向と直交する方向)の両端から整流板30に直交する方向に互いに並行に延びる一対の脚部32を設けた構成を有している。
この一対の脚部32のそれぞれを伝熱プレート1との接合面とすることで、整流板30が支柱となる。そして、一対の脚部32の長さを調整することで、一対の脚部32と伝熱プレート1と接合面の面積を、必要強度に応じて調整できることになる。このため、剥離強度の弱い通路孔周辺に求められる強度に応じて一対の脚部32の長さを調整し、調整した一対の脚部32を接合面として用いることで、上流側通路孔20a周辺の強度を必要強度まで向上することができる。
(Modification 5)
9A and 9B are explanatory views of Modification 5 of the rectifying plate 30 in FIG. 3, where FIG. 9A is a front view, FIG. 9B is an end view of the AA cut portion of FIG. .
The rectifying plate 30 has a configuration in which a pair of leg portions 32 extending in parallel to each other in a direction orthogonal to the rectifying plate 30 is provided from both ends of the rectifying plate 30 in a short direction (a direction orthogonal to the partition direction). .
By making each of the pair of leg portions 32 a joint surface with the heat transfer plate 1, the rectifying plate 30 becomes a support column. And by adjusting the length of a pair of leg part 32, the area of a pair of leg part 32, the heat-transfer plate 1, and a joining surface can be adjusted according to required intensity | strength. For this reason, by adjusting the length of the pair of leg portions 32 according to the strength required around the passage hole having a low peel strength, and using the adjusted pair of leg portions 32 as the joint surface, the periphery of the upstream passage hole 20a Can be improved to the required strength.

また、整流板30を図9の形状に成形するにあたっては、プレスで作製するとワンプレスで作製可能なため、低コストで製造できる。   Further, when the rectifying plate 30 is formed into the shape shown in FIG. 9, it can be manufactured at a low cost because it can be manufactured by a single press if it is manufactured by a press.

実施の形態2.
実施の形態2は、整流板30の配置に関して実施の形態1と異なっている。それ以外の点については、実施の形態1と同様である。なお、実施の形態1と同様の構成部分について適用される変形例は、本実施の形態2についても同様に適用される。
Embodiment 2. FIG.
The second embodiment is different from the first embodiment with respect to the arrangement of the current plate 30. Other points are the same as in the first embodiment. Note that the modification applied to the same components as those in the first embodiment is similarly applied to the second embodiment.

図10は、本発明の実施の形態2に係るプレート式熱交換器の要部拡大斜視図である。
実施の形態2では、整流板30とインナーフィン2との間隔が、上流側通路孔20aの近い側から遠い側に向かうにつれて短くなるように整流板30を傾けて伝熱プレート1に設けている。
FIG. 10 is an enlarged perspective view of a main part of the plate heat exchanger according to Embodiment 2 of the present invention.
In the second embodiment, the rectifying plate 30 is inclined and provided on the heat transfer plate 1 so that the distance between the rectifying plate 30 and the inner fin 2 decreases from the side closer to the upstream passage hole 20a toward the far side. .

このように構成したことにより、実施の形態1と同様の効果が得られると共に、上流側通路孔20aから流路に流入した流体を領域Mへ誘導できる。これにより、実施の形態1のように整流板30を流れ方向に対して直交に配置するよりも、流体が領域Mへ流れ易くなる。このため、実施の形態1における開口部31の開口面積の調整に加えて、実施の形態2の整流板30の傾きの角度調整により、より細かく流速分布の調整が可能となる。   With this configuration, the same effect as in the first embodiment can be obtained, and the fluid that has flowed into the flow path from the upstream side passage hole 20a can be guided to the region M. This makes it easier for the fluid to flow to the region M than when the rectifying plate 30 is disposed orthogonal to the flow direction as in the first embodiment. For this reason, in addition to the adjustment of the opening area of the opening 31 in the first embodiment, the flow velocity distribution can be adjusted more finely by adjusting the inclination angle of the rectifying plate 30 in the second embodiment.

実施の形態3.
上記実施の形態1、2では、整流板30を第1流路A及び第2流路Bのそれぞれにおいて上流側通路孔20aとインナーフィン2との間に整流板30を配置していた。実施の形態3は、下流側通路孔20bとインナーフィン2との間にも整流板30を配置したものである。それ以外の点については、実施の形態1、2と同様である。なお、実施の形態1と同様の構成部分について適用される変形例は、本実施の形態についても同様に適用される。
Embodiment 3 FIG.
In the first and second embodiments, the rectifying plate 30 is disposed between the upstream passage hole 20 a and the inner fin 2 in each of the first flow path A and the second flow path B. In the third embodiment, the rectifying plate 30 is also disposed between the downstream passage hole 20b and the inner fin 2. Other points are the same as in the first and second embodiments. Note that the modification applied to the same components as those in the first embodiment is similarly applied to the third embodiment.

図11は、本発明の実施の形態3に係るプレート式熱交換器の斜視図である。
図11に示すように、下流側通路孔20bとインナーフィン2との間にも整流板30を配置している。
FIG. 11 is a perspective view of a plate heat exchanger according to Embodiment 3 of the present invention.
As shown in FIG. 11, the rectifying plate 30 is also arranged between the downstream passage hole 20 b and the inner fin 2.

実施の形態3によれば、実施の形態1、2と同様の効果が得られると共に、上流側と下流側の両方に整流板30を配置するようにしたので、流体の入口側だけでなく出口側の分配が改善される。これにより、流体の入口のみ整流板30を配置した場合に比べ、有効伝熱面積の拡大、圧力損失の低減、凍結の抑制について、より高い効果が得られる。   According to the third embodiment, the same effects as those of the first and second embodiments can be obtained, and the rectifying plates 30 are arranged on both the upstream side and the downstream side. Side distribution is improved. Thereby, compared with the case where the baffle plate 30 is arrange | positioned only at the inlet_port | entrance of a fluid, a higher effect is acquired about expansion of an effective heat-transfer area, reduction of a pressure loss, and suppression of freezing.

更に、整流板30が流路の出入口にあるため、本プレート式熱交換器を、冷暖切替可能な空気調和装置又は冷暖同時運転可能な空気調和装置等のように、流体の熱交換器の流れ方向が逆方向に切り替わる装置に適用すると、効果的である。   Further, since the rectifying plate 30 is located at the entrance / exit of the flow path, the flow of the heat exchanger for fluid such as an air conditioner capable of switching between cooling and heating or an air conditioner capable of simultaneous cooling and heating is changed. It is effective when applied to a device whose direction is switched in the opposite direction.

また、プレート式熱交換器内で流体が相変化を生じ、入口側と出口側とで流体の密度が変化する場合、その密度変化に合わせて入口側の整流板30と出口側の整流板30とで開口部31の総開口面積(全開口部31の開口面積の総和)を異ならせるようにしてもよい。例えば、入口側が液、出口側が蒸気(つまり、液に比べて低密度であり、開口部31通過時の圧力損失が大きくなりやすい)となる場合は、図12に示すように、出口側(図12の左側)の整流板30の総開口面積を、入口側(図12の右側)の整流板30の総開口面積よりも大きくするようにしてもよい。これにより、圧力損失の低減が可能となる。 Further, when the fluid undergoes a phase change in the plate heat exchanger and the density of the fluid changes between the inlet side and the outlet side, the inlet side rectifying plate 30 and the outlet side rectifying plate 30 are matched to the density change. The total opening area of the openings 31 (the sum of the opening areas of all the openings 31) may be made different. For example, when the inlet side is liquid and the outlet side is steam (that is, the density is lower than that of the liquid and the pressure loss when passing through the opening 31 tends to increase), as shown in FIG. the total opening area of the rectifying plate 30 on the left side) of 12, may be larger than the total opening area of the rectifying plate 30 on the inlet side (right side in FIG. 12). Thereby, the pressure loss can be reduced.

実施の形態4.
実施の形態4は、実施の形態1〜実施の形態3の何れかのプレート式熱交換器が適用された冷凍サイクル装置に関するものである。
Embodiment 4 FIG.
The fourth embodiment relates to a refrigeration cycle apparatus to which any of the plate heat exchangers of the first to third embodiments is applied.

図13は、本発明の実施の形態4に係る冷凍サイクル装置40の冷媒回路を示す図である。
冷凍サイクル装置40は、圧縮機41、凝縮器(ガスクーラー含む)42、絞り装置43及び蒸発器44を備えた一般的な冷凍サイクル装置である。そして、冷凍サイクル装置40の凝縮器42及び蒸発器44の一方又は両方として、実施の形態1〜実施の形態3の何れかのプレート式熱交換器を適用している。
FIG. 13 is a diagram showing a refrigerant circuit of the refrigeration cycle apparatus 40 according to Embodiment 4 of the present invention.
The refrigeration cycle apparatus 40 is a general refrigeration cycle apparatus including a compressor 41, a condenser (including a gas cooler) 42, a throttle device 43, and an evaporator 44. The plate heat exchanger according to any one of the first to third embodiments is applied as one or both of the condenser 42 and the evaporator 44 of the refrigeration cycle apparatus 40.

本実施の形態4によれば、実施の形態1〜実施の形態3のプレート式熱交換器を備えることにより、省エネ性及び信頼性が高く、低コストな冷凍サイクル装置40を得ることができる。なお、図13に示した冷媒回路は一例であって、本発明のプレート式熱交換器が適用される冷媒回路は、図13の構成に限られたものではい。例えば、四方弁を設けて冷房又は暖房を切替可能な冷媒回路であってもよいし、冷暖同時運転可能な冷媒回路等であってもよい。   According to the fourth embodiment, by providing the plate heat exchanger according to the first to third embodiments, the refrigeration cycle apparatus 40 with high energy saving and reliability and low cost can be obtained. The refrigerant circuit shown in FIG. 13 is an example, and the refrigerant circuit to which the plate heat exchanger of the present invention is applied is not limited to the configuration shown in FIG. For example, a refrigerant circuit that can be switched between cooling and heating by providing a four-way valve may be used, or a refrigerant circuit that can be operated simultaneously with cooling and heating.

本発明の活用例として、空調、発電、食品の加熱殺菌処理機器等、プレート式熱交換器を搭載した多くの産業、家庭用機器に利用可能である。   As an application example of the present invention, the present invention can be used in many industrial and household equipment equipped with a plate heat exchanger, such as air conditioning, power generation, and food sterilization equipment.

1 伝熱プレート、2 インナーフィン、3 サイドプレート、4 流入管、5 流出管、6 流入管、7 流出管、11 第1開口、12 第2開口、13 第3開口、14 第4開口、20a 上流側通路孔、20b 下流側通路孔、21 閉塞部、30 整流板、31 開口部、31a 開口部、31b 開口部、32 脚部、40 冷凍サイクル装置、41 圧縮機、42 凝縮器、43 絞り装置、44 蒸発器、A 第1流路、A1 領域、A2 領域、B 第2流路、M 領域。   DESCRIPTION OF SYMBOLS 1 Heat transfer plate, 2 Inner fin, 3 Side plate, 4 Inflow pipe, 5 Outflow pipe, 6 Inflow pipe, 7 Outflow pipe, 11 1st opening, 12 2nd opening, 13 3rd opening, 14 4th opening, 20a Upstream passage hole, 20b Downstream passage hole, 21 Blocking portion, 30 Rectifier plate, 31 Opening portion, 31a Opening portion, 31b Opening portion, 32 Leg portion, 40 Refrigeration cycle device, 41 Compressor, 42 Condenser, 43 Restriction Apparatus, 44 Evaporator, A 1st flow path, A1 area | region, A2 area | region, B 2nd flow path, M area | region.

Claims (13)

所定の間隔で設けられた複数の伝熱プレートの間に第1流路と第2流路とが交互に形成され、前記第1流路及び前記第2流路にそれぞれインナーフィンが設けられたプレート式熱交換器であって、
前記複数の伝熱プレートのそれぞれは、前記第1流路への第1流体の入口又は前記第2流路への第2流体の入口となる上流側通路孔と、前記第1流路からの前記第1流体の出口又は前記第2流路からの前記第2流体の出口となる下流側通路孔とを備え、
前記第1流路及び前記第2流路のそれぞれには、各流路を前記上流側通路孔側と前記インナーフィン側とに仕切る上流側整流板が配置され、
前記上流側整流板は、前記第1流体又は前記第2流体の流路となる複数の開口部を有し、前記上流側通路孔との距離が近い側よりも遠い側の方が前記上流側整流板による流路抵抗が小さくなるように前記複数の開口部の開口面積が調整されており、また、前記上流側通路孔との距離が近い側よりも遠い側の方が前記インナーフィン側に近づくように傾斜して配置されている
プレート式熱交換器。
The first flow path and the second flow path are alternately formed between a plurality of heat transfer plates provided at a predetermined interval, and inner fins are provided in the first flow path and the second flow path, respectively. A plate heat exchanger,
Each of the plurality of heat transfer plates includes an upstream passage hole serving as an inlet of the first fluid to the first flow path or an inlet of the second fluid to the second flow path, and an opening from the first flow path. A downstream passage hole serving as an outlet of the first fluid or an outlet of the second fluid from the second flow path,
In each of the first flow path and the second flow path, an upstream rectifying plate that divides each flow path into the upstream passage hole side and the inner fin side is disposed,
Said upstream-side regulating plate, the first fluid or a plurality of openings serving as the passage of the second fluid, it is the upstream side of the distance is on the side farther from the near side to the upstream side passage hole The opening areas of the plurality of openings are adjusted so that the flow resistance by the rectifying plate is reduced , and the side farther from the side closer to the upstream passage hole is closer to the inner fin side. A plate-type heat exchanger that is inclined to approach .
前記上流側整流板と同一の下流側整流板を、前記下流側通路孔と前記インナーフィンとの間に更に備えた
請求項記載のプレート式熱交換器。
Wherein an upstream-side regulating plate and the same downstream straightening plate, further plate heat exchanger according to claim 1, further comprising between the inner fin and the downstream passage hole.
前記上流側整流板と前記複数の開口部の形状は同じであるが総開口面積が異なる下流側整流板を、前記下流側通路孔と前記インナーフィンとの間に更に備えた
請求項記載のプレート式熱交換器。
The upstream-side regulating plate and said plurality of shaped openings have different downstream straightening plate is the same total open area, the more claim 1, further comprising between the inner fin and the downstream passage hole Plate heat exchanger.
前記上流側整流板と前記下流側整流板との2つの整流板のうち、前記整流板を通過するときの流体密度が低い方の前記整流板の総開口面積が、前記流体密度が高い方の前記整流板の総開口面積よりも多くなるように、2つの前記整流板のそれぞれの前記複数の開口部が形成されている
請求項記載のプレート式熱交換器。
Of the two rectifying plates of the upstream rectifying plate and the downstream rectifying plate, the total opening area of the rectifying plate having the lower fluid density when passing through the rectifying plate is the one having the higher fluid density. The plate heat exchanger according to claim 3 , wherein the plurality of openings of each of the two rectifying plates are formed so as to be larger than a total opening area of the rectifying plates.
所定の間隔で設けられた複数の伝熱プレートの間に第1流路と第2流路とが交互に形成され、前記第1流路及び前記第2流路にそれぞれインナーフィンが設けられたプレート式熱交換器であって、
前記複数の伝熱プレートのそれぞれは、前記第1流路への第1流体の入口又は前記第2流路への第2流体の入口となる上流側通路孔と、前記第1流路からの前記第1流体の出口又は前記第2流路からの前記第2流体の出口となる下流側通路孔とを備え、
前記第1流路及び前記第2流路のそれぞれには、各流路を前記上流側通路孔側と前記インナーフィン側とに仕切る上流側整流板が配置され、
前記上流側整流板は、前記第1流体又は前記第2流体の流路となる複数の開口部を有し、前記上流側通路孔との距離が近い側よりも遠い側の方が前記上流側整流板による流路抵抗が小さくなるように前記複数の開口部の開口面積が調整されており、
前記上流側整流板と前記複数の開口部の形状は同じであるが総開口面積が異なる下流側整流板を、前記下流側通路孔と前記インナーフィンとの間に更に備えた
プレート式熱交換器。
The first flow path and the second flow path are alternately formed between a plurality of heat transfer plates provided at a predetermined interval, and inner fins are provided in the first flow path and the second flow path, respectively. A plate heat exchanger,
Each of the plurality of heat transfer plates includes an upstream passage hole serving as an inlet of the first fluid to the first flow path or an inlet of the second fluid to the second flow path, and an opening from the first flow path. A downstream passage hole serving as an outlet of the first fluid or an outlet of the second fluid from the second flow path,
In each of the first flow path and the second flow path, an upstream rectifying plate that divides each flow path into the upstream passage hole side and the inner fin side is disposed,
Said upstream-side regulating plate, the first fluid or a plurality of openings serving as the passage of the second fluid, it is the upstream side of the distance is on the side farther from the near side to the upstream side passage hole The opening areas of the plurality of openings are adjusted so that the flow path resistance due to the rectifying plate is reduced ,
A plate further comprising a downstream rectifying plate between the downstream passage hole and the inner fin, wherein the upstream rectifying plate and the plurality of openings have the same shape but different total opening areas. Type heat exchanger.
前記上流側整流板と前記下流側整流板との2つの整流板のうち、前記整流板を通過するときの流体密度が低い方の前記整流板の総開口面積が、前記流体密度が高い方の前記整流板の総開口面積よりも多くなるように、2つの前記整流板のそれぞれの前記複数の開口部が形成されている
請求項記載のプレート式熱交換器。
Of the two rectifying plates of the upstream rectifying plate and the downstream rectifying plate, the total opening area of the rectifying plate having the lower fluid density when passing through the rectifying plate is the one having the higher fluid density. The plate heat exchanger according to claim 5 , wherein the plurality of openings of each of the two rectifying plates are formed so as to be larger than a total opening area of the rectifying plates.
前記上流側整流板の前記複数の開口部は、前記上流側整流板の前記複数の開口部と前記上流側通路孔との距離が近い側よりも遠い側の方が開口面積が大きく形成されている
請求項1〜請求項6の何れか一項に記載のプレート式熱交換器。
The plurality of openings of the upstream rectifying plate have a larger opening area on the side farther from the side closer to the upstream passage hole than the plurality of openings of the upstream rectifying plate. The plate heat exchanger according to any one of claims 1 to 6 .
前記上流側整流板の前記複数の開口部は同じ大きさに構成され、
前記上流側整流板の前記複数の開口部の配置個数が、前上流側整流板と前記上流側通路孔との距離が近い側よりも遠い側の方が多い
請求項1〜請求項6の何れか一項に記載のプレート式熱交換器。
The plurality of openings of the upstream rectifying plate are configured to have the same size,
Distribution置個number of said plurality of openings of the upstream straightening vane, before Symbol often claim towards the upstream-side regulating plate and a long distance side than the near side of the upstream-side passage holes 1 to claim 6 The plate type heat exchanger as described in any one of .
前記インナーフィンはオフセットフィンである
請求項1〜請求項の何れか一項に記載のプレート式熱交換器。
The plate type heat exchanger according to any one of claims 1 to 8 , wherein the inner fin is an offset fin.
前記上流側整流板は、前記上流側整流板の仕切方向と直交する方向の両端から前記上流側整流板に直交する方向に互いに並行に延びる一対の脚部を更に備え、前記一対の脚部が前記伝熱プレートとの接合面となっている
請求項1〜請求項の何れか一項に記載のプレート式熱交換器。
The upstream straightening plate further comprises a pair of legs extending parallel to each other in a direction perpendicular from both ends in the direction perpendicular to the partition direction of the upstream-side regulating plate on the upstream rectification plate, the pair of legs The plate-type heat exchanger according to any one of claims 1 to 9 , wherein the plate-type heat exchanger is a joint surface with the heat transfer plate.
積層された複数の伝熱プレートの間に第1流路及び第2流路が交互に形成され、前記第1流路及び前記第2流路にそれぞれインナーフィンが設けられたプレート式熱交換器であって、
前記複数の伝熱プレートのそれぞれは、前記第1流路への第1流体の入口又は前記第2流路への第2流体の入口となる上流側通路孔と、前記第1流路からの前記第1流体の出口又は前記第2流路からの前記第2流体の出口となる下流側通路孔とを備え、
前記第1流路及び前記第2流路のそれぞれには、各流路を前記上流側通路孔側と前記インナーフィン側とに仕切る整流板が配置され、
前記整流板は、前記整流板の仕切方向に延びる一つの開口部を有し、また、前記上流側通路孔との距離が近い側よりも遠い側の方が前記インナーフィン側に近づくように傾斜して配置されており、
前記開口部は、前記上流側通路孔との距離が近い側よりも遠い側の方が前記整流板による流路抵抗が小さくなるように開口面積が調整されている
プレート式熱交換器。
A plate heat exchanger in which first flow paths and second flow paths are alternately formed between a plurality of stacked heat transfer plates, and inner fins are provided in the first flow path and the second flow path, respectively. Because
Each of the plurality of heat transfer plates includes an upstream passage hole serving as an inlet of the first fluid to the first flow path or an inlet of the second fluid to the second flow path, and an opening from the first flow path. A downstream passage hole serving as an outlet of the first fluid or an outlet of the second fluid from the second flow path,
Each of the first flow path and the second flow path is provided with a rectifying plate that divides each flow path into the upstream passage hole side and the inner fin side,
The rectifying plate has one opening extending in the partition direction of the rectifying plate, and is inclined so that the side farther from the side closer to the upstream passage hole is closer to the inner fin side. Are arranged,
In the plate heat exchanger, the opening area of the opening is adjusted so that the flow resistance by the rectifying plate is smaller on the side farther than the side closer to the upstream passage hole.
積層された複数の伝熱プレートの間に第1流路及び第2流路が交互に形成され、前記第1流路及び前記第2流路にそれぞれインナーフィンが設けられたプレート式熱交換器であって、
前記複数の伝熱プレートのそれぞれは、前記第1流路への第1流体の入口又は前記第2流路への第2流体の入口となる上流側通路孔と、前記第1流路からの前記第1流体の出口又は前記第2流路からの前記第2流体の出口となる下流側通路孔とを備え、
前記第1流路及び前記第2流路のそれぞれには、各流路を前記上流側通路孔側と前記インナーフィン側とに仕切る整流板が配置され、
前記整流板は、前記整流板において前記上流側通路孔との距離が近い側よりも遠い側の方が高さが低く形成されており、また、前記上流側通路孔との距離が近い側よりも遠い側の方が前記インナーフィン側に近づくように傾斜して配置されている
プレート式熱交換器。
A plate heat exchanger in which first flow paths and second flow paths are alternately formed between a plurality of stacked heat transfer plates, and inner fins are provided in the first flow path and the second flow path, respectively. Because
Each of the plurality of heat transfer plates includes an upstream passage hole serving as an inlet of the first fluid to the first flow path or an inlet of the second fluid to the second flow path, and an opening from the first flow path. A downstream passage hole serving as an outlet of the first fluid or an outlet of the second fluid from the second flow path,
Each of the first flow path and the second flow path is provided with a rectifying plate that divides each flow path into the upstream passage hole side and the inner fin side,
The rectifying plate is formed to have a lower height on the side of the rectifying plate that is farther away from the side closer to the upstream passage hole, and from the side closer to the upstream side passage hole. The plate type heat exchanger is arranged so as to be inclined so that the far side is closer to the inner fin side .
請求項1〜請求項12の何れか一項に記載のプレート式熱交換器を備えた
冷凍サイクル装置。
A refrigeration cycle apparatus comprising the plate heat exchanger according to any one of claims 1 to 12 .
JP2015506497A 2013-03-22 2013-03-22 Plate heat exchanger and refrigeration cycle apparatus equipped with the same Active JP6091601B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/058210 WO2014147804A1 (en) 2013-03-22 2013-03-22 Plate-type heat exchanger and refrigeration cycle device with same

Publications (2)

Publication Number Publication Date
JPWO2014147804A1 JPWO2014147804A1 (en) 2017-02-16
JP6091601B2 true JP6091601B2 (en) 2017-03-08

Family

ID=51321508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015506497A Active JP6091601B2 (en) 2013-03-22 2013-03-22 Plate heat exchanger and refrigeration cycle apparatus equipped with the same

Country Status (5)

Country Link
EP (1) EP2977704B1 (en)
JP (1) JP6091601B2 (en)
CN (1) CN203785330U (en)
HK (1) HK1216114A1 (en)
WO (1) WO2014147804A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022177240A1 (en) * 2021-02-22 2022-08-25 한온시스템 주식회사 Heat exchanger

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI529365B (en) * 2015-01-19 2016-04-11 國立中央大學 Heat exchanger module
CN206818032U (en) * 2015-10-29 2017-12-29 达纳加拿大公司 Heat exchanger and the heat exchanger module including this heat exchanger
CN106885396B (en) * 2015-12-15 2019-07-19 丹佛斯微通道换热器(嘉兴)有限公司 Entrance rectifier structure and plate heat exchanger
FR3045801B1 (en) * 2015-12-21 2020-01-10 Valeo Systemes Thermiques HEAT EXCHANGER, ESPECIALLY FOR A MOTOR VEHICLE
CN106288927A (en) * 2016-09-21 2017-01-04 天津商业大学 A kind of uniform distribution plate-fin heat exchanger flow deflector
EP3518638B1 (en) * 2016-09-23 2022-11-09 Sumitomo Precision Products Co., Ltd. Cooling device
JP2018066534A (en) * 2016-10-21 2018-04-26 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system
JP7045195B2 (en) * 2017-04-28 2022-03-31 株式会社前川製作所 Heat exchanger
CN110651164B (en) * 2017-05-23 2021-04-20 三菱电机株式会社 Plate heat exchanger and heat pump type hot water supply system
CN109149325B (en) * 2018-09-21 2019-11-22 清华大学 A kind of mixed structure micro-channel heat sink
EP3653983A1 (en) * 2018-11-13 2020-05-20 Linde Aktiengesellschaft Plate heat exchanger, method for operating a plate heat exchanger and method for production of a plate heat exchanger
US20210341186A1 (en) * 2018-11-16 2021-11-04 Mitsubishi Electric Corporation Plate-type heat exchanger, heat pump device, and heat-pump-type cooling and heating hot-water supply system
JP6949250B2 (en) * 2018-11-26 2021-10-13 三菱電機株式会社 Plate heat exchanger and heat pump hot water supply system
WO2021177668A1 (en) * 2020-03-05 2021-09-10 한온시스템 주식회사 Plate-type heat exchanger
WO2021234824A1 (en) * 2020-05-19 2021-11-25 三菱電機株式会社 Plate-type heat exchanger, refrigeration cycle device, and heat transfer device
JP7505400B2 (en) 2020-12-25 2024-06-25 株式会社富士通ゼネラル Heat exchanger

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415139B2 (en) * 1974-11-05 1979-06-12
JPS6051035B2 (en) * 1977-10-20 1985-11-12 株式会社日阪製作所 Plate heat exchanger
JPS6218867Y2 (en) * 1981-03-20 1987-05-14
JPS59229193A (en) 1983-06-10 1984-12-22 Hitachi Ltd Heat exchanger
AU568940B2 (en) * 1984-07-25 1988-01-14 University Of Sydney, The Plate type heat exchanger
JPS6163582U (en) * 1984-09-28 1986-04-30
JPH0752652B2 (en) * 1986-04-07 1995-06-05 株式会社日立製作所 Manifold structure of laminated battery
JPS63140295A (en) 1986-11-30 1988-06-11 Mikio Kususe Counterflow heat exchanger
JPH01144678U (en) * 1988-03-29 1989-10-04
JPH0742038Y2 (en) * 1988-05-16 1995-09-27 株式会社協立 Blowout register
JP3328329B2 (en) * 1992-09-24 2002-09-24 株式会社日阪製作所 Plate heat exchanger plate
JP2001041676A (en) * 1999-08-02 2001-02-16 Hitachi Ltd Plate type heat exchanger
DE19945978A1 (en) * 1999-09-24 2001-08-30 Univ Stuttgart Lehrstuhl Und I Fluid distribution frame for multi-chamber stacks
SE516178C2 (en) * 2000-03-07 2001-11-26 Alfa Laval Ab Heat transfer plate, plate package, plate heat exchanger and the use of plate and plate package respectively for the production of plate heat exchanger
JP2002066265A (en) * 2000-08-31 2002-03-05 Honda Motor Co Ltd Moistening apparatus
JP2003185375A (en) * 2001-12-17 2003-07-03 Daikin Ind Ltd Plate-type heat exchanger
KR100682269B1 (en) * 2005-10-05 2007-02-15 엘지전자 주식회사 Heat exchanger unit for improving heat exchange efficiency and air conditioning apparatus having the same
CN1837718A (en) * 2006-03-09 2006-09-27 缪志先 Fin-plate type heat exchanger
JP4971681B2 (en) * 2006-05-12 2012-07-11 三菱電機株式会社 Air conditioning system
JP4818044B2 (en) * 2006-09-28 2011-11-16 三洋電機株式会社 Manufacturing method of heat exchanger
JP4681528B2 (en) * 2006-09-29 2011-05-11 三菱重工業株式会社 Heat exchanger header structure
GB2447090B (en) * 2007-03-02 2012-03-21 Statoil Asa Heat exchanger manifolds
US20100300651A1 (en) * 2009-05-28 2010-12-02 Spx Apv Danmark A/S Double-walled plate heat exchanger
US8485248B2 (en) * 2009-12-15 2013-07-16 Delphi Technologies, Inc. Flow distributor for a heat exchanger assembly
JP2011179712A (en) * 2010-02-26 2011-09-15 Ahresty Corp Floor vent device for air conditioning
EP2551626A4 (en) * 2010-03-25 2018-02-21 Mitsubishi Electric Corporation Plate heat exchanger, plate heat exchanger producing method, and heat pump apparatus
JP5819592B2 (en) * 2010-06-16 2015-11-24 三菱電機株式会社 Plate heat exchanger and heat pump device
JP5661119B2 (en) * 2010-11-12 2015-01-28 三菱電機株式会社 Plate heat exchanger and heat pump device
WO2013183113A1 (en) * 2012-06-05 2013-12-12 三菱電機株式会社 Plate-type heat exchanger and refrigeration cycle device comprising same
WO2013190617A1 (en) * 2012-06-18 2013-12-27 三菱電機株式会社 Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022177240A1 (en) * 2021-02-22 2022-08-25 한온시스템 주식회사 Heat exchanger

Also Published As

Publication number Publication date
HK1216114A1 (en) 2016-10-14
JPWO2014147804A1 (en) 2017-02-16
EP2977704A4 (en) 2017-02-01
EP2977704B1 (en) 2020-06-17
WO2014147804A1 (en) 2014-09-25
EP2977704A1 (en) 2016-01-27
CN203785330U (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP6091601B2 (en) Plate heat exchanger and refrigeration cycle apparatus equipped with the same
JP6005267B2 (en) Laminated header, heat exchanger, and air conditioner
JP6012857B2 (en) Laminated header, heat exchanger, and air conditioner
EP2307842B1 (en) Heat exchanger
JP6038302B2 (en) Laminated header, heat exchanger, and air conditioner
JP6138264B2 (en) Laminated header, heat exchanger, and air conditioner
JP6138263B2 (en) Laminated header, heat exchanger, and air conditioner
JP2006322698A (en) Heat exchanger
JP6080982B2 (en) Laminated header, heat exchanger, and air conditioner
JP6005268B2 (en) Laminated header, heat exchanger, and air conditioner
US11561014B2 (en) Air conditioner including a heat exchanger
JP4827905B2 (en) Plate type heat exchanger and air conditioner equipped with the same
WO2015004720A1 (en) Heat exchanger, and air conditioner
JP6214670B2 (en) Heat exchanger and refrigeration cycle apparatus using the heat exchanger
KR101900232B1 (en) Plate heat exchanger
JP2015017738A (en) Heat exchanger
JP6160385B2 (en) Laminate heat exchanger
JP2009121708A (en) Heat exchanger
JP4879258B2 (en) Plate heat exchanger and air conditioner equipped with the same
JP2009186142A (en) Brazed plate type heat exchanger
JP6429122B2 (en) Heat exchanger and intermediate plate for heat exchanger
JP7137832B2 (en) heat transfer device
JP2018031490A (en) Outdoor unit for air conditioning device
JP2016003775A (en) Stacked heat exchanger
JP2014020582A (en) Fin tube type heat exchanger

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170207

R150 Certificate of patent or registration of utility model

Ref document number: 6091601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250