JP6091365B2 - Optical element manufacturing method and optical element manufacturing apparatus - Google Patents

Optical element manufacturing method and optical element manufacturing apparatus Download PDF

Info

Publication number
JP6091365B2
JP6091365B2 JP2013144209A JP2013144209A JP6091365B2 JP 6091365 B2 JP6091365 B2 JP 6091365B2 JP 2013144209 A JP2013144209 A JP 2013144209A JP 2013144209 A JP2013144209 A JP 2013144209A JP 6091365 B2 JP6091365 B2 JP 6091365B2
Authority
JP
Japan
Prior art keywords
optical element
scattering region
molding
outer peripheral
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013144209A
Other languages
Japanese (ja)
Other versions
JP2015017005A (en
Inventor
淳 市之瀬
淳 市之瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2013144209A priority Critical patent/JP6091365B2/en
Publication of JP2015017005A publication Critical patent/JP2015017005A/en
Application granted granted Critical
Publication of JP6091365B2 publication Critical patent/JP6091365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Surface Treatment Of Glass (AREA)

Description

本発明は、光学素子を製造する光学素子の製造方法及び製造装置に関する。   The present invention relates to an optical element manufacturing method and manufacturing apparatus for manufacturing an optical element.

従来、研削による外径心取り加工によってレンズの外周面を粗面に形成する手法が行われている。これにより、レンズに入射された光の一部が迷光となって外周面に当たった際に、粗面における乱反射によりゴーストやフレアの防止がなされていた。   Conventionally, a method of forming the outer peripheral surface of a lens into a rough surface by outer diameter centering by grinding has been performed. Thereby, when a part of the light incident on the lens becomes stray light and hits the outer peripheral surface, ghost and flare are prevented by irregular reflection on the rough surface.

図6Aは、外周面が研削面200aであるレンズ200を示す断面図である。
図6Bは、外周面が鏡面300aであるレンズ300を示す断面図である。
FIG. 6A is a cross-sectional view showing a lens 200 whose outer peripheral surface is a ground surface 200a.
FIG. 6B is a cross-sectional view showing a lens 300 whose outer peripheral surface is a mirror surface 300a.

図6Aに示すように、レンズ200の外周面が研削面200aである場合、迷光L10が研削面200aにおいて乱反射により散乱する(散乱光L11,L12,L13)。そのため、ゴーストやフレアを防止することができる。   As shown to FIG. 6A, when the outer peripheral surface of the lens 200 is the grinding surface 200a, the stray light L10 is scattered by irregular reflection in the grinding surface 200a (scattered light L11, L12, L13). Therefore, ghost and flare can be prevented.

一方、図6Bに示すように、レンズ300の外周面が鏡面300aである場合、迷光L20は研削面200aにおいて反射する(反射光L21)。そのため、この反射光L21がゴーストやフレアを生じさせる。   On the other hand, as shown in FIG. 6B, when the outer peripheral surface of the lens 300 is a mirror surface 300a, the stray light L20 is reflected on the ground surface 200a (reflected light L21). Therefore, the reflected light L21 causes ghost and flare.

よって、ゴーストやフレアを防止する観点では、レンズの外周面は、図6Aに示す研削面200aのような粗面であることが望ましい。しかしながら、昨今、レンズ外径の精度向上が求められ、研削により高精度な外径を形成すると非常にコストが高くなる問題が生じる。   Therefore, from the viewpoint of preventing ghost and flare, it is desirable that the outer peripheral surface of the lens is a rough surface such as a ground surface 200a shown in FIG. 6A. However, recently, improvement in the accuracy of the lens outer diameter is required, and if a highly accurate outer diameter is formed by grinding, there is a problem that the cost becomes very high.

この点、成形素材を加熱軟化させ光学素子を成形することで高精度な外径を形成することは外径規制部材の精度をそのまま転写するため低コストで量産可能である。また、この外径規制部材に凹凸を持たせることで、凹凸外周面を有する光学素子を成形することも可能である(例えば、特許文献1参照)。   In this respect, forming a highly accurate outer diameter by heating and softening the molding material to mold the optical element can be mass-produced at low cost because the accuracy of the outer diameter regulating member is transferred as it is. Moreover, it is also possible to shape | mold the optical element which has an uneven | corrugated outer peripheral surface by giving an unevenness | corrugation to this outer diameter control member (for example, refer patent document 1).

また、光学素子の有効径外に紫外線を照射することで、灰色に着色された迷光抑制領域を形成する手法が知られている(例えば、特許文献2参照)。
なお、光透過性材料にマーキングを施すマーキング方法ではあるが、レーザー光によって光透過性材料の内部にマーキングを施す手法が知られている(例えば、特許文献3参照)。
In addition, a method is known in which a stray light suppression region colored in gray is formed by irradiating ultraviolet rays outside the effective diameter of the optical element (see, for example, Patent Document 2).
In addition, although it is the marking method which marks a light transmissive material, the method of marking inside a light transmissive material with a laser beam is known (for example, refer patent document 3).

特開2000−203852号公報JP 2000-203852 A 特開2007−163551号公報JP 2007-163551 A 特許第3208730号公報Japanese Patent No. 3208730

上記のように外径規制部材により光学素子に凹凸外周面を形成する手法は、成形による自由表面を含んだ凹凸外周面が形成されるため、迷光を十分に散乱させることができず、ゴーストやフレアなどの迷光による弊害を確実に防止することができない。また、外周面の凹凸によって、外径を高精度に形成することができなかったり、光学素子と外径規制部材の線膨張差以上の凹凸をつけると成形された光学素子が外周規制部材から抜けなくなったりする問題が発生する。   As described above, the method of forming the concavo-convex outer peripheral surface on the optical element by the outer diameter regulating member forms the concavo-convex outer peripheral surface including the free surface by molding, so that the stray light cannot be sufficiently scattered, The harmful effects of stray light such as flare cannot be reliably prevented. In addition, if the outer diameter cannot be formed with high accuracy due to the irregularities on the outer peripheral surface, or if irregularities greater than the linear expansion difference between the optical element and the outer diameter regulating member are provided, the molded optical element will come off the outer circumference regulating member. The problem of disappearing occurs.

また、上記のように灰色に着色された迷光抑制領域を形成する手法は、迷光抑制領域の形成に長時間を要したり、光学素子の材料によっては十分に着色するのが困難であったりする。更には、迷光を散乱させることができないため、迷光による弊害を確実に防止することができない。   Moreover, the method of forming the stray light suppression region colored in gray as described above may take a long time to form the stray light suppression region, or it may be difficult to sufficiently color depending on the material of the optical element. . Furthermore, since stray light cannot be scattered, it is not possible to reliably prevent harmful effects caused by stray light.

なお、光学素子の外周面に研削などの処理を行わず外周面を成形後の鏡面のままにすることで、外径を高精度に安価に形成することができる。しかしながら、迷光による弊害を防止するために、外周面に添加剤を入れた塗料を塗布するなどの対策が必要になり、例えば塗料の膜厚のバラツキによって、結果的に外径の精度が悪化する。   Note that the outer diameter can be formed with high accuracy and low cost by leaving the outer peripheral surface as a mirror surface after molding without performing processing such as grinding on the outer peripheral surface of the optical element. However, in order to prevent harmful effects due to stray light, it is necessary to take measures such as applying a paint containing an additive to the outer peripheral surface. For example, the accuracy of the outer diameter deteriorates due to variations in the film thickness of the paint. .

なお、上述の従来技術の問題点は、レンズのみならず、プリズム等の他の光学素子においても生じるものである。また、外径の精度について述べたが、光学素子が多角筒形状である場合の1辺の長さや幅などの他の外形寸法についても、同様に精度が求められる。   Note that the above-mentioned problems of the prior art occur not only in lenses but also in other optical elements such as prisms. Although the accuracy of the outer diameter has been described, the accuracy is similarly required for other external dimensions such as the length and width of one side when the optical element has a polygonal cylindrical shape.

本発明の目的は、外形寸法を高精度に形成しながら、迷光による弊害を簡単かつ確実に防止することができる光学素子の製造方法及び光学素子を提供することである。   An object of the present invention is to provide an optical element manufacturing method and an optical element that can easily and reliably prevent harmful effects caused by stray light while forming the outer dimensions with high accuracy.

本発明の光学素子の製造方法は、成形素材を加熱軟化させ、光学素子を成形する成形工程と、成形で形成された前記光学素子の外形寸法を、5μmを超えて変動しないように維持しながら、前記光学素子の有効径外において散乱領域を創生する散乱領域創生工程と、を有し、前記成形工程では、一対の成形型と当該一対の成形型の周囲に位置する筒状の胴型とにより前記光学素子を成形し、前記散乱領域形成工程では、前記光学素子のうち前記一対の成形型及び前記胴型との非接触部分である自由表面に前記散乱領域を創生する。
本発明の他の態様における光学素子の製造方法は、成形素材を加熱軟化させ、光学素子を成形する成形工程と、成形で形成された前記光学素子の外形寸法を、5μmを超えて変動しないように維持しながら、前記光学素子の有効径外において散乱領域を創生する散乱領域創生工程と、を有し、前記散乱領域創生工程では、前記光学素子の外周側から内部にレーザーを照射し、前記内部にクラック又は変質層を形成することによって、前記内部に前記散乱領域を創生し、前記散乱領域を形成する位置の深さを、前記光学素子の厚み方向において変化させることにより、前記散乱領域を非連続的に創生する。
The method for manufacturing an optical element of the present invention is to heat and soften a molding material and mold the optical element, and maintain the outer dimensions of the optical element formed by molding so as not to fluctuate exceeding 5 μm. A scattering region creation step for creating a scattering region outside the effective diameter of the optical element, and in the molding step, a pair of molding dies and a cylindrical body positioned around the pair of molding dies The optical element is molded by a mold, and in the scattering region forming step, the scattering region is created on a free surface that is a non-contact portion between the pair of molding dies and the body mold.
According to another aspect of the present invention, there is provided a method for manufacturing an optical element, in which a molding material is heated and softened to mold the optical element, and an outer dimension of the optical element formed by the molding does not vary more than 5 μm. while maintaining, anda scattering region creation process for creation of the scattering region in the effective diameter of the optical element, wherein the scattering region creation step, irradiating the laser to the inside from the outer peripheral side of the optical element Then, by forming a crack or altered layer in the interior, creating the scattering region in the interior, by changing the depth of the position to form the scattering region in the thickness direction of the optical element, The scattering region is created discontinuously.

本発明によれば、外形寸法を高精度に形成しながら、迷光による弊害を簡単かつ確実に防止することができる。   According to the present invention, it is possible to easily and reliably prevent the harmful effects caused by stray light while forming the outer dimensions with high accuracy.

本発明の第1実施形態における光学素子の成形状態を示す断面図である。It is sectional drawing which shows the molding state of the optical element in 1st Embodiment of this invention. 本発明の第1実施形態における散乱領域の創生を説明するための正面図である。It is a front view for demonstrating creation of the scattering area | region in 1st Embodiment of this invention. 本発明の第1実施形態における散乱領域の創生を説明するための右側面図である。It is a right view for demonstrating creation of the scattering area | region in 1st Embodiment of this invention. 本発明の第2実施形態における散乱領域の創生を説明するための正面図である。It is a front view for demonstrating creation of the scattering area | region in 2nd Embodiment of this invention. 本発明の第2実施形態における散乱領域の創生を説明するための右側面図である。It is a right view for demonstrating creation of the scattering area | region in 2nd Embodiment of this invention. 本発明の第3実施形態における散乱領域の創生を説明するための正面図である。It is a front view for demonstrating creation of the scattering area | region in 3rd Embodiment of this invention. 本発明の第3実施形態における散乱領域の創生を説明するための右側面図である。It is a right view for demonstrating creation of the scattering area | region in 3rd Embodiment of this invention. 本発明の第4実施形態における散乱領域の創生を説明するための正面図である。It is a front view for demonstrating creation of the scattering area | region in 4th Embodiment of this invention. 本発明の第4実施形態における散乱領域の創生を説明するための右側面図である。It is a right view for demonstrating creation of the scattering area | region in 4th Embodiment of this invention. 外周面が研削面であるレンズを示す断面図である。It is sectional drawing which shows the lens whose outer peripheral surface is a grinding surface. 外周面が鏡面であるレンズを示す断面図である。It is sectional drawing which shows the lens whose outer peripheral surface is a mirror surface.

<第1実施形態>
図1は、本発明の第1実施形態における光学素子100の成形状態を示す断面図である。
図1に示す型セット10は、上型11と、下型12と、胴型13と、を有する。
<First Embodiment>
FIG. 1 is a cross-sectional view showing a molded state of the optical element 100 in the first embodiment of the present invention.
A mold set 10 shown in FIG. 1 includes an upper mold 11, a lower mold 12, and a trunk mold 13.

上型11は、略円柱形状を呈し、底面に凸状成形面11aが形成されている。
下型12は、略円柱形状を呈し、上面に平面状成形面12aが形成されている。
なお、上型11及び下型12は、一対の成形型の一例であり、上記の形状はあくまで一例にすぎない。
The upper mold 11 has a substantially cylindrical shape, and a convex molding surface 11a is formed on the bottom surface.
The lower mold 12 has a substantially cylindrical shape, and a planar molding surface 12a is formed on the upper surface.
The upper mold 11 and the lower mold 12 are an example of a pair of molds, and the above shape is merely an example.

胴型13は、筒状を呈し、上型11及び下型12の周囲に位置する。胴型13の内周には、内周成形面13aが形成されている。
上型11は、図示しない加圧手段により下方に押圧されることで、胴型13内を摺動して光学素子100を加圧する。
The trunk mold 13 has a cylindrical shape and is located around the upper mold 11 and the lower mold 12. An inner peripheral molding surface 13 a is formed on the inner periphery of the trunk mold 13.
The upper mold 11 is pressed downward by a pressing means (not shown), and slides in the body mold 13 to pressurize the optical element 100.

光学素子100は、例えば型セット10からの熱伝導により成形素材が加熱軟化した状態で、型セット10(例えば上型11)を介して加圧され成形されることで得られる(成形工程)。光学素子100は、例えばレンズである。また、成形素材は、ガラスであることが望ましい。   The optical element 100 is obtained by pressing and molding through the mold set 10 (for example, the upper mold 11) in a state where the molding material is heated and softened by heat conduction from the mold set 10, for example (molding process). The optical element 100 is a lens, for example. The molding material is preferably glass.

図2A及び図2Bに示す光学素子100の成形により形成された外径Eは、後述する散乱領域創生工程を経ても実質的に維持される。そのため、光学素子100の外径Eは、成形工程において所望の寸法に形成するとよい。   The outer diameter E formed by molding the optical element 100 shown in FIGS. 2A and 2B is substantially maintained even after a scattering region creation process described later. Therefore, the outer diameter E of the optical element 100 may be formed to a desired dimension in the molding process.

なお、光学素子100は、後述する散乱領域創生工程前に例えばガラス転移点以下の温度になるまで冷却される。そのため、成形工程は、成形素材を加熱する加熱工程と、加熱された成形素材を加圧する加圧工程と、加圧された成形素材を冷却する冷却工程と、を含む。   Note that the optical element 100 is cooled to a temperature equal to or lower than the glass transition point, for example, before the scattering region creation process described later. Therefore, the molding process includes a heating process for heating the molding material, a pressurizing process for pressurizing the heated molding material, and a cooling process for cooling the pressurized molding material.

光学素子100は、上型11、下型12、及び胴型13から形状を転写されることによって、上成形面100b、下成形面100c、及び外周成形面100dが形成される。上成形面100bには、凸状成形面11aから形状を転写されるため、中央に凹部100b−1が形成される。光学素子100の形状は、例えば、円板形状、円柱形状などであるが、多角柱形状などの他の形状としてもよい。   The optical element 100 has its upper molding surface 100b, lower molding surface 100c, and outer peripheral molding surface 100d formed by transferring shapes from the upper mold 11, the lower mold 12, and the body mold 13. Since the shape is transferred from the convex molding surface 11a to the upper molding surface 100b, a concave portion 100b-1 is formed at the center. The shape of the optical element 100 is, for example, a disk shape or a cylindrical shape, but may be other shapes such as a polygonal prism shape.

光学素子100の有効径100aは、光学的特性を発揮する部分(光学機能面)であり、例えば、上成形面100bの凹部100b−1よりも平面視において狭い部分である。詳しくは後述するが、本実施形態では、有効径100aの外側の一例として、凹部100b−1よりも外側の領域に散乱領域100fが創生される。   The effective diameter 100a of the optical element 100 is a portion (optical functional surface) that exhibits optical characteristics, and is, for example, a portion that is narrower in plan view than the concave portion 100b-1 of the upper molding surface 100b. Although details will be described later, in the present embodiment, as an example of the outside of the effective diameter 100a, a scattering region 100f is created in a region outside the recess 100b-1.

光学素子100は、上型11、下型12、及び胴型13との非接触部分、すなわち、上成形面100bと外周成形面100dとの間及び下成形面100cと外周成形面100dとの間の部分が自由表面100eとなる。この自由表面100eは、例えば鏡面となる。   The optical element 100 is not in contact with the upper mold 11, the lower mold 12, and the body mold 13, that is, between the upper molding surface 100b and the outer peripheral molding surface 100d and between the lower molding surface 100c and the outer peripheral molding surface 100d. Is the free surface 100e. This free surface 100e becomes a mirror surface, for example.

次に、成形により形成された光学素子100の外径Eを実質的に維持しながら、光学素子100の有効径100a外において散乱領域100fを創生する散乱領域創生工程について説明する。なお、外径Eは、外形寸法の一例であり、他の外形寸法としては、光学素子100が多角筒形状である場合の1辺の長さや幅などの寸法も挙げられる。   Next, a scattering region creation process for creating the scattering region 100f outside the effective diameter 100a of the optical element 100 while substantially maintaining the outer diameter E of the optical element 100 formed by molding will be described. The outer diameter E is an example of outer dimensions, and other outer dimensions include dimensions such as the length and width of one side when the optical element 100 has a polygonal cylindrical shape.

図2A及び図2Bは、第1実施形態における散乱領域100fの創生を説明するための正面図及び右側面図である。
図2A及び図2Bに示すように、光学素子100は、一対の回転保持部21,22により保持された状態で、これら回転保持部21,22が回転することで、回転する(矢印D2)。
2A and 2B are a front view and a right side view for explaining the creation of the scattering region 100f in the first embodiment.
As shown in FIGS. 2A and 2B, the optical element 100 is rotated by the rotation holding units 21 and 22 being rotated by the pair of rotation holding units 21 and 22 (arrow D2).

レーザー照射部23は、集光レンズ23aを介してレーザーLを光学素子100に照射する。レーザー照射部23は、光学素子100の厚み方向(矢印D1)に移動自在である。
本実施形態では、レーザー照射部23は、有効径100a外の部分の一例として、光学素子100の外周面である外周成形面100dと、自由表面100eとにレーザーLを照射する。
The laser irradiation unit 23 irradiates the optical element 100 with the laser L via the condenser lens 23a. The laser irradiation unit 23 is movable in the thickness direction of the optical element 100 (arrow D1).
In this embodiment, the laser irradiation part 23 irradiates the laser L to the outer peripheral molding surface 100d that is the outer peripheral surface of the optical element 100 and the free surface 100e as an example of a portion outside the effective diameter 100a.

これにより、光学素子100の外周成形面100d及び自由表面100eには、レーザマーキングによってクラック又は変質層である散乱領域100fが創生される。なお、外周成形面100dと自由表面100eとのうちの一方のみに散乱領域100fを創生してもよい。また、外周成形面100d及び自由表面100eには一部のみに散乱領域100fを創生してもよい。   Thereby, a scattering region 100f which is a crack or a deteriorated layer is created by laser marking on the outer peripheral molding surface 100d and the free surface 100e of the optical element 100. Note that the scattering region 100f may be created only on one of the outer peripheral molding surface 100d and the free surface 100e. Moreover, you may create the scattering area | region 100f only in a part in the outer periphery molded surface 100d and the free surface 100e.

散乱領域100fは、光学素子100の外径Eが成形工程により形成されたものを実質的に維持しながら創生される。なお、光学素子100の外径Eが実質的に維持される場合とは、光学素子100の外径Eが散乱領域創生工程を経ても例えば5μmを超えて変動しない場合である。   The scattering region 100f is created while substantially maintaining the outer diameter E of the optical element 100 formed by the molding process. The case where the outer diameter E of the optical element 100 is substantially maintained is a case where the outer diameter E of the optical element 100 does not fluctuate, for example, exceeding 5 μm even after the scattering region creation step.

なお、従来のように研削により光学素子100の外周面に粗面を形成する場合には、5μmを超えて変動しないように加工するには通常加工では難しくコストアップの原因となっていた。   In the case where a rough surface is formed on the outer peripheral surface of the optical element 100 by grinding as in the prior art, it is difficult to perform processing so as not to fluctuate beyond 5 μm, which is a cause of cost increase in normal processing.

レーザー照射部23は、光学素子100の外周1周分に散乱領域100fを創生した後、厚み方向(矢印D1)に移動して、再び光学素子100の外周1周分に散乱領域100fを創生するという動作を繰り返すとよい。但し、レーザー照射部23を厚み方向(矢印D1)に微動させ且つ光学素子100を回転させながら散乱領域100fを創生してもよい。また、光学素子100を回転させずにレーザー照射部23を光学素子100の周囲で回転させるようにしてもよい。   The laser irradiation unit 23 creates a scattering region 100f for one circumference of the optical element 100 and then moves in the thickness direction (arrow D1) to create the scattering region 100f for one circumference of the optical element 100 again. It is good to repeat the operation of live. However, the scattering region 100f may be created while finely moving the laser irradiation unit 23 in the thickness direction (arrow D1) and rotating the optical element 100. Further, the laser irradiation unit 23 may be rotated around the optical element 100 without rotating the optical element 100.

レーザーLがフェムト秒レーザーなどの超短パルスレーザーである場合、散乱領域100fは、熱が伝わる前に短時間で変質層が形成されるため、クラックは生じない。しかし、散乱領域100fは、有効径100a外に創生されるため、クラックであっても大きさが小さければ実質、問題が生じない場合が多い。   When the laser L is an ultrashort pulse laser such as a femtosecond laser, a cracked layer does not occur in the scattering region 100f because a deteriorated layer is formed in a short time before heat is transmitted. However, since the scattering region 100f is created outside the effective diameter 100a, even if it is a crack, if the size is small, there is often no problem.

以上説明した第1実施形態では、光学素子100の製造方法は、成形素材を加熱軟化させ、光学素子100を成形する成形工程と、成形で形成された光学素子100の外径E(外形寸法の一例)を実質的に維持しながら、光学素子100の有効径100a外において散乱領域100fを創生する散乱領域創生工程と、を有する。   In the first embodiment described above, the manufacturing method of the optical element 100 includes a molding process in which the molding material is heated and softened to mold the optical element 100, and the outer diameter E (outside dimension of the optical element 100 formed by molding). A scattering region creation step of creating a scattering region 100f outside the effective diameter 100a of the optical element 100 while substantially maintaining one example).

そのため、研削や成形時に粗面を形成する場合のように外径Eの精度を悪化させずに、散乱領域100fを創生することができる。また、散乱領域100fを創生することで、従来のように光学素子100の内部に着色部分を形成する場合ほど時間を要さずに、散乱領域100fによってゴーストやフレアなどの迷光による弊害を確実に防止することができる。   Therefore, the scattering region 100f can be created without deteriorating the accuracy of the outer diameter E as in the case of forming a rough surface during grinding or molding. In addition, by creating the scattering region 100f, the scattering region 100f can prevent harmful effects caused by stray light such as ghosts and flares without taking as much time as in the case where a colored portion is formed inside the optical element 100 as in the prior art. Can be prevented.

よって、本実施形態によれば、外径Eを高精度に形成しながら、迷光による弊害を簡単かつ確実に防止することができる。   Therefore, according to the present embodiment, it is possible to easily and reliably prevent the harmful effects caused by stray light while forming the outer diameter E with high accuracy.

また、本実施形態では、光学素子100の外周面である外周成形面100dにレーザーLを照射し、外周成形面100dにクラック又は変質層を形成することによって、外周成形面100dに散乱領域100fが創生される。   Further, in the present embodiment, the outer peripheral molding surface 100d which is the outer peripheral surface of the optical element 100 is irradiated with the laser L, and a crack or an altered layer is formed on the outer peripheral molding surface 100d, whereby the scattering region 100f is formed on the outer peripheral molding surface 100d. Created.

そのため、外周成形面100dにレーザーLを照射することで散乱領域100fを創生することができるため、簡単に迷光による弊害を防止することができる。   Therefore, since the scattering region 100f can be created by irradiating the outer peripheral molding surface 100d with the laser L, adverse effects due to stray light can be easily prevented.

また、本実施形態では、光学素子100の自由表面100eにレーザーLを照射し、自由表面100eにクラック又は変質層を形成することによって、自由表面100eに散乱領域100fが創生される。   In the present embodiment, the scattering surface 100f is created on the free surface 100e by irradiating the free surface 100e of the optical element 100 with the laser L and forming a crack or an altered layer on the free surface 100e.

ところで、特に心取り加工をしない成形のみで得られる光学素子100において、例えば鏡面である自由表面100eにおける内部反射がゴーストやフレアなどの弊害を生じさせる大きな原因となっていたことが判明した。そのため、自由表面100eに散乱領域100fを創生することで、簡単かつ確実に迷光による弊害を防止することができる。   By the way, it has been found that in the optical element 100 obtained only by molding without centering, for example, internal reflection on the free surface 100e which is a mirror surface is a major cause of adverse effects such as ghosts and flares. Therefore, by creating the scattering region 100f on the free surface 100e, it is possible to easily and reliably prevent harmful effects caused by stray light.

<第2実施形態>
本実施形態では、散乱領域100gの位置を光学素子100の内部としたことにおいて第1実施形態と相違し、その他は同様である。そのため、詳細な説明は省略する。
Second Embodiment
This embodiment is different from the first embodiment in that the position of the scattering region 100g is located inside the optical element 100, and the others are the same. Therefore, detailed description is omitted.

図3A及び図3Bは、第2実施形態における散乱領域100gの創生を説明するための正面図及び右側面図である。
本実施形態においても、図3A及び図3Bに示すように、光学素子100は、一対の回転保持部21,22により保持された状態で、これら回転保持部21,22が回転することで、回転する(矢印D2)。また、本実施形態においても、レーザー照射部23は、光学素子100の厚み方向(矢印D1)に移動自在である。
3A and 3B are a front view and a right side view for explaining creation of the scattering region 100g in the second embodiment.
Also in this embodiment, as shown in FIGS. 3A and 3B, the optical element 100 is rotated by rotating these rotation holding portions 21 and 22 while being held by the pair of rotation holding portions 21 and 22. (Arrow D2). Also in the present embodiment, the laser irradiation unit 23 is movable in the thickness direction of the optical element 100 (arrow D1).

本実施形態では、レーザー照射部23は、光学素子100の有効径100a外の内部にレーザーLを照射する。これにより、光学素子100の内部には、クラック又は変質層である散乱領域100gが創生される。   In the present embodiment, the laser irradiation unit 23 irradiates the laser L inside the effective diameter 100 a of the optical element 100. As a result, a scattering region 100g which is a crack or an altered layer is created inside the optical element 100.

散乱領域100gは、光学素子100の内部に創生されるため、外径Eが成形工程により形成されたものと変化せず維持される(実質的に維持される)。
本実施形態においても、レーザー照射部23は、光学素子100の外周1周分に散乱領域100fを創生した後、厚み方向(矢印D1)に移動して、再び光学素子100の外周1周分に散乱領域100fを創生するという動作を繰り返すとよい。これにより、光学素子100の内部には、円筒形状に散乱領域100gが創生される。
Since the scattering region 100g is created inside the optical element 100, the outer diameter E is maintained (substantially maintained) unchanged from that formed by the molding process.
Also in the present embodiment, the laser irradiation unit 23 creates the scattering region 100f on the outer circumference of the optical element 100, moves in the thickness direction (arrow D1), and then again on the outer circumference of the optical element 100. The operation of creating the scattering region 100f may be repeated. Thereby, the scattering region 100g is created in a cylindrical shape inside the optical element 100.

なお、光学素子100の上成形面100bと下成形面100cとに亘ってクラックである散乱領域100gが創生されると、光学素子100が欠落し或いは欠けるおそれがある。そのため、散乱領域100gの両端が上成形面100bや下成形面100cとの間に間隔を隔てて位置し外部に露出させないようにするとよい。   If a scattering region 100g that is a crack is created across the upper molding surface 100b and the lower molding surface 100c of the optical element 100, the optical element 100 may be missing or missing. Therefore, it is preferable that both ends of the scattering region 100g are positioned with a space between the upper molding surface 100b and the lower molding surface 100c so as not to be exposed to the outside.

また、内部の散乱領域100gは、自由表面100eに迷光が到達しづらいように、光学素子100への光の入射側と自由表面100eとの間に創生するとよい。
また、レーザー照射部23は、光学素子100の上成形面100b側から又は下成形面100c側から厚み方向(矢印D1)にレーザーLを照射してもよいが、その場合、厚み方向(矢印D1)の奥から手前に向かって散乱領域100gを創生しないと、先に創生した散乱領域100gが、散乱領域100gの創生を阻害することになる。
Also, the internal scattering region 100g is preferably created between the light incident side to the optical element 100 and the free surface 100e so that stray light does not easily reach the free surface 100e.
Further, the laser irradiation unit 23 may irradiate the laser L in the thickness direction (arrow D1) from the upper molding surface 100b side or the lower molding surface 100c side of the optical element 100, but in that case, the thickness direction (arrow D1) If the scattering region 100g is not created from the back to the front, the previously created scattering region 100g inhibits the creation of the scattering region 100g.

以上説明した第2実施形態においても、光学素子100の製造方法は、成形素材を加熱軟化させ、光学素子100を成形する成形工程と、成形で形成された光学素子100の外径E(外形寸法の一例)を実質的に維持しながら、光学素子100の有効径100a外において散乱領域100gを創生する散乱領域創生工程と、を有するため、外径Eを高精度に形成しながら、迷光による弊害を簡単かつ確実に防止することができる。   Also in the second embodiment described above, the method of manufacturing the optical element 100 includes a molding step of heating and softening a molding material to mold the optical element 100, and an outer diameter E (outer dimension) of the optical element 100 formed by molding. 1) is substantially maintained, and a scattering region creation step for creating a scattering region 100g outside the effective diameter 100a of the optical element 100 is included. Therefore, stray light is formed while forming the outer diameter E with high accuracy. It is possible to easily and reliably prevent the harmful effects caused by.

また、本実施形態では、光学素子100の内部にレーザーLを照射し、内部にクラック又は変質層を形成することによって、内部に散乱領域100gが創生される。
そのため、第1実施形態の外周成形面100dや自由表面100eのように外周面に散乱領域100fを創生する場合と比較して、散乱領域100gの創生が外径に影響を与えないため、クラックや変質層を大きく形成することなどによって、確実に迷光を散乱させることができる。
In this embodiment, the scattering region 100g is created inside by irradiating the inside of the optical element 100 with the laser L and forming a crack or an altered layer inside.
Therefore, compared to the case where the scattering region 100f is created on the outer peripheral surface like the outer peripheral molding surface 100d and the free surface 100e of the first embodiment, the creation of the scattering region 100g does not affect the outer diameter. Stray light can be reliably scattered, for example, by forming large cracks or altered layers.

<第3実施形態>
本実施形態では、光学素子100の外周側(外周成形面100d側又は自由表面100e側)から光学素子100の内部にレーザーLが照射される。また、散乱領域100h−1,100h−2,100h−3を形成する位置の深さを光学素子100の厚み方向(矢印D1)において変化させることにより、散乱領域100h−1,100h−2,100h−3が非連続的に創生される。本実施形態では、これらについて第1実施形態及び第2実施形態と相違し、その他は同様である。そのため、詳細な説明は省略する。
<Third Embodiment>
In the present embodiment, the laser L is irradiated to the inside of the optical element 100 from the outer peripheral side (the outer peripheral molding surface 100d side or the free surface 100e side) of the optical element 100. In addition, the scattering regions 100h-1, 100h-2, 100h-3 are changed in the thickness direction (arrow D1) of the optical element 100 to change the scattering regions 100h-1, 100h-2, 100h-3. -3 is created discontinuously. In the present embodiment, these are different from the first embodiment and the second embodiment, and the others are the same. Therefore, detailed description is omitted.

図4A及び図4Bは、第3実施形態における散乱領域100h−1,100h−2,100h−3の創生を説明するための正面図及び右側面図である。
本実施形態においても、図4A及び図4Bに示すように、光学素子100は、一対の回転保持部21,22により保持された状態で、これら回転保持部21,22が回転することで、回転する(矢印D2)。また、本実施形態においても、レーザー照射部23は、光学素子100の厚み方向(矢印D1)に移動自在である。
4A and 4B are a front view and a right side view for explaining creation of the scattering regions 100h-1, 100h-2, and 100h-3 in the third embodiment.
Also in the present embodiment, as shown in FIGS. 4A and 4B, the optical element 100 is rotated by rotating the rotation holding units 21 and 22 while being held by the pair of rotation holding units 21 and 22. (Arrow D2). Also in the present embodiment, the laser irradiation unit 23 is movable in the thickness direction of the optical element 100 (arrow D1).

本実施形態では、レーザー照射部23は、光学素子100の外周側(外周成形面100d又は自由表面100e)から光学素子100の内部にレーザーLを照射する。また、レーザー照射部23は、レーザーLの焦点位置を変化させることで、散乱領域100h−1,100h−2,100h−3を形成する位置の深さを光学素子100の厚み方向(矢印D1)において変化させる。これにより、光学素子100の内部には、クラック又は変質層である複数の散乱領域100h−1,100h−2,100h−3が非連続的に創生される。   In the present embodiment, the laser irradiation unit 23 irradiates the inside of the optical element 100 with the laser L from the outer peripheral side (the outer peripheral molding surface 100d or the free surface 100e) of the optical element 100. Moreover, the laser irradiation part 23 changes the focus position of the laser L, and changes the depth of the position which forms scattering region 100h-1,100h-2,100h-3 to the thickness direction (arrow D1) of the optical element 100. Change in. Thereby, inside the optical element 100, a plurality of scattering regions 100h-1, 100h-2, 100h-3, which are cracks or altered layers, are created discontinuously.

第2実施形態と同様に、散乱領域100h−1,100h−2,100h−3は、光学素子100の内部に創生されるため、外径Eが成形工程により形成されたものと変化せず維持される(実質的に維持される)。   As in the second embodiment, since the scattering regions 100h-1, 100h-2, and 100h-3 are created inside the optical element 100, the outer diameter E is not changed from that formed by the molding process. Maintained (substantially maintained).

本実施形態においても、レーザー照射部23は、光学素子100の外周1周分に散乱領域100fを創生した後、厚み方向(矢印D1)に移動して、再び光学素子100の外周1周分に散乱領域100fを創生するという動作を繰り返すとよい。また、1回以上、レーザー照射部23によるレーザーLの焦点位置を変更することにより、上述のように散乱領域100h−1,100h−2,100h−3を形成する位置の深さを光学素子100の厚み方向(矢印D1)において変化させるとよい。   Also in the present embodiment, the laser irradiation unit 23 creates the scattering region 100f on the outer circumference of the optical element 100, moves in the thickness direction (arrow D1), and then again on the outer circumference of the optical element 100. The operation of creating the scattering region 100f may be repeated. Further, by changing the focal position of the laser L by the laser irradiation unit 23 at least once, the depth of the position where the scattering regions 100h-1, 100h-2, and 100h-3 are formed as described above is changed to the optical element 100. It is good to change in the thickness direction (arrow D1).

以上説明した第3実施形態においても、光学素子100の製造方法は、成形素材を加熱軟化させ、光学素子100を成形する成形工程と、成形で形成された光学素子100の外径E(外形寸法の一例)を実質的に維持しながら、光学素子100の有効径100a外において散乱領域100h−1,100h−2,100h−3を創生する散乱領域創生工程と、を有するため、外径Eを高精度に形成しながら、迷光による弊害を簡単かつ確実に防止することができる。   Also in the third embodiment described above, the manufacturing method of the optical element 100 includes a molding process in which the molding material is heated and softened to mold the optical element 100, and the outer diameter E (outer dimension) of the optical element 100 formed by molding. 1) is substantially maintained, and the scattering region creation step of creating the scattering regions 100h-1, 100h-2, 100h-3 outside the effective diameter 100a of the optical element 100 is provided. While forming E with high accuracy, it is possible to easily and reliably prevent harmful effects caused by stray light.

また、本実施形態では、光学素子100の外周側(外周成形面100d側又は自由表面100e側)から光学素子100の内部にレーザーLを照射し、散乱領域100h−1,100h−2,100h−3を形成する位置の深さを、光学素子100の厚み方向(矢印D1)において変化させることにより、散乱領域光学素子100h−1,100h−2,100h−3が非連続的に創生される。   In the present embodiment, the laser element L is irradiated into the optical element 100 from the outer peripheral side (the outer peripheral molding surface 100d side or the free surface 100e side) of the optical element 100, and the scattering regions 100h-1, 100h-2, 100h- 3 is changed in the thickness direction (arrow D1) of the optical element 100, the scattering area optical elements 100h-1, 100h-2, 100h-3 are created discontinuously. .

そのため、第2実施形態と同様に、散乱領域100gの創生が外径に影響を与えないため、クラックや変質層を大きく形成することなどによって、確実に迷光を散乱させることができる。更には、光学素子100の内部において、散乱領域100h−1,100h−2,100h−3が連続することに起因して光学素子100が欠落し或いは欠けるのを防止することができる。   Therefore, as in the second embodiment, the creation of the scattering region 100g does not affect the outer diameter, and therefore, stray light can be reliably scattered by forming large cracks or altered layers. Furthermore, it is possible to prevent the optical element 100 from being missing or missing due to the continuous scattering regions 100h-1, 100h-2, and 100h-3 inside the optical element 100.

<第4実施形態>
本実施形態では、エッチングにより散乱領域100iを創生することにおいて第1実施形態と相違し、その他は同様である。そのため、詳細な説明は省略する。
<Fourth embodiment>
This embodiment is different from the first embodiment in creating the scattering region 100i by etching, and the others are the same. Therefore, detailed description is omitted.

図5A及び図5Bは、第4実施形態における散乱領域100iの創生を説明するための正面図及び右側面図である。
本実施形態においても、図4A及び図4Bに示すように、光学素子100は、一対の回転保持部21,22により保持された状態で、これら回転保持部21,22が回転することで、回転する(矢印D2)。
5A and 5B are a front view and a right side view for explaining creation of the scattering region 100i in the fourth embodiment.
Also in the present embodiment, as shown in FIGS. 4A and 4B, the optical element 100 is rotated by rotating the rotation holding units 21 and 22 while being held by the pair of rotation holding units 21 and 22. (Arrow D2).

また、本実施形態では、一例として、エッチング用ペン24を用いてフッ化物を塗布することで、自由表面100eに散乱領域100iを創生する。散乱領域100iは、有効径100a外に創生されればよいため、外周成形面100dにも散乱領域100iを創生してもよいし、外周成形面100dのみに散乱領域100iを創生してもよい。また、エッチング用ペン24は、人の手により操作しても自動で移動するようにしてもよい。   In the present embodiment, as an example, the scattering region 100 i is created on the free surface 100 e by applying fluoride using the etching pen 24. Since the scattering region 100i only needs to be created outside the effective diameter 100a, the scattering region 100i may be created also on the outer peripheral molding surface 100d, or the scattering region 100i is created only on the outer peripheral molding surface 100d. Also good. Further, the etching pen 24 may be operated by a human hand or moved automatically.

散乱領域100iは、光学素子100の外径Eが成形工程により形成されたものを実質的に維持しながら創生される。第1実施形態において述べたとおり、光学素子100の外径Eが実質的に維持される場合とは、光学素子100の外径Eが散乱領域創生工程を経ても例えば5μmを超えて変動しない場合である。   The scattering region 100i is created while substantially maintaining the outer diameter E of the optical element 100 formed by the molding process. As described in the first embodiment, the case where the outer diameter E of the optical element 100 is substantially maintained means that the outer diameter E of the optical element 100 does not fluctuate, for example, exceeding 5 μm even after the scattering region creation step. Is the case.

本実施形態では、光学素子100の外周1周分に散乱領域100iを創生した後、エッチング用ペン24を厚み方向(矢印D1)に移動させ、再び光学素子100の外周1周分に散乱領域100iを創生するという動作を繰り返すとよい。   In the present embodiment, after the scattering region 100i is created on the outer circumference of the optical element 100, the etching pen 24 is moved in the thickness direction (arrow D1), and the scattering area is again placed on the outer circumference of the optical element 100. The operation of creating 100i may be repeated.

なお、散乱領域100iを創生するには、フッ化物による化学的なウェットエッチングではなく、プラズマイオンビームなどによる他のエッチングを用いてもよい。或いは、光学素子100の外径Eが実質的に維持されれば、散乱領域100iは、上述の第1〜第3実施形態のレーザーLや本実施形態のエッチングを用いずに創生してもよい。   In order to create the scattering region 100i, instead of chemical wet etching using fluoride, other etching using a plasma ion beam or the like may be used. Alternatively, if the outer diameter E of the optical element 100 is substantially maintained, the scattering region 100i can be created without using the laser L of the first to third embodiments described above or the etching of the present embodiment. Good.

以上説明した第4実施形態においても、光学素子100の製造方法は、成形素材を加熱軟化させ、光学素子100を成形する成形工程と、成形で形成された光学素子100の外径E(外形寸法の一例)を実質的に維持しながら、光学素子100の有効径100a外において散乱領域100iを創生する散乱領域創生工程と、を有するため、外径Eを高精度に形成しながら、迷光による弊害を簡単かつ確実に防止することができる。   Also in the fourth embodiment described above, the manufacturing method of the optical element 100 includes the molding step of heating and softening the molding material to mold the optical element 100, and the outer diameter E (outer dimension) of the optical element 100 formed by molding. 1) is substantially maintained, and a scattering region creation step for creating the scattering region 100i outside the effective diameter 100a of the optical element 100 is included. Therefore, stray light is formed while forming the outer diameter E with high accuracy. It is possible to easily and reliably prevent the harmful effects caused by.

また、本実施形態では、エッチングにより散乱領域100iを創生するため、簡単に迷光による弊害を防止することができる。更には、レーザーL以外のエッチングなどの他の手法により散乱領域100iを創生することで、光学素子100の材料や製造設備などに応じて散乱領域100iの創生方法を決定することができる。   In the present embodiment, since the scattering region 100i is created by etching, it is possible to easily prevent the harmful effects caused by stray light. Furthermore, by creating the scattering region 100i by other methods such as etching other than the laser L, the creation method of the scattering region 100i can be determined according to the material of the optical element 100, the manufacturing equipment, and the like.

なお、上述の第1〜第4実施形態によれば、外形寸法(外径E)を高精度に形成することができるが、外径を実質的に維持しながら散乱領域を形成することに1つの特徴があり、例えば、成形段階で外周面に微細な凹凸が一切ない鏡面を成形する場合でなくとも上述の第1〜第4実施形態における効果を得ることができる。そのため、成形工程における外径は、高精度であるほど望ましいが、必要な精度で適宜決定されればよく、特に制限されない。   In addition, according to the above-described first to fourth embodiments, the outer dimension (outer diameter E) can be formed with high accuracy, but it is 1 to form the scattering region while substantially maintaining the outer diameter. For example, the effects of the first to fourth embodiments can be obtained without forming a mirror surface having no fine irregularities on the outer peripheral surface at the molding stage. For this reason, the outer diameter in the molding process is preferably as high as possible, but is not particularly limited as long as it is appropriately determined with necessary precision.

10 型セット
11 上型
11a 凸状成形面
12 下型
12a 平面状成形面
13 胴型
13a 内周成形面
21 回転保持部
22 回転保持部
23 レーザー照射部
23a 集光レンズ
24 エッチング用ペン
100 光学素子(成形素材)
100a 有効径
100b 上成形面
100b−1 凹部
100c 下成形面
100d 外周成形面
100e 自由表面
100f 散乱領域
100g 散乱領域
100h−1 散乱領域
100h−2 散乱領域
100h−3 散乱領域
100i 散乱領域
10 Mold Set 11 Upper Mold 11a Convex Molded Surface 12 Lower Mold 12a Planar Molded Surface 13 Body Mold 13a Inner Peripheral Molded Surface 21 Rotation Holding Unit 22 Rotation Holding Unit 23 Laser Irradiation Unit 23a Condensing Lens 24 Etching Pen 100 Optical Element (Molding material)
100a Effective diameter 100b Upper molding surface 100b-1 Recessed portion 100c Lower molding surface 100d Outer peripheral molding surface 100e Free surface 100f Scattering region 100g Scattering region 100h-1 Scattering region 100h-2 Scattering region 100h-3 Scattering region 100i Scattering region

Claims (3)

成形素材を加熱軟化させ、光学素子を成形する成形工程と、
成形で形成された前記光学素子の外形寸法を、5μmを超えて変動しないように維持しながら、前記光学素子の有効径外において散乱領域を創生する散乱領域創生工程と、を有し、
前記成形工程では、一対の成形型と当該一対の成形型の周囲に位置する筒状の胴型とにより前記光学素子を成形し、
前記散乱領域形成工程では、前記光学素子のうち前記一対の成形型及び前記胴型との非接触部分である自由表面に前記散乱領域を創生する
光学素子の製造方法。
A molding process for heating and softening the molding material and molding the optical element;
A scattering region creation step of creating a scattering region outside the effective diameter of the optical element, while maintaining the outer dimensions of the optical element formed by molding so as not to fluctuate more than 5 μm ,
In the molding step, the optical element is molded with a pair of molding dies and a cylindrical body mold positioned around the pair of molding dies,
In the scattering region forming step, the scattering region is created on a free surface that is a non-contact portion between the pair of molding dies and the body die among the optical elements.
前記散乱領域創生工程では、前記光学素子の外周面にレーザーを照射し、前記外周面にクラック又は変質層を形成することによって、前記外周面に前記散乱領域を創生する、請求項1記載の光学素子の製造方法。   2. The scattering region creation step creates the scattering region on the outer peripheral surface by irradiating the outer peripheral surface of the optical element with a laser and forming a crack or a deteriorated layer on the outer peripheral surface. Of manufacturing the optical element. 成形素材を加熱軟化させ、光学素子を成形する成形工程と、
成形で形成された前記光学素子の外形寸法を、5μmを超えて変動しないように維持しながら、前記光学素子の有効径外において散乱領域を創生する散乱領域創生工程と、を有し、
前記散乱領域創生工程では、前記光学素子の外周側から内部にレーザーを照射し、前記内部にクラック又は変質層を形成することによって、前記内部に前記散乱領域を創生し、前記散乱領域を形成する位置の深さを、前記光学素子の厚み方向において変化させることにより、前記散乱領域を非連続的に創生する
光学素子の製造方法。
A molding process for heating and softening the molding material and molding the optical element;
A scattering region creation step of creating a scattering region outside the effective diameter of the optical element, while maintaining the outer dimensions of the optical element formed by molding so as not to fluctuate more than 5 μm ,
In the scattering region creation step, a laser is irradiated from the outer peripheral side of the optical element to the inside, and a crack or an altered layer is formed in the inside, thereby creating the scattering region in the inside, and A method for manufacturing an optical element, wherein the scattering region is created discontinuously by changing a depth of a position to be formed in a thickness direction of the optical element.
JP2013144209A 2013-07-10 2013-07-10 Optical element manufacturing method and optical element manufacturing apparatus Active JP6091365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013144209A JP6091365B2 (en) 2013-07-10 2013-07-10 Optical element manufacturing method and optical element manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013144209A JP6091365B2 (en) 2013-07-10 2013-07-10 Optical element manufacturing method and optical element manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2015017005A JP2015017005A (en) 2015-01-29
JP6091365B2 true JP6091365B2 (en) 2017-03-08

Family

ID=52438382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013144209A Active JP6091365B2 (en) 2013-07-10 2013-07-10 Optical element manufacturing method and optical element manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6091365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018180437A (en) * 2017-04-20 2018-11-15 均英精密工業股▲分▼有限公司 Method for manufacturing optical lens having matting interface

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838901A (en) * 1981-09-01 1983-03-07 Nippon Sheet Glass Co Ltd Distributed index lens and lens array
JP3512387B2 (en) * 2000-02-10 2004-03-29 松下電器産業株式会社 Lens, manufacturing method thereof, and optical device using lens
JP4288413B2 (en) * 2003-04-07 2009-07-01 株式会社ニコン Quartz glass molding method and molding apparatus
JP4689982B2 (en) * 2004-07-14 2011-06-01 アルプス電気株式会社 Optical element manufacturing method
JP2006178388A (en) * 2004-11-29 2006-07-06 Konica Minolta Holdings Inc Optical element fixing method and optical element fixing structure
JP2007163551A (en) * 2005-12-09 2007-06-28 Canon Inc Optical element and method of manufacturing optical element
JP2008096741A (en) * 2006-10-12 2008-04-24 Toshiba Corp Mask, method for manufacturing mask and method for manufacturing semiconductor device
JP2012180253A (en) * 2011-03-02 2012-09-20 Olympus Corp Method for manufacturing optical element and apparatus for manufacturing optical element

Also Published As

Publication number Publication date
JP2015017005A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
Naessens et al. Flexible fabrication of microlenses in polymer layers with excimer laser ablation
US6949215B2 (en) Method for processing a three-dimensional structure by laser
CN103764578A (en) Method for manufacturing an optical component for eliminating surface defects
Poleshchuk et al. Laser technologies in micro-optics. Part 2. Fabrication of elements with a three-dimensional profile
EP3109700A3 (en) Defect inspecting method, sorting method, and producing method for photomask blank
TWI788276B (en) Optical body and display device
JP2016176981A (en) Fresnel lens and manufacturing method thereof
JP2020514075A (en) Method for manufacturing transmissive or reflective optical system and lens
Wang et al. Chalcogenide glass IR artificial compound eyes based on femtosecond laser microfabrication
JP6091365B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
Schulz-Ruhtenberg et al. Laser patterning of SiOx-layers for the fabrication of UV diffractive phase elements
WO2016056062A1 (en) Method for manufacturing optical element, and optical element
Han et al. Direct replication of a glass micro Fresnel zone plate array by laser irradiation using an infrared transmissive mold
US11940595B2 (en) Method for producing optical member and optical member
JP2003181672A (en) Method for laser processing
CN112996627A (en) Mitigation of low surface quality
JP2016131257A (en) Master template for nanoimprint and method of manufacturing replica template
US8585390B2 (en) Mold making system and mold making method
JP4918768B2 (en) Optical screen, projection screen using the same, and method of manufacturing the optical screen
US20220350250A1 (en) Micropatterning method, micropatterning apparatus and micropatterning chip for silicone-based elastomer
JP4918769B2 (en) Optical screen, projection screen using the same, and method of manufacturing the optical screen
JP2016135504A (en) Patterning method and patterning workpiece
JP6209903B2 (en) INSPECTION METHOD, NANOIMPRINT MOLD MANUFACTURING METHOD, NANOIMPRINT METHOD, AND INSPECTION DEVICE
TW201831943A (en) Lens provided with retaining frame, and method for manufacturing lens provided with retaining frame to suppress the positional shift of a lens material in a cylindrical mold for producing a lens having a desired shape without deviation
KR101436627B1 (en) Method for cutting glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170207

R151 Written notification of patent or utility model registration

Ref document number: 6091365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250