JP6090606B2 - Method for melting reduction of chromium-containing oxides - Google Patents

Method for melting reduction of chromium-containing oxides Download PDF

Info

Publication number
JP6090606B2
JP6090606B2 JP2015059379A JP2015059379A JP6090606B2 JP 6090606 B2 JP6090606 B2 JP 6090606B2 JP 2015059379 A JP2015059379 A JP 2015059379A JP 2015059379 A JP2015059379 A JP 2015059379A JP 6090606 B2 JP6090606 B2 JP 6090606B2
Authority
JP
Japan
Prior art keywords
chromium
smelting reduction
containing oxide
temperature
smelting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015059379A
Other languages
Japanese (ja)
Other versions
JP2015193928A (en
Inventor
玲司 三津山
玲司 三津山
柏 孝幸
孝幸 柏
哲也 菅原
哲也 菅原
太 小笠原
太 小笠原
横山 英樹
英樹 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015059379A priority Critical patent/JP6090606B2/en
Publication of JP2015193928A publication Critical patent/JP2015193928A/en
Application granted granted Critical
Publication of JP6090606B2 publication Critical patent/JP6090606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、ステンレス鋼または含クロム鋼の精錬に用いられる含クロム溶銑を製造する含クロム酸化物の溶融還元方法に関する。   The present invention relates to a chromium-containing oxide smelting reduction method for producing a chromium-containing hot metal used for refining stainless steel or chromium-containing steel.

これまで、含クロム酸化物の溶融還元方法においては、溶融還元処理の対象として主にクロム鉱石を用いており、その還元率を向上させることにより、クロムを効率よく回収することを目的とした技術が多数報告されている。これらの技術では、クロム鉱石の溶融還元炉や電気炉でのステンレス精錬時に発生するクロムを含むダストやスラッジ、スラグ等の、いわゆるクロム鉱石以外の含クロム酸化物についても、資源の有効利用の観点から前記クロム鉱石の溶融還元用原料として使用している。   Until now, in the chrome-containing oxide smelting reduction method, chrome ore has been mainly used as the target of smelting reduction treatment, and the technology aimed at efficiently recovering chromium by improving its reduction rate Many have been reported. In these technologies, chromium-containing oxides other than so-called chromium ore, such as dust, sludge, and slag containing chromium, which are generated during the refining of chrome ore in stainless steel in electric furnaces, are also used for effective resource utilization. To chrome ore as a raw material for smelting reduction.

このような含クロム酸化物の溶融還元方法の一例として、ステンレス鋼のスクラップおよびクロム鉱石などの含クロム酸化物の溶融還元を行うに当り、溶融還元温度が1500℃以上で、かつ溶鉄中の[C]、[Cr]が、[C](mass%)≧4.03+0.084・[Cr]を満たすようにC濃度を調整することで、高い還元率を得る技術が提案されている(例えば、特許文献1参照)。   As an example of such a chrome-containing oxide smelting reduction method, when performing smelting reduction of chromium-containing oxides such as stainless steel scrap and chrome ore, the smelting reduction temperature is 1500 ° C. or more and [ A technique for obtaining a high reduction rate by adjusting the C concentration so that C] and [Cr] satisfy [C] (mass%) ≧ 4.03 + 0.084 · [Cr] has been proposed (for example, , See Patent Document 1).

特開平1−215912号公報JP-A-1-215912

しかしながら、特許文献1に開示された技術は、溶融還元温度を1500以上と高くする必要があるために、昇熱材の原単位を高くする必要があり、かつ溶融還元炉で使用される耐火物の損耗が大きくなるという問題があった。そこで、溶融還元温度を下げることによって、昇熱材の原単位を低下させ、耐火物の損耗を減らすこと、が求められていた。 However, since the technique disclosed in Patent Document 1 needs to increase the smelting reduction temperature to 1500 ° C. or higher, it is necessary to increase the basic unit of the heating material, and the refractory used in the smelting reduction furnace. There was a problem that the wear of objects increased. Therefore, it has been required to reduce the basic unit of the heat-generating material and reduce the wear of the refractory by lowering the melting reduction temperature.

ところで、クロム鉱石は一般に3価のクロムと2価の金属酸化物とでスピネル構造という安定な結晶構造を有しており、このような安定なクロム酸化物を溶融還元するためには高い温度にすることが必要となる。一方、含クロム酸化物の中で、ステンレス精錬で発生する含クロムダストやステンレス鋼の圧延工程から生じる含クロムスラッジのような、クロム酸化物を含む原料は、クロム鉱石とは結晶組成が異なり、必ずしも高温にしなくとも溶融還元を進める可能性がある。ただし、前記した様々な含クロム酸化物の結晶構造を工程的に管理することは実質的に困難である。実際、実機操業において、やみくもに溶融還元温度を下げた操業において還元率調査を行ったところ、還元不良のリスクやコストアップが生じていた。   By the way, chromium ore generally has a stable crystal structure called spinel structure composed of trivalent chromium and divalent metal oxide, and in order to melt and reduce such stable chromium oxide, the temperature is high. It is necessary to do. On the other hand, among chromium-containing oxides, raw materials containing chromium oxides, such as chromium-containing dust generated by stainless steel refining and chromium-containing sludge produced from the rolling process of stainless steel, have a different crystal composition from chromium ore, There is a possibility that smelting reduction may proceed without necessarily increasing the temperature. However, it is substantially difficult to manage the crystal structures of the various chromium-containing oxides described above in a process. Actually, in actual operation, when the reduction rate survey was conducted in an operation where the smelting reduction temperature was lowered, there was a risk of poor reduction and an increase in cost.

従来技術が抱える上記問題点に鑑みて鋭意検討したところ、発明者らは、含クロム酸化物の組成に応じて事前に適切な溶融還元温度の管理を行うことが望ましいことを知見し、本発明を開発した。   As a result of intensive studies in view of the above-mentioned problems of the prior art, the inventors have found that it is desirable to appropriately manage the smelting reduction temperature in advance according to the composition of the chromium-containing oxide, and the present invention. Developed.

本発明の目的は、使用する含クロム酸化物の組成に応じて、必要な溶融還元温度を簡便に算定することができ、不必要な温度上昇を抑制することで、溶融還元製錬で使用する昇熱材量を低減して昇熱材のコストを削減し、また製錬温度を低下させることによる耐火物コストの低減を達成することができる含クロム酸化物の溶融還元方法を提案することにある。   The object of the present invention is to be able to easily calculate the required smelting reduction temperature according to the composition of the chromium-containing oxide to be used, and to use in smelting reduction smelting by suppressing unnecessary temperature rise. To propose a smelting reduction method for chromium-containing oxides that can reduce the amount of the heat-generating material to reduce the cost of the heat-generating material and reduce the refractory cost by lowering the smelting temperature. is there.

前記目的の実現に対し、本発明では、溶融還元炉を用いて含クロム酸化物から含クロム溶銑を溶製する際の溶融還元方法において、溶融還元炉内の浴温度を、下記(式1)による計算溶融還元温度T1および下記(式2)による計算溶融還元温度T2の何れか高くない方以上とし、かつ、1500℃未満にすることを特徴とする含クロム酸化物の溶融還元方法とする。

(式1)
T1(℃)=8.58×%Cr+1137
(式2)
T2(℃)=8.58×(%MgO×Mc/Mm+%FeO×Mc/Mf)+1137
ここで、%Cr:含クロム酸化物中のCrの質量比率(mass%)、
%MgO:含クロム酸化物中のMgOの質量比率(mass%)、
%FeO:含クロム酸化物中のFeOの質量比率(mass%)、
Mc:Crの分子量、
Mm:MgOの分子量、
Mf:FeOの分子量、とする。
In order to achieve the above object, in the present invention, in a smelting reduction method in which a chrome-containing hot metal is produced from a chrome-containing oxide using a smelting reduction furnace, the bath temperature in the smelting reduction furnace is expressed by the following (formula 1): and calculating a smelting reduction temperature T1 and below (equation 2) by more people not high either calculation smelting reduction temperature T2 by, and the smelting reduction process of chromium-containing oxides, characterized in that less than 1500 ° C..
(Formula 1)
T1 (° C.) = 8.58 ×% Cr 2 O 3 +1137
(Formula 2)
T2 (° C.) = 8.58 × (% MgO × Mc / Mm +% FeO × Mc / Mf) +1137
Here,% Cr 2 O 3 : mass ratio (mass%) of Cr 2 O 3 in the chromium-containing oxide,
% MgO: mass ratio (mass%) of MgO in the chromium-containing oxide,
% FeO: mass ratio of FeO in the chromium-containing oxide (mass%),
Mc: Molecular weight of Cr 2 O 3 ,
Mm: MgO molecular weight,
Mf: The molecular weight of FeO.

また、溶融還元炉を用いて含クロム酸化物から含クロム溶銑を溶製する際の溶融還元方法において、該含クロム酸化物のCr、MgO、FeOの質量比(mass%)を求め、求めたCr、MgO、FeOの質量比から下記(式4)によりAを算出し、Aから下記(式5)でXを求め、求めたXを使用して下記(式3)に基づき計算溶融還元温度T1を求め、溶融還元炉内の浴温度を計算溶融還元温度T3以上かつ1500℃未満にすることを特徴とする含クロム酸化物の溶融還元方法とする。

(式3)
T3(℃)=8.58×X+1137
(式4)
A=(%MgO×Mc/Mm+%FeO×Mc/Mf)
ここで、%MgO:含クロム酸化物中のMgOの質量比率(mass%)、
%FeO:含クロム酸化物中のFeOの質量比率(mass%)、
Mc:Crの分子量、
Mm:MgOの分子量、
Mf:FeOの分子量、とする。
(式5)
i)A≦%Crの場合、
X=Aであり、
ii)A>%Crの場合、
X=%Cr、とし、
ここで、%Cr:含クロム酸化物中のCrの質量比率(mass%)とする。
Further, in the melt reduction method in the case of producing chromium-containing hot metal from chromium-containing oxide using a melting reduction furnace, the mass ratio (mass%) of Cr 2 O 3 , MgO, and FeO of the chromium-containing oxide is obtained. From the obtained mass ratio of Cr 2 O 3 , MgO, and FeO, A is calculated by the following (formula 4), X is calculated from the following (formula 5), and using the obtained X, the following (formula 3) Based on the above, the calculated smelting reduction temperature T1 is obtained, and the bath temperature in the smelting reduction furnace is made to be not less than the calculated smelting reduction temperature T3 and less than 1500 ° C.
(Formula 3)
T3 (° C.) = 8.58 × X + 1137
(Formula 4)
A = (% MgO × Mc / Mm +% FeO × Mc / Mf)
Here,% MgO: the mass ratio (mass%) of MgO in the chromium-containing oxide,
% FeO: mass ratio of FeO in the chromium-containing oxide (mass%),
Mc: Molecular weight of Cr 2 O 3 ,
Mm: MgO molecular weight,
Mf: The molecular weight of FeO.
(Formula 5)
i) In the case of A ≦% Cr 2 O 3
X = A,
ii) if A>% Cr 2 O 3
X =% Cr 2 O 3 ,
Here,% Cr 2 O 3: a mass ratio of Cr 2 O 3 in the chrome-containing oxide (mass%).

なお、前記のように構成される本発明に係る含クロム酸化物の溶融還元方法においては、溶融還元炉の製錬時間内における含クロム酸化物を添加している期間のうちの添加終了前30%に相当する期間の浴温度を、前記計算溶融還元温度T1および前記計算溶融還元温度T2の何れか高くない方以上とすること、あるいは、前記計算溶融還元温度T3以上とすること、がより好ましい解決手段となるものと考えられる。 In the chromium-containing oxide smelting reduction method according to the present invention configured as described above, 30% before the end of the addition of the chromium-containing oxide within the smelting time of the smelting reduction furnace. It is more preferable that the bath temperature during a period corresponding to% is set to be equal to or higher than the calculated smelting reduction temperature T1 and the calculated smelting reduction temperature T2 or higher than the calculated smelting reduction temperature T3. It is considered to be a solution.

また、前記のように構成される本発明に係る含クロム酸化物の溶融還元方法においては、溶融還元炉の製錬時間内における含クロム酸化物を添加している期間中の浴温度を、(T1+50℃)以下かつ(T2+50℃)以下とすること、がより好ましく、含クロム酸化物中のT.Cr質量比率が0.5mass%以上であること、がより好ましい。   Further, in the chrome-containing oxide smelting reduction method according to the present invention configured as described above, the bath temperature during the period during which the chrome-containing oxide is added within the smelting time of the smelting reduction furnace, T1 + 50 ° C.) or less and (T2 + 50 ° C.) or less is more preferable. More preferably, the Cr mass ratio is 0.5 mass% or more.

前記のような構成を有する本発明に係る含クロム酸化物の溶融還元方法によれば、計算溶融還元温度に基づいて良好な溶融還元処理ができると共に、不必要な温度上昇を抑制することで、昇熱材コストの削減や耐火物コストの低減が達成することができるようになる。   According to the chrome-containing oxide smelting reduction method according to the present invention having the above-described configuration, a good smelting reduction treatment can be performed based on the calculated smelting reduction temperature, and an unnecessary temperature increase can be suppressed. Reduction of the heating material cost and reduction of the refractory cost can be achieved.

本発明における還元温度とスピネル構造をとり得るCr濃度との関係を示すグラフである。It is a graph showing the relationship between the Cr 2 O 3 concentration which may take the reduction temperature and the spinel structure in the present invention. 本発明例と従来例とにおける、含クロム酸化物の溶融還元における炭材使用量を示すグラフである。It is a graph which shows the carbon material usage-amount in the smelting reduction of chromium-containing oxide in the example of this invention and a prior art example. 本発明に係る含クロム酸化物の溶融還元製錬を実施する転炉型の鉄浴式溶融還元炉を示す図である。It is a figure which shows the converter type iron bath type smelting reduction furnace which performs the smelting reduction smelting of the chromium-containing oxide which concerns on this invention.

含クロム酸化物を溶融還元炉を用いて溶融還元し、含クロム溶銑を溶製する際の、該溶融還元炉内温度、即ち溶融還元中の浴温度は、少なくとも溶融還元製錬の末期においては、含クロム酸化物の還元速度が十分大きい範囲とすることが必要である。この含クロム酸化物の還元速度の温度依存性は、含クロム酸化物の結晶構造に依存すると考えられる。
特に、発明者らの知見によると、含クロム酸化物については、(Mg、Fe)Crスピネル構造の存在割合が溶融還元温度に大きな影響を与えると考えられる。
一般に、MgOやFeOはCrと結合してスピネル構造をとることが判っており、化学量論的に、MgOやFeOがCrよりも過多であれば、Crは全てスピネル構造をとるものと考えられる。逆に、MgOやFeOがCrよりも少なければ、MgOおよびFeOと結合できないCrはスピネル構造をとり得ないと考えられる。
When the chromium-containing oxide is smelted and reduced using a smelting reduction furnace and the chrome-containing hot metal is smelted, the temperature in the smelting reduction furnace, that is, the bath temperature during smelting reduction is at least at the final stage of smelting reduction smelting. It is necessary that the reduction rate of the chromium-containing oxide be in a sufficiently large range. The temperature dependence of the reduction rate of the chromium-containing oxide is considered to depend on the crystal structure of the chromium-containing oxide.
In particular, according to the knowledge of the inventors, regarding the chromium-containing oxide, it is considered that the abundance ratio of the (Mg, Fe) Cr 2 O 4 spinel structure has a great influence on the smelting reduction temperature.
Generally, MgO and FeO is found to take a spinel structure combines with Cr 2 O 3, stoichiometrically, if excessive than MgO and FeO is Cr 2 O 3, Cr 2 O 3 is All are considered to have a spinel structure. Conversely, if MgO and FeO is less than Cr 2 O 3, Cr 2 O 3 that can not be combined with MgO and FeO is believed to not take a spinel structure.

このような推定に基づき、本発明では、まず、以下の(式4)、(式5)により、溶融還元の対象物である含クロム酸化物のMgO、FeO、Cr濃度から、Cr系スピネルとなり得るCr濃度Xを推算し、実際にスピネルとなり得るCr濃度Xに対し、炭素粉末と混合した含クロム酸化物の熱質量分析−示差熱分析(TG−DTA)により得られた還元温度との関係を調査し、図1に示すような結果を得た。図1に示す結果から明らかなように、スピネル構造をとり得るCr濃度と溶融還元が進行する温度とは、下記(式3)に示すような強い相関を持つことがわかった。 Based on such estimation, according to the present invention, first, from the MgO, FeO, and Cr 2 O 3 concentrations of the chromium-containing oxide that is the object of smelting reduction, the following (Formula 4) and (Formula 5) are used. The Cr 2 O 3 concentration X that can be a 2 O 3 spinel is estimated, and the Cr 2 O 3 concentration X that can actually be a spinel is calculated based on the thermal mass analysis-differential thermal analysis (TG) of the chromium-containing oxide mixed with the carbon powder. The relationship with the reduction temperature obtained by -DTA) was investigated, and the results shown in FIG. 1 were obtained. As is clear from the results shown in FIG. 1, it was found that the Cr 2 O 3 concentration capable of forming a spinel structure and the temperature at which smelting reduction proceeds have a strong correlation as shown in the following (formula 3).

即ち、図1に示す結果から、以下に示す(式3)、(式4)及び(式5)を導出することができる。
(式3)
T3(℃)=8.58×X+1137
(式4)
A=(%MgO×Mc/Mm+%FeO×Mc/Mf)
ここで、%MgO:含クロム酸化物中のMgOの質量比率(mass%)
%FeO:含クロム酸化物中のFeOの質量比率(mass%)、
Mc:Crの分子量、
Mm:MgOの分子量、
Mf:FeOの分子量、とする。
(式5)
i)A≦%Crの場合、
X=Aであり、
ii)A>%Crの場合、
X=%Cr、とし、
ここで、%Cr:含クロム酸化物中のCrの質量比率(mass%)とする。
That is, from the results shown in FIG. 1, the following (Expression 3), (Expression 4), and (Expression 5) can be derived.
(Formula 3)
T3 (° C.) = 8.58 × X + 1137
(Formula 4)
A = (% MgO × Mc / Mm +% FeO × Mc / Mf)
Here,% MgO: mass ratio of MgO in chromium-containing oxide (mass%)
% FeO: mass ratio of FeO in the chromium-containing oxide (mass%),
Mc: Molecular weight of Cr 2 O 3 ,
Mm: MgO molecular weight,
Mf: The molecular weight of FeO.
(Formula 5)
i) In the case of A ≦% Cr 2 O 3
X = A,
ii) if A>% Cr 2 O 3
X =% Cr 2 O 3 ,
Here,% Cr 2 O 3: a mass ratio of Cr 2 O 3 in the chrome-containing oxide (mass%).

従って、上記式(式4)、(式5)に基づいて、還元対象物である含クロム酸化物中のCr、MgO、FeOの質量比率からスピネル構造をとり得るCrの質量比率Xを求め、(式3)に基づき、質量Xから計算溶融還元温度T1を求め、溶融還元時の浴温度を計算溶融還元温度T3以上とすることで含クロム酸化物の還元を進めることができること、即ち少なくともT3の温度以上かつ1500℃未満の温度で含クロム酸化物を添加しながら溶融還元処理することによって、従来よりも、より低い溶融還元温度で含クロム酸化物の溶融還元を行うことができると考えられる。なお、好適な実施態様として、溶融還元において少なくともT3以上にする時期については、溶融還元炉の製錬時間の中で「含クロム酸化物を添加している期間のうちの添加終了前30%」とすることができる。その期間のみ上記制御を実施すれば、溶融還元製錬の終点においては、十分にクロム酸化物の還元が進行し、溶鉄からの脱硫にも問題ないためである。 Therefore, the equation (Equation 4), on the basis of (Equation 5), Cr 2 O 3, MgO -containing chromium oxide is reduced object, the mass ratio of FeO of Cr 2 O 3 that can take a spinel structure Obtain the mass ratio X, obtain the calculated smelting reduction temperature T1 from the mass X based on (Equation 3), and proceed the reduction of the chromium-containing oxide by setting the bath temperature during smelting reduction to the calculated smelting reduction temperature T3 or higher. In other words, the chromium-containing oxide is melt-reduced at a lower melting-reduction temperature than before by adding the chromium-containing oxide at a temperature of at least T3 and less than 1500 ° C. It is considered possible. In addition, as a preferred embodiment, regarding the timing of at least T3 or more in the smelting reduction, “30% before the end of the addition of the chromium-containing oxide in the smelting reduction furnace refining time” It can be. This is because if the above control is carried out only during that period, the reduction of the chromium oxide sufficiently proceeds at the end point of the smelting reduction smelting, and there is no problem with desulfurization from the molten iron.

ここで、上記の「含クロム酸化物を添加している期間」とは、溶融還元製錬の送酸期間において、最初に含クロム酸化物を添加した時点から、最後に含クロム酸化物を添加した時点までの期間を意味し、途中に含クロム酸化物を添加していない期間がある場合には、その添加していない期間をも含むものとする。また、溶融還元炉内の浴温度は、浸漬式消耗型熱電対による測定値でもよいが、炉内の物質収支および熱収支からも精度よく推定できるので、通常は、この推定値を用いるか、測定値に基いて測定時点からの浴温度の経時変化を同様に推定した値を用いる。   Here, the “period in which the chromium-containing oxide is added” means that the chromium-containing oxide is added last from the time when the chromium-containing oxide is first added in the acid feeding period of the smelting reduction smelting. It means the period up to the point of time, and when there is a period during which no chromium-containing oxide is added, the period during which no chromium-containing oxide is added is also included. Also, the bath temperature in the smelting reduction furnace may be a value measured by an immersion-type consumable thermocouple, but it can be accurately estimated from the material balance and heat balance in the furnace, so usually this estimated value is used, Based on the measured value, a value obtained by similarly estimating the time-dependent change in bath temperature from the time of measurement is used.

ところで、上記から、含クロム酸化物中のクロム酸化物が全てスピネル構造をとるものと考えられる、上記ii)の場合には、溶融還元温度、即ち、溶融還元炉内の浴温度を、下記(式1)による計算溶融還元温度T1以上とすることにより、良好な溶融還元処理が可能である。
(式1)
T1(℃)=8.58×%Cr+1137
ここで、%Cr:含クロム酸化物中のCrの質量比率(mass%)。
By the way, in the case of said ii) from which it is thought that all the chromium oxides in chromium-containing oxide take a spinel structure from the above, the melting reduction temperature, ie, the bath temperature in a melting reduction furnace, is the following ( By setting the calculated smelting reduction temperature T1 or higher according to the formula 1), a favorable smelting reduction treatment is possible.
(Formula 1)
T1 (° C.) = 8.58 ×% Cr 2 O 3 +1137
Here,% Cr 2 O 3 : mass ratio (mass%) of Cr 2 O 3 in the chromium-containing oxide.

一方、含クロム酸化物中のスピネル構造であるクロム酸化物の含有量が、含クロム酸化物中のMgOおよびFeOの含有比率から化学量論的に求められる値となると考えられる、上記i)の場合には、溶融還元炉内の浴温度を、下記(式2)による計算溶融還元温度T2以上とすることにより、良好な溶融還元処理が可能である。
(式2)
T2(℃)=8.58×(%MgO×Mc/Mm+%FeO×Mc/Mf)+1137
ここで、%MgO:含クロム酸化物中のMgOの質量比率(mass%)、
%FeO:含クロム酸化物中のFeOの質量比率(mass%)、
Mc:Crの分子量、
Mm:MgOの分子量、
Mf:FeOの分子量、とする。
On the other hand, the content of chromium oxide having a spinel structure in the chromium-containing oxide is considered to be a value determined stoichiometrically from the content ratio of MgO and FeO in the chromium-containing oxide. In this case, by setting the bath temperature in the smelting reduction furnace to be equal to or higher than the calculated smelting reduction temperature T2 according to the following (Equation 2), good smelting reduction treatment is possible.
(Formula 2)
T2 (° C.) = 8.58 × (% MgO × Mc / Mm +% FeO × Mc / Mf) +1137
Here,% MgO: the mass ratio (mass%) of MgO in the chromium-containing oxide,
% FeO: mass ratio of FeO in the chromium-containing oxide (mass%),
Mc: Molecular weight of Cr 2 O 3 ,
Mm: MgO molecular weight,
Mf: The molecular weight of FeO.

また、上記(式1)、(式2)および(式5)を比較することにより、上記i)の場合にはT1≧T2であり、上記ii)の場合にはT1<T2であることが解る。従って、T1<T2である上記ii)の場合には溶融還元炉内の浴温度を計算溶融還元温度T1以上とし、T1≧T2である上記i)の場合には溶融還元炉内の浴温度を計算溶融還元温度T2以上とすること、即ち、溶融還元炉内の浴温度を計算溶融還元温度T1および計算溶融還元温度T2の何れか高くない方以上とすることにより、良好な溶融還元処理が可能である。以上のように、上記i)およびii)の何れの場合においても、溶融還元炉内の浴温度を、上記(式1)による計算溶融還元温度T1以上、または、上記(式2)による計算溶融還元温度T2以上とすることにより、良好な溶融還元処理が可能である。   Further, by comparing (Equation 1), (Equation 2), and (Equation 5), it is found that T1 ≧ T2 in the case of i) and T1 <T2 in the case of ii). I understand. Therefore, in the case of ii) in which T1 <T2, the bath temperature in the smelting reduction furnace is set to the calculated smelting reduction temperature T1 or more, and in the case of i) in which T1 ≧ T2, the bath temperature in the smelting reduction furnace is Good smelting reduction treatment is possible by setting the calculated smelting reduction temperature T2 or higher, that is, by setting the bath temperature in the smelting reduction furnace to the higher one of the calculated smelting reduction temperature T1 and the calculated smelting reduction temperature T2. It is. As described above, in both cases i) and ii), the bath temperature in the smelting reduction furnace is equal to or higher than the calculated smelting reduction temperature T1 according to (Equation 1) or the calculated melting according to (Equation 2). By setting the reduction temperature to be equal to or higher than T2, a good smelting reduction treatment is possible.

さらに、含クロム酸化物を添加している溶融還元処理において、溶融還元炉内の浴温度を1500℃未満にすることにより、排ガスの顕熱として系外に持ち去られていた熱量を低減して熱効率を向上し、炭材(昇熱材)使用量を低減するとともに、CO排出量を減少させることが可能となる。このためには、溶融還元炉内の浴温度を、さらに低下させることが望ましく、(T1+50℃)以下かつ(T2+50℃)以下とするか、あるいは、(T3+50℃)以下とすることが望ましい。浴温度の制御性を考慮すれば、浴温度を、上記T1以上または上記T2以上とするとともに、(T1+50℃)以下かつ(T2+50℃)以下とすることにより、含クロム酸化物の還元と熱効率向上との両立が、より高度な水準で可能である。この際、この温度範囲には、含クロム酸化物を添加している溶融還元処理の全期間を通じて制御する必要は必ずしもなく、含クロム酸化物を添加している溶融還元処理期間の平均の浴温度を上記の温度範囲に制御することでも、含クロム酸化物の還元と熱効率向上との両立が、高度な水準で可能である。 Furthermore, in the smelting reduction treatment in which chromium-containing oxides are added, by reducing the bath temperature in the smelting reduction furnace to less than 1500 ° C., the amount of heat taken away from the system as sensible heat of exhaust gas is reduced, and the thermal efficiency As a result, it is possible to reduce the amount of carbon dioxide (heat raising material) used and to reduce CO 2 emissions. For this purpose, it is desirable to further reduce the bath temperature in the smelting reduction furnace, and it is desirable to set it to (T1 + 50 ° C.) or less and (T2 + 50 ° C.) or less, or (T3 + 50 ° C.) or less. Considering the controllability of the bath temperature, the bath temperature is not less than T1 or not less than T2, and is not more than (T1 + 50 ° C.) and not more than (T2 + 50 ° C.), thereby reducing the chromium-containing oxide and improving the thermal efficiency. Is possible at a higher level. At this time, it is not always necessary to control this temperature range throughout the entire period of the smelting reduction treatment in which the chromium-containing oxide is added, and the average bath temperature during the smelting reduction treatment period in which the chromium-containing oxide is added. By controlling the temperature within the above temperature range, both reduction of the chromium-containing oxide and improvement in thermal efficiency can be achieved at a high level.

以上のような本発明に係る含クロム酸化物の溶融還元方法においては、含クロム酸化物中のT.Cr質量比率が0.5mass%以上であることが好ましい。含クロム酸化物中のT.Cr質量比率が0.5mass%以上の場合には、長時間の低温での製錬では、炉内スラグ中にクロム酸化物が蓄積するするおそれがあって、本発明に係る含クロム酸化物の溶融還元方法を適用することが望ましいからである。同じ理由から、含クロム酸化物中のT.Cr質量比率は、さらに高い方が、本発明に係る含クロム酸化物の溶融還元方法の適用が効果的であり、1.0mass%超え、より望ましくは、2.0mass%超え、さらに望ましくは、3.0mass%超えが好適である。   In the method for melting and reducing chromium-containing oxides according to the present invention as described above, the T.O. The Cr mass ratio is preferably 0.5 mass% or more. T. in chromium-containing oxides. When the Cr mass ratio is 0.5 mass% or more, smelting at low temperature for a long time may cause chromium oxide to accumulate in the slag in the furnace, and the chromium-containing oxide according to the present invention This is because it is desirable to apply the smelting reduction method. For the same reason, T.O. The higher the Cr mass ratio is, the more effective the application of the chromium-containing oxide smelting reduction method according to the present invention is, and it is more than 1.0 mass%, more preferably more than 2.0 mass%, and still more preferably, It is preferable to exceed 3.0 mass%.

なお、図3は、本発明に係る含クロム酸化物の溶融還元製錬を実施する転炉型の鉄浴式溶融還元炉の一例を示す図である。図3に示す例において、鉄浴型溶融還元炉設備1は、炉本体2と、上吹きランス3と、鉱石投入ランス4とを備えている。また、炉本体2は、鉄皮5と、耐火物6と、底吹き羽口7とを備えている。さらに、上吹きランス3には酸化性ガス供給管8が接続されると共に、鉱石投入ランス4には鉱石搬送用管9が接続されている。上述した鉄浴型溶融還元炉設備1では、炉本体2内の溶湯10およびその上のスラグ11に対し、上吹きランス3から酸化性ガス13が吹き込まれると共に、鉱石投入ランス4から鉱石12が吹き込まれ、また、炉上に設置された図示しない投入装置を用いて、燃料となる炭材や、スラグ組成を調整するための造滓材が投入される。以下、上述した転炉型の鉄浴式溶融還元炉を用いた実施例について説明する。   In addition, FIG. 3 is a figure which shows an example of the converter type iron bath type smelting reduction furnace which performs the smelting reduction smelting of the chromium-containing oxide which concerns on this invention. In the example shown in FIG. 3, the iron bath smelting reduction furnace facility 1 includes a furnace body 2, an upper blowing lance 3, and an ore charging lance 4. In addition, the furnace body 2 includes an iron skin 5, a refractory 6, and a bottom blowing tuyere 7. Furthermore, an oxidizing gas supply pipe 8 is connected to the upper blowing lance 3, and an ore transport pipe 9 is connected to the ore charging lance 4. In the iron bath smelting reduction furnace facility 1 described above, the oxidizing gas 13 is blown from the top blowing lance 3 into the molten metal 10 in the furnace body 2 and the slag 11 thereabove, and the ore 12 is fed from the ore charging lance 4. A charcoal material to be used as a fuel and a slagging material for adjusting the slag composition are charged using a charging device (not shown) installed on the furnace. Hereinafter, examples using the above-described converter type iron bath smelting reduction furnace will be described.

<実施例1>
図3に示す1チャージ150tの転炉型の鉄浴式溶融還元炉における、含クロム酸化物の溶融還元製錬を実際に行なった。実験に使用した含クロム酸化物<1>および<2>の成分を化学分析により求め、(式1)により得られた指標となる計算溶融還元温度T1、(式2)により得られた指標となる計算溶融還元温度T2、(式4)により算出したAの値、および(式3)により得られた指標となる計算溶融還元温度T3を求めた結果を表1に示す。表2にこのための操業条件を示す。含クロム酸化物<1>はクロム鉱石であり、Crを50mass%以上含む粉状(平均粒径:約200μm)の物を使用し、鉱石投入ランスを介して炉上より投入する方法で添加した。含クロム酸化物<2>はステンレス鋼精錬時に発生した集塵ダストであり、Cr含有量が15mass%程度と含クロム酸化物<1>よりも低い同程度の粒度の粉体であり、含クロム酸化物<1>と同様に鉱石投入ランスより炉内に添加した。
<Example 1>
Smelting reduction smelting of chromium-containing oxides was actually performed in a converter type iron bath smelting reduction furnace of 1 charge 150 t shown in FIG. The components of the chromium-containing oxides <1> and <2> used in the experiment are obtained by chemical analysis, and the calculated smelting reduction temperature T1, which is an index obtained by (Equation 1), and the index obtained by (Equation 2) Table 1 shows the results of calculating the calculated smelting reduction temperature T2, the value of A calculated by (Equation 4), and the calculated smelting reduction temperature T3 as an index obtained by (Equation 3). Table 2 shows the operating conditions for this purpose. Chromium-containing oxide <1> is chromium ore, and uses a powdery (average particle size: about 200 μm) material containing 50 mass% or more of Cr 2 O 3 and is charged from the furnace through an ore charging lance. Added at. Chromium-containing oxide <2> is dust collection dust generated during refining of stainless steel, and is a powder having a Cr 2 O 3 content of about 15 mass% and the same particle size as that of chromium-containing oxide <1>. In the same manner as the chromium-containing oxide <1>, it was added into the furnace from the ore charging lance.

表2に示す操業条件において、含クロム酸化物<1>および<2>に対し、従来実際に行ってきた1560℃での操業と、溶融還元温度を低下させた実験1〜6での操業と、を実際に実施した。約1200℃の脱燐した溶銑を鉄浴式溶融還元炉に装入し、酸素と熱源となる炭材とを供給して昇温し、鉄浴温度が表2の溶融還元温度に達した時点から含クロム酸化物の供給を開始し、炉内の鉄浴温度をほぼ表2の溶融還元温度に維持するように含クロム酸化物の供給速度を調節した。この際、各試験操業とも酸素の供給速度と供給時間は一定の条件で行い、従って、各試験操業の溶融還元温度によって昇温に要する時間が異なる分だけ、含クロム酸化物を添加している期間の長さは約65〜100分の範囲で変化した。炭材の供給量は、上吹きおよび底吹きする酸素ガスの酸素量の他、含クロム酸化物中の酸素量も考慮して、これらの酸素によって消費される炭材量を算出したうえ、スラグ中に所定の質量比率で炭材を残留させるように調節した。   Under the operating conditions shown in Table 2, for chromium-containing oxides <1> and <2>, the operation at 1560 ° C., which has been actually performed, and the operations in Experiments 1 to 6 in which the smelting reduction temperature was lowered, , Actually implemented. When the dephosphorized hot metal of about 1200 ° C. is charged into an iron bath smelting reduction furnace, oxygen and a carbon material as a heat source are supplied and the temperature is raised, and the iron bath temperature reaches the smelting reduction temperature shown in Table 2 Then, the supply of chromium-containing oxide was started, and the supply rate of chromium-containing oxide was adjusted so that the temperature of the iron bath in the furnace was maintained at the smelting reduction temperature shown in Table 2. At this time, the oxygen supply rate and supply time are set under the same conditions in each test operation. Therefore, the chromium-containing oxide is added by the amount of time required for the temperature increase depending on the melting reduction temperature of each test operation. The length of the period varied from about 65 to 100 minutes. The amount of carbon material supplied is calculated by calculating the amount of carbon material consumed by oxygen in consideration of the amount of oxygen in the chromium-containing oxide in addition to the amount of oxygen in the oxygen gas blown up and bottom. The carbon material was adjusted to remain in a predetermined mass ratio.

Figure 0006090606
Figure 0006090606

Figure 0006090606
Figure 0006090606

実験により得られた結果を比較する。還元状態の評価は、スラグ中T.Cr濃度により行い、T.Cr濃度がT.Cr≧2.0mass%の範囲を還元不良と判断した。表3に、還元不良を×、還元良好を○として評価した結果を示す。また、含クロム酸化物供給量および含クロム酸化物供給量当たりの炭材供給量の質量比率を、従来方法の場合を1とする指数で表3に示した。この際、実験1および実験2については、従来方法1の場合を1とする指数で、また、実験3〜実験6については、従来方法2の場合を1とする指数で示している。ここで、含クロム酸化物供給量および含クロム酸化物供給量当たりの炭材供給量の質量比率は、それぞれ、1チャージの溶銑を装入してから製錬を終了するまでの溶融還元炉の全製錬期間における供給量の積算値、および、この期間における各供給量の積算値を用いて算出した値である。表3の結果から、含クロム酸化物<1>について指標温度以下の温度で溶融還元した実験2、および、含クロム酸化物<2>について指標温度以下の温度で溶融還元した実験6は、T.Cr濃度が高く、還元不良であることがわかった。一方、指標温度以上で実験を行った実験1、3〜5については、T.Cr濃度は低く、還元状態はいずれも良好であった。また、表2の溶融還元温度が1500℃よりも高い条件で行った実験1では、熱効率を向上する効果が小さかった。   Compare the experimental results. The evaluation of the reduced state is evaluated by T. Performed by Cr concentration. Cr concentration is T.C. The range of Cr ≧ 2.0 mass% was judged as poor reduction. Table 3 shows the results of evaluation with poor reduction as x and good reduction as ◯. Further, the mass ratio of the chromium-containing oxide supply amount and the carbonaceous material supply amount per chromium-containing oxide supply amount is shown in Table 3 as an index with the conventional method being 1. In this case, Experiment 1 and Experiment 2 are indicated by an index that is 1 in the case of the conventional method 1, and Experiments 3 to 6 are indicated by an index that is 1 in the case of the conventional method 2. Here, the mass ratio of the chromium-containing oxide supply amount and the carbonaceous material supply amount per chromium-containing oxide supply amount is the same as that of the smelting reduction furnace from when the molten metal of one charge is charged until the smelting is finished. It is a value calculated using the integrated value of the supply amount in the entire smelting period and the integrated value of each supply amount in this period. From the results shown in Table 3, Experiment 2 in which the chromium-containing oxide <1> was smelted and reduced at a temperature below the index temperature and Experiment 6 in which the chrome-containing oxide <2> was smelted and reduced at a temperature below the index temperature were . It was found that the Cr concentration was high and the reduction was poor. On the other hand, with respect to Experiments 1 and 3 to 5 where the experiment was performed at the index temperature or higher, T.W. The Cr concentration was low and the reduction state was good. Further, in Experiment 1 performed under the condition where the melting reduction temperature in Table 2 was higher than 1500 ° C., the effect of improving the thermal efficiency was small.

Figure 0006090606
Figure 0006090606

図2は、本発明例(実験3)と従来例(従来方法2)とにおける、含クロム酸化物の溶融還元における炭材使用量を示すグラフである。図2の結果から、溶融還元温度低下の効果により、同じ含クロム酸化物の溶融還元で使用される昇熱用炭材の使用量が約14%低減したことがわかる。   FIG. 2 is a graph showing the amount of carbon material used in the smelting reduction of the chromium-containing oxide in the present invention example (Experiment 3) and the conventional example (conventional method 2). From the result of FIG. 2, it can be seen that due to the effect of lowering the smelting reduction temperature, the amount of the heating carbon material used in the smelting reduction of the same chromium-containing oxide is reduced by about 14%.

なお、この実験では、浴温度は製錬中の浴内の溶鉄量、スラグ量、及び、溶融還元炉へ投入する炭材の供給量と製錬のために吹き込む酸素量、および、供給する含クロム酸化物量から計算する物質収支および熱収支により、溶融還元温度を計算してほぼ一定に保つように含クロム酸化物の単位時間当たりの供給量を調整し、10分置きにサブランスを浴内に入れ、熱電対を用いて測定して確認した。   In this experiment, the bath temperature includes the amount of molten iron and slag in the bath during smelting, the amount of carbon supplied to the smelting reduction furnace, the amount of oxygen blown for smelting, Based on the mass balance and heat balance calculated from the amount of chromium oxide, the supply amount of chromium-containing oxide per unit time is adjusted so that the smelting reduction temperature can be kept almost constant by calculating the smelting reduction temperature. It was confirmed by measuring with a thermocouple.

<実施例2>
実験5の条件で、転炉型の鉄浴式溶融還元炉の製錬時間内における含クロム酸化物を添加している期間のうちの、浴温度をT3以上、即ち、T1以上またはT2以上とする期間を最後の30%(実験5−2)および25%(実験5−3)の期間として操業を実施した。その他の含クロム酸化物を添加している溶融還元処理の期間においては、浴温度を約1250℃に制御した。
<Example 2>
Under the conditions of Experiment 5, the bath temperature of T3 or higher, that is, T1 or higher or T2 or higher in the period of adding chromium-containing oxide within the smelting time of the converter type iron bath smelting reduction furnace The operation was carried out with the last period being 30% (experiment 5-2) and 25% (experiment 5-3). In the period of the smelting reduction treatment in which other chromium-containing oxides were added, the bath temperature was controlled to about 1250 ° C.

その結果、スラグ中T.Cr濃度が、実験5−2では1.0mass%となり還元良好であったが、実験5−3では1.6mass%となり還元が悪化する傾向が見られた。従って、浴温度をT3以上、即ち、T1以上またはT2以上とする期間は、含クロム酸化物を添加している期間のうちの添加終了前30%以上とすることが望ましいことがわかった。   As a result, T. The Cr concentration was 1.0 mass% in Experiment 5-2 and the reduction was good, but in Experiment 5-3, it was 1.6 mass% and the reduction was apt to be deteriorated. Therefore, it was found that the period for setting the bath temperature to T3 or higher, that is, T1 or higher or T2 or higher is preferably 30% or higher before the end of the addition of the chromium-containing oxide.

本発明の含クロム酸化物の溶融還元方法によれば、含クロム酸化物の組成に応じて適切な溶融還元温度を求めることができ、その結果、使用する含クロム酸化物に応じて、必要な溶融還元温度を簡便に算定することができ、算定した溶融還元温度に基づき溶融還元を実施することで、不必要な温度上昇を抑制することができ、昇熱材コストの削減および耐火物コストの低減を達成することができる。   According to the chrome-containing oxide smelting reduction method of the present invention, an appropriate smelting reduction temperature can be obtained according to the composition of the chrome-containing oxide. The smelting reduction temperature can be calculated easily, and by performing smelting reduction based on the calculated smelting reduction temperature, an unnecessary temperature rise can be suppressed, and the heating material cost can be reduced and the refractory cost can be reduced. Reduction can be achieved.

1 鉄浴型溶融還元炉設備
2 炉本体
3 上吹きランス
4 鉱石投入ランス
5 鉄皮
6 耐火物
7 底吹き羽口
8 酸化性ガス供給管
9 鉱石搬送用管
10 溶湯
11 スラグ
12 鉱石
13 酸化性ガス
DESCRIPTION OF SYMBOLS 1 Iron bath type smelting reduction furnace equipment 2 Furnace body 3 Top blowing lance 4 Ore input lance 5 Iron skin 6 Refractory 7 Bottom blowing tuyere 8 Oxidizing gas supply pipe 9 Ore conveying pipe 10 Molten metal 11 Slag 12 Ore 13 Oxidizing property gas

Claims (7)

溶融還元炉を用いて含クロム酸化物から含クロム溶銑を溶製する際の溶融還元方法において、溶融還元炉内の浴温度を、下記(式1)による計算溶融還元温度T1および下記(式2)による計算溶融還元温度T2の何れか高くない方以上とし、かつ、1500℃未満にすることを特徴とする含クロム酸化物の溶融還元方法。

(式1)
T1(℃)=8.58×%Cr+1137
(式2)
T2(℃)=8.58×(%MgO×Mc/Mm+%FeO×Mc/Mf)+1137
ここで、%Cr:含クロム酸化物中のCrの質量比率(mass%)、
%MgO:含クロム酸化物中のMgOの質量比率(mass%)、
%FeO:含クロム酸化物中のFeOの質量比率(mass%)、
Mc:Crの分子量、
Mm:MgOの分子量、
Mf:FeOの分子量、とする。
In the smelting reduction method in which the chrome-containing hot metal is melted from the chrome-containing oxide using a smelting reduction furnace, the bath temperature in the smelting reduction furnace is calculated by the following formula (Equation 1), the calculated smelting reduction temperature T1 and the following (Equation 2 The smelting reduction method for chromium-containing oxides, characterized in that the calculated smelting reduction temperature T2 is not higher than the calculated smelting reduction temperature T2 and is lower than 1500 ° C.
(Formula 1)
T1 (° C.) = 8.58 ×% Cr 2 O 3 +1137
(Formula 2)
T2 (° C.) = 8.58 × (% MgO × Mc / Mm +% FeO × Mc / Mf) +1137
Here,% Cr 2 O 3 : mass ratio (mass%) of Cr 2 O 3 in the chromium-containing oxide,
% MgO: mass ratio (mass%) of MgO in the chromium-containing oxide,
% FeO: mass ratio of FeO in the chromium-containing oxide (mass%),
Mc: Molecular weight of Cr 2 O 3 ,
Mm: MgO molecular weight,
Mf: The molecular weight of FeO.
溶融還元炉を用いて含クロム酸化物から含クロム溶銑を溶製する際の溶融還元方法において、該含クロム酸化物のCr、MgO、FeOの質量比(mass%)を求め、求めたCr、MgO、FeOの質量比から下記(式4)によりAを算出し、Aから下記(式5)でXを求め、求めたXを使用して下記(式3)に基づき計算溶融還元温度T3を求め、溶融還元炉内の浴温度を計算溶融還元温度T3以上かつ1500℃未満にすることを特徴とする含クロム酸化物の溶融還元方法。

(式3)
T3(℃)=8.58×X+1137
(式4)
A=(%MgO×Mc/Mm+%FeO×Mc/Mf)
ここで、%MgO:含クロム酸化物中のMgOの質量比率(mass%)、
%FeO:含クロム酸化物中のFeOの質量比率(mass%)、
Mc:Crの分子量、
Mm:MgOの分子量、
Mf:FeOの分子量、とする。
(式5)
i)A≦%Crの場合、
X=Aであり、
ii)A>%Crの場合、
X=%Cr、とし、
ここで、%Cr:含クロム酸化物中のCrの質量比率(mass%)とする。
In a smelting reduction method when producing a chrome-containing hot metal from a chrome-containing oxide using a smelting reduction furnace, the mass ratio (mass%) of Cr 2 O 3 , MgO, and FeO of the chromium-containing oxide is obtained and determined. From the mass ratio of Cr 2 O 3 , MgO, and FeO, A is calculated by the following (formula 4), X is calculated from the following (formula 5), and based on the following (formula 3) using the obtained X. A method for smelting reduction of chromium-containing oxides, characterized in that a calculated smelting reduction temperature T3 is obtained, and a bath temperature in the smelting reduction furnace is set to be equal to or higher than the calculated smelting reduction temperature T3 and lower than 1500 ° C.
(Formula 3)
T3 (° C.) = 8.58 × X + 1137
(Formula 4)
A = (% MgO × Mc / Mm +% FeO × Mc / Mf)
Here,% MgO: the mass ratio (mass%) of MgO in the chromium-containing oxide,
% FeO: mass ratio of FeO in the chromium-containing oxide (mass%),
Mc: Molecular weight of Cr 2 O 3 ,
Mm: MgO molecular weight,
Mf: The molecular weight of FeO.
(Formula 5)
i) In the case of A ≦% Cr 2 O 3
X = A,
ii) if A>% Cr 2 O 3
X =% Cr 2 O 3 ,
Here,% Cr 2 O 3: a mass ratio of Cr 2 O 3 in the chrome-containing oxide (mass%).
溶融還元炉の製錬時間内における含クロム酸化物を添加している期間のうちの添加終了前30%に相当する期間の浴温度を、前記計算溶融還元温度T1および前記計算溶融還元温度T2の何れか高くない方以上とすることを特徴とする請求項1に記載の含クロム酸化物の溶融還元方法。 The bath temperature of the period corresponding to 30% before the end of the addition of the chromium-containing oxide within the smelting time of the smelting reduction furnace is set to the calculated smelting reduction temperature T1 and the calculated smelting reduction temperature T2 . The method for smelting reduction of chromium-containing oxide according to claim 1, characterized in that any one of them is not higher . 溶融還元炉の製錬時間内における含クロム酸化物を添加している期間のうちの添加終了前30%に相当する期間の浴温度を、前記計算溶融還元温度T3以上とすることを特徴とする請求項2に記載の含クロム酸化物の溶融還元方法。   The bath temperature in a period corresponding to 30% before the end of the addition of the chromium-containing oxide within the smelting time of the smelting reduction furnace is set to the calculated smelting reduction temperature T3 or more. The method for melting and reducing the chromium-containing oxide according to claim 2. 溶融還元炉の製錬時間内における含クロム酸化物を添加している期間中の浴温度を、(T1+50℃)以下かつ(T2+50℃)以下とすることを特徴とする請求項1または3に記載の含クロム酸化物の溶融還元方法。   4. The bath temperature during the addition of the chromium-containing oxide within the smelting time of the smelting reduction furnace is set to (T1 + 50 ° C.) or less and (T2 + 50 ° C.) or less. A method for melting and reducing chromium-containing oxides. 溶融還元炉の製錬時間内における含クロム酸化物を添加している期間中の浴温度を、(T3+50℃)以下とすることを特徴とする請求項2または4に記載の含クロム酸化物の溶融還元方法。   The bath temperature during the period during which the chromium-containing oxide is added within the smelting time of the smelting reduction furnace is set to (T3 + 50 ° C) or less, and the chromium-containing oxide according to claim 2 or 4, Melting reduction method. 前記含クロム酸化物中のT.Cr質量比率が0.5mass%以上であることを特徴とする請求項1ないし6のうち1に記載の含クロム酸化物の溶融還元方法。   T. in the chromium-containing oxide. The method for smelting reduction of a chromium-containing oxide according to any one of claims 1 to 6, wherein the Cr mass ratio is 0.5 mass% or more.
JP2015059379A 2014-03-24 2015-03-23 Method for melting reduction of chromium-containing oxides Active JP6090606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015059379A JP6090606B2 (en) 2014-03-24 2015-03-23 Method for melting reduction of chromium-containing oxides

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014059718 2014-03-24
JP2014059718 2014-03-24
JP2015059379A JP6090606B2 (en) 2014-03-24 2015-03-23 Method for melting reduction of chromium-containing oxides

Publications (2)

Publication Number Publication Date
JP2015193928A JP2015193928A (en) 2015-11-05
JP6090606B2 true JP6090606B2 (en) 2017-03-08

Family

ID=54433205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015059379A Active JP6090606B2 (en) 2014-03-24 2015-03-23 Method for melting reduction of chromium-containing oxides

Country Status (1)

Country Link
JP (1) JP6090606B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166910A (en) * 1985-01-18 1986-07-28 Nippon Steel Corp Production of chromium-containing alloy
JPS63190110A (en) * 1987-01-31 1988-08-05 Nippon Steel Corp Method for reducing chromium ore in molten iron pretreating process
JPS6468414A (en) * 1987-09-10 1989-03-14 Nippon Steel Corp Manufacture of chromium steel by using highly reduced chromitite

Also Published As

Publication number Publication date
JP2015193928A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP5541423B1 (en) Steelmaking slag reduction treatment device and steelmaking slag reduction treatment system
JP2014519551A (en) Method and control system for controlling a melting process
JP5774092B2 (en) Direct smelting method
JP6314484B2 (en) Hot metal dephosphorization method
JP2010189762A (en) Process for manufacturing granular iron
JP2011153359A (en) Method for removing impurity in molten cast iron and cast iron raw material
JP2010007180A (en) Method for producing pig iron by using iron ore with high content of zinc
JP7028365B2 (en) Method for manufacturing chromium-containing molten iron
Lee et al. Effect of hot metal utilization on the steelmaking process parameters in the electric arc furnace
JP2013060659A (en) Method for decarburizing and refining molten iron in converter
JP6090606B2 (en) Method for melting reduction of chromium-containing oxides
KR102359738B1 (en) Molten Steel Manufacturing Method
JP2013001938A (en) Method for operating electric furnace
JP5928329B2 (en) Smelting reduction smelting method
JP6531918B2 (en) Blast furnace
JP4484717B2 (en) How to operate steelmaking equipment
JP2016132809A (en) Dephosphorization method for molten iron
KR20160048409A (en) Method for supplying the oxygen and carbon material in electric furnace
JP2015137397A (en) Recycling method for steelmaking slag
US20230151448A1 (en) Method for detecting fluctuation of solidified layer and method for operating blast furnace
JP2015010267A (en) Method and apparatus for blowing control
JP5723304B2 (en) How to operate the rotary kiln
Abdelwahed et al. Effect of Direct Reduced Iron on Ferrous Oxide Capacity of Slag in Electric Arc Furnace.
JP4123034B2 (en) Solid metal source melting method and smelting reduction method using converter
JP2013133536A (en) Method for producing molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170124

R150 Certificate of patent or registration of utility model

Ref document number: 6090606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250