JP2013001938A - Method for operating electric furnace - Google Patents

Method for operating electric furnace Download PDF

Info

Publication number
JP2013001938A
JP2013001938A JP2011133077A JP2011133077A JP2013001938A JP 2013001938 A JP2013001938 A JP 2013001938A JP 2011133077 A JP2011133077 A JP 2011133077A JP 2011133077 A JP2011133077 A JP 2011133077A JP 2013001938 A JP2013001938 A JP 2013001938A
Authority
JP
Japan
Prior art keywords
slag
electric furnace
current
electrode
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011133077A
Other languages
Japanese (ja)
Other versions
JP5555921B2 (en
Inventor
Takashi Ichinomiya
崇 一ノ宮
Masahiro Yamaguchi
允裕 山口
Masaru Takebayashi
優 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyuga Smelting Co Ltd
Original Assignee
Hyuga Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyuga Smelting Co Ltd filed Critical Hyuga Smelting Co Ltd
Priority to JP2011133077A priority Critical patent/JP5555921B2/en
Publication of JP2013001938A publication Critical patent/JP2013001938A/en
Application granted granted Critical
Publication of JP5555921B2 publication Critical patent/JP5555921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To provide a method for operating an electric furnace with which an effective operation can be applied by adjusting a fluidity of slag with a simpler method than the conventional one.SOLUTION: In the method for operating the electric furnace 10 energized by applying three-phase alternating current into three electrodes 11, suspended in the electric furnace 10, the compositions of the slag 13 produced in the electric furnace 10 are periodically measured, and according to the measured compositions of the slag, the electrodes 11 are risen or lowered to control the current applied to the slag 13.

Description

本発明は、電気炉の操業方法に関し、より詳しくは、スラグの組成が炉況に及ばす影響の大きいフェロニッケル製錬においてスラグの流動性を調整して効率的な操業を可能にする電気炉の操業方法に関する。   The present invention relates to a method for operating an electric furnace, and more particularly, an electric furnace that enables efficient operation by adjusting the fluidity of slag in ferronickel smelting, in which the composition of the slag has a large influence on the furnace condition. Related to the operation method.

従来、鉄鋼及び非鉄金属製錬に用いる電気炉では、原料の鉱石の熔融に伴って産出されるスラグの流動性を調整することが、生産効率上、及び安全上において非常に重要な課題であった。   Conventionally, in electric furnaces used for the smelting of steel and non-ferrous metals, it has been a very important issue in terms of production efficiency and safety to adjust the fluidity of the slag produced as the raw material ore melts. It was.

具体例として、フェロニッケル製錬に用いる電気炉の一般的な操業方法について、三相交流電極式電気炉を用いた場合について説明する。まず、電気炉においては、その底部にメタル層が存在し、その上にスラグ層が存在する。この電気炉では、電気炉内のスラグ層上に鉱石が装入され、電気炉内に垂下させることができる3本の電極を用いることにより、電気炉内を加熱して鉱石を還元熔解する。   As a specific example, a general operation method of an electric furnace used for ferronickel smelting will be described using a three-phase AC electrode type electric furnace. First, in an electric furnace, a metal layer is present at the bottom, and a slag layer is present thereon. In this electric furnace, ore is charged on the slag layer in the electric furnace, and by using three electrodes that can be suspended in the electric furnace, the electric furnace is heated to reduce and melt the ore.

ここで、従来の三相交流電極式電気炉による鉱石の還元熔解においては、以下の2通りの操業方法が用いられてきた。
(1)電極をスラグ層まで浸漬させて、電極からメタル及びスラグに直接通電させ、抵抗発熱によりスラグを介して間接的に鉱石を熔解させる方法(高電流低電圧操業方法)。
(2)スラグ層と電極にある程度の距離を設けて、電極からアークを発生させ、アークの熱により直接的に鉱石を熔解させる方法(低電流高電圧操業方法)。
Here, the following two operation methods have been used in the reductive melting of ore with a conventional three-phase AC electrode type electric furnace.
(1) A method in which an electrode is immersed in a slag layer, a metal and slag are directly energized from the electrode, and ore is melted indirectly through slag by resistance heat generation (high current low voltage operation method).
(2) A method in which a certain distance is provided between the slag layer and the electrode, an arc is generated from the electrode, and the ore is melted directly by the heat of the arc (low current high voltage operation method).

しかしながら、上記(1)の操業方法では、熱を与えられたスラグの熱対流で炉壁付近のスラグの温度も上昇し、その結果、スラグホール付近におけるスラグの流動性が過剰となってしまう。また、炉壁煉瓦を熔損させるという問題がある。一方、(2)の操業方法では、アークの熱で直接鉱石を熔解させるため、炉壁付近のスラグ温度は上昇し難いものの、電気炉側壁のコーチングが厚くなることがあり、出滓や出銑に支障を来たすという問題がある。   However, in the operation method (1), the temperature of the slag near the furnace wall also rises due to the heat convection of the slag to which heat is applied, and as a result, the fluidity of the slag near the slag hole becomes excessive. There is also a problem of melting the furnace wall bricks. On the other hand, in the operation method (2), since the ore is directly melted by the heat of the arc, the slag temperature near the furnace wall is difficult to rise, but the coating on the side wall of the electric furnace may become thick. There is a problem of causing trouble.

また、フェロニッケル製錬においては、原料組成に起因するスラグ組成が炉況に及ぼす影響が大きい。一方で、原料組成は、原料条件や経済市況の影響によりコントロールできないことがある。スラグは通常1500〜1600℃で抜き出しが行われるが、原料組成に起因するスラグ組成が適正化できないことが原因となり、スラグの融点が上昇した場合、スラグの抜き出しが困難となる。この場合、炉況の悪化により操業度を落とさざるを得ない可能性も生じる。逆に、スラグの流動性が過剰な場合は、抜き出しの経路でスラグ樋がオーバーフローしたりして、水蒸気爆発を含む安全面で大きなリスクを有することとなる。   In ferronickel smelting, the slag composition resulting from the raw material composition has a great influence on the furnace condition. On the other hand, the raw material composition may not be controlled due to the influence of raw material conditions and economic market conditions. The slag is usually extracted at 1500 to 1600 ° C. However, the slag composition resulting from the raw material composition cannot be optimized, and when the melting point of the slag rises, it becomes difficult to extract the slag. In this case, there is a possibility that the operating rate must be reduced due to the deterioration of the furnace condition. On the other hand, if the slag fluidity is excessive, the slag slag overflows in the extraction route, and there is a great risk in terms of safety including a steam explosion.

このような電気炉の操業において、例えば特許文献1には、スラグ浴抵抗により電流を調整し、スラグ組成の変動があってもアーク抵抗を一定に制御して安定操業を可能とする操業方法が提案されている。しかしながら、この特許文献1に記載の技術では、スラグ浴抵抗を算出するために必要となるスラグ層の厚さは、電気炉を停電して測定する必要がある。そのため、頻繁に測定することができず、スラグ組成に対して操業の対応が遅れる可能性がある。また、スラグ組成から炉低抗を算出して電流を調整するという間接的な方法であり、大変手間がかかる。   In the operation of such an electric furnace, for example, Patent Document 1 discloses an operation method in which the current is adjusted by the slag bath resistance, and the arc resistance is controlled to be constant and stable operation is possible even if the slag composition varies. Proposed. However, in the technique described in Patent Document 1, it is necessary to measure the thickness of the slag layer necessary for calculating the slag bath resistance by powering off the electric furnace. Therefore, it cannot measure frequently and a response | compatibility of operation may be overdue with respect to a slag composition. Moreover, it is an indirect method of adjusting the current by calculating the furnace resistance from the slag composition, which takes a lot of work.

また同様に、特許文献2には、スラグ浴抵抗を近似式より算出して電流を調整し、コーチング厚さを一定に維持して電気炉内の耐火物を保護する操業方法が提案されている。しかしながら、この特許文献2に記載の技術においても、スラグ組成から炉抵抗を算出して電流を調整するという間接的な方法であり、大変手間がかかる。電気炉からのスラグの抜き出しは随時行っていることから、現場作業を低減させるためには、より簡便で効率的な方法が要請されている。   Similarly, Patent Document 2 proposes an operation method in which the slag bath resistance is calculated from an approximate expression, the current is adjusted, the coating thickness is kept constant, and the refractory in the electric furnace is protected. . However, even the technique described in Patent Document 2 is an indirect method of adjusting the current by calculating the furnace resistance from the slag composition, which is very troublesome. Since the extraction of slag from the electric furnace is performed at any time, a simpler and more efficient method is required to reduce field work.

特開2004−68048号公報JP 2004-68048 A 特開2011−17032号公報JP 2011-17032 A

本発明は、このような実情に鑑みて提案されたものであり、従来に比してより簡便な方法により、スラグの流動性を調整して効率的な操業を行うことができる電気炉の操業方法を提供することを目的とする。   The present invention has been proposed in view of such circumstances, and the operation of an electric furnace capable of performing efficient operation by adjusting the fluidity of the slag by a simpler method than conventional methods. It aims to provide a method.

本件発明者らは、上述した目的を達成するために鋭意検討を重ねた結果、スラグ組成からスラグの流動性を把握し、電極の昇降によりスラグに対して通電される電流を制御してスラグの流動性を調整することによって、効率的な操業が実現できることを見出し、本発明を完成させた。   As a result of intensive studies in order to achieve the above-described object, the inventors of the present invention grasped the slag fluidity from the slag composition and controlled the current supplied to the slag by raising and lowering the electrodes to control the slag. The present inventors have found that an efficient operation can be realized by adjusting the fluidity, thereby completing the present invention.

すなわち、本発明に係る電気炉の操業方法は、電気炉内に垂下した3本の電極に三相交流を印加して通電する電気炉の操業方法であって、前記電気炉内で生成するスラグの組成を定期的に測定し、測定した該スラグの組成に応じて前記電極を昇降させ、該スラグに対して通電させる電流を制御することを特徴とする。   That is, the electric furnace operating method according to the present invention is an electric furnace operating method in which a three-phase alternating current is applied to three electrodes suspended in the electric furnace to energize the slag generated in the electric furnace. The composition is periodically measured, and the electrode is moved up and down according to the measured composition of the slag, and the current supplied to the slag is controlled.

本発明によれば、簡便な方法によりスラグの流動性を調整することができるので、スラグの抜き出しを容易にするとともに安全性を向上させ、効率的な操業ができる。   According to the present invention, the fluidity of the slag can be adjusted by a simple method, so that the slag can be easily extracted and the safety can be improved, so that efficient operation can be performed.

三相交流電極式電気炉の高電流低電圧操業時の状態を示す模式図である。It is a schematic diagram which shows the state at the time of the high current low voltage operation of a three-phase alternating current electrode type electric furnace. 三相交流電極式電気炉の低電流高電圧操業時の状態を示す模式図である。It is a schematic diagram which shows the state at the time of the low current high voltage operation of a three-phase alternating current electrode type electric furnace. 電気炉操業の時間経過に伴うスラグ塩基度指数に応じて設定2次電流を増減させたときの各値に推移を示すグラフである。It is a graph which shows transition to each value when setting secondary current is increased / decreased according to the slag basicity index | exponent accompanying the time passage of electric furnace operation. 電気炉操業の時間経過に伴うスラグ塩基度指数(A)、スラグ鉄品位(B)、スラグ量適正値からの差(C)のそれぞれの推移を示すグラフである。It is a graph which shows each transition of the difference (C) from the slag basicity index (A), slag iron quality (B), and slag amount appropriate value with time progress of electric furnace operation.

以下、本発明を適用した具体的な実施の形態(以下、「本実施の形態」という。)について、図面を参照しながら詳細に説明する。なお、本発明に係る電気炉の操業方法は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない限りにおいて適宜変更することができる。   Hereinafter, a specific embodiment to which the present invention is applied (hereinafter referred to as “the present embodiment”) will be described in detail with reference to the drawings. In addition, the operating method of the electric furnace which concerns on this invention is not limited to the following embodiment, Unless it changes the summary of this invention, it can change suitably.

本実施の形態に係る電気炉の操業方法は、電気炉内に垂下した3本の電極に三相交流を印加して通電する電気炉の操業方法であって、スラグの組成を定期的に測定し、測定したそのスラグの組成に応じてスラグに対して通電させる電流を制御する。特に、この電気炉の操業方法は、フェロニッケル製錬用として好適に用いることができる。   The electric furnace operation method according to the present embodiment is an electric furnace operation method in which a three-phase alternating current is applied to three electrodes suspended in the electric furnace and energized, and the slag composition is measured periodically. And the electric current supplied with respect to slag is controlled according to the composition of the measured slag. In particular, this electric furnace operating method can be suitably used for ferronickel smelting.

具体的に、スラグに対して通電させる電流の制御方法としては、電気炉内に垂下した3本の電極を昇降させて、図1及び図2に示すスラグに対して通電される電流の異なる操業方法を使い分けることによって行う。まず、図1及び図2に示す操業方法についてそれぞれ説明する。   Specifically, as a method of controlling the current to be supplied to the slag, the three electrodes suspended in the electric furnace are moved up and down to operate different currents to be supplied to the slag shown in FIGS. This is done by using different methods. First, the operation methods shown in FIGS. 1 and 2 will be described.

電気炉10は、図1及び図2に示されるように、その内部が耐火物により構成され、電気炉10内部に溶融状態のメタル12層、溶融状態のスラグ13層が存在し、スラグ13層の表面を鉱石(焼鉱)14が覆っている。鉱石14は、鉱石シュートから電気炉10内のスラグ13層上部に装入される。また、電気炉10には、3本の電極11(例えば炭素電極)が垂下されている。この電気炉10では、3相交流電流を印加して3本の電極11をスラグ13層まで浸漬させ、電極11からメタル12及びスラグ13に直接通電させて抵抗発熱する方法(高電流低電圧操業方法)、又は、3本の電極11からアーク17を発生させてアーク17の熱により直接的に鉱石を熔解させる方法(低電流高電圧操業方法)により、スラグ温度及びメタル温度をそれぞれ所定の温度にし、これにより鉱石14を還元溶融することによってメタル12とスラグ13とを生成する。生成したメタル12とスラグ13は、比重差によってメタル12層とスラグ13層とに分離される。なお、生成されたメタル12はメタルホール15を介して抜き出され、またスラグ13はスラグホール16を介して抜き出される。   As shown in FIG. 1 and FIG. 2, the electric furnace 10 is composed of a refractory, and a molten metal 12 layer and a molten slag 13 layer exist in the electric furnace 10, and a slag 13 layer exists. An ore (calcined ore) 14 covers the surface of. The ore 14 is charged into the upper part of the slag 13 layer in the electric furnace 10 from the ore chute. In addition, three electrodes 11 (for example, carbon electrodes) are suspended from the electric furnace 10. In this electric furnace 10, a three-phase alternating current is applied to immerse the three electrodes 11 to the slag 13 layer, and a resistance heat is generated by directly energizing the metal 12 and the slag 13 from the electrodes 11 (high current low voltage operation). Method), or by generating arc 17 from three electrodes 11 and melting ore directly by the heat of arc 17 (low current high voltage operation method), the slag temperature and metal temperature are set to predetermined temperatures, respectively. Thus, the metal 12 and the slag 13 are generated by reducing and melting the ore 14. The generated metal 12 and slag 13 are separated into a metal 12 layer and a slag 13 layer due to a specific gravity difference. The generated metal 12 is extracted through a metal hole 15, and the slag 13 is extracted through a slag hole 16.

より具体的に、図1に示す操業方法は、高電流低電圧操業であり、電気炉10内に垂下した3本の電極11の先端をスラグ13層に浸漬させて電極11からスラグ13及びメタル12に直接電流を通電させ、抵抗発熱によってスラグ13を介して間接的に鉱石14を熔解させる。この操業方法の場合には、スラグ13に直接通電されるので、スラグ13の流動性を高めることができる。したがって、スラグ13の流動性が悪化した場合には、この操業方法を行うことによってスラグの流動性を高め、スラグホール16を介したスラグ13の抜き出しを良好にすることができる。なお、この操業方法では、炉壁に付着したコーチング層の厚さが薄くなる方向に作用する。   More specifically, the operation method shown in FIG. 1 is a high-current low-voltage operation, and the tips of three electrodes 11 suspended in the electric furnace 10 are immersed in a slag 13 layer so that the slag 13 and the metal are formed from the electrode 11. An electric current is directly passed through 12, and ore 14 is melted indirectly through slag 13 by resistance heating. In the case of this operation method, since the slag 13 is directly energized, the fluidity of the slag 13 can be improved. Therefore, when the fluidity of the slag 13 is deteriorated, the fluidity of the slag can be improved by performing this operation method, and the slag 13 can be satisfactorily extracted through the slag hole 16. In this operation method, the thickness of the coating layer attached to the furnace wall is reduced.

一方で、図2に示す操業方法は、低電流高電圧操業であり、電気炉10内に垂下した3本の電極11の先端をスラグ13層からある程度距離を設けて電極11からアーク17を発生させ、アーク熱により直接的に鉱石14を熔解させる。この操業方法の場合には、スラグ13に直接通電されないのでスラグ13の温度上昇を抑制することができる。したがって、スラグ13の流動性が過剰となってオーバーフローするような場合には、この操業方法を行うことによってスラグ13の流動性を低くし、適度な流動性とすることができる。なお、この操業方法では、炉壁に付着したコーチング層の厚さが厚くなる方向に作用する。   On the other hand, the operation method shown in FIG. 2 is a low-current high-voltage operation, and the arcs 17 are generated from the electrodes 11 by providing a certain distance from the slag 13 layers at the tips of the three electrodes 11 suspended in the electric furnace 10. And ore 14 is melted directly by arc heat. In the case of this operation method, since the slag 13 is not directly energized, the temperature rise of the slag 13 can be suppressed. Therefore, when the fluidity of the slag 13 is excessive and overflows, the fluidity of the slag 13 can be lowered and the fluidity can be made moderate by performing this operation method. Note that this operation method acts in the direction in which the thickness of the coating layer attached to the furnace wall increases.

このように、図1及び図2に示される操業方法は、スラグ13に対して通電される電流が異なるものであり、これら操業方法の使い分けることによってスラグ13に対する電流を制御して、スラグ13の流動性を調整することができる。そしてこのとき、本実施の形態に係る電気炉の操業方法においては、その操業方法の使い分けをスラグ13の組成に応じて決定する。つまり、スラグ13の組成を定期的に測定し、測定したスラグ13の組成に応じて電気炉10内に垂下した3本の電極11を昇降させることによって上述した操業方法を使い分け、スラグ13に対して通電させる電流(設定2次電流)を制御する。   As described above, the operation method shown in FIG. 1 and FIG. 2 has different currents applied to the slag 13, and the current for the slag 13 is controlled by properly using these operation methods. The fluidity can be adjusted. At this time, in the operation method of the electric furnace according to the present embodiment, the proper use of the operation method is determined according to the composition of the slag 13. That is, the composition of the slag 13 is periodically measured, and the above-described operation methods are selectively used by raising and lowering the three electrodes 11 suspended in the electric furnace 10 according to the measured composition of the slag 13. To control the current to be energized (set secondary current).

特に、フェロニッケル製錬においては、スラグ13の組成が炉況に及ぼす影響が大きい。したがって、スラグ組成を測定し、その測定したスラグ組成に応じてスラグ13に対して通電させる電流を制御することによって、効果的にスラグの流動性を調整することができ、効率的な操業を行うことができる。   In particular, in ferronickel smelting, the influence of the composition of the slag 13 on the furnace condition is great. Therefore, by measuring the slag composition and controlling the current to be supplied to the slag 13 according to the measured slag composition, the fluidity of the slag can be effectively adjusted and efficient operation is performed. be able to.

スラグ13の組成は、電気炉操業中において一定時間毎にスラグホール16を介してスラグ13の抜き出し、その抜き出したスラグ13により定期的に分析する。スラグ13の組成分析対象としては、例えばフェロニッケル製錬においては、Ni、Fe、MgO,SiO、CaO、Al、S、P、Cr(全て質量%)等が代表的である。スラグ13の組成分析は、特に限定されないが、例えば蛍光X線分析装置等を用いて行う。 The composition of the slag 13 is extracted through the slag hole 16 at regular intervals during the operation of the electric furnace, and is periodically analyzed by the extracted slag 13. For example, Ni, Fe, MgO, SiO 2 , CaO, Al 2 O 3 , S, P, Cr (all by mass%) and the like are representative as slag 13 composition analysis targets. The composition analysis of the slag 13 is not particularly limited, but is performed using, for example, a fluorescent X-ray analyzer.

本実施の形態においては、このスラグ13の組成分析結果に基づいて、特に、スラグ塩基度、Fe品位等のスラグ13の融点を大きく左右する要素を算出し、その算出値に応じて3本の電極11を昇降させて電流を制御する。また、長期的な鉱石調合組成の推移等も考慮するようにしてもよい。   In the present embodiment, on the basis of the composition analysis result of the slag 13, in particular, elements that greatly affect the melting point of the slag 13 such as slag basicity and Fe quality are calculated, and three elements are calculated according to the calculated value. The electrode 11 is moved up and down to control the current. Moreover, you may make it consider the transition of a long-term ore compounding composition, etc.

ここで、スラグ塩基度とは、スラグ成分中のMgO質量%をSiO質量%で除した数値であり、スラグ13の融点、粘性等に影響するものである。 Here, the slag basicity is a numerical value obtained by dividing MgO mass% in the slag component by SiO 2 mass%, and affects the melting point, viscosity, etc. of the slag 13.

具体的に、例えば、スラグ塩基度、Fe(質量%)、Al(質量%)が上昇している状態や長期的な鉱石調合でスラグ塩基度が高くなっている状態を想定する。この状態においては、スラグ13の融点が上昇してスラグ13の流動性が悪化し、スラグホール16からのスラグ13の抜き出しが困難となる。 Specifically, for example, a state in which slag basicity, Fe (mass%), Al 2 O 3 (mass%) is rising or a state in which slag basicity is high due to long-term ore blending is assumed. In this state, the melting point of the slag 13 rises, the fluidity of the slag 13 deteriorates, and it becomes difficult to extract the slag 13 from the slag hole 16.

したがって、このような場合には、3本の電極11を降下させてその電極11の先端をスラグ13層に浸漬させるようにしてスラグ13に対して通電する電流を高めるように制御する。すなわち、図1に示した高電流低電圧操業を行う。このようにして電極11から電流をスラグ13に直接通電させることにより、スラグ13の温度を上昇させてスラグ13全体の流動性を改善させることができる。   Therefore, in such a case, control is performed so as to increase the current supplied to the slag 13 by lowering the three electrodes 11 and immersing the tip of the electrode 11 in the slag 13 layer. That is, the high current low voltage operation shown in FIG. 1 is performed. In this way, by directly passing current from the electrode 11 to the slag 13, the temperature of the slag 13 can be raised and the fluidity of the entire slag 13 can be improved.

一方、スラグ塩基度、Fe(質量%)、Al(質量%)が低下している状態や長期的な鉱石調合でスラグ塩基度が低くなっている状態では、スラグ13の融点が低下してスラグ13の流動性が過剰となる。スラグ13の流動性が過剰であると、スラグ13の抜き出し経路に設けたスラグ樋がオーバーフローして水蒸気爆発の可能性が生じる。 On the other hand, in the state where slag basicity, Fe (mass%), Al 2 O 3 (mass%) are reduced, or in the state where slag basicity is low due to long-term ore preparation, the melting point of slag 13 is lowered. As a result, the fluidity of the slag 13 becomes excessive. If the fluidity of the slag 13 is excessive, the slag soot provided in the extraction path of the slag 13 overflows and the possibility of a steam explosion occurs.

したがって、このような場合には、3本の電極11を上昇させてその電極11の先端をスラグ13層には浸漬させないようにし、スラグ13に対して通電する電流を低くするように制御する。すなわち、図2に示した低電流高電圧操業を行う。この操業では、アーク熱により、スラグ13の電極下部は局部的に高温となっているものの、電極11の先端をスラグ13に浸漬させていないため側壁近傍のスラグ13の温度は上昇し難くなり、それによりスラグ13全体の流動性を低くして出滓速度を緩和でき、安全性の高い抜き出しを行うことができる。   Therefore, in such a case, the three electrodes 11 are raised so that the tip of the electrode 11 is not immersed in the slag 13 layer, and the current supplied to the slag 13 is controlled to be low. That is, the low current high voltage operation shown in FIG. 2 is performed. In this operation, although the electrode lower part of the slag 13 is locally hot due to the arc heat, the temperature of the slag 13 in the vicinity of the side wall is unlikely to rise because the tip of the electrode 11 is not immersed in the slag 13. Thereby, the fluidity | liquidity of the whole slag 13 can be made low, a tapping speed can be eased, and extraction with high safety | security can be performed.

図3は、フェロニッケル製錬の電気炉操業開始からの時間経過に伴うスラグ塩基度の算出値と、その算出値に応じて制御した電流(設定2次電流)の関係を示すグラフである。スラグ塩基度が高くなると、スラグ13の流動性が悪化してスラグ13の抜き出しが困難となるため、図3に示すように、スラグ塩基度の上昇に応じて3本の電極11を降下させて電極11とスラグ13層とを近接させ、スラグ13に対して通電させる電流を高くするように制御する。   FIG. 3 is a graph showing the relationship between the calculated value of slag basicity with the passage of time from the start of electric furnace operation of ferronickel smelting and the current (set secondary current) controlled according to the calculated value. When the slag basicity increases, the fluidity of the slag 13 deteriorates and it becomes difficult to extract the slag 13, so as shown in FIG. 3, the three electrodes 11 are lowered as the slag basicity increases. Control is performed such that the electrode 11 and the slag 13 layer are brought close to each other, and the current to be supplied to the slag 13 is increased.

3本の電極11の上昇及び降下の調整は、上述した図1及び図2のように電極11の先端をスラグ13の層に浸漬させるか否かの2通りのみの調整に限られず、スラグ塩基度等に応じて段階的に上昇又は降下させるようにすればよい。すなわち、電極11の先端とスラグ13層との距離によってスラグ13に対して通電させる電流を制御することができるため、例えばスラグ塩基度が高くなった場合には、それに応じてスラグ13に対して電極11を徐々に(段階的に)浸漬させることによって、スラグ13に対して通電させる電流を高めるように制御する。また、反対に、スラグ塩基度が低くなった場合には、それに応じてスラグ13層(スラグ13表面)と電極11との距離を徐々に(段階的に)離間させていくことによって、スラグ13に対して通電させる電流を低くするように制御する。   The adjustment of the rising and lowering of the three electrodes 11 is not limited to only two adjustments of whether or not the tip of the electrode 11 is immersed in the layer of the slag 13 as shown in FIG. 1 and FIG. What is necessary is just to make it raise or lower in steps according to a degree etc. That is, since the current supplied to the slag 13 can be controlled by the distance between the tip of the electrode 11 and the slag 13 layer, for example, when the slag basicity increases, By gradually immersing the electrode 11 (in a stepwise manner), control is performed so as to increase the current applied to the slag 13. On the other hand, when the slag basicity becomes low, the distance between the slag 13 layer (the surface of the slag 13) and the electrode 11 is gradually (stepwise) separated accordingly, so that the slag 13 Is controlled so as to reduce the current to be supplied.

さらに、スラグ組成に応じてスラグ13の流動性が悪化していると判断した場合には、電極11の降下による電流制御に加え、還元剤を添加してスラグ13中に含まれる鉄品位を下げるようにしてもよい。スラグ13中の鉄品位が多い場合、スラグ13の融点が高くなる。そのため、還元剤を添加して鉄品位を下げることによってスラグ13の融点を低下させることができ、スラグ13の流動性をより効率的に高めることができる。なお、還元剤としては、特に限定されず、例えば石炭、コークス、木材等を挙げることができ、これらの投入時の取扱いを考慮すれば、粒状石炭、粒状コークス、木質ペレット等として用いることが好ましい。   Further, when it is determined that the fluidity of the slag 13 is deteriorated in accordance with the slag composition, in addition to the current control by the lowering of the electrode 11, a reducing agent is added to lower the iron quality contained in the slag 13. You may do it. When the iron grade in the slag 13 is large, the melting point of the slag 13 is increased. Therefore, the melting point of the slag 13 can be lowered by adding a reducing agent to lower the iron quality, and the fluidity of the slag 13 can be more efficiently increased. The reducing agent is not particularly limited, and examples thereof include coal, coke, wood, and the like. Considering the handling at the time of charging, it is preferably used as granular coal, granular coke, wood pellets, and the like. .

以上詳細に説明したように、本実施の形態に係る電気炉の操業方法は、電気炉10内に垂下した3本の電極11に三相交流を印加して通電する電気炉10の操業方法において、電気炉10内で生成するスラグ13の組成を定期的に測定し、測定したスラグ13の組成に応じて3本の電極11を昇降させ、スラグ13に対して通電させる電流を制御する。この操業方法によれば、スラグ13の組成が炉況に及ぼす影響の高いフェロニッケル製錬においても、簡便にかつ効果的にスラグの流動性を調整することができる。したがって、スラグホール16を介したスラグ13の取出しを容易にするとともにスラグ13のオーバーフローを抑制してスラグの出滓量(出滓速度)を適正化することができ、安全性高く効率的な操業を行うことができる。   As described above in detail, the operating method of the electric furnace according to the present embodiment is the operating method of the electric furnace 10 in which three-phase alternating current is applied to the three electrodes 11 suspended in the electric furnace 10 and energized. The composition of the slag 13 generated in the electric furnace 10 is periodically measured, and the three electrodes 11 are moved up and down in accordance with the measured composition of the slag 13 to control the current supplied to the slag 13. According to this operation method, even in the ferronickel smelting in which the composition of the slag 13 has a high influence on the furnace condition, the fluidity of the slag can be adjusted easily and effectively. Accordingly, the slag 13 can be easily taken out through the slag hole 16, and the overflow of the slag 13 can be suppressed to optimize the amount of slag output (the output speed). It can be performed.

また、上述した図1の操業方法では炉壁に付着したコーチング層の厚さが薄くなる方向に作用し、一方で図2の操業方法では炉壁に付着したコーチング層の厚さが厚くなる方向に作用する。そのため、スラグ組成に応じてスラグ13に通電させる電流を制御することによって、炉壁に形成されるコーチング層の厚さも最適化することができ、電気炉10の側壁にコーチング層が過剰に形成されることや、反対にコーチング層が熔けて薄くなることで操業に際して炉壁に損傷を与えることを効果的に抑制することができる。これにより、鉱石14の熔解処理量を維持してより効率的な操業ができるとともに電気炉10の耐久性を向上させることができ、経済的効果を高めることができる。   1 operates in the direction in which the thickness of the coating layer attached to the furnace wall decreases, while in the operation method in FIG. 2, the thickness of the coating layer attached to the furnace wall increases. Act on. Therefore, by controlling the current passed through the slag 13 according to the slag composition, the thickness of the coating layer formed on the furnace wall can be optimized, and an excessive coating layer is formed on the side wall of the electric furnace 10. On the contrary, since the coating layer melts and becomes thin, it is possible to effectively prevent the furnace wall from being damaged during operation. Thereby, while maintaining the melting processing amount of the ore 14, more efficient operation can be performed, the durability of the electric furnace 10 can be improved, and the economic effect can be enhanced.

以下に本発明の実施例を説明するが、本発明は下記の実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

(実施例1)
電気炉の水平断面の直径が17.5m、高さが6.0m、日間電力量で700〜850MWh/日、電極は3本、交流電源のトランス容量を65MVA、平均的なメタル出銑量は約150〜250ton/日、スラグ出滓量は約1000〜1400ton/日で操業を行った。
Example 1
The diameter of the horizontal cross section of the electric furnace is 17.5m, the height is 6.0m, the daily power is 700-850MWh / day, the number of electrodes is 3, the transformer capacity of the AC power supply is 65MVA, the average metal output is The operation was performed at about 150 to 250 ton / day and the slag tapping amount was about 1000 to 1400 ton / day.

実施例1では、電気炉操業中の一定時間毎に定期的に蛍光X線分析装置(MXF−2400、株式会社島津製作所製)を用いてスラグ組成を分析し、そのスラグの組成に応じて電極を昇降させて電流を制御した。具体的には、スラグの組成に基づいて算出されたスラグ塩基度に応じて電流を制御した。   In Example 1, the slag composition is analyzed periodically using a fluorescent X-ray analyzer (MXF-2400, manufactured by Shimadzu Corporation) at regular intervals during operation of the electric furnace, and electrodes are used according to the composition of the slag. The current was controlled by raising and lowering. Specifically, the current was controlled according to the slag basicity calculated based on the slag composition.

図4は、本発明の電気炉の操業方法を行った際の設定2次電流の増減、スラグ塩基度の指数、スラグFe品位の指数、スラグ量適性値からの差の推移である。図4(A)に示されるように、時間の経過とともにスラグの塩基度が上昇(スラグの融点が上昇)していったので、3相交流電極を徐々に降下させて電流(設定2次電流)を高くする調整を行った。また、図4(B)に示されるように、還元剤である粒状の石炭を投入して鉄品位を下げる調整も行った。   FIG. 4 shows changes in the secondary current increase / decrease, the slag basicity index, the slag Fe quality index, and the difference from the slag amount suitability value when the electric furnace operation method of the present invention is performed. As shown in FIG. 4A, the basicity of the slag increased (the melting point of the slag increased) with the passage of time, so the three-phase AC electrode was gradually lowered to set the current (set secondary current). ) Was increased. In addition, as shown in FIG. 4B, adjustment was made to lower the iron quality by introducing granular coal as a reducing agent.

すると、図4(C)に示されるように、スラグ出滓量を、その適正値からの差が±15%以内に収めることができ、スラグの流動性が悪くなったり過剰になったりせず、安定的に操業を行うことができた。このことは、スラグの組成に応じて3相交流電極を昇降させてスラグに対して通電させる電流を制御したことにより、スラグの流動性を調整することができためと考えられる。   Then, as shown in FIG. 4 (C), the amount of slag slag can be kept within ± 15% from the appropriate value, and the slag fluidity does not deteriorate or become excessive. We were able to operate stably. This is considered to be because the fluidity of the slag can be adjusted by controlling the current to be passed through the slag by raising and lowering the three-phase AC electrode according to the composition of the slag.

(比較例1)
比較例1では、実施例1と同様の操業条件で操業を行うに際して、特許文献1に記載の技術と同様に、スラグ炉抵抗により電流を調整して制御する操業方法を行った。その際、スラグ浴抵抗を算出するためにスラグ層の値を測定した。
(Comparative Example 1)
In Comparative Example 1, when the operation was performed under the same operation conditions as in Example 1, an operation method was performed in which the current was adjusted and controlled by the slag furnace resistance, as in the technique described in Patent Document 1. At that time, the value of the slag layer was measured in order to calculate the slag bath resistance.

その結果、週単位といった比較的長時間のレンジでは適切な操業を実施可能であったものの、スラグ層の厚み値を得るために電気炉を停電させて電気炉上部から測定棒を電気炉に装入してスラグ層の値を測定しなければならず、その際、操業の停止時間は実質的に10分/回を要した。また、このスラグ層の厚み値の測定頻度は、3回/日程度必要であった。このため、同一操業日内で、スラグの組成や流動性が変動する場合には十分に対応することができなかった。このように、比較例1では、多くの手間を要し、効率的な操業ができなかった。   As a result, although it was possible to carry out proper operation in a relatively long range such as a weekly unit, the electric furnace was interrupted in order to obtain the thickness value of the slag layer, and the measuring rod was mounted on the electric furnace from the top of the electric furnace. And the value of the slag layer had to be measured, in which case the operation stop time substantially took 10 minutes / time. Moreover, the measurement frequency of the thickness value of this slag layer required about 3 times / day. For this reason, when the composition and fluidity of slag fluctuate within the same operation day, it was not possible to cope with it sufficiently. Thus, in Comparative Example 1, a lot of labor was required, and an efficient operation was not possible.

10 電気炉、11 電極、12 メタル、13 スラグ、14 鉱石(焼鉱)、15 スラグホール、16 メタルホール、17 アーク 10 electric furnace, 11 electrodes, 12 metal, 13 slag, 14 ore (burning), 15 slag hole, 16 metal hole, 17 arc

Claims (4)

電気炉内に垂下した3本の電極に三相交流を印加して通電する電気炉の操業方法において、
前記電気炉内で生成するスラグの組成を定期的に測定し、測定した該スラグの組成に応じて前記電極を昇降させ、該スラグに対して通電させる電流を制御することを特徴とする電気炉の操業方法。
In the operation method of the electric furnace in which three-phase alternating current is applied to the three electrodes suspended in the electric furnace and energized,
An electric furnace characterized in that the composition of slag generated in the electric furnace is periodically measured, the electrode is moved up and down in accordance with the measured composition of the slag, and the current supplied to the slag is controlled. Operating method.
前記スラグの組成に応じて前記電極を段階的に昇降させ、該電極の先端をスラグに浸漬又は該電極の先端とスラグとの距離を離間させることを特徴とする請求項1記載の電気炉の操業方法。   The electric furnace according to claim 1, wherein the electrode is moved up and down stepwise according to the composition of the slag, and the tip of the electrode is immersed in the slag or the distance between the tip of the electrode and the slag is separated. Operation method. スラグ塩基度に応じて前記電極を昇降させることを特徴とする請求項1又は2記載の電気炉の操業方法。   The method for operating an electric furnace according to claim 1 or 2, wherein the electrode is raised and lowered according to slag basicity. 前記スラグ塩基度が上昇した場合には、前記電極を降下させて前記スラグに対して通電させる電流を高く、前記スラグ塩基度が低下した場合には、前記電極を上昇させて前記スラグに対して通電させる電流を低くするように制御することを特徴とする請求項3記載の電気炉の操業方法。   When the slag basicity increases, the electrode is lowered to increase the current applied to the slag, and when the slag basicity decreases, the electrode is raised to the slag. The method of operating an electric furnace according to claim 3, wherein the electric current to be energized is controlled to be low.
JP2011133077A 2011-06-15 2011-06-15 Electric furnace operation method Active JP5555921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011133077A JP5555921B2 (en) 2011-06-15 2011-06-15 Electric furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011133077A JP5555921B2 (en) 2011-06-15 2011-06-15 Electric furnace operation method

Publications (2)

Publication Number Publication Date
JP2013001938A true JP2013001938A (en) 2013-01-07
JP5555921B2 JP5555921B2 (en) 2014-07-23

Family

ID=47670825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011133077A Active JP5555921B2 (en) 2011-06-15 2011-06-15 Electric furnace operation method

Country Status (1)

Country Link
JP (1) JP5555921B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007268A (en) * 2013-06-25 2015-01-15 株式会社日向製錬所 Method of operating electric furnace and the electric furnace
CN105018855A (en) * 2015-01-09 2015-11-04 达力普石油专用管有限公司 Method for producing circular sulfur-resistant pipeline steel billet for oil and gas collection and transmission
JP2020193363A (en) * 2019-05-28 2020-12-03 株式会社日向製錬所 Method for preventing ferronickel cast piece from blackening, and method for producing ferronickel cast piece
CN115505680A (en) * 2022-09-30 2022-12-23 安徽工业大学 LF refining method for SPHC steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199843A (en) * 1982-05-06 1983-11-21 ゴスダルストウエンヌイ・プロエクトヌイ・イ・ナウチノ−イスレドワ−チエルスキ−・インスチツ−ト・ニケレボ−コバルトボイ・イ・オロウイアンノイ・プロムイシユレンノスチ Ferronickel refinement carried out under charged layer in ore refining electric furnace
JP2004068048A (en) * 2002-08-01 2004-03-04 Hyuga Seirensho:Kk Method for operating electric furnace for ferronickel smelting
JP2011017032A (en) * 2009-07-07 2011-01-27 Hyuga Seirensho:Kk Method for operating electric furnace for smelting ferro-nickel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199843A (en) * 1982-05-06 1983-11-21 ゴスダルストウエンヌイ・プロエクトヌイ・イ・ナウチノ−イスレドワ−チエルスキ−・インスチツ−ト・ニケレボ−コバルトボイ・イ・オロウイアンノイ・プロムイシユレンノスチ Ferronickel refinement carried out under charged layer in ore refining electric furnace
JP2004068048A (en) * 2002-08-01 2004-03-04 Hyuga Seirensho:Kk Method for operating electric furnace for ferronickel smelting
JP2011017032A (en) * 2009-07-07 2011-01-27 Hyuga Seirensho:Kk Method for operating electric furnace for smelting ferro-nickel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007268A (en) * 2013-06-25 2015-01-15 株式会社日向製錬所 Method of operating electric furnace and the electric furnace
CN105018855A (en) * 2015-01-09 2015-11-04 达力普石油专用管有限公司 Method for producing circular sulfur-resistant pipeline steel billet for oil and gas collection and transmission
JP2020193363A (en) * 2019-05-28 2020-12-03 株式会社日向製錬所 Method for preventing ferronickel cast piece from blackening, and method for producing ferronickel cast piece
JP7321776B2 (en) 2019-05-28 2023-08-07 株式会社日向製錬所 Method for Suppressing Blackening of Ferronickel Cast Piece, and Method for Producing Ferronickel Cast Piece
CN115505680A (en) * 2022-09-30 2022-12-23 安徽工业大学 LF refining method for SPHC steel
CN115505680B (en) * 2022-09-30 2024-02-27 安徽工业大学 LF refining method for SPHC steel

Also Published As

Publication number Publication date
JP5555921B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
US20180340734A1 (en) Electric arc furnace and method of operating same
CN102605190A (en) Mold steel electroslag re-melting slag system and use method of mold steel electroslag re-melting slag system
JP5555921B2 (en) Electric furnace operation method
TW201319262A (en) A method and a control system for controlling a melting process
KR101748961B1 (en) Method for predicting the melt-down stage of the electric furnace
JP5408417B2 (en) Operation method of electric furnace for ferronickel smelting
Kotzï¿ ½, H.*, Bessinger, D.** & Beukes Ilmenite smelting at Ticor SA
WO2020213393A1 (en) Method for producing chromium-containing molten iron
Voermann et al. Developments in furnace technology for ferronickel production
CN104178596B (en) The technique of electric arc furnace Returning blowing keto technique smelting stainless steel
JP2014105348A (en) Operation method of electric furnace for ferronickel smelting
Sivtsov et al. Role of the silicon carbide content in the certain workspace zones of furnaces used for smelting silicon and high-silicon ferroalloys
JP2018003063A (en) Operation method of electric furnace
JP4136521B2 (en) Operating method of ferronickel smelting electric furnace
Martynova et al. Increasing the level of control and management of arc steel-smelting furnaces
KR101828702B1 (en) Operating method for electric arc furnace
Toulouevski et al. Modern steelmaking in electric arc furnaces: history and development
RU2385952C2 (en) Method of managment by electrical mode of arc furnace
JP2020193363A (en) Method for preventing ferronickel cast piece from blackening, and method for producing ferronickel cast piece
Ksiazek et al. Measurement of metal temperature during tapping of an industrial FeSi furnace
WO2021241538A1 (en) Operation method of stationary electric furnace
FI127188B (en) PROCEDURES AND ARRANGEMENTS FOR USING A METALLURGICAL OVEN AND COMPUTER PROGRAM PRODUCT
US4412857A (en) Method of smelting ferronickel in ore-smelting electrical furnace under a layer of charge
Voermann et al. Furnace technology for ferro-nickel production-an update
JP6090606B2 (en) Method for melting reduction of chromium-containing oxides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5555921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250