JP6089845B2 - Permanent magnet synchronous motor starting method - Google Patents

Permanent magnet synchronous motor starting method Download PDF

Info

Publication number
JP6089845B2
JP6089845B2 JP2013059340A JP2013059340A JP6089845B2 JP 6089845 B2 JP6089845 B2 JP 6089845B2 JP 2013059340 A JP2013059340 A JP 2013059340A JP 2013059340 A JP2013059340 A JP 2013059340A JP 6089845 B2 JP6089845 B2 JP 6089845B2
Authority
JP
Japan
Prior art keywords
permanent magnet
starting
synchronous motor
pulse voltage
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013059340A
Other languages
Japanese (ja)
Other versions
JP2014187744A (en
Inventor
賢司 小堀
賢司 小堀
昌司 滝口
昌司 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2013059340A priority Critical patent/JP6089845B2/en
Publication of JP2014187744A publication Critical patent/JP2014187744A/en
Application granted granted Critical
Publication of JP6089845B2 publication Critical patent/JP6089845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、モータ軸受けに潤滑油が使用される永久磁石式同期電動機の始動方法に関する。   The present invention relates to a method for starting a permanent magnet synchronous motor in which lubricating oil is used for a motor bearing.

同期電動機(以下、PMモータと称する)は、誘導機に比べて二次回路の銅損がないため、損失が少ないなどの利点を有している。しかし、これをインバータなどの可変速制御装置で駆動する場合には、磁極の位置を位置センサなどで検出する必要がある。しかし、位置センサは半導体素子や光学素子が内蔵されているために耐環境性が低く、故障なども発生しやすい。そのため、位置センサレス制御方式の開発が進んでいる。   Synchronous motors (hereinafter referred to as PM motors) have advantages such as less loss because there is no copper loss in the secondary circuit compared to induction machines. However, when this is driven by a variable speed control device such as an inverter, the position of the magnetic pole needs to be detected by a position sensor or the like. However, since the position sensor has a built-in semiconductor element or optical element, it has low environmental resistance and is likely to fail. For this reason, development of a position sensorless control system is in progress.

例えば特許文献1には、磁極位置推定装置を備えた永久磁石式同期電動機のセンサレス制御システムが提案されている。   For example, Patent Document 1 proposes a sensorless control system for a permanent magnet type synchronous motor including a magnetic pole position estimation device.

スラスト荷重が大きいためモータ軸受けに潤滑油を使用して静止摩擦を低減しているPMモータは、例えば図5のように構成されている。図5において、11はPMモータ10の軸、12は潤滑油が供給される軸受である。図5のように構成されたPMモータ10において、始動トルクを低減させるためには、軸受12に潤滑油を供給するオイルリフタ装置などの装置を取り付ける必要がある。そのため装置が大型化している。   A PM motor that uses a lubricating oil in a motor bearing to reduce static friction because of a large thrust load is configured as shown in FIG. 5, for example. In FIG. 5, 11 is a shaft of the PM motor 10, and 12 is a bearing to which lubricating oil is supplied. In the PM motor 10 configured as shown in FIG. 5, in order to reduce the starting torque, it is necessary to attach a device such as an oil lifter device that supplies lubricating oil to the bearing 12. As a result, the size of the apparatus is increasing.

尚、軸受に潤滑油を使用したモータは例えば特許文献2、3に記載のものが存在する。   Note that there are motors using lubricating oil for the bearings described in Patent Documents 2 and 3, for example.

特許第4211133号公報Japanese Patent No. 4211133 特開2008−261327号公報JP 2008-261327 A 特開平7−253117号公報Japanese Patent Laid-Open No. 7-253117

スラスト荷重が大きくモータ軸受に潤滑油を使用し静止摩擦を低減しているPMモータにおいて、停止状態からの始動時など潤滑油の層が形成されていない場合、始動トルクが大きくなる。インバータはモータを始動させるために、始動トルクを大きくする必要がある。始動し始めると徐々に潤滑油の層が形成し静止摩擦係数が小さくなり、負荷急変が発生する。このとき位置センサレスで始動している場合、磁極位置の推定ができなくなり、脱調し制御不能になってしまうことがある。   In a PM motor that has a large thrust load and uses lubricating oil for the motor bearing to reduce static friction, the starting torque increases when the lubricating oil layer is not formed, such as when starting from a stopped state. In order for the inverter to start the motor, it is necessary to increase the starting torque. When starting, a layer of lubricating oil is gradually formed, the coefficient of static friction becomes smaller, and a sudden load change occurs. At this time, if the engine is started without a position sensor, the magnetic pole position cannot be estimated, and step-out may occur and control becomes impossible.

本発明は上記課題を解決するものであり、その目的は、モータ軸受に潤滑油を使用しているPMモータにおいて、始動トルクを低減することができる永久磁石式同期電動機の始動方法を提供することにある。   The present invention solves the above-described problems, and an object of the present invention is to provide a permanent magnet type synchronous motor starting method capable of reducing starting torque in a PM motor using lubricating oil for a motor bearing. It is in.

上記課題を解決するための請求項1に記載の永久磁石式同期電動機の始動方法は、モータ軸受けに潤滑油が使用される永久磁石式同期電動機の始動方法であって、停止状態の前記永久磁石式同期電動機の電機子巻線に対して、初期磁極位置から第1の角度ずれた第1の位相の第1のパルス電圧を印加して正回転トルクを発生させる正回転制御と、前記初期磁極位置から前記第1の角度分反転した第2の位相で、且つ前記第1のパルス電圧と同等の第2のパルス電圧を印加して逆回転トルクを発生させる逆回転制御とを、電流安定化期間を挟んで交互に繰り返し実行することを特徴としている。 A starting method of a permanent magnet type synchronous motor according to claim 1 for solving the above-mentioned problem is a starting method of a permanent magnet type synchronous motor in which lubricating oil is used for a motor bearing, wherein the permanent magnet is in a stopped state. A positive rotation control for generating a positive rotation torque by applying a first pulse voltage of a first phase shifted by a first angle from the initial magnetic pole position to the armature winding of the synchronous motor, and the initial magnetic pole Reverse rotation control for generating reverse rotation torque by applying a second pulse voltage equivalent to the first pulse voltage at a second phase inverted by the first angle from a position, and current stabilization It is characterized by being repeatedly executed alternately over a period.

上記構成によれば、モータ軸受けに潤滑油が使用される永久磁石式同期電動機の始動時に、正回転トルクと逆回転トルクを交互に発生させて前記電動機を振動させることにより、軸受軌道面に潤滑油の層が形成されるので、始動トルクを低減することができる。   According to the above configuration, the bearing raceway surface is lubricated by generating a normal rotation torque and a reverse rotation torque alternately to vibrate the motor when starting a permanent magnet synchronous motor in which lubricating oil is used for a motor bearing. Since the oil layer is formed, the starting torque can be reduced.

また、請求項2に記載の永久磁石式同期電動機の始動方法は、請求項1において、前記第1の角度は90度以内に設定されていることを特徴としている。   According to a second aspect of the present invention, there is provided a method for starting a permanent magnet synchronous motor according to the first aspect, wherein the first angle is set within 90 degrees.

上記構成によれば、微小な振動が加わるため初期磁極位置からのずれを小さくすることができ、加速運転に遷移する際のショックを抑えることができる。   According to the above configuration, since a minute vibration is applied, the deviation from the initial magnetic pole position can be reduced, and a shock at the time of transition to the acceleration operation can be suppressed.

また、請求項3に記載の永久磁石式同期電動機の始動方法は、請求項1又は2において、前記正回転制御および逆回転制御を1セットとする制御の実行回数が、n回目(nは正数)の実行時における前記第1の角度よりも、n+1回目の実行時における第1の角度を小さく設定したことを特徴としている。   According to a third aspect of the present invention, there is provided a method for starting a permanent magnet synchronous motor according to the first or second aspect, wherein the number of executions of the control with the normal rotation control and the reverse rotation control as one set is n times (n is a normal value) The first angle at the time of execution of the (n + 1) th time is set smaller than the first angle at the time of execution of (Num.).

上記構成によれば、請求項1、2の場合よりもさらに、初期磁極位置からのずれを小さくすることができる。   According to the said structure, the shift | offset | difference from an initial stage magnetic pole position can be made smaller than the case of Claim 1,2.

(1)請求項1〜3に記載の発明によれば、モータ軸受けに潤滑油が使用される永久磁石式同期電動機の始動時に、正回転トルクと逆回転トルクを交互に発生させて前記電動機を振動させることにより、軸受軌道面に潤滑油の層が形成されるので、始動トルクを低減することができる。また、始動時の負荷急変のリスクが減り脱調のリスクも減る。
(2)請求項2に記載の発明によれば、微小な振動が加わるため初期磁極位置からのずれを小さくすることができ、加速運転に遷移する際のショックを抑えることができる。
(3)請求項3に記載の発明によれば、制御実行回数が増えるにつれて、徐々に初期磁極位置に近づけるようにパルス電圧の位相が決定されるので、初期位置からのずれをより小さくすることができる。
(1) According to the first to third aspects of the present invention, when starting a permanent magnet type synchronous motor in which lubricating oil is used for a motor bearing, a positive rotational torque and a reverse rotational torque are alternately generated to cause the electric motor to By oscillating, a lubricating oil layer is formed on the bearing raceway surface, so that the starting torque can be reduced. It also reduces the risk of sudden load changes at start-up and reduces the risk of step-out.
(2) According to the invention described in claim 2, since minute vibration is applied, the deviation from the initial magnetic pole position can be reduced, and the shock at the time of transition to the acceleration operation can be suppressed.
(3) According to the invention described in claim 3, the phase of the pulse voltage is determined so as to gradually approach the initial magnetic pole position as the number of control executions increases, so that the deviation from the initial position is made smaller. Can do.

本発明の実施例1の始動方法におけるパルス電圧指令の説明図。Explanatory drawing of the pulse voltage command in the starting method of Example 1 of this invention. 本発明の実施例1の始動方法を説明するタイムチャート。The time chart explaining the starting method of Example 1 of this invention. 本発明の実施例2の始動方法におけるパルス電圧指令の説明図。Explanatory drawing of the pulse voltage command in the starting method of Example 2 of this invention. 本発明の実施例3の始動方法におけるパルス電圧指令の説明図。Explanatory drawing of the pulse voltage command in the starting method of Example 3 of this invention. 本発明が適用されるPMモータの一例を示す構成図。The block diagram which shows an example of PM motor to which this invention is applied.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。本実施形態では、例えばインバータによって駆動されるPMモータに対して、初期磁極位置から設定角度、例えば90度ずれた位相のパルス電圧を印加して正回転トルクを発生させる正回転制御を行い、次に所定の電流安定化期間を経て、前記位相とは180度位相の異なる位相のパルス電圧を印加して逆回転トルクを発生させる逆回転制御を行い、これら正回転制御と逆回転制御を交互に繰り返し実行するものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. In this embodiment, for example, a positive rotation control is performed to generate a positive rotation torque by applying a pulse voltage having a phase shifted by 90 degrees from the initial magnetic pole position to a PM motor driven by an inverter, for example. After a predetermined current stabilization period, reverse rotation control is performed to generate reverse rotation torque by applying a pulse voltage having a phase that is 180 degrees different from the phase, and the forward rotation control and reverse rotation control are alternately performed. It is executed repeatedly.

以下、本発明を図5のPMモータ10に適用した実施例1〜3を説明する。   Examples 1 to 3 in which the present invention is applied to the PM motor 10 shown in FIG. 5 will be described below.

図1は、本実施例1においてインバータが出力するパルス電圧指令(電圧ベクトル)を説明する図であり、図2は、インバータの電圧指令と検出電流波形を示している。   FIG. 1 is a diagram for explaining a pulse voltage command (voltage vector) output from an inverter in the first embodiment, and FIG. 2 shows a voltage command and a detected current waveform of the inverter.

これらの図において、PMモータの停止状態から始動させる場合、まず、例えば特許文献1の推定方法によってPMモータの初期磁極位置(図1のN極−S極の位置)を推定した後、パルス状の電圧を印加させる。このとき初期磁極位置から出力するパルス電圧の位相をθと置く。   In these figures, when starting from the stop state of the PM motor, first, the initial magnetic pole position of the PM motor (position of N pole-S pole in FIG. 1) is first estimated by, for example, the estimation method of Patent Document 1, and then pulsed. Is applied. At this time, the phase of the pulse voltage output from the initial magnetic pole position is set to θ.

初期磁極位置を基準に90度の位相θ1(図示(1))を印加した場合、回転トルクが発生してモータが回転する。次にθ1の位相から180度反転した位相θ2にパルス電圧を印加させる。このように互いに180度異なる位相θ1、θ2をペアで出力することにより、正、負逆で同一のトルクを発生させ、前記(1)に印加した場合と逆の回転を生じさせる。次に(1)と同位相の(3)(θ1)にパルス電圧を印加させ、その後(2)と同位相の(4)(θ2)にパルス電圧を印加させることにより、正転・逆転を行う。これら(1)〜(4)の電圧パルス印加を繰り返すことによりモータが正転・逆転を行う。   When 90 ° phase θ1 ((1) in the figure) is applied with reference to the initial magnetic pole position, rotational torque is generated and the motor rotates. Next, a pulse voltage is applied to a phase θ2 that is 180 degrees reversed from the phase of θ1. Thus, by outputting the phases θ1 and θ2 that are 180 degrees different from each other in pairs, the same torque is generated in the positive and negative directions, and the rotation opposite to that applied in the above (1) is generated. Next, by applying a pulse voltage to (3) (θ1) in the same phase as (1) and then applying a pulse voltage to (4) (θ2) in the same phase as (2), forward rotation and reverse rotation are performed. Do. By repeating the voltage pulse application of (1) to (4), the motor performs forward / reverse rotation.

また、前記(1)〜(4)の各パルス電圧出力後に電流安定化期間を各々設けることにより、余計な振動を抑制する。このように停止状態からの始動時にモータを正転・逆転させることにより、PMモータ10の軸受12に潤滑油が浸透し、軸受12の軌道面に潤滑油の層が形成されるので、始動トルクを低減させることができる。   Further, by providing a current stabilization period after each pulse voltage output of (1) to (4), unnecessary vibration is suppressed. Thus, by rotating the motor forward / reversely when starting from the stopped state, the lubricating oil penetrates into the bearing 12 of the PM motor 10 and a layer of lubricating oil is formed on the raceway surface of the bearing 12, so that the starting torque Can be reduced.

図2は、前記正転・逆転を行うようにインバータが出力する電圧指令と検出電流の具体的な波形を示しており、モータが停止状態にある時刻t0から時刻t1までの電流安定化期間T1aでは階段状の正の所定電圧の電圧指令を出力し、時刻t1から時刻2までの電圧パルス印加期間T1bにおいて初期磁極位置を基準に90度の位相θ1(図1の(1))で前記階段状の電圧指令よりも大きいパルス電圧指令を出力し、時刻t2から時刻t3までの定電圧出力期間T1cにおいて正の一定の電圧指令を出力する。   FIG. 2 shows specific waveforms of the voltage command and the detected current output by the inverter so as to perform the forward / reverse rotation, and the current stabilization period T1a from time t0 to time t1 when the motor is stopped. Then, a voltage command of a positive stepped voltage is output, and the staircase has a phase θ1 of 90 degrees ((1) in FIG. 1) with respect to the initial magnetic pole position in the voltage pulse application period T1b from time t1 to time 2. A pulse voltage command larger than the voltage command is output, and a positive constant voltage command is output in a constant voltage output period T1c from time t2 to time t3.

前記電圧パルス印加期間T1bに出力される正の大きなパルス電圧指令によって、出力電流値が上昇し、定電圧出力期間T1cの図示+x部に示すように位相θ1(1)の方向に大きなトルクが発生してモータは正回転する。これら期間T1aおよびT1bおよびT1cが図1のθ1の位置となる。   The output current value rises due to a large positive pulse voltage command output during the voltage pulse application period T1b, and a large torque is generated in the direction of the phase θ1 (1) as shown in the + x part of the constant voltage output period T1c. Then the motor rotates forward. These periods T1a, T1b, and T1c are the positions of θ1 in FIG.

次に時刻t3から時刻t4までの電流安定化期間T2aでは階段状の負の所定電圧の電圧指令を出力し、時刻t4から時刻5までの電圧パルス印加期間T2bにおいて、前記θ1の位相から180度反転した位相θ2(図1の(2))で、前記階段状の電圧指令よりも大きく、前記期間T1bにおけるパルス電圧と同等のパルス電圧指令を出力し、時刻t5から時刻t6までの定電圧出力期間T2cにおいて負の一定の電圧指令を出力する。   Next, in the current stabilization period T2a from time t3 to time t4, a stepwise negative voltage command is output, and in the voltage pulse application period T2b from time t4 to time 5, 180 degrees from the phase of θ1. In the inverted phase θ2 ((2) in FIG. 1), a pulse voltage command larger than the stepped voltage command and equivalent to the pulse voltage in the period T1b is output, and a constant voltage output from time t5 to time t6 In the period T2c, a negative constant voltage command is output.

前記電圧パルス印加期間T2bに出力される負の大きなパルス電圧指令によって、出力電流値が負の方向に上昇し、定電圧出力期間T2cの図示−x部に示すように位相θ2(2)の方向に大きなトルクが発生してモータは逆回転する。これら期間T2aおよびT2bおよびT2cが図1のθ2の位置となる。   Due to the large negative pulse voltage command output during the voltage pulse application period T2b, the output current value increases in the negative direction, and the direction of the phase θ2 (2) as shown in the −x portion of the constant voltage output period T2c. A large torque is generated in the motor and the motor rotates in the reverse direction. These periods T2a, T2b, and T2c are the positions of θ2 in FIG.

そして時刻t6以降は前記期間T1a,T1b,T1cと同一の動作により、前記(1)と同位相(θ1)の(3)にパルス電圧を印加し、その後、前記期間T2a,T2b,T2cと同一の動作により、前記(2)と同位相(θ2)の(4)にパルス電圧を印加し、前記(1)〜(4)を繰り返し実行することでモータの正転・逆転を行う。   After time t6, a pulse voltage is applied to (3) of the same phase (θ1) as (1) by the same operation as the periods T1a, T1b, T1c, and then the same as the periods T2a, T2b, T2c. By the above operation, a pulse voltage is applied to (4) having the same phase (θ2) as that of (2), and the motors are rotated in the forward and reverse directions by repeating (1) to (4).

上記のように、パルス電圧出力後、電流安定化期間を設けているため、余計な振動を抑制することができる。   As described above, since the current stabilization period is provided after the pulse voltage is output, unnecessary vibration can be suppressed.

図3は、本発明の実施例2においてインバータが出力するパルス電圧指令(電圧ベクトル)を説明する図である。本実施例2では、実施例1と同様にパルス電圧を印加させ、図2に示すような電流安定化期間を設けるが、パルス電圧の位相を図3に示すように出力する。   FIG. 3 is a diagram illustrating a pulse voltage command (voltage vector) output by the inverter in the second embodiment of the present invention. In the second embodiment, a pulse voltage is applied as in the first embodiment, and a current stabilization period as shown in FIG. 2 is provided, but the phase of the pulse voltage is output as shown in FIG.

すなわち、初期磁極位置(図3のN極−S極の位置)を基準に90度未満の位相、例えば30度の位相θ1(図示(1))にパルス電圧を印加させ、回転トルクを発生させることにより、モータを回転させる。   That is, a pulse voltage is applied to a phase of less than 90 degrees, for example, a phase θ1 of 30 degrees (illustrated (1)) with reference to the initial magnetic pole position (N pole-S pole position in FIG. 3) to generate rotational torque. Thus, the motor is rotated.

また、モータを逆転させるため、初期磁極位置に対し、θ1と逆位相θ2(図示(2))で、且つ図示(1)と同等な電圧を印加させることにより、(1)に印加した場合と逆の回転を生じさせる。次に(1)と同位相の(3)にパルス電圧を印加させ、(2)と同位相の(4)にパルス電圧を印加させることにより、正転・逆転を行う。このとき90度未満であれば、30度に限らずどの位相でもよく、実施例1よりも微少な振動となる。このため、初期磁極位置からのずれが小さくなり、加速運転に遷移する際のショックを抑えることが可能となる。   Further, in order to reversely rotate the motor, a voltage equivalent to that of (1) shown in the drawing (1) is applied to (1) by applying a voltage having the opposite phase θ2 (shown (2)) to the initial magnetic pole position. Causes reverse rotation. Next, forward rotation and reverse rotation are performed by applying a pulse voltage to (3) in the same phase as (1) and applying a pulse voltage to (4) in the same phase as (2). At this time, if the angle is less than 90 degrees, the phase is not limited to 30 degrees, and any phase may be used. For this reason, the deviation from the initial magnetic pole position is reduced, and the shock at the time of transition to the acceleration operation can be suppressed.

上記実施例においても、図2と同様に、電流安定化期間T1a(T2a)、電圧パルス印加期間T1b(T2b)、定電圧出力期間T1c(T2c)を設けるものである。   Also in the above embodiment, as in FIG. 2, a current stabilization period T1a (T2a), a voltage pulse application period T1b (T2b), and a constant voltage output period T1c (T2c) are provided.

図4は本発明の実施例3において、インバータが出力するパルス電圧指令(電圧ベクトル)を説明する図である。本実施例3では、実施例1および実施例2と同様に、電圧パルスを印加させ、図2に示すような電流安定化期間を設けるが、パルス電圧の位相を図4に示すように出力する。   FIG. 4 is a diagram for explaining a pulse voltage command (voltage vector) output from the inverter in the third embodiment of the present invention. In the third embodiment, a voltage pulse is applied and a current stabilization period as shown in FIG. 2 is provided as in the first and second embodiments, but the phase of the pulse voltage is output as shown in FIG. .

すなわち、初期磁極位置(図4のN極−S極の位置)を基準に90度未満の位相θ1(図示(1)の60度)にパルス電圧を印加させ、回転トルクを発生させることにより、モータを回転させる。また、モータを逆転させるため、初期磁極位置に対し、θ1と逆位相θ2(図示(2))、且つ図示(1)と同等な電圧を印加させることにより、(1)に印加した場合と逆の回転を生じさせる。   That is, by applying a pulse voltage to a phase θ1 of less than 90 degrees (60 degrees of (1) in the drawing) with reference to the initial magnetic pole position (position of N pole-S pole in FIG. 4), a rotational torque is generated. Rotate the motor. In addition, in order to reverse the motor, by applying a voltage equivalent to θ1 and opposite phase θ2 (illustrated (2)) and illustrated (1) to the initial magnetic pole position, it is opposite to the case of applying to (1). Cause rotation.

次にθ1(60度)よりもパルス電圧を印加する角度を小さくしたθ3(図示(3)の30度)にパルス電圧を印加させることにより、(1)よりも微少な回転とする。また、(3)と初期磁極位置対称となる(4)に、θ3と逆位相θ4で且つ図示(3)と同等なパルス電圧を印加させることにより、正転・逆転を行う。   Next, by applying the pulse voltage to θ3 (30 degrees in the figure (3)) in which the pulse voltage application angle is smaller than θ1 (60 degrees), the rotation is made slightly smaller than in (1). Further, forward rotation / reverse rotation is performed by applying a pulse voltage having an opposite phase θ4 to θ3 and equivalent to (3) in the figure to (4) that is symmetrical to the initial magnetic pole position with (3).

以上のように印加するパルス電圧を徐々に初期磁極位置に近づけるようにパルス電圧の位相を決定する、すなわち、前記正回転制御および逆回転制御を1セットとする制御の実行回数が、n回目(nは正数)の実行時における前記位相θよりも、n+1回目の実行時における位相θを小さく設定することにより、正転・逆転した際の初期磁極位置のずれを最小にすることが可能となる。このため、加速運転に遷移する際のショックを抑えることができる。   As described above, the phase of the pulse voltage is determined so that the pulse voltage to be applied gradually approaches the initial magnetic pole position, that is, the number of executions of the control with the forward rotation control and the reverse rotation control as one set is nth ( By setting the phase θ at the time of execution of the (n + 1) th time smaller than the phase θ at the time of execution of (n is a positive number), it is possible to minimize the deviation of the initial magnetic pole position at the time of normal rotation / reverse rotation. Become. For this reason, the shock at the time of changing to an acceleration driving | operation can be suppressed.

本実施例3においても、図2と同様に、電流安定化期間T1a(T2a)、電圧パルス印加期間T1b(T2b)、定電圧出力期間T1c(T2c)を設けるものである。   Also in the third embodiment, similarly to FIG. 2, a current stabilization period T1a (T2a), a voltage pulse application period T1b (T2b), and a constant voltage output period T1c (T2c) are provided.

10…PMモータ
11…軸
12…軸受
T1a,T2a…電流安定化期間
T1b,T2b…電圧パルス印加期間
T1bc,T2c…定電圧出力期間
DESCRIPTION OF SYMBOLS 10 ... PM motor 11 ... Shaft 12 ... Bearing T1a, T2a ... Current stabilization period T1b, T2b ... Voltage pulse application period T1bc, T2c ... Constant voltage output period

Claims (3)

モータ軸受けに潤滑油が使用される永久磁石式同期電動機の始動方法であって、
停止状態の前記永久磁石式同期電動機の電機子巻線に対して、
初期磁極位置から第1の角度ずれた第1の位相の第1のパルス電圧を印加して正回転トルクを発生させる正回転制御と、
前記初期磁極位置から前記第1の角度分反転した第2の位相で、且つ前記第1のパルス電圧と同等の第2のパルス電圧を印加して逆回転トルクを発生させる逆回転制御とを、
電流安定化期間を挟んで交互に繰り返し実行することを特徴とする永久磁石式同期電動機の始動方法。
A method for starting a permanent magnet synchronous motor in which lubricating oil is used for a motor bearing,
For the armature winding of the permanent magnet synchronous motor in a stopped state,
Forward rotation control for generating forward rotation torque by applying a first pulse voltage of a first phase shifted by a first angle from the initial magnetic pole position;
Reverse rotation control for generating reverse rotation torque by applying a second pulse voltage equivalent to the first pulse voltage in a second phase reversed by the first angle from the initial magnetic pole position;
A permanent magnet type synchronous motor starting method, which is repeatedly executed alternately with a current stabilization period interposed therebetween.
前記第1の角度は90度以内に設定されていることを特徴とする請求項1に記載の永久磁石式同期電動機の始動方法。   The method for starting a permanent magnet synchronous motor according to claim 1, wherein the first angle is set within 90 degrees. 前記正回転制御および逆回転制御を1セットとする制御の実行回数が、n回目(nは正数)の実行時における前記第1の角度よりも、n+1回目の実行時における第1の角度を小さく設定したことを特徴とする請求項1又は2に記載の永久磁石式同期電動機の始動方法。   The number of executions of the control with the forward rotation control and the reverse rotation control as one set is greater than the first angle at the time of execution of the nth time (n is a positive number), the first angle at the time of execution of the (n + 1) th time. The method for starting a permanent magnet synchronous motor according to claim 1 or 2, wherein the starting method is set small.
JP2013059340A 2013-03-22 2013-03-22 Permanent magnet synchronous motor starting method Expired - Fee Related JP6089845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013059340A JP6089845B2 (en) 2013-03-22 2013-03-22 Permanent magnet synchronous motor starting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013059340A JP6089845B2 (en) 2013-03-22 2013-03-22 Permanent magnet synchronous motor starting method

Publications (2)

Publication Number Publication Date
JP2014187744A JP2014187744A (en) 2014-10-02
JP6089845B2 true JP6089845B2 (en) 2017-03-08

Family

ID=51834778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013059340A Expired - Fee Related JP6089845B2 (en) 2013-03-22 2013-03-22 Permanent magnet synchronous motor starting method

Country Status (1)

Country Link
JP (1) JP6089845B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107883990B (en) * 2017-10-11 2020-03-27 广州汽车集团股份有限公司 Zero calibration method and system for permanent magnet synchronous motor rotary transformer for electric automobile
CN107894247B (en) * 2017-10-11 2020-03-27 广州汽车集团股份有限公司 Zero calibration method and system for rotary transformer of vehicle-mounted permanent magnet synchronous motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759385A (en) * 1993-08-10 1995-03-03 Nippon Densan Corp Starting up of motor
JP2000324881A (en) * 1999-05-12 2000-11-24 Fuji Electric Co Ltd Controller for permanent magnet type synchronous motor
JP2002266809A (en) * 2001-03-07 2002-09-18 Fujitsu Ltd Positioning mechanism for fluid actuator
JP3687603B2 (en) * 2001-12-10 2005-08-24 株式会社明電舎 PM motor magnetic pole position estimation method
JP4284435B2 (en) * 2002-11-28 2009-06-24 多摩川精機株式会社 Servo motor magnetic pole detection method
US7309969B2 (en) * 2004-06-18 2007-12-18 Comair Rotron, Inc. Apparatus and method for starting an electric motor

Also Published As

Publication number Publication date
JP2014187744A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP2011036083A (en) Method for driving brushless three-phase dc motor and driving controller
Kazraji et al. Sliding-mode observer for speed and position sensorless control of linear-PMSM
JP6089845B2 (en) Permanent magnet synchronous motor starting method
JP5770701B2 (en) Stepping motor drive control device
JP2006271127A (en) Stop controlling method of stepping motor
JP2008271698A (en) Motor drive
JPWO2019244209A1 (en) Linear motor stator, linear motor and linear motor system
US11303239B2 (en) Magnetic pole initial position detection device using direct-current excitation method and magnetic pole position detection device
JP2006288109A (en) Servo motor controller
JP2012130100A (en) Motor controller and motor control method
JP2020065433A (en) Magnetic pole initial position detection device using direct-current excitation method and magnetic pole position detection device
JP6337837B2 (en) Stepping motor drive
JP6184726B2 (en) Driving method and driving apparatus for stepping motor
JP4525026B2 (en) Rotating electric machine
JP6287950B2 (en) Stepping motor controller
EP3506488A1 (en) Motor control device
JP5706700B2 (en) Motor running-in method and motor driving device
JP5968738B2 (en) Brushless motor control device
US20140097784A1 (en) Rotor Control
JP4525025B2 (en) Rotating electric machine
Youssef et al. Recommendations for an accurate simulation of electrical motors with shaft torsional dynamics
JP2013153634A (en) Controller of sensorless three-phase brushless motor and vacuum pump
US10547256B2 (en) Motor driving apparatus capable of reliably starting motor, and method of controlling same
US11114965B2 (en) Motor control module, motor control device, motor control system, and motor control method
JP2005333753A (en) Control device of three-phase brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6089845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees