CN107894247B - Zero calibration method and system for rotary transformer of vehicle-mounted permanent magnet synchronous motor - Google Patents

Zero calibration method and system for rotary transformer of vehicle-mounted permanent magnet synchronous motor Download PDF

Info

Publication number
CN107894247B
CN107894247B CN201710943723.9A CN201710943723A CN107894247B CN 107894247 B CN107894247 B CN 107894247B CN 201710943723 A CN201710943723 A CN 201710943723A CN 107894247 B CN107894247 B CN 107894247B
Authority
CN
China
Prior art keywords
permanent magnet
synchronous motor
magnet synchronous
rotating speed
included angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710943723.9A
Other languages
Chinese (zh)
Other versions
CN107894247A (en
Inventor
夏铸亮
杨康
赵小坤
黄慈梅
张金良
刘伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GAC Aion New Energy Automobile Co Ltd
Original Assignee
Guangzhou Automobile Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Automobile Group Co Ltd filed Critical Guangzhou Automobile Group Co Ltd
Priority to CN201710943723.9A priority Critical patent/CN107894247B/en
Publication of CN107894247A publication Critical patent/CN107894247A/en
Application granted granted Critical
Publication of CN107894247B publication Critical patent/CN107894247B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The invention provides a zero calibration method and a system for a rotary transformer of a vehicle-mounted permanent magnet synchronous motor, wherein the zero calibration method comprises the following steps: controlling the permanent magnet synchronous motor to operate according to the received given current vector amplitude and the given rotating speed value; after the permanent magnet synchronous motor stably runs at a given rotating speed value, the inverter is set to be in a three-phase short circuit state, a first included angle and a second included angle formed by a current vector under a specific rotating speed value and a d-axis negative half shaft of a permanent magnet synchronous motor preset rotor coordinate system are recorded in the subsequent rotating speed reduction process, then the average value of the first included angle and the second included angle is calculated, and the zero offset angle of the rotary transformer is obtained. The embodiment of the invention has the beneficial effects that: the method and the device realize measurement under a rotating speed closed loop, can eliminate or inhibit the influence of non-ideal factors such as friction force, cogging torque and the like on zero calibration of the rotary transformer, have high measurement precision, and can also perform calibration under the condition that a calibrated motor is in a vehicle-mounted state.

Description

Zero calibration method and system for rotary transformer of vehicle-mounted permanent magnet synchronous motor
Technical Field
The invention relates to the technical field of automobiles, in particular to a zero position calibration method and a zero position calibration system for a rotary transformer of a vehicle-mounted permanent magnet synchronous motor.
Background
The permanent magnet synchronous motor in the electric automobile can not control the rotor position signal, and the precision of the rotor position signal has important influence on the driving performance of the motor. At present, a rotary transformer is widely used as a position detection device. The rotary transformer stator is arranged on the side of the motor stator, and the rotor is fixed on the motor rotor to coaxially rotate and form a whole with the motor.
When the controller controls the operation of the permanent magnet synchronous motor, the rotation angle of the motor rotor relative to the motor stator needs to be known, namely the rotation angle in fig. 1
Figure GDA0002316288410000011
But resolver reading
Figure GDA0002316288410000012
Is the reading of the rotor of the resolver relative to the stator, there being a deviation theta between the two readings0I.e. by
Figure GDA0002316288410000013
Deviation theta0In connection with the assembly of the motor, it is difficult to ensure the deviation theta during the production of the motor0So that the deviation theta is obtained after the rotary transformer is assembled on the motor0Almost random, requiring individual calibration of the deviation theta0
The currently common methods for calibrating the zero position of the rotary transformer include the following methods:
a rotational zero position measuring method (CN201510066291.9) of a great wall automobile needs to drag a motor to operate at a certain rotating speed, and a counter potential signal of the motor and a Z signal used for representing rotational zero position information are measured through an oscilloscope. And the processor acquires the zero position of the motor rotor according to the difference between the duration of the counter potential signal and the duration from the zero point of the counter potential signal to the duration of the Z signal pulse signal.
A rotation zero calibration method (CN201510204274.7) of Biddi corporation is divided into two steps of static and dynamic tests. In a static test, the motor is in an open-loop motionless state, Q-axis current is provided, D-axis current is zero, and a middle zero position is obtained. In the dynamic test, equipment is required to drag the permanent magnet synchronous motor to rotate at a set rotating speed, and D-axis current and Q-axis current are zero in a closed ring state; during the process of increasing the D-axis current, whether the motor torque is zero or not is judged, and the final zero offset is determined.
In a rotational-variation zero-position calibration method (CN 106301133A) of Yundi electrics in Zhejiang, different voltage vectors are applied to a motor through a motor controller, rotational-variation angles corresponding to the different motor vectors are collected, difference values of the different voltage vector angles and the corresponding rotational-variation angles are obtained, and an average value of multiple measurements is taken as rotational-variation zero-position offset. The method has the problems that influence factors such as friction force, cogging torque and the like during the rotation of the motor are not considered, and the measurement precision is not accurate enough.
In the above scheme, the motor rotates and needs other equipment to drag, and extra measuring equipment needs to be added simultaneously, so that the vehicle-mounted measurement is not convenient, or the motor is in relative static test, the motor does not rotate continuously, the influence of ideal factors such as friction force cannot be eliminated, and the measurement precision is not accurate enough.
Disclosure of Invention
The invention aims to solve the technical problem of providing a method and a system for calibrating the zero position of a rotary transformer of a vehicle-mounted permanent magnet synchronous motor with higher precision.
In order to solve the technical problem, the invention provides a zero calibration method for a rotary transformer of a vehicle-mounted permanent magnet synchronous motor, which comprises the following steps:
controlling the permanent magnet synchronous motor to operate according to the received given forward current vector amplitude and the given forward rotating speed value;
when the permanent magnet synchronous motor reaches and stabilizes at the given forward rotating speed value, setting an inverter connected with the permanent magnet synchronous motor to be in a three-phase short circuit state;
in the process of rotating speed reduction, when a first set rotating speed value is reached, a first included angle formed by a corresponding forward current vector and a d-axis negative half shaft of a permanent magnet synchronous motor preset rotor coordinate system is calculated;
when the rotating speed is dropped and stabilized at zero, controlling the permanent magnet synchronous motor to operate according to the received given reverse current vector amplitude and the given reverse rotating speed value;
when the permanent magnet synchronous motor reaches and stabilizes at the given reverse rotating speed value, setting an inverter connected with the permanent magnet synchronous motor to be in a three-phase short circuit state;
in the process of reducing the rotating speed, when a second set rotating speed value is reached, a second included angle formed by the corresponding reverse current vector and a d-axis negative half shaft of a preset rotor coordinate system of the permanent magnet synchronous motor is calculated;
and calculating the average value of the first included angle and the second included angle to obtain the zero offset angle of the rotary transformer.
The zero calibration method further comprises the following steps:
respectively carrying out low-pass filtering on the calculated first included angle and the second included angle to obtain a first included angle low-pass filtering value and a second included angle low-pass filtering value;
and calculating the average value of the low-pass filter value of the first included angle and the low-pass filter value of the second included angle to obtain the zero offset angle of the rotary transformer.
The first included angle is calculated according to d-axis current and q-axis current when the rotating speed of the permanent magnet synchronous motor reaches a first set rotating speed value, and the second included angle is calculated according to d-axis current and q-axis current when the rotating speed of the permanent magnet synchronous motor reaches a second set rotating speed value.
The preset rotor coordinate system is obtained by performing Park conversion by taking the original reading of the rotary transformer as a coordinate conversion parameter, and an included angle formed by the forward direction of the d axis and the stator coordinate A phase of the permanent magnet synchronous motor is the original reading of the rotary transformer.
Wherein the given forward current vector magnitude and the given reverse current vector magnitude are equal, and the first set speed value magnitude and the second set speed value magnitude are equal.
The invention also provides a zero calibration system for the rotary transformer of the vehicle-mounted permanent magnet synchronous motor, which comprises the following components:
the control module is used for controlling the permanent magnet synchronous motor to operate according to the received given forward current vector amplitude value and the given forward rotating speed value; when the permanent magnet synchronous motor reaches and stabilizes at the given forward rotating speed value, setting an inverter connected with the permanent magnet synchronous motor to be in a three-phase short circuit state; in the process of reducing the rotating speed, when the rotating speed reaches a first set rotating speed value, calculating a first included angle formed by a corresponding forward current vector and a d-axis negative half shaft of a preset rotor coordinate system of the permanent magnet synchronous motor; the permanent magnet synchronous motor is also used for controlling the permanent magnet synchronous motor to operate according to the received given reverse current vector amplitude and the given reverse rotating speed value after the rotating speed is dropped and stabilized to zero; when the permanent magnet synchronous motor reaches and stabilizes at the given reverse rotating speed value, setting an inverter connected with the permanent magnet synchronous motor to be in a three-phase short circuit state; in the process of reducing the rotating speed, when a second set rotating speed value is reached, a second included angle formed by the corresponding reverse current vector and a d-axis negative half shaft of a preset rotor coordinate system of the permanent magnet synchronous motor is calculated; and the zero offset angle calculation module is used for calculating the average value of the first included angle and the second included angle to obtain the zero offset angle of the rotary transformer.
Wherein, the zero calibration system further comprises:
the low-pass filter is used for performing low-pass filtering on the first included angle and the second included angle to obtain a first included angle low-pass filtering value and a second included angle low-pass filtering value;
the control module is further used for calculating an average value of the first included angle low-pass filtering value and the second included angle low-pass filtering value to obtain a zero offset angle of the rotary transformer.
The first included angle is calculated according to d-axis current and q-axis current when the rotating speed of the permanent magnet synchronous motor reaches a first set rotating speed value, and the second included angle is calculated according to d-axis current and q-axis current when the rotating speed of the permanent magnet synchronous motor reaches a second set rotating speed value.
The preset rotor coordinate system is obtained by performing Park conversion by taking the original reading of the rotary transformer as a coordinate conversion parameter, and an included angle formed by the forward direction of the d axis and the stator coordinate A phase of the permanent magnet synchronous motor is the original reading of the rotary transformer.
Wherein the given forward current vector magnitude and the given reverse current vector magnitude are equal, and the first set speed value magnitude and the second set speed value magnitude are equal.
The embodiment of the invention has the beneficial effects that: the method and the device realize measurement under a rotating speed closed loop, can eliminate or inhibit the influence of non-ideal factors such as friction force, cogging torque and the like on zero calibration of the rotary transformer, have high measurement precision, and can also perform calibration under the condition that the permanent magnet synchronous motor is in a vehicle-mounted state.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the drawings without creative efforts.
Fig. 1 is a schematic diagram of the relationship between the rotor angle of a permanent magnet synchronous motor and the reading of a resolver.
Fig. 2 is a schematic flow chart of a method for calibrating the zero position of a resolver of a vehicle-mounted permanent magnet synchronous motor according to an embodiment of the invention.
FIG. 3 is a control schematic block diagram implementing an embodiment of the present invention.
Fig. 4 is a block diagram of a system implementing an embodiment of the invention.
Fig. 5 is a schematic diagram of the operation principle of the first embodiment of the present invention.
Fig. 6 is a schematic diagram of the change of the rotation speed of the permanent magnet synchronous motor with time according to the first embodiment of the invention.
FIG. 7 is a schematic diagram of the current vector varying with time according to an embodiment of the present invention.
Detailed Description
The following description of the embodiments refers to the accompanying drawings, which are included to illustrate specific embodiments in which the invention may be practiced.
Referring to fig. 2, an embodiment of the present invention provides a method for calibrating a zero position of a resolver of a vehicle-mounted permanent magnet synchronous motor, including:
controlling the permanent magnet synchronous motor to operate according to the received given forward current vector amplitude and the given forward rotating speed value;
when the permanent magnet synchronous motor reaches and stabilizes at the given forward rotating speed value, setting an inverter connected with the permanent magnet synchronous motor to be in a three-phase short circuit state;
in the process of rotating speed reduction, when a first set rotating speed value is reached, a first included angle formed by a corresponding forward current vector and a d-axis negative half shaft of a permanent magnet synchronous motor preset rotor coordinate system is calculated;
when the rotating speed is dropped and stabilized at zero, controlling the permanent magnet synchronous motor to operate according to the received given reverse current vector amplitude and the given reverse rotating speed value;
when the permanent magnet synchronous motor reaches and stabilizes at the given reverse rotating speed value, setting an inverter connected with the permanent magnet synchronous motor to be in a three-phase short circuit state;
in the process of reducing the rotating speed, when a second set rotating speed value is reached, a second included angle formed by the corresponding reverse current vector and a d-axis negative half shaft of a preset rotor coordinate system of the permanent magnet synchronous motor is calculated;
and calculating the average value of the first included angle and the second included angle to obtain the zero offset angle of the rotary transformer.
Specifically, the zero position calibration method for the vehicle-mounted permanent magnet synchronous motor resolver is applicable to electric vehicles, and before implementation, the electric vehicles need to be lifted by using a suspension, four wheels are suspended, and a neutral gear is hung, so that calibration of the zero position offset angle of the resolver can be directly performed under the vehicle-mounted condition.
Then entering a zero calibration mode of the rotary transformer, and giving a forward current vector amplitude Is+And given forward speed value omega+The system of fig. 4 is started by using the control block diagram of fig. 3.
When the rotating speed of the permanent magnet synchronous motor reaches omega+And is stabilized at omega+When the U, V, W three phases of the inverter are in a short-circuit state: as shown in fig. 4, the upper tubes Q1, Q3 and Q5 of the three-phase bridge arm are normally open, and the lower tubes Q2, Q4 and Q6 are normally closed; or the upper tubes Q1, Q3 and Q5 are normally closed, and the lower tubes Q2, Q4 and Q6 are normally open.
When the inverter is triggered to be in a three-phase short circuit state, the permanent magnet synchronous motor is not controlled by the system shown in fig. 4 any more, and the equivalent input voltage of the permanent magnet synchronous motor is zero. Referring to FIG. 5, D0Q0Representing the real DQ axis direction of the rotor of the permanent magnet synchronous motor, DQ representing the preset rotor coordinate system of the permanent magnet synchronous motor obtained by carrying out Park conversion by taking the original reading of a rotary transformer as a coordinate conversion parameter, and the positive direction of the d axis and the permanent magnet synchronousThe included angle formed by the stator coordinates A phase of the motor is the original reading of the rotary transformer, a DQ coordinate system and D0Q0Angle theta between coordinate systems0Is the zero offset angle of the resolver.
When the rotating speed of the permanent magnet synchronous motor at this time is in the process of decreasing, as shown in fig. 6 and 7, respectively, when the first set rotating speed value ω is reached+ *Its corresponding current vector Is+ *Will be stabilized at a value theta with respect to the negative half axis of the d-axis of the predetermined rotor coordinate system+The position of the angle (i.e., the first angle). The control module in FIG. 3 will depend on the d-axis current I at that timedAnd q-axis current IqCalculating to obtain the theta+And (4) an angle.
When the rotating speed is dropped and stabilized at zero, the reverse current vector amplitude I is also givens-And given reverse speed value omega-The system of fig. 4 is started by using the control block diagram of fig. 3. Magnitude of forward current vector Is+And the vector magnitude I of the reverse currents-Are equal.
When the rotating speed of the permanent magnet synchronous motor reaches omega-And is stabilized at omega-When, U, V, W three phases of the inverter are also set in a short-circuit state: as shown in fig. 4, the upper tubes Q1, Q3 and Q5 of the three-phase bridge arm are normally open, and the lower tubes Q2, Q4 and Q6 are normally closed; or the upper tubes Q1, Q3 and Q5 are normally closed, and the lower tubes Q2, Q4 and Q6 are normally open.
When the inverter is triggered to be in a three-phase short circuit state, the permanent magnet synchronous motor is not controlled by the system shown in fig. 4 any more, and the equivalent input voltage of the permanent magnet synchronous motor is zero. When the rotation speed of the permanent magnet synchronous motor at this time is in the process of decreasing, as shown in fig. 6 and 7, respectively, when the second set rotation speed value ω is reached- *Its corresponding current vector Is- *Will be stabilized at a value theta with respect to the negative half axis of the d-axis of the predetermined rotor coordinate system-The position of the angle (i.e., the second angle). The control module in FIG. 3 will depend on the d-axis current I at that timedAnd q-axis current IqCalculating to obtain the theta-And (4) an angle. Note that, the first set rotation speed value ω+ *Amplitude and second set rotation speed value omega- *The amplitudes are equal.
Calculating a first angle theta+And a second angle theta-The average value of the zero offset angle theta of the rotary transformer can be obtained0The principle of (1) is as follows:
the equivalent input voltage of the permanent magnet synchronous motor is zero, and D is equal to zero0Q0True d-axis current I under coordinate systemdQ-axis current IqThe current satisfies the following relationship:
Figure GDA0002316288410000061
wherein r is stator resistance of the PMSM, LqIs q-axis inductance, omegaeIs the electrical angular velocity of the permanent magnet synchronous motor.
When the permanent magnet synchronous motor is in positive rotation, the first set rotating speed value omega+ *Then there are:
Figure GDA0002316288410000062
similarly, when the permanent magnet synchronous motor is in a second set rotating speed value omega of reverse rotation- *Then there are:
Figure GDA0002316288410000063
due to omega+ *=ω- *Thus, there are: theta0+=θ-0
Finishing to obtain: theta0=(θ+-) 2, namely obtaining the first included angle theta+And a second angle theta-Then, the average value of the two is calculated, and the zero offset angle theta of the rotary transformer can be obtained0. The zero offset angle theta of the resolver is obtained by the above calculation0The process of the method is only influenced by the electrical parameters of the permanent magnet synchronous motor (the internal resistance r and q-axis inductance of the stator), so that factors such as the friction force of a vehicle transmission system and the like hardly influence the precision of the calibration of the rotary-change zero position.
Because the permanent magnet synchronous motor rotates in the calibration process, after the rotating speed is stable, the current vector I can be caused due to the influence of factors such as cogging torque and the likesThe vector angle of (a) produces periodic fluctuations which can be almost completely eliminated by low-pass filtering. Therefore, the present embodiment further includes the first angle θ+And a second angle theta-And performing low-pass filtering to obtain a first included angle low-pass filtering value and a second included angle low-pass filtering value, and then calculating the average value of the first included angle low-pass filtering value and the second included angle low-pass filtering value to obtain the zero offset angle of the rotary transformer. Because the vector angle after low-pass filtering is adopted when the zero offset angle is calculated, the calibration result is hardly influenced by the cogging torque. Therefore, the zero calibration method can eliminate the influence of non-ideal factors such as friction force, cogging torque and the like on the zero calibration of the rotary transformer, and can realize high-precision calibration. In addition, the calibration method of the embodiment only needs a power battery except for the motor controller and the motor, so that zero calibration can be directly carried out under the condition that the motor controller and the motor are normally installed on an actual vehicle.
Correspondingly to the first embodiment of the present invention, a second embodiment of the present invention provides a zero calibration system for a resolver of a vehicle-mounted permanent magnet synchronous motor, including:
the control module is used for controlling the permanent magnet synchronous motor to operate according to the received given forward current vector amplitude value and the given forward rotating speed value; when the permanent magnet synchronous motor reaches and stabilizes at the given forward rotating speed value, setting an inverter connected with the permanent magnet synchronous motor to be in a three-phase short circuit state; in the process of reducing the rotating speed, when the rotating speed reaches a first set rotating speed value, calculating a first included angle formed by a corresponding forward current vector and a d-axis negative half shaft of a preset rotor coordinate system of the permanent magnet synchronous motor; the permanent magnet synchronous motor is also used for controlling the permanent magnet synchronous motor to operate according to the received given reverse current vector amplitude and the given reverse rotating speed value after the rotating speed is dropped and stabilized to zero; when the permanent magnet synchronous motor reaches and stabilizes at the given reverse rotating speed value, setting an inverter connected with the permanent magnet synchronous motor to be in a three-phase short circuit state; in the process of reducing the rotating speed, when a second set rotating speed value is reached, a second included angle formed by the corresponding reverse current vector and a d-axis negative half shaft of a preset rotor coordinate system of the permanent magnet synchronous motor is calculated; and the zero offset angle calculation module is used for calculating the average value of the first included angle and the second included angle to obtain the zero offset angle of the rotary transformer.
Wherein, the zero calibration system further comprises:
the low-pass filter is used for performing low-pass filtering on the first included angle and the second included angle to obtain a first included angle low-pass filtering value and a second included angle low-pass filtering value;
the control module is further used for calculating an average value of the first included angle low-pass filtering value and the second included angle low-pass filtering value to obtain a zero offset angle of the rotary transformer.
The first included angle is calculated according to d-axis current and q-axis current when the rotating speed of the permanent magnet synchronous motor reaches a first set rotating speed value, and the second included angle is calculated according to d-axis current and q-axis current when the rotating speed of the permanent magnet synchronous motor reaches a second set rotating speed value.
The preset rotor coordinate system is obtained by performing Park conversion by taking the original reading of the rotary transformer as a coordinate conversion parameter, and an included angle formed by the forward direction of the d axis and the stator coordinate A phase of the permanent magnet synchronous motor is the original reading of the rotary transformer.
Wherein the given forward current vector magnitude and the given reverse current vector magnitude are equal, and the first set speed value magnitude and the second set speed value magnitude are equal.
According to the invention, the measurement under the closed loop of the rotating speed is realized, the influence of non-ideal factors such as friction force, cogging torque and the like on the zero calibration of the rotary transformer can be eliminated or inhibited, the measurement precision is high, and the calibration can be carried out under the condition that the permanent magnet synchronous motor is in a vehicle-mounted state.
The above disclosure is only for the purpose of illustrating the preferred embodiments of the present invention, and it is therefore to be understood that the invention is not limited by the scope of the appended claims.

Claims (10)

1. A zero calibration method for a rotary transformer of a vehicle-mounted permanent magnet synchronous motor comprises the following steps:
controlling the permanent magnet synchronous motor to operate according to the received given forward current vector amplitude and the given forward rotating speed value;
when the permanent magnet synchronous motor reaches and stabilizes at the given forward rotating speed value, setting an inverter connected with the permanent magnet synchronous motor to be in a three-phase short circuit state;
in the process of rotating speed reduction, when a first set rotating speed value is reached, a first included angle formed by a corresponding forward current vector and a d-axis negative half shaft of a permanent magnet synchronous motor preset rotor coordinate system is calculated;
when the rotating speed is dropped and stabilized at zero, controlling the permanent magnet synchronous motor to operate according to the received given reverse current vector amplitude and the given reverse rotating speed value;
when the permanent magnet synchronous motor reaches and stabilizes at the given reverse rotating speed value, setting an inverter connected with the permanent magnet synchronous motor to be in a three-phase short circuit state;
in the process of reducing the rotating speed, when a second set rotating speed value is reached, a second included angle formed by the corresponding reverse current vector and a d-axis negative half shaft of a preset rotor coordinate system of the permanent magnet synchronous motor is calculated;
and calculating the average value of the first included angle and the second included angle to obtain the zero offset angle of the rotary transformer.
2. The zero calibration method as set forth in claim 1, further comprising:
respectively carrying out low-pass filtering on the calculated first included angle and the second included angle to obtain a first included angle low-pass filtering value and a second included angle low-pass filtering value;
and calculating the average value of the low-pass filter value of the first included angle and the low-pass filter value of the second included angle to obtain the zero offset angle of the rotary transformer.
3. The zero calibration method as claimed in claim 1, wherein the first angle is calculated according to a d-axis current and a q-axis current when a rotation speed of the permanent magnet synchronous motor reaches a first set rotation speed value, and the second angle is calculated according to a d-axis current and a q-axis current when the rotation speed of the permanent magnet synchronous motor reaches a second set rotation speed value.
4. The zero calibration method as claimed in claim 1, wherein the preset rotor coordinate system is obtained by performing Park transformation using an original reading of the resolver as a coordinate transformation parameter, and an included angle formed by a forward direction of a d axis of the preset rotor coordinate system and a stator coordinate a phase of the permanent magnet synchronous motor is the original reading of the resolver.
5. The zero calibration method of claim 1, wherein the given forward current vector magnitude and the given reverse current vector magnitude are equal, and the first set speed value magnitude is equal to the second set speed value magnitude.
6. The utility model provides a vehicle-mounted PMSM resolver zero position calibration system which characterized in that includes:
the control module is used for controlling the permanent magnet synchronous motor to operate according to the received given forward current vector amplitude value and the given forward rotating speed value; when the permanent magnet synchronous motor reaches and stabilizes at the given forward rotating speed value, setting an inverter connected with the permanent magnet synchronous motor to be in a three-phase short circuit state; in the process of reducing the rotating speed, when the rotating speed reaches a first set rotating speed value, calculating a first included angle formed by a corresponding forward current vector and a d-axis negative half shaft of a preset rotor coordinate system of the permanent magnet synchronous motor; the permanent magnet synchronous motor is also used for controlling the permanent magnet synchronous motor to operate according to the received given reverse current vector amplitude and the given reverse rotating speed value after the rotating speed is dropped and stabilized to zero; when the permanent magnet synchronous motor reaches and stabilizes at the given reverse rotating speed value, setting an inverter connected with the permanent magnet synchronous motor to be in a three-phase short circuit state; in the process of reducing the rotating speed, when a second set rotating speed value is reached, a second included angle formed by the corresponding reverse current vector and a d-axis negative half shaft of a preset rotor coordinate system of the permanent magnet synchronous motor is calculated; and the zero offset angle calculation module is used for calculating the average value of the first included angle and the second included angle to obtain the zero offset angle of the rotary transformer.
7. The zero calibration system of claim 6, further comprising:
the low-pass filter is used for performing low-pass filtering on the first included angle and the second included angle to obtain a first included angle low-pass filtering value and a second included angle low-pass filtering value;
the control module is further used for calculating an average value of the first included angle low-pass filtering value and the second included angle low-pass filtering value to obtain a zero offset angle of the rotary transformer.
8. The zero calibration system as claimed in claim 7, wherein the first angle is calculated according to a d-axis current and a q-axis current when the rotation speed of the pmsm reaches a first set rotation speed value, and the second angle is calculated according to a d-axis current and a q-axis current when the rotation speed of the pmsm reaches a second set rotation speed value.
9. The zero calibration system as claimed in claim 6, wherein the preset rotor coordinate system is obtained by performing Park transformation using an original reading of the resolver as a coordinate transformation parameter, and an included angle formed by a forward direction of a d axis of the preset rotor coordinate system and a stator coordinate A phase of the permanent magnet synchronous motor is the original reading of the resolver.
10. The zero calibration system of claim 6, wherein the given forward current vector magnitude and the given reverse current vector magnitude are equal, and the first set speed value magnitude is equal to the second set speed value magnitude.
CN201710943723.9A 2017-10-11 2017-10-11 Zero calibration method and system for rotary transformer of vehicle-mounted permanent magnet synchronous motor Active CN107894247B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710943723.9A CN107894247B (en) 2017-10-11 2017-10-11 Zero calibration method and system for rotary transformer of vehicle-mounted permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710943723.9A CN107894247B (en) 2017-10-11 2017-10-11 Zero calibration method and system for rotary transformer of vehicle-mounted permanent magnet synchronous motor

Publications (2)

Publication Number Publication Date
CN107894247A CN107894247A (en) 2018-04-10
CN107894247B true CN107894247B (en) 2020-03-27

Family

ID=61803502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710943723.9A Active CN107894247B (en) 2017-10-11 2017-10-11 Zero calibration method and system for rotary transformer of vehicle-mounted permanent magnet synchronous motor

Country Status (1)

Country Link
CN (1) CN107894247B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004875B (en) * 2018-07-26 2020-10-23 上海汽车工业(集团)总公司 Method for calculating zero angle of permanent magnet synchronous motor rotor position sensor and calibration method
CN110784132B (en) * 2018-07-27 2021-07-20 比亚迪股份有限公司 Method and device for determining zero position of motor
CN110855194B (en) * 2018-07-27 2021-11-12 比亚迪股份有限公司 Method and device for determining zero position of motor
CN110784133B (en) * 2018-07-27 2021-08-10 比亚迪股份有限公司 Method and device for determining zero position of motor
CN111313784B (en) * 2018-12-11 2021-04-06 广州汽车集团股份有限公司 Method and system for measuring initial zero position of rotary transformer of permanent magnet synchronous motor
CN110365270A (en) * 2018-12-25 2019-10-22 格至控智能动力科技(上海)有限公司 Rotation for AC magnetoelectric machine becomes zero bias setting method
CN112671296B (en) * 2020-12-17 2023-03-24 电子科技大学 Method for detecting zero position of rotor of permanent magnet synchronous motor
CN113063345B (en) * 2021-04-07 2023-01-10 拿森汽车科技(杭州)有限公司 Motor zero position angle calibration method and device and computer storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513536B2 (en) * 2004-12-06 2010-07-28 株式会社豊田自動織機 Inverter device
CN101110559B (en) * 2006-07-20 2011-10-12 比亚迪股份有限公司 Magneto synchronous generator controlling system used for hybrid vehicle
CN202720287U (en) * 2012-07-31 2013-02-06 西北工业大学 Apparatus for automatic detection and compensation of zero variation of rotary transformer
JP6089845B2 (en) * 2013-03-22 2017-03-08 株式会社明電舎 Permanent magnet synchronous motor starting method
CN104079215B (en) * 2013-03-26 2016-06-01 上海电驱动股份有限公司 The accurate Detection and adjustment method of automobile permanent magnet synchronous motor initial position of rotor
CN104734589B (en) * 2013-12-20 2017-07-07 联合汽车电子有限公司 The method that deviation angle is demarcated in permagnetic synchronous motor
CN106559014B (en) * 2016-11-22 2019-03-22 西北工业大学 A kind of control method for brushless direct current motor based on rotary transformer
CN107086835B (en) * 2017-05-26 2023-12-15 深圳市大地和电气股份有限公司 Permanent magnet synchronous motor rotation initial zero-potential angle calibration system and calibration method

Also Published As

Publication number Publication date
CN107894247A (en) 2018-04-10

Similar Documents

Publication Publication Date Title
CN107894247B (en) Zero calibration method and system for rotary transformer of vehicle-mounted permanent magnet synchronous motor
CN107883990B (en) Zero calibration method and system for permanent magnet synchronous motor rotary transformer for electric automobile
CN107359837A (en) Torsion control system of synchronization generator with everlasting magnetic and method based on sliding mode observer and Active Disturbance Rejection Control
CN109039204B (en) Position-sensorless model prediction control system and method for permanent magnet synchronous motor for vehicle
CN109742989B (en) Fault diagnosis and processing method for current sensor of permanent magnet synchronous motor control system
JP2014068528A (en) Measuring method of inductance of permanent magnet synchronous motor, measuring device and permanent magnet synchronous motor
CN107306101B (en) The control device of rotating electric machine
CN108847795A (en) A kind of control method of permanent magnet synchronous motor position-sensor-free
CN104113257B (en) The system and method deviated for determining the rotor-position of motor
CN104852662B (en) The measuring method and system of permagnetic synchronous motor static inductance parameter
CN110581681B (en) Zero calibration method and device for permanent magnet synchronous motor position sensor
CN104079215A (en) Precise detection and adjustment method for initial position of permanent-magnet synchronous motor rotor for vehicle
WO2020186656A1 (en) Method for estimating position of linear time-variant rotor of low-speed permanent magnet synchronous motor
US20180095131A1 (en) Method of diagnosing a magnetization fault of a permanent magnet motor
CN108809185B (en) Method and system for controlling motor torque of electric automobile
CN107276479A (en) A kind of two-phase orthogonal winding permagnetic synchronous motor rotating speed determines method
US20210293583A1 (en) Method for checking the setting of an angular position sensor of a rotor for a vehicle
JP2017022893A (en) Control device of ac rotary machine and inertia moment calculation method of ac rotary machine
Kim et al. A study on accurate initial rotor position offset detection for a permanent magnet synchronous motor under a no-load condition
JP5806633B2 (en) Motor control device
CN112671296B (en) Method for detecting zero position of rotor of permanent magnet synchronous motor
CN109546904B (en) Rotor position detection method of double three-phase permanent magnet synchronous motor
CN110798111B (en) Method and device for detecting zero position of rotary transformer of permanent magnet synchronous motor
CN110635742B (en) Initial position angle calibration method for permanent magnet synchronous motor and motor controller
CN111239603A (en) Device and method for testing inductance of permanent magnet synchronous reluctance motor for electric vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211229

Address after: 511434 No. 36, Longying Road, Shilou Town, Panyu District, Guangzhou City, Guangdong Province

Patentee after: GAC AION New Energy Vehicle Co.,Ltd.

Address before: 510000 23 building, Cheng Yue mansion 448-458, Dongfeng Middle Road, Yuexiu District, Guangzhou, Guangdong.

Patentee before: GUANGZHOU AUTOMOBILE GROUP Co.,Ltd.

TR01 Transfer of patent right
CP03 Change of name, title or address

Address after: No. 36 Longying Road, Shilou Town, Panyu District, Guangzhou City, Guangdong Province

Patentee after: GAC AION NEW ENERGY AUTOMOBILE Co.,Ltd.

Country or region after: China

Address before: No. 36 Longying Road, Shilou Town, Panyu District, Guangzhou City, Guangdong Province

Patentee before: GAC AION New Energy Vehicle Co.,Ltd.

Country or region before: China

CP03 Change of name, title or address