JP6086517B2 - Electric field time grating angular displacement sensor - Google Patents

Electric field time grating angular displacement sensor Download PDF

Info

Publication number
JP6086517B2
JP6086517B2 JP2016533611A JP2016533611A JP6086517B2 JP 6086517 B2 JP6086517 B2 JP 6086517B2 JP 2016533611 A JP2016533611 A JP 2016533611A JP 2016533611 A JP2016533611 A JP 2016533611A JP 6086517 B2 JP6086517 B2 JP 6086517B2
Authority
JP
Japan
Prior art keywords
rotor
stator
electrode
electrodes
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016533611A
Other languages
Japanese (ja)
Other versions
JP2016540207A (en
Inventor
劉小康
彭東林
于治成
Original Assignee
重慶理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重慶理工大学 filed Critical 重慶理工大学
Publication of JP2016540207A publication Critical patent/JP2016540207A/en
Application granted granted Critical
Publication of JP6086517B2 publication Critical patent/JP6086517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/243Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the phase or frequency of ac

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

本発明は精密角変位測定センサに関する。 The present invention relates to a precision angular displacement measurement sensor.

近年、精密角変位測定センサの分野において、クロックパルスを変位測定の基準とするタイムグレーティングセンサが開発されており、これを基礎として、交番電界に基づくタイムグレーティング角変位センサも開発されている。この種のセンサとしては、2012年4月25日に公開された、発明の名称「交番電界に基づくタイムグレーティング角変位センサ」とする中国特許文献CN102425987Aがある。 In recent years, in the field of precision angular displacement measurement sensors, time grating sensors using clock pulses as a reference for displacement measurement have been developed, and based on this, time grating angular displacement sensors based on alternating electric fields have also been developed. As this type of sensor, there is Chinese Patent Document CN102425987A, which was published on April 25, 2012, and whose title is “time grating angular displacement sensor based on alternating electric field”.

交番電界に基づくタイムグレーティング角変位センサは、単層構造の差動静電容量を用いて信号結合路としており、2つの環状電極による2経路の定常波信号が求められ、加算回路により1経路の進行波信号に合成する。しかし円柱端面に加工される2つの環状電極の長さや幅の不一致により、対応する2経路の定常波信号の変化規則は相違し、且つ2つの環状電極信号の間での相互干渉が起こり得るため、測定誤差が増大し、精度向上の妨げとなっている。製造過程において2つの環状電極を一致させることは難しく、取付作業においても2つの環状電極の電界結合強度を一致させることが難しいため、両経路の定常波信号の振幅の不一致を引き起こし、測定誤差をもたらすことから、産業現場への適応性は低いものであった。   A time grating angular displacement sensor based on an alternating electric field is used as a signal coupling path using a single layer structure differential capacitance, and a two-path standing wave signal is obtained by two annular electrodes. Composite to signal. However, due to the mismatch in the length and width of the two annular electrodes processed on the cylinder end face, the change rules of the corresponding standing wave signals of the two paths are different, and mutual interference between the two annular electrode signals can occur. Measurement errors increase, which hinders accuracy improvement. It is difficult to match the two annular electrodes in the manufacturing process, and it is difficult to match the electric field coupling strengths of the two annular electrodes even in the mounting operation. This causes a mismatch in the amplitudes of the standing wave signals in both paths, resulting in measurement errors. Therefore, adaptability to industrial sites was low.

本発明は、上記従来技術が有する問題を解決する単円多層構造に基づく電界式タイムグレーティング角変位センサを提供することを目的とする。本発明によれば、単円多層構造の電極を用いて、2つの環状電極の間の信号が相互干渉し、かつ電極の長さや幅が一致しないという問題を解決し、製造過程及び取付作業において2つの環状電界結合強度の不一致を引き起こすという問題を回避することができる。また、電界結合原理を利用し直接進行波信号を得るため、加算回路を設ける必要がない。従って、測定誤差を減少させ、要求される取付精度を低減し、システム構造を簡素化することができる。 An object of the present invention is to provide an electric field time grating angular displacement sensor based on a single circular multilayer structure that solves the above-described problems of the prior art. According to the present invention, by using an electrode having a single circular multilayer structure, the problem that signals between two annular electrodes interfere with each other and the length and width of the electrodes do not match is solved. The problem of causing a mismatch between the two annular electric field coupling strengths can be avoided. Further, since a traveling wave signal is directly obtained using the electric field coupling principle, it is not necessary to provide an adding circuit. Therefore, measurement errors can be reduced, required mounting accuracy can be reduced, and the system structure can be simplified.

本発明は、単円多層構造に基づく電界式タイムグレーティング角変位センサであって、回転子と固定子の両部分を備え、回転子基板及び固定子基板は円柱体又は円筒環を用いた2種の実現方式とすることができる。 The present invention is an electric field type time grating angular displacement sensor based on a single circular multilayer structure, which includes both a rotor and a stator, and the rotor substrate and the stator substrate are two types using a cylindrical body or a cylindrical ring. Can be realized.

前記センサを実現するための第1の方式は、円柱体又は円筒環の上下端面に沿って電極を配置するものである。回転子基板及び固定子基板はいずれも円柱体又は円筒環を用い、回転子基板の下表面(即ち円柱端面)には2つの上下対称な正弦曲線で形成される双正弦形(円周方向に沿って広がった後の形状)の回転子電極が配置され、回転子電極の数量はm(mは1以上の整数)であり、周面に均一に配置され、回転子電極間は導線により連結されている。固定子基板上の表面(即ち円柱端面)は、4層の誘電体膜に覆われており、第1層は金属膜であり、4本の励磁信号導線を構成している。第2層は絶縁膜である。第3層は金属膜であり、固定子電極を構成し、その形状は扇環形(即ち円周方向に沿って広がった形状)であり、大きさは同一で、隣り合う2つの電極の間には、一定の絶縁間隔が保持されており、固定子電極の数量は4mであり、周面に均一に配置されている。第4層は絶縁保護膜である。回転子基板と固定子基板は、同軸上に取付けられ、回転子基板の下表面と固定子基板の上表面は相対して平行に置かれ、回転子電極と固定子電極は正対し、一定間隔δだけ離間して結合コンデンサを形成している。 A first method for realizing the sensor is to arrange electrodes along the upper and lower end surfaces of a cylindrical body or a cylindrical ring. Both the rotor substrate and the stator substrate use a cylindrical body or a cylindrical ring, and the lower surface of the rotor substrate (that is, the end surface of the cylinder) is a bisinusoidal shape (circumferentially) formed by two vertically sine curves. Rotor electrode of the shape after spreading along) is arranged, the number of rotor electrodes is m (m is an integer of 1 or more), it is uniformly arranged on the circumferential surface, and the rotor electrodes are connected by conducting wires Has been. The surface on the stator substrate (that is, the end face of the cylinder) is covered with four layers of dielectric films, the first layer is a metal film, and constitutes four excitation signal conductors. The second layer is an insulating film. The third layer is a metal film and constitutes a stator electrode, and its shape is a fan shape (that is, a shape extending along the circumferential direction), the size is the same, and between two adjacent electrodes The fixed insulation interval is maintained, the number of stator electrodes is 4 m, and they are uniformly arranged on the peripheral surface. The fourth layer is an insulating protective film. The rotor substrate and the stator substrate are mounted on the same axis, and the lower surface of the rotor substrate and the upper surface of the stator substrate are placed in parallel with each other, and the rotor electrode and the stator electrode face each other at a constant interval. A coupling capacitor is formed separated by δ.

前記センサを実現するための第2の方式は、円柱体又は円筒環の内外柱面に沿って電極を配置するものである。回転子基板は円柱体を用い、回転子基板の円柱外面には2つの上下対称な正弦曲線で形成される双正弦形(円周方向に沿って広がった後の形状)の回転子電極が配置され、回転子電極の数量はmであり、周面に均一に配置され、回転子電極間は導線により連結されている。固定子基板は円筒環を用い、その内周面は4層の誘電体膜に覆われ、第1層は金属膜であり、4本の励磁信号導線を構成している。第2層は絶縁膜である。第3層は金属膜であり、固定子電極を構成し、その形状は曲面矩形(円周方向に沿って広がった矩形)であり、大きさは同一で、隣り合う2つの電極の間には、一定の絶縁間隔が保持されており、固定子電極の数量は4mであり、周面に均一に配置されている。第4層は絶縁保護膜である。回転子基板と固定子基板は、同軸上に取付けられ、回転子電極と固定子電極は正対し、一定間隔δだけ離間して結合コンデンサを形成する。 In the second method for realizing the sensor, electrodes are arranged along the inner and outer column surfaces of a cylindrical body or a cylindrical ring. The rotor substrate uses a cylindrical body, and a bi-sinusoidal rotor electrode (the shape after spreading along the circumferential direction) formed by two vertically symmetrical sinusoids is arranged on the outer surface of the rotor substrate. The number of rotor electrodes is m, and the rotor electrodes are uniformly arranged on the peripheral surface, and the rotor electrodes are connected to each other by a conducting wire. The stator substrate uses a cylindrical ring, and its inner peripheral surface is covered with four layers of dielectric films, and the first layer is a metal film, which constitutes four excitation signal conductors. The second layer is an insulating film. The third layer is a metal film and constitutes a stator electrode, the shape of which is a curved rectangle (a rectangle extending along the circumferential direction), the same size, and between two adjacent electrodes A constant insulation interval is maintained, the number of stator electrodes is 4 m, and they are uniformly arranged on the peripheral surface. The fourth layer is an insulating protective film. The rotor substrate and the stator substrate are mounted on the same axis, and the rotor electrode and the stator electrode face each other, and are separated by a fixed interval δ to form a coupling capacitor.

上記2種の構造において、回転子電極はm個であり、その長さは固定子電極よりやや短く、幅は1つの電極の幅と1つの絶縁間隔との和であり、隣り合う2つの回転子電極の間隔は回転子電極の幅の3倍である。具体的には、前記回転子電極の形状は、[0,π]区間における正弦曲線とx軸で囲まれた領域及び[π,2π]区間における正弦曲線とx軸で囲まれた領域を合わせて構成される。従って、面積に対する正弦規則により変化する結合コンデンサを得ることができ、更に角変位変調信号を得ることができる。   In the two types of structures described above, the number of rotor electrodes is m, the length is slightly shorter than the stator electrode, the width is the sum of the width of one electrode and one insulating interval, and two adjacent rotations. The distance between the child electrodes is three times the width of the rotor electrodes. Specifically, the shape of the rotor electrode is a combination of a region surrounded by a sine curve and an x axis in the [0, π] interval and a region surrounded by the sine curve and an x axis in a [π, 2π] interval. Configured. Therefore, it is possible to obtain a coupling capacitor that changes according to the sine rule with respect to the area, and to obtain an angular displacement modulation signal.

前記固定子電極は4m個あり、そのうち第4n+1(n=0,2,3,…,m−1)電極は1組に繋がってA励磁相を構成し、第4n+2電極は1組に繋がってB励磁相を構成し、第4n+3電極は1組に繋がってC励磁相を構成し、第4n+4電極は1組に繋がってD励磁相を構成する。固定子のA、B、C、D4つの励磁相は、それぞれ順に位相差90°の等振幅、等周波数の正弦曲線励磁電圧Ua、Ub、Uc、Udに連結し、回転子電極上で1経路の進行波信号Uoが生じ、該進行波信号と1経路の位相に固定した同周波数基準信号Urは、整形回路により整形された後、位相比較回路によって位相が比較される。両経路の信号の位相差は内挿された高周波クロックパルスの個数により表示され、スケール変換により回転子基板の固定子基板に対する角変位値を得る。以上、4経路の励磁電圧及び1経路の同周波数基準信号Urは、デジタル波形合成技術により与えられる。 There are 4m stator electrodes, among which 4n + 1 (n = 0, 2, 3,..., M-1) electrodes are connected to one set to constitute an A excitation phase, and 4n + 2 electrodes are connected to one set. The B excitation phase is configured, and the fourth n + 3 electrodes are connected to one set to configure the C excitation phase, and the fourth n + 4 electrodes are connected to one set to configure the D excitation phase. The four excitation phases A, B, C and D of the stator are sequentially connected to sinusoidal excitation voltages Ua, Ub, Uc and Ud having an equal amplitude and equal frequency with a phase difference of 90 °, respectively, and one path on the rotor electrode. The traveling-wave signal Uo is generated, and the traveling-wave signal and the same frequency reference signal Ur fixed to the phase of one path are shaped by the shaping circuit and then compared in phase by the phase comparison circuit. The phase difference between the signals of both paths is displayed by the number of interpolated high-frequency clock pulses, and the angular displacement value of the rotor substrate relative to the stator substrate is obtained by scale conversion. As described above, the excitation voltage of the four paths and the same frequency reference signal Ur of the one path are given by the digital waveform synthesis technique.

回転子基板と固定子基板は相対的に回転し、回転子電極と固定子のA、B、C、D4つの励磁相が正対する面積は、無から小、小から大、大から小、小から無まで周期的に変化し、静電容量もこれに対応して周期的に変化する。前記固定子のA励磁相電極と回転子電極は結合コンデンサC1を形成し、B励磁相電極と回転子電極は結合コンデンサC2を形成し、C励磁相電極と回転子電極は結合コンデンサC3を形成し、D励磁相電極と回転子電極は結合コンデンサC4を形成する。前記結合コンデンサC1、C2、C3、C4は2つずつ交互に動作し、そのうち2つのコンデンサが動作している場合、他の2つの静電容量は0であり、回転子電極上で進行波信号Uoを出力する。進行波信号Uoと同周波数基準信号Urは、整形回路により矩形波に整形された後、位相比較され、両経路の信号の位相差は内挿された高周波クロックパルスの個数により表示され、スケール変換により回転子基板の固定子基板に対する角変位値を得る。 The rotor substrate and the stator substrate rotate relatively, and the areas where the four excitation phases A, B, C, and D of the rotor electrode and the stator face each other are from nothing to small, from small to large, from large to small, and small. From time to time, the capacitance changes periodically, and the capacitance also changes accordingly. The A excitation phase electrode and the rotor electrode of the stator form a coupling capacitor C1, the B excitation phase electrode and the rotor electrode form a coupling capacitor C2, and the C excitation phase electrode and the rotor electrode form a coupling capacitor C3. The D excitation phase electrode and the rotor electrode form a coupling capacitor C4. The coupling capacitors C1, C2, C3, and C4 operate alternately two by two, and when two of the capacitors are operating, the other two capacitances are 0, and a traveling wave signal is generated on the rotor electrode. Uo is output. The traveling wave signal Uo and the same frequency reference signal Ur are shaped into a rectangular wave by a shaping circuit, and then phase-compared. The phase difference between the signals of both paths is displayed by the number of interpolated high-frequency clock pulses, and scale conversion. Thus, the angular displacement value of the rotor substrate relative to the stator substrate is obtained.

本発明の技術案は、単円多層構造に基づく電界結合を用い、直接電気進行波を形成するものであり、従来の多種グレーティング式変位センサの利点を融合したものである。   The technical solution of the present invention directly forms an electric traveling wave by using electric field coupling based on a single circular multilayer structure, and combines the advantages of the conventional multi-grating displacement sensor.

本発明は、多層構造の固定子を用いて構築した単円結合電界を測定し、単円双正弦形のセンサ回転子電極を利用し、直接電気進行波を誘導し、高周波クロックパルスを変位計算の基準とする。従って、本センサは、消費電力が低く、精度が高く、構造が簡単で、要求される機械の取付け精度が低く、産業現場環境への適応性が高いという有益な効果を有する。   The present invention measures a single-circle coupled electric field constructed using a multi-layered stator, uses a single-circular sinusoidal sensor rotor electrode, directly induces an electric traveling wave, and calculates a displacement of a high-frequency clock pulse. The standard. Therefore, this sensor has the beneficial effects of low power consumption, high accuracy, simple structure, low required machine mounting accuracy, and high adaptability to industrial field environment.

図1(a)及び図1(b)は、本センサの第1の構造形式の略図であり、電極は固定子基板及び回転子基板の円柱体端面上に配置されている。FIG. 1A and FIG. 1B are schematic views of the first structure type of the present sensor, and the electrodes are arranged on the cylinder end faces of the stator substrate and the rotor substrate. 図2(a)及び図2(b)は、本センサの第2の構造形式の略図であり、電極は固定子基板及び回転子基板の円柱体柱面上に配置されている。FIGS. 2A and 2B are schematic views of the second structure type of the sensor, and the electrodes are arranged on the cylindrical column surfaces of the stator substrate and the rotor substrate. 図3は、固定子基板上の電極と回転子基板上の電極の位置関係図である。FIG. 3 is a positional relationship diagram of the electrodes on the stator substrate and the electrodes on the rotor substrate. 図4は、固定子電極の信号連結関係図である。FIG. 4 is a signal connection relation diagram of the stator electrodes. 図5は、回転子電極と固定子電極が形成する結合コンデンサの略図である。FIG. 5 is a schematic diagram of a coupling capacitor formed by a rotor electrode and a stator electrode. 図6は、本発明の電気回路モデル原理図である。FIG. 6 is an electric circuit model principle diagram of the present invention. 図7は、本発明の信号処理原理ブロック図である。FIG. 7 is a block diagram of the signal processing principle of the present invention.

以下、図を用いて本発明を更に説明する。 Hereinafter, the present invention will be further described with reference to the drawings.

図1(a)、図1(b)、図2(a)、図2(b)、図3に示すように、本発明に記載のセンサは、回転子基板1及び固定子基板2の両部分を備える。基板材料としてセラミック材料を用い、セラミック表面に一層の鉄ニッケル合金をめっきすることにより、電極とし、2種の実施形態がある。 As shown in FIG. 1A, FIG. 1B, FIG. 2A, FIG. 2B, and FIG. 3, the sensor according to the present invention includes both a rotor substrate 1 and a stator substrate 2. With parts. There are two types of embodiments in which a ceramic material is used as a substrate material and an electrode is formed by plating a layer of iron-nickel alloy on the ceramic surface.

図1(a)及び図1(b)は第1の構造を示している。回転子基板1の円柱体下端面は、大きさ及び形状が同一な計36個の回転子電極1−1が円周方向に沿って等間隔に配置され、回転子電極は円周方向に沿って広がった後の形状が二つの正弦曲線が上下対称に形成された双正弦形であり、幅1.8mmの導線が各回転子電極を相互に連結し、双正弦形電極の二つの頂点と頂点は、それぞれ半径37.2mmと49mmの二つの円周上に位置し、各電極の最大幅位置は、対応する中心角が2.5°である。固定子基板の円柱体上端面は、4層の誘電体膜に覆われ、第1層は金属膜であり、第2層は絶縁膜であり、第3層は金属膜であり、第4層は絶縁保護膜である。第1層の金属膜は4本のフラットな環状の導線である励磁信号導線2−2を構成し、それぞれA、B、C、Dの各励磁相の対応電極を1組に繋げ、第3層の金属膜は径方向の高さが同一で中心角の大きさが等しい扇環形電極となる合計144個の固定子電極2−1を構成し、各電極の内環半径は36.2mm、外環半径は50mm、中心角は2.4°であり、隣り合う電極間の絶縁間隔は0.1°である。回転子基板と固定子基板は同軸上に取付けられ、回転子基板1の下端面と固定子基板2の上端面は平行に相対しており、回転子電極1−1と固定子電極2−1は正対し、間隔δ=0.5mmだけ離間している。円周方向に沿って広がった後の形状は矩形である。 Fig.1 (a) and FIG.1 (b) have shown the 1st structure. On the lower end surface of the cylindrical body of the rotor substrate 1, a total of 36 rotor electrodes 1-1 having the same size and shape are arranged at equal intervals along the circumferential direction, and the rotor electrodes extend along the circumferential direction. The shape after spreading is a bisinusoidal shape in which two sine curves are formed symmetrically vertically, and a conductor wire having a width of 1.8 mm connects the rotor electrodes to each other. The vertices are located on two circumferences having radii of 37.2 mm and 49 mm, respectively, and the maximum width position of each electrode has a corresponding central angle of 2.5 °. The upper end surface of the cylindrical body of the stator substrate is covered with a four-layer dielectric film, the first layer is a metal film, the second layer is an insulating film, the third layer is a metal film, and the fourth layer Is an insulating protective film. The metal film of the first layer constitutes an excitation signal conductor 2-2 that is four flat annular conductors, and the corresponding electrodes of the excitation phases of A, B, C, and D are connected to one set, respectively. The metal film of the layer constitutes a total of 144 stator electrodes 2-1 which are fan-shaped electrodes having the same radial height and the same central angle, and the inner ring radius of each electrode is 36.2 mm, The outer ring radius is 50 mm, the central angle is 2.4 °, and the insulation interval between adjacent electrodes is 0.1 °. The rotor substrate and the stator substrate are mounted on the same axis, and the lower end surface of the rotor substrate 1 and the upper end surface of the stator substrate 2 are opposed to each other in parallel. The rotor electrode 1-1 and the stator electrode 2-1 Are opposed to each other and are separated by an interval δ = 0.5 mm. The shape after spreading along the circumferential direction is a rectangle.

図2(a)及び図2(b)は第2の構造を示している。回転子基板1の円柱体の円柱外面は、大きさ及び形状が同一な計36個の回転子電極1−1が円周方向に沿って等間隔に配置され、回転子基板の外円半径は44.5mmであり、電極は円柱軸において上方向の高さが11.8mmであり、各電極は円柱の径方向における中心角が2.5°であり、回転電極は円周方向に沿って広がった後の形状が二つの正弦曲線が上下対称に形成された双正弦形であり、幅1.8mmの導線が各回転子電極を相互に連結している。固定子基板の円柱環内面は、4層の誘電体膜に覆われ、第1層は金属膜であり、第2層は絶縁膜であり、第3層は金属膜であり、第4層は絶縁保護膜である。第1層の金属膜は4本の環状の導線である励磁信号導線2−2を構成し、それぞれA、B、C、Dの各励磁相の対応電極を1組に繋げており、第3層の金属膜は高さが同一で幅が等しい曲面矩形電極である合計144個の固定子電極2−1を構成し、固定子基板の内円半径は45mm、電極の円柱軸における上下方向の高さは13.8mm、各電極の円柱の径方向における中心角は2.4°であり、隣り合う電極間の絶縁間隔は0.1°である。回転子基板と固定子基板は同軸上に取付けられ、回転子電極1−1と固定子電極2−1は正対し、間隔δ=0.5mmだけ離間している。 FIG. 2A and FIG. 2B show the second structure. On the outer surface of the cylindrical body of the rotor substrate 1, a total of 36 rotor electrodes 1-1 having the same size and shape are arranged at equal intervals along the circumferential direction, and the outer circle radius of the rotor substrate is 44.5 mm, the electrode has an upward height of 11.8 mm on the cylinder axis, each electrode has a central angle of 2.5 ° in the radial direction of the cylinder, and the rotating electrode extends along the circumferential direction. The expanded shape is a bisinusoidal shape in which two sine curves are vertically symmetrical, and a conductor wire having a width of 1.8 mm connects the rotor electrodes to each other. The inner surface of the cylindrical ring of the stator substrate is covered with a four-layer dielectric film, the first layer is a metal film, the second layer is an insulating film, the third layer is a metal film, and the fourth layer is It is an insulating protective film. The metal film of the first layer constitutes the excitation signal conducting wire 2-2 that is four annular conducting wires, and the corresponding electrodes of each excitation phase of A, B, C, and D are connected to one set, respectively. The metal films of the layers constitute a total of 144 stator electrodes 2-1, which are curved rectangular electrodes having the same height and the same width. The inner circle radius of the stator substrate is 45 mm, and the vertical axis of the cylinder axis of the electrodes is The height is 13.8 mm, the central angle of each electrode in the radial direction of the cylinder is 2.4 °, and the insulation interval between adjacent electrodes is 0.1 °. The rotor substrate and the stator substrate are mounted on the same axis, and the rotor electrode 1-1 and the stator electrode 2-1 face each other, and are separated by an interval δ = 0.5 mm.

上記2つの実施形態において、回転子電極の長さは固定子電極の長さよりやや短く、その幅は1つの固定子電極の幅と1つの絶縁間隔との和であり、隣り合う2つの回転子電極の間隔は3つの固定子電極の幅の和である。固定子電極の第1,5,9,……,141電極は1本の励磁信号導線2−2により1組に繋がってA励磁相を構成し、A励磁相にUa=Umsinωtの励磁信号を加える。固定子電極の第2,6,10,……,142電極は1本の励磁信号導線2−2により1組に繋がってB励磁相を構成し、B励磁相にUb=Umcosωtの励磁信号を加える。固定子電極の第3,7,11,……,143電極は1本の励磁信号導線2−2により1組に繋がってC励磁相を構成し、C励磁相にUc=−Umsinωtの励磁信号を加える。固定子電極の第4,8,12,……,144電極は1本の励磁信号導線2−2により1組に繋がってD励磁相を構成し、D励磁相にUd=−Umcosωtの励磁信号を加える。励磁信号のピーク値はUm=5V、周波数はf=40KHz、角周波数はω=2πf=8×10πである。 In the above two embodiments, the length of the rotor electrode is slightly shorter than the length of the stator electrode, and the width is the sum of the width of one stator electrode and one insulating interval, and two adjacent rotors. The electrode spacing is the sum of the widths of the three stator electrodes. The first, fifth, ninth,..., 141 electrodes of the stator electrodes are connected to one set by one excitation signal conducting wire 2-2 to form an A excitation phase, and an excitation signal of Ua = Umsinωt is applied to the A excitation phase. Add. The second, sixth, tenth,..., 142 electrodes of the stator electrodes are connected to one set by one excitation signal conducting wire 2-2 to form a B excitation phase, and an excitation signal of Ub = Umcosωt is supplied to the B excitation phase. Add. The third, seventh, eleventh,..., And 143 electrodes of the stator electrode are connected to one set by one excitation signal conducting wire 2-2 to form a C excitation phase, and an excitation signal of Uc = −Umsinωt is provided in the C excitation phase. Add The fourth, eighth, twelfth,..., And 144 electrodes of the stator electrode are connected to one set by one excitation signal conducting wire 2-2 to form a D excitation phase, and the excitation signal of Ud = −Umcosωt is used as the D excitation phase. Add The peak value of the excitation signal is Um = 5 V, the frequency is f = 40 KHz, and the angular frequency is ω = 2πf = 8 × 10 4 π.

図5及び図6に示すように、回転子電極1−1と固定子基板のA励磁相の電極は結合コンデンサC1を形成する。回転子電極と固定子基板のB励磁相の電極は結合コンデンサC2を形成する。回転子電極と固定子基板のC励磁相の電極は結合コンデンサC3を形成する。回転子電極と固定子基板のD励磁相の電極は結合コンデンサC4を形成する。回転子基板1が時計回りに回転する場合、C1コンデンサの相対的な面積は大から小に変化し、C2コンデンサの相対的な面積は小から大に変化する。一つの回転子電極に対応する角度だけ回転した後、C1コンデンサの相対的な面積は零となり、C2コンデンサの相対的な面積は大から小に変わり始め、C3コンデンサの相対的な面積は小から大に変わり始める。更に一つの回転子電極に対応する角度だけ回転した後、C2コンデンサの相対的な被覆面積は零となり、C3コンデンサの相対的な面積は大から小に変わり始め、C4コンデンサの相対的な被積は小から大に変化する。再び一つの回転子電極に対応する角度だけ回転した後、C3コンデンサの相対的な面積は零となり、C4コンデンサの相対的な面積は大から小に変わり始め、C1コンデンサの相対的な面積は小から大に変化する。このように一つの機械周期分の回転が完了すると、C1、C2、C3、C4の静電容量もこれに対応して周期的変化を呈する。回転子電極は進行波Uoを出力し、基本波の式は、以下で表される。
Uo=KeUmsin(ω+πx/W) (1)
ここで、Keは電界結合係数、xは回転子と固定子の間の相対角変位、Wは回転子電極に対応する角度の4倍である。
As shown in FIGS. 5 and 6, the rotor electrode 1-1 and the A excitation phase electrode of the stator substrate form a coupling capacitor C1. The rotor electrode and the B excitation phase electrode of the stator substrate form a coupling capacitor C2. The rotor electrode and the C excitation phase electrode of the stator substrate form a coupling capacitor C3. The rotor electrode and the D excitation phase electrode of the stator substrate form a coupling capacitor C4. When the rotor substrate 1 rotates clockwise, the relative area of the C1 capacitor changes from large to small, and the relative area of the C2 capacitor changes from small to large. After rotating by an angle corresponding to one rotor electrode, the relative area of the C1 capacitor becomes zero, the relative area of the C2 capacitor starts to change from large to small, and the relative area of the C3 capacitor is small. It begins to turn big. After further rotation by an angle corresponding to one rotor electrode, the relative coverage area of the C2 capacitor becomes zero, the relative area of the C3 capacitor begins to change from large to small, and the relative coverage of the C4 capacitor Changes from small to large. After rotating again by an angle corresponding to one rotor electrode, the relative area of the C3 capacitor becomes zero, the relative area of the C4 capacitor starts to change from large to small, and the relative area of the C1 capacitor is small. Will change greatly. When the rotation for one machine cycle is completed in this way, the capacitances of C1, C2, C3, and C4 also exhibit periodic changes correspondingly. The rotor electrode outputs a traveling wave Uo, and the fundamental wave equation is expressed as follows.
Uo = KeUMsin (ω + πx / W) (1)
Here, Ke is an electric field coupling coefficient, x is a relative angular displacement between the rotor and the stator, and W is four times the angle corresponding to the rotor electrode.

図7に示すように、誘導された正弦進行波信号Uoと1経路の位相に固定された同周波数参考正弦信号Urは、整形回路に入り処理され、同周波数の2つの矩形波信号に変換された後、位相比較回路に送られ処理される。高周波クロック内挿技術を利用し2経路の信号の位相差を得て、計算処理した後、センサの回転子基板と固定子基板との間の角変位値を得られる。
As shown in FIG. 7, the induced sine traveling wave signal Uo and the same frequency reference sine signal Ur fixed to the phase of one path enter the shaping circuit and are converted into two rectangular wave signals of the same frequency. After that, it is sent to the phase comparison circuit for processing. After obtaining the phase difference between the signals of the two paths using a high-frequency clock interpolation technique and performing calculation processing, an angular displacement value between the rotor substrate and the stator substrate of the sensor can be obtained.

Claims (7)

回転子と固定子の両部分を備える電界式タイムグレーティング角変位センサであって、
前記回転子は数量mの回転子電極(1−1)を有し、回転子基板(1)の環状表面全体に等間隔で配置され、
前記固定子は数量4mの固定子電極(2−1)を有し、固定子基板(2)の環状表面全体に均一に配置され、mは1以上の整数であり、
前記固定子電極の第4n+1電極は1組に繋がってA励磁相を構成し、前記固定子電極の第4n+2電極は1組に繋がってB励磁相を構成し、前記固定子電極の第4n+3電極は1組に繋がってC励磁相を構成し、前記固定子電極の第4n+4電極は1組に繋がってD励磁相を構成し、n=0,1,2,3,…,m−1であり、
前記固定子のA、B、C、D4つの励磁相は、それぞれ順に位相差90°の等振幅、等周波数の正弦曲線励磁電圧Ua、Ub、Uc、Udに連結し、
前記回転子基板と前記固定子基板は、同軸上に取付けられ、前記回転子電極(1−1)と前記固定子電極(2−1)は正対し、一定間隔δだけ離間して結合コンデンサを形成し、
前記回転子基板と前記固定子基板は相対的に回転し、前記回転子電極上で1経路の進行波信号Uoが生じ、前記進行波信号及び1経路の同周波数の基準信号Urは整形回路により整形された後、位相比較回路により位相が比較され、
両経路の信号の位相差は内挿された高周波クロックパルスの個数により表示され、スケール変換により前記回転子基板の前記固定子基板に対する角変位値を得る、
ことを特徴とする電界式タイムグレーティング角変位センサ。
An electric field type time grating angular displacement sensor comprising both a rotor and a stator,
The rotor has a number m of rotor electrodes (1-1) and is arranged at equal intervals over the entire annular surface of the rotor substrate (1);
The stator has a quantity of stator electrodes (2-1) of 4 m, and is arranged uniformly on the entire annular surface of the stator substrate (2), m is an integer of 1 or more,
The fourth n + 1 electrodes of the stator electrode are connected to one set to constitute an A excitation phase, the fourth n + 2 electrode of the stator electrode is connected to one set to constitute a B excitation phase, and the fourth n + 3 electrode of the stator electrode Are connected to one set to form a C excitation phase, and the fourth n + 4 electrodes of the stator electrodes are connected to one set to form a D excitation phase, and n = 0, 1, 2, 3,..., M−1. Yes,
The four excitation phases A, B, C and D of the stator are sequentially connected to sinusoidal excitation voltages Ua, Ub, Uc and Ud of equal amplitude and equal frequency with a phase difference of 90 °, respectively.
The rotor substrate and the stator substrate are mounted on the same axis, and the rotor electrode (1-1) and the stator electrode (2-1) face each other, and are separated by a fixed interval δ to form a coupling capacitor. Forming,
The rotor substrate and the stator substrate rotate relatively to generate a traveling wave signal Uo of one path on the rotor electrode, and the traveling wave signal and the reference signal Ur of the same frequency of one path are generated by a shaping circuit. After being shaped, the phase is compared by the phase comparison circuit,
The phase difference between the signals of both paths is displayed by the number of interpolated high-frequency clock pulses, and the angular displacement value of the rotor substrate with respect to the stator substrate is obtained by scale conversion.
An electric field time grating angular displacement sensor.
前記固定子電極(2−1)は、扇環形又は曲面矩形であり、大きさは同一であり、隣り合う2つの電極の間は一定の絶縁間隔が保持されている、
ことを特徴とする請求項1に記載の電界式タイムグレーティング角変位センサ。
The stator electrodes (2-1) are fan-shaped or curved rectangles, have the same size, and maintain a constant insulation interval between two adjacent electrodes.
The electric field time grating angular displacement sensor according to claim 1.
前記回転子電極(1−1)は、円周方向に沿って配置展開された後の形状が二つの正弦曲線が上下に相対して形成された双正弦形であり、隣り合う前記回転子電極(1−1)の間は導線により連結され、前記回転子電極の長さは前記固定子電極の長さよりやや短く、その幅は1つの前記固定子電極の幅と1つの絶縁間隔との和であり、隣り合う2つの前記回転子電極の間隔は前記回転子電極の幅の3倍である、
ことを特徴とする請求項1に記載の電界式タイムグレーティング角変位センサ。
The rotor electrode (1-1) is a bisinusoidal shape in which two sine curves are formed so as to be opposed to each other up and down after being arranged and developed along the circumferential direction, and the adjacent rotor electrodes (1-1) are connected by a conductive wire, the length of the rotor electrode is slightly shorter than the length of the stator electrode, and the width is the sum of the width of one stator electrode and one insulating interval. And the interval between two adjacent rotor electrodes is three times the width of the rotor electrodes.
The electric field time grating angular displacement sensor according to claim 1.
前記回転子電極(1−1)の形状は、[0,π]区間における正弦曲線とx軸で囲まれた領域及び[π,2π]区間における正弦曲線とx軸で囲まれた領域を合わせて構成される、
ことを特徴とする請求項1〜3のいずれか1項に記載の電界式タイムグレーティング角変位センサ。
The shape of the rotor electrode (1-1) is a combination of the sine curve and the region surrounded by the x axis in the [0, π] interval, and the region surrounded by the x axis and the sine curve in the [π, 2π] interval. Composed of
The electric field time grating angular displacement sensor according to any one of claims 1 to 3.
前記固定子基板の表面は、4層の誘電体膜に覆われ、第1層は金属膜であり、4本の励磁信号導線(2−2)を構成し、それぞれA、B、C、Dの各励磁相に対応する固定子電極を1組に繋げ、
第2層は絶縁膜であり、
第3層は金属膜であって前記固定子電極(2−1)を構成し、
第4層は絶縁保護膜である、
ことを特徴とする請求項1〜3のいずれか1項に記載の電界式タイムグレーティング角変位センサ。
The surface of the stator substrate is covered with a four-layer dielectric film, and the first layer is a metal film, which constitutes four excitation signal conductors (2-2), respectively A, B, C, D The stator electrodes corresponding to each excitation phase of
The second layer is an insulating film,
The third layer is a metal film and constitutes the stator electrode (2-1),
The fourth layer is an insulating protective film.
The electric field time grating angular displacement sensor according to any one of claims 1 to 3.
前記回転子基板(1)及び前記固定子基板(2)は円柱体又は円筒環であり、その円柱上下端面又は円筒環の内外柱面に沿って電極を配置する、
ことを特徴とする請求項1〜3のいずれか1項に記載の電界式タイムグレーティング角変位センサ。
The rotor substrate (1) and the stator substrate (2) are columnar bodies or cylindrical rings, and electrodes are arranged along the upper and lower end surfaces of the columns or the inner and outer column surfaces of the cylindrical ring.
The electric field time grating angular displacement sensor according to any one of claims 1 to 3.
前記固定子電極(2−1)の前記A励磁相と前記回転子電極(1−1)は結合コンデンサC1を形成し、前記B励磁相と前記回転子電極は結合コンデンサC2を形成し、前記C励磁相と前記回転子電極は結合コンデンサC3を形成し、前記D励磁相と前記回転子電極は結合コンデンサC4を形成し、
循環して交替で変化する前記コンデンサC1、C2、C3、C4は2つずつ交互に動作して交番電界の結合路を構成し、回転子電極は進行波信号Uoを出力する、
ことを特徴とする請求項1〜3のいずれか1項に記載の電界式タイムグレーティング角変位センサ。
The A excitation phase and the rotor electrode (1-1) of the stator electrode (2-1) form a coupling capacitor C1, and the B excitation phase and the rotor electrode form a coupling capacitor C2. C excitation phase and the rotor electrode form a coupling capacitor C3, D excitation phase and the rotor electrode form a coupling capacitor C4,
The capacitors C1, C2, C3, and C4 that circulate and change alternately operate two by two to form a coupling path of alternating electric fields, and the rotor electrode outputs a traveling wave signal Uo.
The electric field time grating angular displacement sensor according to any one of claims 1 to 3.
JP2016533611A 2014-05-09 2014-07-29 Electric field time grating angular displacement sensor Active JP6086517B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410196685.1A CN103968750B (en) 2014-05-09 2014-05-09 Electric field type time-grating angular displacement sensor
CN201410196685.1 2014-05-09
PCT/CN2014/083215 WO2015168992A1 (en) 2014-05-09 2014-07-29 Electric field type time-grating angular displacement sensor

Publications (2)

Publication Number Publication Date
JP2016540207A JP2016540207A (en) 2016-12-22
JP6086517B2 true JP6086517B2 (en) 2017-03-01

Family

ID=51238556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016533611A Active JP6086517B2 (en) 2014-05-09 2014-07-29 Electric field time grating angular displacement sensor

Country Status (5)

Country Link
US (1) US10359299B2 (en)
JP (1) JP6086517B2 (en)
CN (1) CN103968750B (en)
DE (1) DE112014006647B4 (en)
WO (1) WO2015168992A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591896B (en) 2013-11-29 2016-05-11 重庆理工大学 A kind of time grating straight-line displacement sensor based on alternation light field
CN103822571B (en) 2014-03-19 2016-11-02 重庆理工大学 Grating straight-line displacement sensor during Electric field based on single multiple structure
CN103968750B (en) 2014-05-09 2017-01-18 重庆理工大学 Electric field type time-grating angular displacement sensor
JP6371643B2 (en) * 2014-09-03 2018-08-08 オリエンタルモーター株式会社 Electrostatic encoder
CN105737726B (en) * 2014-12-12 2019-01-11 深圳市联思精密机器有限公司 A kind of multi-layered electrode displacement sensor
CN104864804B (en) * 2015-06-12 2017-05-24 重庆理工大学 Time grating angular displacement sensor
CN105486222B (en) * 2015-12-29 2019-04-19 崔星 A kind of capacitive angular sensor
CN106403807A (en) * 2016-11-30 2017-02-15 重庆中电天时精密装备技术有限公司 Incremental-detection-based absolute type time-grating angular displacement sensor
US10876866B2 (en) * 2017-08-30 2020-12-29 Mojtaba Joodaki Angular displacement sensor and method using thereof
DE102017126271A1 (en) * 2017-11-09 2019-05-09 Webasto SE Positioning of motors by means of capacitive measurement
CN109211092B (en) * 2017-12-15 2019-06-21 重庆理工大学 Gating angular displacement sensor when a kind of absolute type based on alternating electric field
CN108253882A (en) * 2018-04-10 2018-07-06 中国工程物理研究院电子工程研究所 A kind of angle measurement unit of micro motor
CN109211095B (en) * 2018-05-19 2019-07-19 重庆理工大学 Gating angular displacement sensor when a kind of absolute type based on alternating electric field
CN109211094B (en) * 2018-05-19 2019-05-31 重庆理工大学 Gating angular displacement sensor when a kind of reflection-type absolute type based on alternating electric field
CN109211093B (en) * 2018-05-19 2019-06-14 重庆理工大学 Gating angular displacement sensor when reflection-type absolute type based on alternating electric field
CN109211097B (en) * 2018-07-05 2019-06-14 重庆理工大学 Gating angular displacement sensor when a kind of poor pole reflection-type absolute type based on alternating electric field
CN109211096B (en) * 2018-07-05 2019-06-25 重庆理工大学 Gating angular displacement sensor when reflection-type absolute type based on alternating electric field
CN108895970B (en) * 2018-07-13 2020-07-24 重庆理工大学 Linear displacement measurement system based on alternating light field
CN109029514B (en) * 2018-07-13 2020-09-08 重庆理工大学 Single code channel absolute time grating angular displacement measuring system
CN109163746B (en) * 2018-09-13 2020-10-27 重庆理工大学 Single code channel absolute time grating angular displacement sensor
CN109488697A (en) * 2018-11-28 2019-03-19 苏州铁近机电科技股份有限公司 A kind of bearing assembles flowing water processing line automatically
CN109631736B (en) * 2019-01-04 2020-09-15 重庆理工大学 Columnar two-dimensional time grating displacement sensor based on alternating electric field
CN109631735B (en) * 2019-01-04 2020-09-11 重庆理工大学 Planar two-dimensional time grating displacement sensor based on alternating electric field
WO2020255506A1 (en) * 2019-06-17 2020-12-24 アルプスアルパイン株式会社 Input device
CN113008128B (en) * 2019-12-19 2023-12-19 通用技术集团国测时栅科技有限公司 Capacitive angular displacement sensor and rotor thereof
CN111137838B (en) * 2019-12-20 2022-08-30 清华大学 MEMS capacitive gate type angular displacement sensor and manufacturing method thereof
JP7320735B2 (en) * 2020-03-11 2023-08-04 パナソニックIpマネジメント株式会社 Operation device, in-vehicle device
CN114061513B (en) * 2020-08-04 2024-03-19 通用技术集团国测时栅科技有限公司 Self-calibration method based on nano round time grating
CN113030505B (en) * 2021-02-26 2022-12-16 北京纳米能源与系统研究所 Triboelectric type rotation sensor and monitoring system
CN114353659B (en) * 2022-01-06 2023-06-09 重庆理工大学 Time grating angular displacement sensor based on single alternating electric field

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH550378A (en) * 1972-09-07 1974-06-14 Maag Zahnraeder & Maschinen Ag DEVICE FOR CAPACITIVE ANGLE OR LENGTH MEASUREMENT.
GB2097128B (en) 1981-04-16 1984-12-12 Medwin Albert H Electrical vernier measuring apparatus
US4633249A (en) * 1983-05-18 1986-12-30 Mitutoyo Mfg. Co., Ltd. Displacement detector utilizing change of capacitance
JPS6093311A (en) * 1983-10-27 1985-05-25 Mitsutoyo Mfg Co Ltd Capacity type measuring machine of displacement
DE3340782C2 (en) 1983-11-11 1985-12-05 Mauser-Werke Oberndorf Gmbh, 7238 Oberndorf Capacitive length and angle measuring device
JPS61105421A (en) * 1984-10-29 1986-05-23 Mitsutoyo Mfg Co Ltd Electrostatic capacity type encoder
US4879508A (en) * 1986-04-04 1989-11-07 Mitutoyo Corporation Capacitance-type measuring device for absolute measurement of positions
JPH08278105A (en) 1995-04-03 1996-10-22 Mitsutoyo Corp Capacitance type sensor
JPH08327306A (en) 1995-05-29 1996-12-13 Mitsutoyo Corp Capacitance type displacement detector
CN1064754C (en) * 1998-12-18 2001-04-18 赵飙 Improved capacitive displacement transducer
US6492911B1 (en) * 1999-04-19 2002-12-10 Netzer Motion Sensors Ltd. Capacitive displacement encoder
SE516952C2 (en) 2000-09-04 2002-03-26 Johansson Ab C E angle sensors
US6892590B1 (en) * 2003-11-04 2005-05-17 Andermotion Technologies Llc Single-balanced shield electrode configuration for use in capacitive displacement sensing systems and methods
KR100574510B1 (en) * 2004-05-11 2006-04-27 삼성전자주식회사 Magnetic device using MEMS process and the method thereof
CN2869768Y (en) 2005-02-24 2007-02-14 张珂 Capacitor-type linear displacement sensor based on electric field synthesizing principle
CN2909178Y (en) * 2005-12-21 2007-06-06 中国船舶工业集团总公司第六三五四研究所 Multi-pole plane winding time gating angle displacement sensor
CN100394143C (en) * 2006-03-24 2008-06-11 重庆工学院 Tooth electric time gate sensor
JP2009047547A (en) * 2007-08-20 2009-03-05 Tokai Rika Co Ltd Rotation angle detection device
CN101363709B (en) * 2008-09-27 2012-07-04 重庆理工大学 Time gating angular displacement sensor
CN101556138A (en) 2008-09-27 2009-10-14 重庆工学院 Time-grating straight-line displacement sensor
US20100148802A1 (en) 2008-12-15 2010-06-17 Fanuc Ltd Capacitance-type encoder
DE102010046778B4 (en) * 2010-09-28 2017-11-02 Trw Automotive Electronics & Components Gmbh Capacitive encoder
CN102288100B (en) * 2011-06-01 2012-09-26 重庆理工大学 Time grating linear displacement sensor based on alternating electric field
CN102425987B (en) * 2011-09-02 2013-07-10 重庆理工大学 Alternating electric field-based time grating angular displacement transducer
JP5956218B2 (en) 2012-03-29 2016-07-27 4Dセンサー株式会社 Shape measuring device, shape measuring method, and calibration processing method in shape measuring device
CN103591896B (en) 2013-11-29 2016-05-11 重庆理工大学 A kind of time grating straight-line displacement sensor based on alternation light field
US9714846B2 (en) * 2013-12-31 2017-07-25 Chicago Dial Indicator Company Displacement measuring device with capacitive sensing
CN103822571B (en) * 2014-03-19 2016-11-02 重庆理工大学 Grating straight-line displacement sensor during Electric field based on single multiple structure
CN103968750B (en) 2014-05-09 2017-01-18 重庆理工大学 Electric field type time-grating angular displacement sensor

Also Published As

Publication number Publication date
US20170003146A1 (en) 2017-01-05
WO2015168992A1 (en) 2015-11-12
CN103968750B (en) 2017-01-18
JP2016540207A (en) 2016-12-22
DE112014006647T5 (en) 2017-02-02
CN103968750A (en) 2014-08-06
DE112014006647B4 (en) 2022-05-25
US10359299B2 (en) 2019-07-23

Similar Documents

Publication Publication Date Title
JP6086517B2 (en) Electric field time grating angular displacement sensor
JP6086518B2 (en) Electric field time grating linear displacement sensor based on single row multilayer structure
JP6821288B2 (en) Absolute type time grating angular displacement sensor based on alternating electric field
CN109211095B (en) Gating angular displacement sensor when a kind of absolute type based on alternating electric field
JPS5919285B2 (en) transducer
US3146394A (en) Apparatus for proportionally converting a rotational angle into a phase angle of an alternating voltage
US10551219B2 (en) Electrostatic encoder
CN208206026U (en) Gating angular displacement sensor when a kind of poor polar form absolute type based on alternating electric field
JP6417287B2 (en) Input device
CN113008128B (en) Capacitive angular displacement sensor and rotor thereof
TWI673480B (en) Rotary encoder
JPH08233605A (en) Capacitance type encoder
CN219368646U (en) Angular displacement sensor based on single alternating electric field
CN109631736B (en) Columnar two-dimensional time grating displacement sensor based on alternating electric field
CN114353659B (en) Time grating angular displacement sensor based on single alternating electric field
CN109459069B (en) Differential absolute type circular induction synchronizer and angle measurement method thereof
CN114061426B (en) Discrete absolute time grating angular displacement sensor
JP2011163865A (en) Rotating electrostatic encoder
JP2008051751A (en) Capacitance detection type rotation sensor
JP2008051633A (en) Differential capacitance type resolver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170126

R150 Certificate of patent or registration of utility model

Ref document number: 6086517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250