JP6086439B2 - Electrode for redissolving electroslag and method for manufacturing high nitrogen-containing steel - Google Patents

Electrode for redissolving electroslag and method for manufacturing high nitrogen-containing steel Download PDF

Info

Publication number
JP6086439B2
JP6086439B2 JP2013240012A JP2013240012A JP6086439B2 JP 6086439 B2 JP6086439 B2 JP 6086439B2 JP 2013240012 A JP2013240012 A JP 2013240012A JP 2013240012 A JP2013240012 A JP 2013240012A JP 6086439 B2 JP6086439 B2 JP 6086439B2
Authority
JP
Japan
Prior art keywords
nitrogen
electrode body
electroslag
electroslag remelting
redissolving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013240012A
Other languages
Japanese (ja)
Other versions
JP2015098635A (en
Inventor
山本 卓
卓 山本
義和 百井
義和 百井
耕司 梶川
耕司 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2013240012A priority Critical patent/JP6086439B2/en
Publication of JP2015098635A publication Critical patent/JP2015098635A/en
Application granted granted Critical
Publication of JP6086439B2 publication Critical patent/JP6086439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/36Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the group >N—CO—N< directly attached to at least one heterocyclic ring; Thio analogues thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D271/00Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
    • C07D271/02Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D271/081,2,5-Oxadiazoles; Hydrogenated 1,2,5-oxadiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D521/00Heterocyclic compounds containing unspecified hetero rings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6408Supports or covers specially adapted for use in microwave heating apparatus

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)

Description

本発明は、エレクトロスラグ再溶解用電極およびエレクトロスラグ再溶解法による高窒素含有鋼の製造方法に関するものである。 The present invention relates to an electrode for redissolving electroslag and a method for producing a high nitrogen-containing steel by an electroslag redissolving method.

エレクトロスラグ再溶解法は、エレクトロスラグ再溶解電極を介してスラグに大電流を流し、このとき発生するジュール熱でスラグを溶融させ、その溶融スラグ中でエレクトロスラグ再溶解電極を連続的に溶解するプロセスである。上記エレクトロスラグ再溶解法では、使用するエレクトロスラグ再溶解電極の成分が、溶解後に得ようとする鋳塊成分の目標値と異なっている場合、合金元素の添加によって、成分調整を行う必要がある。 In the electroslag remelting method, a large current is passed through the electroslag remelting electrode, the slag is melted by the Joule heat generated at this time, and the electroslag remelting electrode is continuously melted in the molten slag. It is a process. In the above electroslag remelting method, if the component of the electroslag remelting electrode used is different from the target value of the ingot component to be obtained after melting, it is necessary to adjust the component by adding an alloy element. ..

エレクトロスラグ再溶解法において合金元素を添加する方法としては、引用文献1では、エレクトロスラグ再溶解電極に穴を開けその内部に目的とする元素を含有する合金鉄を詰める方法が提案されている。また、引用文献2では、合金鉄をパイプに詰めてこれをエレクトロスラグ再溶解電極に取り付ける方法が提案されている。さらに、引用文献3では、エレクトロスラグ再溶解電極表面に合金元素粉末を塗布する方法が提案されている。これらの方法は合金鉄や合金粉末に窒素を含有する原材料を用いることにより、製造する鋼塊中に窒素を添加する技術である。その他に、溶解雰囲気を加圧窒素雰囲気とすることで、雰囲気中の窒素ガスを窒素源として、鋼塊中に窒素分を添加する加圧式エレクトロスラグ再溶解法がある。 As a method of adding an alloy element in the electroslag redissolving method, Cited Document 1 proposes a method of forming a hole in an electroslag redissolving electrode and filling the inside thereof with ferroalloy containing the target element. Further, Cited Document 2 proposes a method in which ferroalloy is packed in a pipe and attached to an electroslag redissolving electrode. Further, Cited Document 3 proposes a method of applying an alloy element powder to the surface of the electroslag redissolving electrode. These methods are techniques for adding nitrogen to a steel ingot to be produced by using a raw material containing nitrogen in ferroalloy or alloy powder. In addition, there is a pressurized electroslag remelting method in which nitrogen gas in the atmosphere is used as a nitrogen source and nitrogen is added to the ingot by setting the melting atmosphere to a pressurized nitrogen atmosphere.

また、エレクトロスラグ再溶解法と同じく消耗電極を二次溶解する方法としては、非特許文献1に示すアークスラグ再溶解法がある。該アークスラグ再溶解法における装置を図6に示す。このアークスラグ再溶解法では、消耗電極20の中心に貫通穴21を開け、溶融スラグ30上に間隔を置くように消耗電極20を配置し、その貫通穴21から窒素ガスを溶融スラグ30上で溶融金属層31に吹き付けることによって溶鋼中に窒素分を添加している。 Further, as a method for secondary melting the consumable electrode as in the electroslag remelting method, there is an arc slag remelting method shown in Non-Patent Document 1. The apparatus in the arc slag remelting method is shown in FIG. In this arc slag remelting method, a through hole 21 is formed in the center of the consumable electrode 20, the consumable electrode 20 is arranged so as to be spaced above the molten slag 30, and nitrogen gas is blown from the through hole 21 on the molten slag 30. Nitrogen is added to the molten steel by spraying it onto the molten metal layer 31.

特開昭55−100941JP-A-55-100941 特開2001−64716JP 2001-64716 特開平6−322453JP-A-6-322453

B I MEDOVAR et al.:ARC−SLAG REMELTING OF STEEL AND ALLOYS,Cambridge International Science Publishing,(1996) P57BI MEDOVAR et al. : ARC-SLAG REMELTING OF STEEL AND ALLOYS, Cambridge International Science Publishing, (1996) P57

しかし、引用文献1〜3で提案されている方法では、窒素を含有する合金鉄や合金粉末を用いるため、それらの合金中には、クロム、マンガン、シリコンといった窒素以外の元素が多量に含まれている。そのため合金鉄や合金粉末を用いた方法により窒素分を添加しようとしても、溶解後の鋼塊においてクロムなど窒素以外の成分も増加するといった問題があり、窒素のみを増加させたい場合に対応することができない。 However, since the methods proposed in References 1 to 3 use ferroalloys and alloy powders containing nitrogen, these alloys contain a large amount of elements other than nitrogen such as chromium, manganese, and silicon. ing. Therefore, even if nitrogen is added by a method using ferroalloy or alloy powder, there is a problem that components other than nitrogen such as chromium increase in the molten steel ingot, and it is necessary to deal with the case where only nitrogen is desired to be increased. I can't.

また、加圧式エレクトロスラグ再溶解法は、溶解雰囲気を加圧した窒素ガス雰囲気とすることで、鋼塊中の飽和窒素溶解度を高め、高窒素含有鋼を溶製するプロセスである。しかし、溶融スラグの窒素溶解度は小さく、溶解雰囲気の窒素ガスから鋼塊中へ添加できる窒素量は僅かとなる問題がある。また、溶解雰囲気をあまりに高圧にすると、設備費が嵩むという問題がある。したがって、上記の合金鉄や合金粉末を用いた方法と同様に、Siといった窒素化合物などを溶融金属プール中に添加しており、鋼塊においてSiが増加するといった問題がある。 The pressurized electroslag remelting method is a process of melting saturated nitrogen in a steel ingot by making the melting atmosphere a pressurized nitrogen gas atmosphere to melt high nitrogen-containing steel. However, there is a problem that the nitrogen solubility of the molten slag is small and the amount of nitrogen that can be added into the steel ingot from the nitrogen gas in the dissolved atmosphere is small. Further, if the melting atmosphere is made too high, there is a problem that the equipment cost increases. Therefore, as in the method using the ferroalloy or alloy powder described above, a nitrogen compound such as Si 3 N 4 is added to the molten metal pool, and there is a problem that Si increases in the ingot.

加圧式を含めてエレクトロスラグ再溶解法は、溶融スラグ層内にエレクトロスラグ再溶解電極を浸漬して通電することにより、溶融スラグ層内に発生するジュール熱でエレクトロスラグ再溶解電極を連続的に溶解するプロセスである。エレクトロスラグ再溶解電極から落下した溶融金属滴が溶融スラグ層を通過する際に、金属滴中の非金属介在物や硫黄を除去することで、高清浄度の鋼塊を得ることができる。
それに対し、非特許文献1に示す高窒素含有鋼製造を意図したアークスラグ再溶解法では、消耗電極−溶融メタル間でアークを飛ばしながら消耗電極を溶解する。その際消耗電極の中心孔から窒素ガスを吹き出すことで、鋼塊中に窒素を添加できる。そのため、窒素以外の元素が混入することはない。しかし、消耗電極直下に溶融スラグ層がないことで、溶融金属滴中の非金属介在物や硫黄を除去することはできない。よって、アークスラグ再溶解法では、エレクトロスラグ再溶解法に比べて鋼塊の清浄度が劣るといった問題がある。
In the electroslag remelting method including the pressurization method, the electroslag remelting electrode is immersed in the molten slag layer and energized, and the electroslag remelting electrode is continuously generated by Joule heat generated in the molten slag layer. It is a melting process. When the molten metal droplets dropped from the electroslag remelting electrode pass through the molten slag layer, non-metal inclusions and sulfur in the metal droplets are removed, so that a highly clean steel ingot can be obtained.
On the other hand, in the arc slag remelting method intended for producing high nitrogen-containing steel shown in Non-Patent Document 1, the consumable electrode is melted while the arc is blown between the consumable electrode and the molten metal. At that time, nitrogen can be added to the ingot by blowing out nitrogen gas from the center hole of the consumable electrode. Therefore, elements other than nitrogen are not mixed. However, since there is no molten slag layer directly under the consumable electrode, it is not possible to remove non-metal inclusions and sulfur in the molten metal droplets. Therefore, the arc slag remelting method has a problem that the cleanliness of the ingot is inferior to that of the electroslag remelting method.

この発明は、上記のような従来の課題を解決するためになされたものであり、非金属介在物や硫黄が少ない高清浄度の鋼塊を得ることができ、エレクトロスラグ再溶解に用いることができるエレクトロスラグ再溶解用電極および高窒素含有鋼の製造方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned conventional problems, and can obtain a highly clean steel ingot with less non-metal inclusions and sulfur, and can be used for electroslag remelting. It is an object of the present invention to provide an electrode for redissolving electroslag and a method for producing a high nitrogen-containing steel.

の本発明のエレクトロスラグ再溶解用電極は、
高窒素含有鋼の含有成分を有するエレクトロスラグ再溶解電極本体と、
前記エレクトロスラグ再溶解電極本体外面に前記エレクトロスラグ再溶解電極本体の軸方向に伸長して取り付けられ前記エレクトロスラグ再溶解電極本体の先端に達し、エレクトロスラグ再溶解電極本体の再溶解とともに溶解する複数の窒素吹き出し筒と、
前記窒素吹き出し筒内に窒素を導入して前記エレクトロスラグ再溶解電極本体先端からの所定量のガス吹き出し量に調整した窒素吹き出しを行う窒素導入部と、を有することを特徴とする。
The first electrode for redissolving electroslag of the present invention is
An electroslag remelting electrode body having a component of high nitrogen-containing steel,
Reached the tip of the electroslag remelting electrode body mounted extends in the axial direction of the electroslag remelting electrode body to the electro-slag remelting electrode body outer surface, are dissolved together with redissolution of electroslag remelting electrode body With multiple nitrogen blowout tubes,
It is characterized by having a nitrogen introduction unit that introduces nitrogen into the nitrogen blowing cylinder and blows out nitrogen adjusted to a predetermined amount of gas blown from the tip of the electroslag remelting electrode main body.

の本発明の高窒素含有鋼の製造方法は、高窒素含有鋼の含有成分を有するエレクトロスラグ再溶解電極本体外面に前記エレクトロスラグ再溶解電極本体の軸方向に伸長して取り付けられ前記エレクトロスラグ再溶解電極本体の先端に達する窒素吹き出し筒を設けておき、
前記エレクトロスラグ再溶解電極本体の先端側を溶融スラグ中に浸積し、
記窒素吹き出し筒内に窒素を導入して溶融スラグ中で前記エレクトロスラグ再溶解電極本体先端から所定量のガス吹き出し量に調整した窒素を吹き出しつつ前記エレクトロスラグ再溶解電極本体の再溶融および前記窒素吹き出し筒の溶解を行って高窒素含有鋼を製造することを特徴とする。
Method for producing a high nitrogen content steel second invention, the attachment extends in the axial direction of the electroslag remelting electrode body Rue Rekutorosuragu remelting electrode body outer surface having a content components of the high nitrogen content steel A nitrogen blowout tube that reaches the tip of the electroslag remelting electrode body is provided.
The tip end side of the electroslag redissolving electrode body is embedded in the molten slag, and
Remelting and said nitrogen is introduced the electroslag remelting electrode body while blowing nitrogen was adjusted to the gas blow amount of a predetermined amount from said electroslag remelting electrode body tip in the molten slag before Symbol nitrogen balloon in a cylinder It is characterized in that a high nitrogen-containing steel is produced by melting a nitrogen blowout cylinder.

の本発明の高窒素含有鋼の製造方法は、前記第の本発明において、前記窒素ガスを前記溶融スラグ中に吹き出す際に、溶解時の電圧の触れ幅が設定電圧に対して20%以下になる範囲で窒素ガス吹き出し量を設定することを特徴とする。 In the third method for producing a high nitrogen-containing steel of the present invention, in the second invention, when the nitrogen gas is blown into the molten slag, the contact width of the voltage at the time of melting is 20 with respect to the set voltage. It is characterized in that the amount of nitrogen gas blown out is set within the range of% or less.

本発明では、エレクトロスラグ再溶解用電極に開けた窒素吹き出し穴または窒素吹き出し筒は、エレクトロスラグ再溶解用電極の先端に達するものであり、エレクトロスラグ再溶解用電極の溶解に伴って常に電極の先端側に位置する。窒素吹き出し穴は電極本体の軸方向に形成され、窒素吹き出し筒は電極本体の軸方向に伸長するものであるが、それぞれ軸方向に沿った形状とされることが必要とされるものではない。例えば電極本体に対し、らせん状に配置して設けられているものであってもよい。また、窒素吹き出し穴または窒素吹き出し筒は、少なくとも吹き出し位置において吹き出し部分を1または2以上を設けたものとすることができ、吹き出し部分における断面形状も特に限定されるものではない。 In the present invention, the nitrogen blowout hole or the nitrogen blowout cylinder formed in the electroslag redissolving electrode reaches the tip of the electroslag redissolving electrode, and always accompanies the melting of the electroslag redissolving electrode. Located on the tip side. The nitrogen blowout holes are formed in the axial direction of the electrode body, and the nitrogen blowout cylinders extend in the axial direction of the electrode body, but they are not required to be shaped along the axial direction. For example, it may be provided in a spiral shape with respect to the electrode body. Further, the nitrogen blowing hole or the nitrogen blowing cylinder may be provided with one or two or more blowing portions at least at the blowing position, and the cross-sectional shape of the blowing portion is not particularly limited.

なお、上記本発明では、窒素吹き出し穴または窒素吹き出し筒から吹き出される窒素ガス吹き出し量を適量に設定するのが望ましい。窒素ガス量が過剰になると、電極と溶融スラグ層との間にアーキングが発生し溶解が不安定になる。なお、適量のガス吹き出し量は、電極の面積、鋳型面積などによって異なるため、溶解電圧の振れ幅が、自動溶解開始時の設定電圧に対し20%以下になるようにガス吹き出し量を設定するのが望ましい。 In the present invention, it is desirable to set the amount of nitrogen gas blown out from the nitrogen blowout hole or the nitrogen blowout cylinder to an appropriate amount. When the amount of nitrogen gas becomes excessive, arcing occurs between the electrode and the molten slag layer, and the dissolution becomes unstable. Since the appropriate amount of gas blown out depends on the area of the electrode, the area of the mold, etc., the amount of gas blown out is set so that the fluctuation width of the dissolution voltage is 20% or less of the set voltage at the start of automatic dissolution. Is desirable.

以上のように、本発明によれば、安価な方法で鋼塊に窒素を添加することができ、本高窒素含有鋼を用いて、高硬度で耐食性が必要とされる機能材を容易に製造することが可能となる。 As described above, according to the present invention, nitrogen can be added to the ingot by an inexpensive method, and the functional material requiring high hardness and corrosion resistance can be easily produced by using the high nitrogen-containing steel. It becomes possible to do.

本発明の一実施形態の構成図を示す図である。It is a figure which shows the block diagram of one Embodiment of this invention. 同じく、本発明の他の一実施形態の構成図を示す図である。Similarly, it is a figure which shows the block diagram of another Embodiment of this invention. 同じく、本発明の他の一実施形態の構成図およびIII−III線断面図である。Similarly, it is a block diagram of another embodiment of the present invention and a sectional view taken along line III-III. 同じく、本発明の実施例における窒素ガスの吹き出し量に対する鋼塊中の窒素ピックアップ量を示すグラフである。Similarly, it is a graph which shows the nitrogen pickup amount in a steel ingot with respect to the blowout amount of nitrogen gas in the Example of this invention. 同じく、本発明の溶解開始の経過時間に対する溶解電圧(V)と溶解電流(A)の値を示すグラフである。Similarly, it is a graph which shows the value of the dissolution voltage (V) and the dissolution current (A) with respect to the elapsed time of the dissolution start of this invention. 一般的なアークスラグ再溶解法を示す図である。It is a figure which shows the general arc slag remelting method.

(実施形態1)
以下に、本発明の一実施形態の高窒素含有鋼の製造方法に用いられるエレクトロスラグ再溶解用電極10およびエレクトロスラグ再溶解装置1を図1を用いて説明する。
エレクトロスラグ再溶解装置1は、筒状の鋳型2を有し、鋳型2とエレクトロスラグ再溶解用電極10との間で、溶解電圧を付与する電源3を備えている。なお、この実施形態では電源3は交流電源からなるものであるが、本発明としては、これに限定されるものではなく、直流電源で構成されるものであってもよい。
(Embodiment 1)
Hereinafter, the electroslag remelting electrode 10 and the electroslag remelting apparatus 1 used in the method for producing a high nitrogen-containing steel according to the embodiment of the present invention will be described with reference to FIG.
The electroslag remelting device 1 has a tubular mold 2 and includes a power supply 3 that applies a melting voltage between the mold 2 and the electroslag remelting electrode 10. In this embodiment, the power supply 3 is composed of an AC power supply, but the present invention is not limited to this, and may be composed of a DC power supply.

エレクトロスラグ再溶解用電極10は、エレクトロスラグ再溶解用電極本体10Aが円柱状に形成され、エレクトロスラグ再溶解用電極本体10Aの中心軸に沿って窒素吹き出し穴11が形成され、エレクトロスラグ再溶解用電極本体10Aの先端に開口されている。窒素吹き出し穴11は、エレクトロスラグ再溶解用電極本体10Aの他端側に連結された小径円柱状の支持柱部10B内に至り、向きを変えて径方向側に伸長して支持柱部10Bの側面に開口している。支持柱部10Bに開口した窒素吹き出し穴11には、窒素導入部12が接続されている。上記によってエレクトロスラグ再溶解用電極10が構成されている。 In the electroslag remelting electrode 10, the electroslag remelting electrode body 10A is formed in a columnar shape, and a nitrogen blowout hole 11 is formed along the central axis of the electroslag remelting electrode body 10A to remelt the electroslag. It is opened at the tip of the electrode body 10A. The nitrogen blow-out hole 11 reaches the inside of the small-diameter columnar support column portion 10B connected to the other end side of the electroslag redissolving electrode body 10A, changes its direction, and extends in the radial direction of the support column portion 10B. It has an opening on the side. The nitrogen introduction portion 12 is connected to the nitrogen blowout hole 11 opened in the support pillar portion 10B. The electrode 10 for redissolving electroslag is configured as described above.

エレクトロスラグ再溶解用電極本体10Aは、製造しようとする高窒素含有鋼の成分に対応した組成で作成されており、窒素の含有や所望により他成分を添加することを想定した組成とされている。したがって、エレクトロスラグ再溶解用電極本体10Aの組成が製造しようとする高窒素含有鋼の組成そのものであることは必ずしも必要とされない。 The electrode body 10A for redissolving electroslag is prepared with a composition corresponding to the component of the high nitrogen-containing steel to be manufactured, and is assumed to contain nitrogen and to add other components as desired. .. Therefore, it is not always necessary that the composition of the electrode body 10A for redissolving electroslag is the composition of the high nitrogen-containing steel to be produced.

上記エレクトロスラグ再溶解用電極本体10Aは、鋳型2内の中心軸に沿って上下移動可能に設置されており、支持柱部10Bを介して電源3の出力端の一方に電気的に接続されている。また電源3の出力端の他方は鋳型2に電気的に接続されており、電源3によってエレクトロスラグ再溶解用電極10と鋳型2との間に電圧印加が可能になっている。 The electroslag redissolving electrode body 10A is installed so as to be vertically movable along the central axis in the mold 2, and is electrically connected to one of the output ends of the power supply 3 via the support column portion 10B. There is. The other end of the output end of the power supply 3 is electrically connected to the mold 2, and the power supply 3 enables voltage to be applied between the electroslag redissolving electrode 10 and the mold 2.

次に、本実施形態の動作について説明する。
エレクトロスラグ再溶解の開始に伴って、鋳型2内にスラグ材料が初期投入され、通電によって溶融スラグ15が形成され、溶融スラグ15中にエレクトロスラグ再溶解用電極本体10Aの先端側が浸漬された状態になる。
エレクトロスラグ再溶解用電極本体10Aは、溶融スラグ15のジュール熱により溶解し、溶滴13は溶融スラグ15内を下降しつつ鋳型2の底に至り、溶融金属プール16を形成する。これとともに、窒素導入部12には外部から所定流量の窒素ガスが供給され、窒素ガスは窒素吹き出し穴11を通して溶融スラグ15中に窒素ガスを吹き出す。窒素ガスは溶融スラグ15中で撹拌され、窒素ガスの一部は溶滴13に取り込まれ、また、溶融スラグ15を通して溶融金属プール16に溶け込む。
Next, the operation of this embodiment will be described.
A state in which the slag material is initially charged into the mold 2 with the start of electroslag remelting, the molten slag 15 is formed by energization, and the tip end side of the electroslag remelting electrode body 10A is immersed in the molten slag 15. become.
The electroslag redissolving electrode body 10A is melted by the Joule heat of the molten slag 15, and the droplet 13 descends in the molten slag 15 and reaches the bottom of the mold 2 to form a molten metal pool 16. At the same time, a predetermined flow rate of nitrogen gas is supplied to the nitrogen introduction unit 12 from the outside, and the nitrogen gas blows out into the molten slag 15 through the nitrogen blowout hole 11. The nitrogen gas is agitated in the molten slag 15, and a part of the nitrogen gas is taken into the droplet 13 and melts into the molten metal pool 16 through the molten slag 15.

鋳型2は、図示しない冷却手段により冷却され、溶融金属プール16の下方に次第に高窒素含有の鋳塊17が得られる。その後は、鋳塊17上に溶融金属プール16が次第に堆積して凝固し、高窒素含有の鋳塊17が次第に高くなる。
エレクトロスラグ再溶解用電極10は、その消耗度合いと溶融金属プール16の液面高さに応じて下方に移動させて溶融スラグ15への挿入状態を維持しつつ、エレクトロスラグ再溶解用電極本体10Aの溶解が連続して行われる。その際に、窒素吹き出し穴11から溶融スラグ15中への所定流量の窒素ガスの吹き出しを継続する。この際に、窒素ガスの吹き出し量としては、初期の設定電圧に対し電圧の振れ幅が20%以下となる範囲で設定するのが望ましい。
上記本実施形態によれば、窒素を鋳塊中に高濃度で安価に含有させることができ、窒素以外の不要な成分を鋳塊中に含有させる必要性も生じない。
The mold 2 is cooled by a cooling means (not shown), and an ingot 17 containing a high nitrogen content is gradually obtained below the molten metal pool 16. After that, the molten metal pool 16 gradually accumulates on the ingot 17 and solidifies, and the ingot 17 containing high nitrogen gradually becomes high.
The electroslag redissolving electrode 10 is moved downward according to the degree of wear and the liquid level height of the molten metal pool 16 to maintain the inserted state into the molten slag 15, and the electroslag redissolving electrode body 10A. Is dissolved continuously. At that time, the blowout of nitrogen gas at a predetermined flow rate from the nitrogen blowout hole 11 into the molten slag 15 is continued. At this time, it is desirable that the amount of nitrogen gas blown out is set within a range in which the fluctuation width of the voltage is 20% or less with respect to the initially set voltage.
According to the present embodiment, nitrogen can be contained in the ingot at a high concentration at low cost, and there is no need to include unnecessary components other than nitrogen in the ingot.

(実施形態2)
次に、本発明の他の実施形態として、加圧式エレクトロスラグ再溶解装置1Aに適用したものを図2に基づいて説明する。本発明が適用されるエレクトロスラグ再溶解装置は、加圧の有無を問わないものである。なお、前記実施形態と同様の構成については同一の符号を付して説明を省略または簡略化する。
(Embodiment 2)
Next, as another embodiment of the present invention, the one applied to the pressurized electroslag redissolving device 1A will be described with reference to FIG. The electroslag remelting device to which the present invention is applied may or may not be pressurized. The same components as those in the above embodiment are designated by the same reference numerals, and the description thereof will be omitted or simplified.

加圧式エレクトロスラグ再溶解装置1Aは、筒状の鋳型2A上に上面が覆われた筒状の加圧容器2Bを被せて雰囲気の調整が行われており、溶解雰囲気を加圧窒素雰囲気にしている。本実施形態においては、加圧窒素雰囲気の圧力が特に限定されるものではないが、例えば0.1MPa(大気圧)〜2MPaの圧力下とすることができる。圧力の上限を抑えることで設備費を抑えた上で鋳塊への高窒素含有を可能にする。 In the pressurized electroslag remelting device 1A, the atmosphere is adjusted by covering the tubular mold 2A with the tubular pressurized container 2B whose upper surface is covered, and the melting atmosphere is changed to the pressurized nitrogen atmosphere. There is. In the present embodiment, the pressure of the pressurized nitrogen atmosphere is not particularly limited, but can be, for example, a pressure of 0.1 MPa (atmospheric pressure) to 2 MPa. By suppressing the upper limit of pressure, it is possible to contain high nitrogen in the ingot while suppressing the equipment cost.

この実施形態では、エレクトロスラグ再溶解の開始に伴って、溶解雰囲気を所定の加圧窒素雰囲気に調整し、前記実施形態と同様に溶融スラグ15中にエレクトロスラグ再溶解用電極本体10Aの先端側が浸漬された状態にする。なお、溶解雰囲気は、エレクトロスラグ再溶解中に状態を変化させるようにしてもよい。
エレクトロスラグ再溶解用電極本体10Aは、溶融スラグ15のジュール熱により溶解し、溶滴13は溶融スラグ15内を下降しつつ鋳型2の底に至り、溶融金属プール16を形成する。窒素導入部12には所定流量の窒素ガスが供給され、窒素吹き出し穴11を通して溶融スラグ15中に窒素ガスが吹き出される。窒素ガスは溶融スラグ15中で撹拌され、吹き出された窒素ガスおよび加圧によって溶融スラグ15に溶け込んだ窒素ガスの一部は、溶滴13に取り込まれ、また、溶融スラグ15を通して溶融金属プール16に溶け込む。
In this embodiment, the dissolution atmosphere is adjusted to a predetermined pressurized nitrogen atmosphere with the start of electroslag redissolution, and the tip end side of the electroslag redissolving electrode body 10A is placed in the molten slag 15 in the same manner as in the above embodiment. Make it soaked. The dissolution atmosphere may be changed during the redissolution of electroslag.
The electroslag redissolving electrode body 10A is melted by the Joule heat of the molten slag 15, and the droplet 13 descends in the molten slag 15 and reaches the bottom of the mold 2 to form a molten metal pool 16. A predetermined flow rate of nitrogen gas is supplied to the nitrogen introduction unit 12, and the nitrogen gas is blown into the molten slag 15 through the nitrogen blowout hole 11. The nitrogen gas is agitated in the molten slag 15, and a part of the nitrogen gas blown out and the nitrogen gas dissolved in the molten slag 15 by pressurization is taken into the droplet 13 and is also taken into the molten metal pool 16 through the molten slag 15. It blends in with.

鋳型2では、前記実施形態と同様に高窒素の鋳塊17が次第に高さを増すように形成される。その際に、窒素吹き出し穴11から溶融スラグ15中への所定流量の窒素ガスの吹き出しを継続し、窒素ガスの吹き出し量としては、初期の設定電圧に対し電圧の振れ幅が20%以下となる範囲で設定するのが望ましい。
なお、加圧式では、請求項1の加圧式でないものに比べて窒素ガスの吹き出し量を少なくすることができる。
上記本実施形態によっても、窒素を鋳塊中に高濃度で安価に含有させることができる。
In the mold 2, the high nitrogen ingot 17 is formed so as to gradually increase in height as in the above embodiment. At that time, the blowout of nitrogen gas at a predetermined flow rate from the nitrogen blowout hole 11 into the molten slag 15 is continued, and the amount of nitrogen gas blown out is 20% or less of the voltage fluctuation width with respect to the initially set voltage. It is desirable to set in the range.
In the pressurized type, the amount of nitrogen gas blown out can be reduced as compared with the non-pressurized type according to claim 1.
Also in this embodiment, nitrogen can be contained in the ingot at a high concentration at low cost.

(実施形態3)
さらに、本発明の他の実施形態を図3に基づいて説明する。この例では、エレクトロスラグ再溶解用電極本体に窒素吹き出し筒を設けたものである。なお、前記各実施形態と同様の構成については同一の符号を付して説明を省略または簡略化する。
(Embodiment 3)
Further, another embodiment of the present invention will be described with reference to FIG. In this example, the electrode body for redissolving electroslag is provided with a nitrogen blowout tube. The same components as those in the above embodiments are designated by the same reference numerals, and the description thereof will be omitted or simplified.

この実施形態の加圧式エレクトロスラグ再溶解装置1Bのエレクトロスラグ再溶解用電極100は、円柱状に形成したエレクトロスラグ再溶解用電極本体100Aを有し、その外周面に軸方向に沿って4本の窒素吹き出し筒110が等間隔で取り付けられており、窒素吹き出し筒先端はエレクトロスラグ再溶解用電極本体100Aの先端に達している。なお、窒素吹き出し筒110の先端はエレクトロスラグ再溶解用電極本体100Aの先端に達していればよく、さらにその先に伸長しているものであってもよい。
エレクトロスラグ再溶解用電極本体100Aの基端側には支持柱部100Bが連結されれており、窒素吹き出し筒110の基端側は、支持柱部100Bの外周側に円筒状に配置した環部120Aに連結されている。環部120Aには、外部に伸長する導入配管120Bが接続されており、環部120Aと導入配管120Bとによって本発明の窒素導入部120が構成されている。この構成により、導入配管120Bに供給される窒素ガスは、環部120Aを介して窒素吹き出し筒110に供給され、先端側に移送される。
The electroslag redissolving electrode 100 of the pressurized electroslag redissolving apparatus 1B of this embodiment has an electroslag redissolving electrode body 100A formed in a columnar shape, and has four electrodes along the axial direction on the outer peripheral surface thereof. The nitrogen blowout cylinders 110 of the above are attached at equal intervals, and the tip of the nitrogen blowout cylinder reaches the tip of the electrode body 100A for redissolving electroslag. The tip of the nitrogen blowing cylinder 110 may reach the tip of the electroslag redissolving electrode body 100A, and may extend further ahead.
A support column portion 100B is connected to the proximal end side of the electroslag redissolving electrode body 100A, and the proximal end side of the nitrogen blowout cylinder 110 is a ring portion arranged in a cylindrical shape on the outer peripheral side of the support column portion 100B. It is connected to 120A. An introduction pipe 120B extending to the outside is connected to the ring portion 120A, and the nitrogen introduction portion 120 of the present invention is configured by the ring portion 120A and the introduction pipe 120B. With this configuration, the nitrogen gas supplied to the introduction pipe 120B is supplied to the nitrogen blowing cylinder 110 via the ring portion 120A and transferred to the tip side.

なお、この実施形態では複数の窒素吹き出し筒110を有するものとして説明しているが、その数は特に限定されるものではなく、一つの窒素吹き出し筒110のみを有するものであってもよい。
また、窒素吹き出し筒110は、エレクトロスラグ再溶解用電極本体100Aの溶解とともに溶融スラグ15のジュール熱によって溶解する材料を用いる。このため窒素吹き出し筒110は、鋳塊17への溶け込みによって特性に影響を与える材料は使用せず、例えばエレクトロスラグ再溶解用電極本体100Aと同材料または主要な成分を同じにして構成することができる。
In this embodiment, it is described that the nitrogen blowing cylinder 110 is provided, but the number thereof is not particularly limited, and only one nitrogen blowing cylinder 110 may be provided.
Further, the nitrogen blowing cylinder 110 uses a material that is melted by the Joule heat of the molten slag 15 together with the melting of the electrode body 100A for redissolving the electroslag. Therefore, the nitrogen blowing cylinder 110 does not use a material that affects the characteristics by melting into the ingot 17, and may be configured to have the same material or the same main components as the electroslag redissolving electrode body 100A, for example. it can.

この実施形態では、エレクトロスラグ再溶解の開始に伴って、溶融スラグ15中にエレクトロスラグ再溶解用電極本体100Aの先端側が浸漬された状態になる。
エレクトロスラグ再溶解用電極本体100Aは、溶融スラグ15のジュール熱により溶解し、溶滴13は溶融スラグ15内を下降しつつ鋳型2の底に至り、溶融金属プール16を形成する。窒素導入部120には所定流量の窒素ガスが供給され、窒素吹き出し筒110を通して溶融スラグ15中に窒素ガスが吹き出される。この際に、窒素吹き出し筒110の先端側もエレクトロスラグ再溶解用電極本体100Aとともにジュール熱によって溶解する。窒素ガスは溶融スラグ15中で撹拌され、窒素ガスの一部は溶滴13に取り込まれ、また、溶融スラグ15を通して溶融金属プール16に溶け込む。
In this embodiment, the tip end side of the electroslag redissolving electrode body 100A is immersed in the molten slag 15 with the start of electroslag redissolving.
The electroslag redissolving electrode body 100A is melted by the Joule heat of the molten slag 15, and the droplet 13 descends in the molten slag 15 and reaches the bottom of the mold 2 to form a molten metal pool 16. A predetermined flow rate of nitrogen gas is supplied to the nitrogen introduction unit 120, and the nitrogen gas is blown into the molten slag 15 through the nitrogen blowout cylinder 110. At this time, the tip end side of the nitrogen blowing cylinder 110 is also melted by Joule heat together with the electroslag redissolving electrode body 100A. The nitrogen gas is agitated in the molten slag 15, and a part of the nitrogen gas is taken into the droplet 13 and melts into the molten metal pool 16 through the molten slag 15.

鋳型2は、図示しない冷却手段により冷却され、溶融金属プール16の下方に次第に高窒素含有の鋳塊17が得られ、高窒素の鋳塊17が次第に高さを増して形成される。
エレクトロスラグ再溶解用電極10は、その消耗度合いと溶融金属プール16の液面高さに応じて下方に移動させて溶融スラグ15への挿入状態を維持しつつ、エレクトロスラグ再溶解用電極本体100Aの溶解が連続して行われる。窒素ガス吹き出し筒110から溶融スラグ15中への所定流量の窒素ガスの吹き出しを継続する。この際に、窒素ガスの吹き出し量としては、初期の設定電圧に対し電圧の振れ幅が20%以下となる範囲で設定するのが望ましい。
なお、上記窒素吹き出し筒は、実施形態2の窒素吹き出し穴に代えて加圧式エレクトロスラグ再溶解装置に使用することも当然可能である。
The mold 2 is cooled by a cooling means (not shown), and a high nitrogen-containing ingot 17 is gradually obtained below the molten metal pool 16, and a high nitrogen ingot 17 is gradually formed in height.
The electroslag redissolving electrode 10 is moved downward according to the degree of wear and the liquid level height of the molten metal pool 16 to maintain the inserted state into the molten slag 15, and the electroslag redissolving electrode body 100A. Is dissolved continuously. The blowout of nitrogen gas at a predetermined flow rate from the nitrogen gas blowout cylinder 110 into the molten slag 15 is continued. At this time, it is desirable that the amount of nitrogen gas blown out is set within a range in which the fluctuation width of the voltage is 20% or less with respect to the initially set voltage.
Of course, the nitrogen blowing cylinder can be used in a pressurized electroslag remelting device instead of the nitrogen blowing hole of the second embodiment.

以下に、本実施例を説明する。以下の実施例では、図1に示すエレクトロスラグ再溶解装置1または、図2に示す加圧式エレクトロスラグ再溶解装置1Aを用いて試験を行った。また、比較装置として、窒素吹き出しを行わない装置を用意した。 This embodiment will be described below. In the following examples, the test was conducted using the electroslag remelting device 1 shown in FIG. 1 or the pressurized electroslag remelting device 1A shown in FIG. In addition, as a comparison device, a device that does not blow out nitrogen was prepared.

各試験では、エレクトロスラグ再溶解用電極本体として外径100mmのSUS304の軸中心に10mm径の窒素吹き出し筒を開けたものを用いた。
溶解条件は鋳型径:145mm、スラグ組成:CaF−CaO−Al系、設定電流:2000Aまたは2500A、設定電圧:18Vまたは20V、溶解雰囲気ガス種:窒素、溶解雰囲気圧力:0.1MPa(大気圧)、または1.0MPa、窒素吹き出し穴からの窒素ガス吹き出し流量:0〜5.0NL/minとした。
In each test, an electrode body for redissolving electroslag was used by opening a nitrogen blowing cylinder having a diameter of 10 mm at the center of the axis of SUS304 having an outer diameter of 100 mm.
Dissolution conditions are mold diameter: 145 mm, slag composition: CaF 2- CaO-Al 2 O 3 system, set current: 2000 A or 2500 A, set voltage: 18 V or 20 V, dissolution atmosphere gas type: nitrogen, dissolution atmosphere pressure: 0.1 MPa (Atmospheric pressure) or 1.0 MPa, nitrogen gas blowout flow rate from the nitrogen blowout hole: 0 to 5.0 NL / min.

上記条件による試験結果を表1、及び図4、5に示す。
雰囲気圧力0.1MPa(エレクトロスラグ再溶解法)、1.0MPa(加圧式エレクトロスラグ再溶解法)ともに、窒素ガスの吹き出し量の増加に伴い鋼塊中の窒素ピックアップ量(=鋼塊窒素量(溶解後)−エレクトロスラグ再溶解電極窒素量(溶解前))は増加し、その値は比較例として示した吹き出しなしの場合より大きかった。
The test results under the above conditions are shown in Table 1 and FIGS. 4 and 5.
Atmospheric pressure 0.1 MPa (electroslag remelting method) and 1.0 MPa (pressurized electroslag remelting method) both increase the amount of nitrogen gas blown out and the amount of nitrogen picked up in the ingot (= amount of ingot nitrogen (= ingot nitrogen amount) (After dissolution) -Electroslag redissolution electrode Nitrogen amount (before dissolution)) increased, and the value was larger than that in the case without blowout shown as a comparative example.

図5に示したように吹き出し量が5.0NL/min(本発明の実施例(5))では、設定電圧に対し溶解電圧の振れ幅が20%を超えて大きくなり、溶解の継続が困難であった。これは多量の窒素ガスを吹き込んだ場合には、エレクトロスラグ再溶解電極と溶融スラグ層との間にアーキングが発生し溶解が不安定になるためである。この結果、鋳塊の表面肌が悪化して、顕著な場合には製品として使用することができなくなる。一方、吹き出し量を0.1NL/min、0.4NL/min、1.0NL/min、2.0NL/minに設定した実施例では、設定電圧に対する溶解電圧の振れ幅が20%以下であり、電解が安定して鋳塊の表面肌も良好であった。この結果、ガス吹き出し量は、溶解電圧の振れ幅が自動溶解開始時の設定電圧に対して20%以下になるように設定すると溶解が安定することがわかった。
上記の実施例では、エレクトロスラグ再溶解電極の中心部より窒素ガスを吹き出しているが、電極表面にパイプを取り付けそこから吹き出すなどの方法によっても上記と同様の効果を得ることができる。
As shown in FIG. 5, when the blowout amount is 5.0 NL / min (Example (5) of the present invention), the fluctuation width of the dissolution voltage exceeds 20% with respect to the set voltage, and it is difficult to continue the dissolution. Met. This is because when a large amount of nitrogen gas is blown, arcing occurs between the electroslag redissolving electrode and the molten slag layer, and the dissolution becomes unstable. As a result, the surface surface of the ingot deteriorates, and in a remarkable case, it cannot be used as a product. On the other hand, in the embodiment in which the blowout amount is set to 0.1 NL / min, 0.4 NL / min, 1.0 NL / min, and 2.0 NL / min, the fluctuation width of the dissolved voltage with respect to the set voltage is 20% or less. The electrolysis was stable and the surface texture of the ingot was also good. As a result, it was found that the dissolution is stable when the amount of gas blown out is set so that the fluctuation width of the dissolution voltage is 20% or less with respect to the set voltage at the start of automatic dissolution.
In the above embodiment, nitrogen gas is blown out from the center of the electroslag redissolving electrode, but the same effect as described above can be obtained by a method such as attaching a pipe to the electrode surface and blowing out from the pipe.

Figure 0006086439
Figure 0006086439

以上、本発明について上記実施形態および実施例に基づいて説明したが、本発明は上記説明の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは適宜の変更が可能である。 Although the present invention has been described above based on the above embodiments and examples, the present invention is not limited to the contents of the above description, and appropriate modifications can be made without departing from the scope of the present invention.

1 エレクトロスラグ再溶解装置
1A 加圧式エレクトロスラグ再溶解装置
2 鋳型
2A 鋳型
2B 加圧容器
3 電源
10 エレクトロスラグ再溶解用電極
10A エレクトロスラグ再溶解用電極本体
10B 支持柱部
11 窒素吹き出し穴
12 窒素導入部
13 溶滴
15 溶融スラグ
16 溶融金属プール
17 鋳塊
100 エレクトロスラグ再溶解用電極
100A エレクトロスラグ再溶解用電極本体
100B 支持柱部
110 窒素吹き出し筒
120 窒素導入部
120A 環部
120B 導入配管
1 Electro-slag re-dissolving device 1A Pressurized electro-slag re-dissolving device 2 Mold 2A Mold 2B Pressurized container 3 Power supply 10 Electro-slag re-dissolving electrode 10A Electro-slag re-dissolving electrode body 10B Support pillar 11 Nitrogen blowout hole 12 Nitrogen introduction Part 13 Droplet 15 Molten slag 16 Molten metal pool 17 Ingot 100 Electrode for redissolving electroslag 100A Electrode for redissolving electroslag Body 100B Support column 110 Nitrogen blowout cylinder 120 Nitrogen introduction part 120A Ring part 120B Introduction piping

Claims (3)

高窒素含有鋼の含有成分を有するエレクトロスラグ再溶解電極本体と、
前記エレクトロスラグ再溶解電極本体外面に前記エレクトロスラグ再溶解電極本体の軸方向に伸長して取り付けられ前記エレクトロスラグ再溶解電極本体の先端に達し、エレクトロスラグ再溶解電極本体の再溶解とともに溶解する複数の窒素吹き出し筒と、
前記窒素吹き出し筒内に窒素を導入して前記エレクトロスラグ再溶解電極本体先端からの所定量のガス吹き出し量に調整した窒素吹き出しを行う窒素導入部と、を有することを特徴とするエレクトロスラグ再溶解用電極。
An electroslag remelting electrode body having a component of high nitrogen-containing steel,
Reached the tip of the electroslag remelting electrode body mounted extends in the axial direction of the electroslag remelting electrode body to the electro-slag remelting electrode body outer surface, are dissolved together with redissolution of electroslag remelting electrode body With multiple nitrogen blowout tubes,
An electroslag remelting unit characterized by having a nitrogen introduction portion for introducing nitrogen into the nitrogen blowing cylinder to blow out nitrogen adjusted to a predetermined amount of gas blown from the tip of the electroslag remelting electrode body. For electrodes.
高窒素含有鋼の含有成分を有するエレクトロスラグ再溶解電極本体外面に前記エレクトロスラグ再溶解電極本体の軸方向に伸長して取り付けられ前記エレクトロスラグ再溶解電極本体の先端に達する窒素吹き出し筒を設けておき、
前記エレクトロスラグ再溶解電極本体の先端側を溶融スラグ中に浸積し、
記窒素吹き出し筒内に窒素を導入して溶融スラグ中で前記エレクトロスラグ再溶解電極本体先端から所定量のガス吹き出し量に調整した窒素を吹き出しつつ前記エレクトロスラグ再溶解電極本体の再溶融および前記窒素吹き出し筒の溶解を行って高窒素含有鋼を製造することを特徴とする高窒素含有鋼の製造方法。
Nitrogen balloon cylinder mounted extends in the axial direction of the electroslag remelting electrode body Rue Rekutorosuragu remelting electrode body outer surface having a content components of the high nitrogen content steel reaches the tip of the electroslag remelting electrode body Set up
The tip end side of the electroslag redissolving electrode body is embedded in the molten slag, and
Remelting and said nitrogen is introduced the electroslag remelting electrode body while blowing nitrogen was adjusted to the gas blow amount of a predetermined amount from said electroslag remelting electrode body tip in the molten slag before Symbol nitrogen balloon in a cylinder A method for producing a high nitrogen-containing steel, which comprises melting a nitrogen blowout cylinder to produce a high nitrogen-containing steel.
前記窒素ガスを前記溶融スラグ中に吹き出す際に、溶解時の電圧の触れ幅が設定電圧に対して20%以下になる範囲で窒素ガス吹き出し量を設定することを特徴とする請求項2に記載の高窒素含有鋼の製造方法。 The second aspect of claim 2, wherein when the nitrogen gas is blown into the molten slag, the amount of nitrogen gas blown out is set within a range in which the contact width of the voltage at the time of melting is 20% or less with respect to the set voltage. Method for producing high nitrogen-containing steel.
JP2013240012A 2013-11-20 2013-11-20 Electrode for redissolving electroslag and method for manufacturing high nitrogen-containing steel Active JP6086439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013240012A JP6086439B2 (en) 2013-11-20 2013-11-20 Electrode for redissolving electroslag and method for manufacturing high nitrogen-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013240012A JP6086439B2 (en) 2013-11-20 2013-11-20 Electrode for redissolving electroslag and method for manufacturing high nitrogen-containing steel

Publications (2)

Publication Number Publication Date
JP2015098635A JP2015098635A (en) 2015-05-28
JP6086439B2 true JP6086439B2 (en) 2017-03-01

Family

ID=53375450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013240012A Active JP6086439B2 (en) 2013-11-20 2013-11-20 Electrode for redissolving electroslag and method for manufacturing high nitrogen-containing steel

Country Status (1)

Country Link
JP (1) JP6086439B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107217152A (en) * 2017-06-08 2017-09-29 东北大学 The ESR ingot preparation facilities and method of a kind of utilization nitrogen conveying powder additive
CN109055772B (en) * 2018-10-25 2020-03-17 冯英育 Electroslag remelting process method
CN110408792B (en) * 2019-07-23 2020-11-06 河钢股份有限公司 Method for remelting high-nitrogen steel by electroslag in protective atmosphere
CN111118302B (en) * 2019-12-31 2022-04-19 浙江正达模具有限公司 Crystallizer for metal electroslag remelting, electroslag remelting device and electroslag remelting method
CN112296343B (en) * 2020-09-04 2023-05-26 武汉科技大学 Method for preparing superfine metal powder by hollow electrode smelting
CN114918385A (en) * 2022-04-28 2022-08-19 山东邦巨实业有限公司 Device and process for controlling nitrogen content in die steel
CN115044776B (en) * 2022-06-24 2024-01-23 河南中原特钢装备制造有限公司 Liquid electroslag remelting device and smelting process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115795A (en) * 1976-03-25 1977-09-28 Kawasaki Steel Co Remelting method of electro slag of steel
JPS57137413A (en) * 1981-02-20 1982-08-25 Nisshin Steel Co Ltd Production of molten steel containing nitrogen
JPS60243214A (en) * 1983-12-28 1985-12-03 Nippon Stainless Steel Co Ltd Manufacture of alloy steel containing nitrogen
JPS6191317A (en) * 1984-10-11 1986-05-09 Nippon Kokan Kk <Nkk> Refining method of molten steel by ladle refining furnace
US5332197A (en) * 1992-11-02 1994-07-26 General Electric Company Electroslag refining or titanium to achieve low nitrogen
JP4210768B2 (en) * 1999-08-27 2009-01-21 独立行政法人物質・材料研究機構 Nitrogen-added steel pipe, consumable electrodes fixed with nitrogen-added steel pipes and methods for producing them, and method for producing high nitrogen-containing steel by pressure electroslag remelting method using consumable electrodes

Also Published As

Publication number Publication date
JP2015098635A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP6086439B2 (en) Electrode for redissolving electroslag and method for manufacturing high nitrogen-containing steel
JPH05247550A (en) Direct production of electroslag refined metal
TW201347876A (en) Forged steel roll manufacturing method
US5985206A (en) Electroslag refining starter
CN106536114A (en) Electrogas arc welding method and electrogas arc welding apparatus
JP2006281291A (en) Method for producing long cast block of active high melting point metal alloy
US20110214830A1 (en) Method and apparatus for producing hollow fusing blocks
JP2010116581A (en) Method for producing titanium ingot using vacuum arc melting furnace
US4068111A (en) Process of working imperfections or defects on generally thickwalled metal worked-pieces
JP2012504700A (en) Method for producing a composite metal semi-finished product
CN109348706A (en) High-current pulse arc welding method and flux-cored wire
RU2567408C2 (en) Method for manufacturing multilayered ingots
RU2011141933A (en) METHOD OF ELECTRIC SLAG RELEASING OF METAL-CONTAINING WASTE
JP7132717B2 (en) Method for producing ingot made of titanium alloy
US3776294A (en) Method of electroslag remelting
US4167963A (en) Method and apparatus for feeding molten metal to an ingot during solidification
US20090065169A1 (en) Technique for forming titanium alloy tubes
JP2013044046A (en) Method for manufacturing high-clean steel
JP5006161B2 (en) Ingot manufacturing method for TiAl-based alloy
RU2413016C1 (en) Procedure for fabrication of hollow ingot by electric-slag re-melting
JP5655731B2 (en) Manufacturing method of steel ingot for roll by electroslag melting method
CS209655B1 (en) Method of making the metal hollow casting with the bottom
JP4769128B2 (en) Vacuum arc melting method for metals
RU2689832C1 (en) Electroslag remelting unit
JP6398673B2 (en) Bubble generation method in molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170125

R150 Certificate of patent or registration of utility model

Ref document number: 6086439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250