JP6085335B2 - Activated carbon molded body, method for producing the activated carbon molded body, adsorbent using the activated carbon molded body, and occlusion material - Google Patents

Activated carbon molded body, method for producing the activated carbon molded body, adsorbent using the activated carbon molded body, and occlusion material Download PDF

Info

Publication number
JP6085335B2
JP6085335B2 JP2015122813A JP2015122813A JP6085335B2 JP 6085335 B2 JP6085335 B2 JP 6085335B2 JP 2015122813 A JP2015122813 A JP 2015122813A JP 2015122813 A JP2015122813 A JP 2015122813A JP 6085335 B2 JP6085335 B2 JP 6085335B2
Authority
JP
Japan
Prior art keywords
activated carbon
molded body
carbon molded
polyolefin resin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015122813A
Other languages
Japanese (ja)
Other versions
JP2017007878A (en
Inventor
孝規 塚▲崎▼
孝規 塚▲崎▼
天能 浩次郎
浩次郎 天能
安丸 純一
純一 安丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2015122813A priority Critical patent/JP6085335B2/en
Publication of JP2017007878A publication Critical patent/JP2017007878A/en
Application granted granted Critical
Publication of JP6085335B2 publication Critical patent/JP6085335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は活性炭成形体、および該活性炭成形体の製造方法、並びに該活性炭成形体を用いた吸着材、および吸蔵材に関するものである。   The present invention relates to an activated carbon molded body, a method for producing the activated carbon molded body, an adsorbent using the activated carbon molded body, and an occlusion material.

活性炭はその大きい比表面積と発達した細孔構造から各種吸着材として汎用されている。例えば浄水処理などの各種液相処理や脱臭処理、空気清浄処理などの各種気相処理において利用されている。また活性炭の導電性や電子授受機能を有する性質、または活性炭の細孔内の表面に触媒を高分散担持させることができるなどの性質に着目して、電気二重層キャパシタ用の炭素電極、燃料電池、空気電池、リチウムイオン電池などの電池用の炭素電極などの電極用材料として利用されている。更に近年では、水素吸蔵やメタン吸蔵などエネルギーの貯蔵材料としても活性炭は注目されている。   Activated carbon is widely used as various adsorbents because of its large specific surface area and developed pore structure. For example, it is used in various liquid phase treatments such as water purification treatment, various gas phase treatments such as deodorization treatment, and air purification treatment. Focusing on the properties of activated carbon such as the conductivity and electron transfer function, or the ability to carry a highly dispersed catalyst on the surface of the pores of the activated carbon, carbon electrodes and fuel cells for electric double layer capacitors It is used as a material for electrodes such as carbon electrodes for batteries such as air batteries and lithium ion batteries. In recent years, activated carbon has attracted attention as an energy storage material such as hydrogen storage and methane storage.

活性炭は、粉末状活性炭、粒状活性炭、繊維状活性炭など様々な形状で用いられているが、例えば粉末状活性炭は、目詰まりが生じやすく、また粉塵による人体への影響などが問題視されている。また粒状活性炭や繊維状活性炭では十分な成形体密度が得られなかった。そこで、活性炭とバインダーとを混合して任意の形状に加工した活性炭成形体が提案されている。 Activated carbon is used in various forms such as powdered activated carbon, granular activated carbon, and fibrous activated carbon. For example, powdered activated carbon is likely to be clogged, and the effect of dust on the human body is regarded as a problem. . The sufficient green density is not obtained in the granular activated carbon and fibrous activated carbon. Therefore, an activated carbon molded body in which activated carbon and a binder are mixed and processed into an arbitrary shape has been proposed.

例えば特許文献1には、比表面積が1000m2/g以上であり、成形体密度が0.4g/cm3以上1g/cm3以下である炭素材料と、10重量%以下のポリテトラフルオロエチレンなどのバインダーとを混合させた水素吸蔵体が開示されている。この技術によれば、炭素材料の比表面積と成形体密度とがともに大きいため、単位体積当たりの水素吸蔵量を増大できる。 For example, Patent Document 1 discloses a carbon material having a specific surface area of 1000 m 2 / g or more and a molded body density of 0.4 g / cm 3 or more and 1 g / cm 3 or less, polytetrafluoroethylene of 10% by weight or less, and the like. A hydrogen occlusion material in which a binder is mixed is disclosed. According to this technique, since the specific surface area of the carbon material and the density of the compact are both large, the amount of hydrogen occlusion per unit volume can be increased.

また特許文献2には、吸着剤の表面にポリオレフィンの薄いコート層を有する吸着剤成型体であって、該ポリオレフィンはメルトフロレートが1g/10分以下の粘度特性を有するポリオレフィンであることを特徴とする吸着剤成型体が開示されている。この技術によれば、手で触れても手が汚れたり、摩耗によっても黒い埃が出るなどの問題はなく、吸着剤と水溶液との接触が良好であり、吸着剤としての機能が十分に発揮できる。   Patent Document 2 discloses an adsorbent molded article having a polyolefin thin coat layer on the surface of the adsorbent, wherein the polyolefin is a polyolefin having a viscosity characteristic of a melt flow rate of 1 g / 10 min or less. An adsorbent molded body is disclosed. According to this technology, there are no problems such as dirty hands even when touched by hand or black dust coming out due to wear, good contact between the adsorbent and aqueous solution, and full function as an adsorbent it can.

更に特許文献3には、粒状又は粉末状活性炭と、メルトインデックスの異なる2種類以上の有機高分子バインダーを混合し、得られた混合物を金型に充填し、加熱、加圧して成形することを特徴とする活性炭成形体の製造方法が開示されている。この技術によれば、十分な強度を有し、通水抵抗が低く、有害物質除去能力を大きくできる。   Further, Patent Document 3 describes mixing granular or powdered activated carbon and two or more organic polymer binders having different melt indexes, filling the resulting mixture into a mold, and heating and pressing to form. A method for producing a featured activated carbon molded body is disclosed. According to this technique, it has sufficient strength, has low resistance to water flow, and can increase the ability to remove harmful substances.

特開2003−38953号公報JP 2003-38953 A 特開2000−263040号公報JP 2000-263040 A 特開2005−119902号公報JP 2005-119902 A

活性炭成形体には取り扱い時や使用時の摩擦などによる損傷などに対して十分な強度を有することが要求されている。ところが強度を高めるためにバインダー含有量を増加させると、活性炭の比表面積や細孔容積が低下するなどの問題があった。   The activated carbon molded body is required to have sufficient strength against damage caused by friction during handling and use. However, when the binder content is increased to increase the strength, there are problems such as a decrease in the specific surface area and pore volume of the activated carbon.

本発明は上記の様な事情に着目してなされたものであって、その目的は、十分な強度を有し、比表面積と細孔容積が大きい活性炭成形体、およびその製造方法を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and its object is to provide an activated carbon molded article having sufficient strength, a large specific surface area and a large pore volume, and a method for producing the same. It is in.

上記課題を解決し得た本発明の活性炭成形体は、活性炭と平均粒子径1μm以上、50μm以下のポリオレフィン樹脂を混合し、得られた混合物を等方性加圧処理することによって得られることに要旨を有する。   The activated carbon molded body of the present invention that can solve the above problems is obtained by mixing activated carbon and a polyolefin resin having an average particle diameter of 1 μm or more and 50 μm or less and subjecting the resulting mixture to isotropic pressure treatment. Has a gist.

上記ポリオレフィン樹脂と上記活性炭の合計100質量%に対して、上記ポリオレフィン樹脂を1質量%以上、15質量%以下含むことも好ましい実施態様である。本発明の活性炭成形体は、吸着材や吸蔵材として用いることも好ましい実施態様である。   It is also a preferred embodiment that the polyolefin resin is contained in an amount of 1% by mass to 15% by mass with respect to a total of 100% by mass of the polyolefin resin and the activated carbon. The activated carbon molded body of the present invention is also a preferred embodiment for use as an adsorbent or an occlusion material.

また本発明の活性炭成形体の製造方法は、活性炭と平均粒子径1μm以上、50μm以下のポリオレフィン樹脂を混合し、得られた混合物を等方性加圧処理することに要旨を有する。   Moreover, the manufacturing method of the activated carbon molded body of this invention has a summary in mixing activated carbon and polyolefin resin with an average particle diameter of 1 μm or more and 50 μm or less, and subjecting the obtained mixture to isotropic pressure treatment.

本発明によれば、十分な強度を有すると共に、比表面積と細孔容積が大きい活性炭成形体を提供できる。したがって本発明の活性炭成形体を用いれば、強度が高く、しかも吸着特性に優れた吸着材、ないし吸蔵特性に優れた吸蔵材を提供できる。また本発明によれば上記特性を有する活性炭成形体を容易に製造することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, while having sufficient intensity | strength, the activated carbon molded object with a large specific surface area and pore volume can be provided. Therefore, if the activated carbon molded body of the present invention is used, an adsorbent having high strength and excellent adsorption characteristics, or an occlusion material having excellent occlusion characteristics can be provided. Further, according to the present invention, an activated carbon molded body having the above characteristics can be easily produced.

図1は、実施例の成形体のバインダー量と強度の関係をプロットしたグラフである。FIG. 1 is a graph plotting the relationship between the amount of binder and the strength of the molded body of the example. 図2は、実施例の成形体4と7の強度を示すグラフである。FIG. 2 is a graph showing the strength of the molded bodies 4 and 7 of the example.

本発明者らはバインダーを添加しても比表面積と細孔容積が大きく、且つ高強度を有する活性炭成形体について研究を重ねた。まず、活性炭にバインダーを含めずに成形した場合、活性炭成形体は強度が低く、脆くて崩れやすかった。そのため、活性炭にバインダーを含めた混合物を成形することとし、その成形方法について検討した。従来の成形方法である金型による一軸加圧処理で活性炭成形体を製造した場合、十分な強度を得るために処理圧力を高めると、金型表面と接触している活性炭の細孔が損壊して比表面積や細孔容積が低下した。また処理圧力を低くすると、比表面積と細孔容積は高いが、十分な強度が得られず、活性炭成形体の取り扱い時や使用時に割れが生じた。   The present inventors have repeated research on activated carbon molded bodies having a high specific surface area and pore volume and high strength even when a binder is added. First, when the activated carbon was molded without including a binder, the activated carbon molded body had low strength and was brittle and easily broken. Therefore, a mixture containing a binder in activated carbon was molded, and the molding method was examined. When an activated carbon molded body is manufactured by uniaxial pressure treatment using a mold, which is a conventional molding method, if the treatment pressure is increased to obtain sufficient strength, the pores of the activated carbon in contact with the mold surface are damaged. As a result, the specific surface area and pore volume decreased. When the treatment pressure was lowered, the specific surface area and pore volume were high, but sufficient strength was not obtained, and cracking occurred during handling and use of the activated carbon molded body.

そこで本発明者らが更に活性炭の成形方法について検討した結果、等方性加圧処理して得られた活性炭成形体は、比表面積と細孔容積が大きく、かつ高強度であることを見出した。等方性加圧処理した場合、混合物表面を等圧で加圧できるため、成形体内部の空隙が低減して成形体密度が向上すると共に、活性炭とバインダーの流動性が向上して活性炭とバインダーの接点が多くなって強度が向上すると考えられる。また一軸加圧処理よりも低い処理圧力で高強度化が図れる。また等方性加圧処理によって成形体密度を向上できる。したがって活性炭成形体の細孔容積×成形体密度の積から求められる成形体体積当たりの細孔容積(以下、「成形体体積当たりの細孔容積」ということがある)、および活性炭成形体の比表面積×成形体密度の積から求められる成形体体積当たりの比表面積(以下、「成形体体積当たりの比表面積」ということがある)を高めることができる。 Therefore, as a result of further investigations on the method for forming activated carbon by the present inventors, it was found that the activated carbon molded body obtained by the isotropic pressure treatment has a large specific surface area and pore volume and high strength. . When the isotropic pressure treatment is performed, the surface of the mixture can be pressurized at the same pressure, so that the voids inside the molded body are reduced, the density of the molded body is improved, and the fluidity of the activated carbon and the binder is improved, so It is considered that the number of contact points increases and the strength improves. Further, the strength can be increased at a processing pressure lower than that of the uniaxial pressurizing process. Moreover, a molded object density can be improved by an isotropic pressurization process. The ratio of the thus the pore volume per compact volume obtained from the product of the pore volume × compact density of the activated carbon molded body (hereinafter sometimes referred to as "pore volume per compact volume"), and activated carbon molded body It is possible to increase the specific surface area per molded body volume (hereinafter, also referred to as “specific surface area per molded body volume”) obtained from the product of surface area × molded body density.

また本発明者らは、上記効果はポリオレフィン樹脂をバインダーに用いた場合に特有の効果であることを突き止めた。バインダーとしては様々な材料が用いられているが、例えば特許文献1で使用されているポリテトラフルオロエチレン(PTFE)は、室温で粘弾性が高いため活性炭同士を結着できるものの粉化しやすく、十分な強度が得られない。また融点が低く、加圧処理時の温度で溶融してしまうような熱可塑性樹脂を用いると、溶融した樹脂が細孔内部に取り込まれ、吸着サイトが減少する。ところが、所定の平均粒子径を有するポリオレフィン樹脂を用いた場合、等方性加圧処理すると活性炭の比表面積や細孔容積を大幅に低下させることなく、また比較的低い加圧処理で活性炭同士を強固に結着できる。   In addition, the present inventors have found that the above effect is a unique effect when a polyolefin resin is used as a binder. Although various materials are used as the binder, for example, polytetrafluoroethylene (PTFE) used in Patent Document 1 has high viscoelasticity at room temperature, and can easily bind activated carbon to each other. A sufficient strength cannot be obtained. If a thermoplastic resin that has a low melting point and melts at the temperature during the pressure treatment is used, the molten resin is taken into the pores and the adsorption sites are reduced. However, when a polyolefin resin having a predetermined average particle diameter is used, the isotropic pressure treatment does not significantly reduce the specific surface area and pore volume of the activated carbon, and the activated carbons are relatively low pressure treatment. Can be firmly bound.

本発明者らは上記研究の結果、活性炭と所定の平均粒子径を有するポリオレフィン樹脂とを混合し、得られた混合物を等方性加圧処理することによって、上記課題を解決できることを見出し、本発明に至った。   As a result of the above studies, the present inventors have found that the above problems can be solved by mixing activated carbon and a polyolefin resin having a predetermined average particle diameter and subjecting the obtained mixture to isotropic pressure treatment. Invented.

以下、本発明について説明する。   The present invention will be described below.

本発明において活性炭とは、原料となる炭素物質を賦活処理して得られるものである。活性炭の種類としてはオガ屑、木材チップ、木炭、ピートなどを原料とする粉末状活性炭;木炭、ヤシ殻炭、石炭、オイルカーボン、フェノールなどを原料とする粒状活性炭;炭素質物質石油コークス、石炭コークス、石油ピッチ、石炭ピッチ、コールタールピッチ、及びこれらの複合物などを原料とする炭素質活性炭;合成樹脂(フェノール樹脂、ポリアクリロニトリル(PAN)、ポリイミド、フラン樹脂など)、セルロース系繊維(紙、綿繊維など)、及びこれらの複合物(紙−フェノール樹脂積層板など)などを原料とする活性炭素繊維;が挙げられる。これらの中でも粒状活性炭や活性炭素繊維が好ましい。   In the present invention, activated carbon is obtained by activating a carbon material as a raw material. Activated carbon powdery activated carbon made from sawdust, wood chips, charcoal, peat, etc .; granular activated carbon made from charcoal, coconut shell charcoal, coal, oil carbon, phenol, etc .; carbonaceous material petroleum coke, coal Carbonaceous activated carbon made from coke, petroleum pitch, coal pitch, coal tar pitch, and composites thereof; synthetic resin (phenol resin, polyacrylonitrile (PAN), polyimide, furan resin, etc.), cellulosic fiber (paper) , Cotton fibers, etc.), and activated carbon fibers made from these composites (paper-phenolic resin laminates, etc.) as raw materials. Among these, granular activated carbon and activated carbon fiber are preferable.

また上記活性炭は、炭素質物質を炭化した後、ガス賦活法、薬品賦活法など公知の方法により賦活されたものである。ガス賦活法としては、水蒸気、二酸化炭素、空気、燃焼ガスなどのガスを用いた賦活方法が例示される。薬品賦活法としてはリン酸、塩化亜鉛、塩化カルシウム、塩化マグネシウム、硫酸、苛性ソーダ、水酸化カリウム、水酸化ナトリウム等の水酸化物;炭酸ナトリウム、炭酸カリウム等の炭酸塩などの薬品を使用した賦活方法が例示される。上記活性炭として好ましくは水蒸気賦活炭、アルカリ賦活炭であり、より好ましくは水蒸気賦活炭である。本発明では水蒸気賦活炭を用いると、より高い強度を有する活性炭成形体が得られる。   The activated carbon is activated by a known method such as a gas activation method or a chemical activation method after carbonizing a carbonaceous material. Examples of the gas activation method include an activation method using a gas such as water vapor, carbon dioxide, air, or combustion gas. Chemical activation methods include chemicals such as phosphoric acid, zinc chloride, calcium chloride, magnesium chloride, sulfuric acid, caustic soda, potassium hydroxide, sodium hydroxide, etc .; carbonates such as sodium carbonate, potassium carbonate, etc. A method is illustrated. The activated carbon is preferably steam activated charcoal or alkali activated charcoal, and more preferably steam activated charcoal. In the present invention, when steam activated carbon is used, an activated carbon molded body having higher strength can be obtained.

活性炭の比表面積は特に限定されないが、十分な吸着量ないし吸蔵量を確保する観点か比表面積は好ましくは700m2/g以上、より好ましくは800m2/g以上である。比表面積の上限は特に限定されないが、活性炭自体の強度が低下することがあるため、好ましくは4000m2/g以下、より好ましくは3000m2/g以下、更に好ましくは2500m2/g以下、最も好ましくは2000m2/g以下である。活性炭の細孔容積も特に限定されないが、同様の観点から、好ましくは0.35cm3/g以上、より好ましくは0.40cm3/g以上、好ましくは2.2cm3/g以下、より好ましくは1.7cm3/g以下である。また活性炭の平均細孔径も特に限定されず、被吸着物ないし被吸蔵物に応じて適宜調整すればよい。平均細孔径は好ましくは3.0nm以下、より好ましくは2.5nm以下であって、好ましくは1.6nm以上、より好ましくは1.7nm以上である。なお、比表面積、細孔容積、平均細孔径は実施例に記載の測定方法に基づく値である。 The specific surface area of the activated carbon is not particularly limited, but the specific surface area is preferably 700 m 2 / g or more, more preferably 800 m 2 / g or more from the viewpoint of securing a sufficient adsorption amount or occlusion amount. The upper limit of the specific surface area is not particularly limited. However, since the strength of the activated carbon itself may be lowered, it is preferably 4000 m 2 / g or less, more preferably 3000 m 2 / g or less, still more preferably 2500 m 2 / g or less, and most preferably. Is 2000 m 2 / g or less. The pore volume of the activated carbon is not particularly limited, but from the same viewpoint, it is preferably 0.35 cm 3 / g or more, more preferably 0.40 cm 3 / g or more, preferably 2.2 cm 3 / g or less, more preferably 1.7 cm 3 / g or less. Further, the average pore diameter of the activated carbon is not particularly limited, and may be appropriately adjusted according to the adsorbent or occluded object. The average pore diameter is preferably 3.0 nm or less, more preferably 2.5 nm or less, preferably 1.6 nm or more, more preferably 1.7 nm or more. The specific surface area, pore volume, and average pore diameter are values based on the measurement methods described in the examples.

本発明では上記活性炭と混合するバインダー(結着剤)として、平均粒子径1μm以上、50μm以下のポリオレフィン樹脂を用いる。ポリオレフィン樹脂の平均粒子径は、レーザー回折式粒子径分布測定装置SALD−2000(島津製作所社製)を用いて測定されるポリオレフィン樹脂の粒度分布の測定結果から体積基準の累積頻度曲線を求め、累積頻度50%における粒子径を平均粒子径とする。   In the present invention, a polyolefin resin having an average particle diameter of 1 μm or more and 50 μm or less is used as a binder (binder) mixed with the activated carbon. The average particle size of the polyolefin resin is determined by obtaining a volume-based cumulative frequency curve from the measurement result of the particle size distribution of the polyolefin resin measured using a laser diffraction particle size distribution analyzer SALD-2000 (manufactured by Shimadzu Corporation). The particle diameter at a frequency of 50% is defined as the average particle diameter.

ポリオレフィン樹脂としては、好ましくはポリエチレン、ポリプロピレンであり、より好ましくはポリエチレンである。ポリエチレンは高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリエチレン系共重合体のいずれでもよい。またポリエチレン系共重合体としては、エチレンと酢酸ビニルの共重合体、エチレンとメタアクリル酸エステル共重合体、エチレンとメタアクリル酸の共重合体およびその一部を金属塩に代えたアイオノマーなどの各種公知の共重合体が例示される。これらは単独で、あるいは任意に組み合わせて使用することができる。   The polyolefin resin is preferably polyethylene or polypropylene, and more preferably polyethylene. The polyethylene may be any of high density polyethylene, low density polyethylene, linear low density polyethylene, and a polyethylene copolymer. Polyethylene copolymers include ethylene and vinyl acetate copolymers, ethylene and methacrylic acid ester copolymers, ethylene and methacrylic acid copolymers, and ionomers in which a part thereof is replaced with a metal salt. Various known copolymers are exemplified. These can be used alone or in any combination.

上記活性炭と混合するポリオレフィン樹脂の平均粒子径は1μm以上、好ましくは5μm以上、より好ましくは10μm以上である。一方、大きすぎるとポリオレフィン樹脂と活性炭との接点が減少することがあるため、ポリオレフィン樹脂の平均粒子径は50μm以下、好ましくは40μm以下、より好ましくは30μm以下である。   The average particle diameter of the polyolefin resin mixed with the activated carbon is 1 μm or more, preferably 5 μm or more, more preferably 10 μm or more. On the other hand, if it is too large, the contact point between the polyolefin resin and the activated carbon may decrease, so the average particle size of the polyolefin resin is 50 μm or less, preferably 40 μm or less, more preferably 30 μm or less.

本発明では、活性炭と平均粒子径1〜50μmのポリオレフィン樹脂を混合するが、ポリオレフィン樹脂の含有量は特に限定されず、所望の強度が得られるように適宜調整すればよい。ポリオレフィン樹脂の含有量を増やすと活性炭成形体の強度を高くできる。ポリオレフィン樹脂の含有量が少なすぎると活性炭同士を十分に結着できないことがあるため、ポリオレフィン樹脂の含有量([ポリオレフィン樹脂含有量/(ポリオレフィン樹脂含有量+活性炭含有量)×100])は、ポリオレフィン樹脂と活性炭の合計100質量%に対して、好ましくは1質量%以上、より好ましくは3質量%以上である。一方、ポリオレフィン樹脂の含有量が多くなりすぎると、活性炭成形体の強度が高くなりすぎて加工性が低下することがある。またポリオレフィン樹脂自体は活性炭としての特性を有さず、比表面積や細孔容積の減少要因となり、活性炭成形体の吸着性能や吸蔵性能などの特性が低下することがある。ポリオレフィン樹脂の含有量はポリオレフィン樹脂と活性炭の合計100質量%に対して、好ましくは15質量%以下、より好ましくは10質量%以下である。   In the present invention, activated carbon and a polyolefin resin having an average particle diameter of 1 to 50 μm are mixed. However, the content of the polyolefin resin is not particularly limited, and may be appropriately adjusted so as to obtain a desired strength. Increasing the content of the polyolefin resin can increase the strength of the activated carbon molded body. If the content of the polyolefin resin is too small, the activated carbon may not be sufficiently bound, so the content of the polyolefin resin ([polyolefin resin content / (polyolefin resin content + active carbon content) × 100]) is: Preferably it is 1 mass% or more with respect to a total of 100 mass% of polyolefin resin and activated carbon, More preferably, it is 3 mass% or more. On the other hand, when the content of the polyolefin resin is too large, the strength of the activated carbon molded body becomes too high, and the workability may be lowered. In addition, the polyolefin resin itself does not have characteristics as activated carbon, which causes a decrease in specific surface area and pore volume, and may deteriorate characteristics such as adsorption performance and occlusion performance of the activated carbon molded body. The content of the polyolefin resin is preferably 15% by mass or less, more preferably 10% by mass or less, with respect to the total 100% by mass of the polyolefin resin and activated carbon.

本発明では上記混合物を等方性加圧処理して成形する。等方性加圧処理としては、混合物表面に等しい加圧力を加えて方向性なく加圧成形できる方法であればよく、特に制限されない。等方性加圧処理としては、冷間等方圧加圧処理(CIP:Cold Isostatic Pressing)、静水圧加圧処理、ラバープレス処理、熱間等方圧加圧処理(HIP:HOT Isostatic Pressing)が例示され、これらの中でも常温下で3次元的に均一な圧力を加えることができる冷間等方圧加圧処理(CIP)が好ましい。また冷間等方圧加圧処理(CIP)は湿式法、乾式法のいずれでもよい。加圧媒体としてガス、液体など公知の媒体でよい。   In the present invention, the mixture is molded by isotropic pressure treatment. The isotropic pressure treatment is not particularly limited as long as it is a method capable of applying pressure equal to the surface of the mixture and performing pressure molding without directionality. As the isotropic pressurization process, cold isostatic pressurization process (CIP: Cold Isostatic Pressing), hydrostatic pressurization process, rubber press process, hot isostatic pressurization process (HIP: HOT Isostatic Pressing). Among these, the cold isostatic pressing (CIP) capable of applying a three-dimensionally uniform pressure at room temperature is preferable. Further, the cold isostatic pressure treatment (CIP) may be either a wet method or a dry method. A known medium such as gas or liquid may be used as the pressurizing medium.

等方性加圧処理時の処理圧力としては、特に限定されないが、圧力が低すぎると炭素物質同士を十分に結着できず、得られる活性炭成形体の強度、および成形体密度を十分に高めることができないことがある。また圧力が高すぎると、細孔が損傷するおそれがある。したがって圧力は好ましくは50MPa以上、より好ましくは100MPa以上であって、好ましくは300MPa以下、より好ましくは250MPa以下、更に好ましくは200MPa以下である。処理時間は特に限定されない。加圧保持時間は好ましくは1分以上、より好ましくは5分以上である。一方、上記効果が飽和するため、加圧保持時間は好ましくは60分以下、より好ましくは30分以下である The treatment pressure during the isotropic pressure treatment is not particularly limited, but if the pressure is too low, the carbon substances cannot be sufficiently bound to each other, and the strength of the obtained activated carbon compact and the density of the compact are sufficiently increased. There are times when you can't. If the pressure is too high, the pores may be damaged. Therefore, the pressure is preferably 50 MPa or more, more preferably 100 MPa or more, preferably 300 MPa or less, more preferably 250 MPa or less, and still more preferably 200 MPa or less. The processing time is not particularly limited. The pressure holding time is preferably 1 minute or longer, more preferably 5 minutes or longer. On the other hand, since the above effect is saturated, the pressure holding time is preferably 60 minutes or less, more preferably 30 minutes or less.

等方性加圧処理して得られた活性炭成形体は強度が向上している。ポリオレフィン樹脂の含有量や等方性加圧処理条件にもよるが、上記好適な条件を満たす活性炭成形体は好ましくは0.7MPa以上、より好ましくは1MPa以上の強度を有する。本発明の活性炭成形体は強度が高いため、取り扱い時や使用時の摩擦などによって損壊することがない。したがってより高い充填密度を達成でき、吸着効率や収蔵容量を高めることができる。   The activated carbon molded body obtained by the isotropic pressure treatment has improved strength. Although it depends on the content of the polyolefin resin and the isotropic pressure treatment conditions, the activated carbon molded body that satisfies the above-mentioned preferable conditions preferably has a strength of 0.7 MPa or more, more preferably 1 MPa or more. Since the activated carbon molded body of the present invention has high strength, it is not damaged by friction during handling or use. Accordingly, higher packing density can be achieved, and adsorption efficiency and storage capacity can be increased.

バインダーを添加すると比表面積は低下するが、本発明の製造方法によれば活性炭成形体は高い成形体密度を有するため、成形体体積当たりの細孔容積、および成形体体積当たりの比表面積が大きい。成形体密度は特に限定されないが、好ましくは0.3g/cm3以上、より好ましくは0.35g/cm3以上、好ましくは1.2g/cm3以下、より好ましくは1.0g/cm3以下である。 When the binder is added, the specific surface area decreases, but according to the production method of the present invention, since the activated carbon molded body has a high molded body density, the pore volume per molded body volume and the specific surface area per molded body volume are large. . The density of the molded body is not particularly limited, but is preferably 0.3 g / cm 3 or more, more preferably 0.35 g / cm 3 or more, preferably 1.2 g / cm 3 or less, more preferably 1.0 g / cm 3 or less. It is.

成形体体積当たりの細孔容積(cm3/cm3)は、好ましくは0.09cm3/cm3以上、より好ましくは0.12cm3/cm3以上、更に好ましくは0.3cm3/cm3以上である。成形体体積当たりの細孔容積が高ければ、活性炭成形体は吸着特性や吸蔵特性に優れた特性を示す。 Pore volume per compact volume (cm 3 / cm 3) is preferably 0.09 cm 3 / cm 3 or more, more preferably 0.12 cm 3 / cm 3 or more, more preferably 0.3 cm 3 / cm 3 That's it. If the pore volume per molded body volume is high, the activated carbon molded body exhibits excellent adsorption characteristics and occlusion characteristics.

上記成形体体積当たりの細孔容積に加えて、成形体体積当たりの比表面積を満足する活性炭成形体は、吸着材、あるいは吸蔵材など各種用途において、より一層優れた吸着性能、あるいは吸蔵性能を奏する。成形体体積当たりの比表面積(m2/cm3)は、好ましくは210m2/cm3以上、より好ましくは280m2/cm3以上、更に好ましくは700m2/cm3以上である。 In addition to the pore volume per molded body volume, the activated carbon molded body that satisfies the specific surface area per molded body volume has much better adsorption performance or occlusion performance in various applications such as adsorbents or occlusion materials. Play. The specific surface area (m 2 / cm 3 ) per molded body volume is preferably 210 m 2 / cm 3 or more, more preferably 280 m 2 / cm 3 or more, and further preferably 700 m 2 / cm 3 or more.

活性炭成形体のサイズは特に限定されず、用途に応じて適宜選択できる。また成形する形状も特に限定されない。   The size of the activated carbon molded body is not particularly limited and can be appropriately selected depending on the application. Further, the shape to be molded is not particularly limited.

上記等方性加圧処理して得られた活性炭成形体は、さらに各種用途に応じたペレット状、板状、ブリケット状、球状など所望の形状に2次成形してもよい。本発明の活性炭成形体(2次成形物を含む、以下同じ)は例えば吸着材や吸蔵材として使用できる。吸着材としては、浄水処理、排水処理、貴金属回収処理などの液相用途、空気浄化処理、脱臭処理、ガス分離処理、溶剤回収処理、排ガス処理などの気相用途が例示される。また吸蔵材としては水素やメタンなどのエネルギー貯蔵用途が例示される。   The activated carbon molded body obtained by the above isotropic pressure treatment may be secondarily molded into a desired shape such as a pellet shape, a plate shape, a briquette shape or a spherical shape according to various uses. The activated carbon molded body of the present invention (including the secondary molded product, the same shall apply hereinafter) can be used as, for example, an adsorbent or an occlusion material. Examples of the adsorbent include liquid phase uses such as water purification treatment, drainage treatment, and precious metal recovery treatment, and gas phase uses such as air purification treatment, deodorization treatment, gas separation treatment, solvent recovery treatment, and exhaust gas treatment. Examples of the occlusion material include energy storage applications such as hydrogen and methane.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

成形体1
ヤシ殻水蒸気賦活炭(MCエバテック社製:Z10−28)とポリエチレン(PE、平均粒子径30μm)とを混合した。なお、ポリエチレンとヤシ殻水蒸気賦活炭の合計100質量%に対してポリエチレン含有量が4.8質量%となるように添加、混合して混合物を得た。得られた混合物を冷間等方圧加圧処理(CIP)して成形した。具体的には混合物をナイロン−ポリエチレン製袋に充填して密封した後、該袋を静水圧粉末成形装置(日本研究開発工業株式会社製)に充填してから、200MPaまで昇圧させ、10分間保持して成形した。得られた成形体を150℃の加熱機内で2時間乾燥し、成形体1を得た。
Molded body 1
Coconut shell steam activated charcoal (MC Evatech Co., Ltd .: Z10-28) and polyethylene (PE, average particle size 30 μm) were mixed. In addition, it added and mixed so that polyethylene content might be 4.8 mass% with respect to a total of 100 mass% of polyethylene and coconut shell steam activated charcoal, and the mixture was obtained. The resulting mixture was molded by cold isostatic pressing (CIP). Specifically, after the mixture is filled in a nylon-polyethylene bag and sealed, the bag is filled in a hydrostatic pressure powder molding apparatus (manufactured by Nippon R & D Co., Ltd.) and then the pressure is increased to 200 MPa and held for 10 minutes. And then molded. The obtained molded body was dried in a heater at 150 ° C. for 2 hours to obtain a molded body 1.

成形体2
ポリエチレンと活性炭の合計100質量%に対してポリエチレンが9.1質量%となるように添加した以外は、成形体1と同様にして成形体2を得た。
Molded body 2
A molded body 2 was obtained in the same manner as the molded body 1 except that polyethylene was added in an amount of 9.1 mass% with respect to a total of 100 mass% of polyethylene and activated carbon.

成形体3
使用したポリエチレンの平均粒子径を10μmとした以外は、成形体1と同様にして成形体3を得た。
Molded body 3
A molded body 3 was obtained in the same manner as the molded body 1 except that the average particle size of the polyethylene used was 10 μm.

成形体4
紙−フェノール樹脂積層板の炭化物に、質量比で2.5倍の水酸化カリウムを添加した後、窒素雰囲気中800℃で2時間の賦活処理を行った。賦活処理後の活性炭を水洗浄(60℃の温水)、酸(塩酸)洗浄、水洗浄(60℃の温水)の順で洗浄して金属不純物が除去された活性炭Aを得た。ポリエチレンと活性炭Aの合計100質量%に対してポリエチレン(PE、平均粒子径10μm)が7.4質量%となるように添加、混合して混合物を得た。得られた混合物を成形体1と同様に冷間等方圧加圧処理(CIP)して成形体4を得た。
Molded body 4
After adding 2.5 times the potassium hydroxide by mass ratio to the carbide of the paper-phenolic resin laminate, activation treatment was performed at 800 ° C. for 2 hours in a nitrogen atmosphere. The activated carbon after the activation treatment was washed in order of water washing (60 ° C. warm water), acid (hydrochloric acid) washing, and water washing (60 ° C. hot water) to obtain activated carbon A from which metal impurities were removed. A mixture was obtained by adding and mixing polyethylene (PE, average particle diameter 10 μm) to 7.4% by mass with respect to 100% by mass in total of polyethylene and activated carbon A. The obtained mixture was subjected to cold isostatic pressing (CIP) in the same manner as the molded body 1 to obtain a molded body 4.

成形体5
ポリエチレンと成形体1の活性炭の合計100質量%に対してポリエチレン(平均粒子径30μm)が2.9質量%となるように添加した以外は、成形体1と同様にして成形体5を得た。
Molded body 5
A molded body 5 was obtained in the same manner as the molded body 1 except that polyethylene (average particle size 30 μm) was added to 2.9 mass% with respect to a total of 100 mass% of polyethylene and the activated carbon of the molded body 1. .

成形体6
成形体1の混合物を冷間等方圧加圧処理にかえて一軸加圧処理した。具体的には金型(φ19.85mm、高さ24.69mm、実有効高さ17.60mm)に充填して、ハンドプレス機で昇圧し(一軸)、200MPaで10分間保持した後、150℃の加熱機内で2時間乾燥し、成形体6を得た。
Molded body 6
The mixture of the compact 1 was subjected to uniaxial pressure treatment instead of cold isostatic pressure treatment. Specifically, the mold (φ19.85 mm, height 24.69 mm, actual effective height 17.60 mm) was filled, pressurized with a hand press machine (uniaxial), held at 200 MPa for 10 minutes, and then 150 ° C. Was dried in a heating machine for 2 hours to obtain a molded body 6.

成形体7
成形体4の混合物を用いて成形体6と同様に金型に充填、昇圧、乾燥して成形体7を得た。
Molded body 7
Using the mixture of the molded body 4, the molded body 7 was obtained by filling a mold in the same manner as the molded body 6, pressurizing and drying.

成形体8
ポリエチレンをポリテトラフルオロエチレン粉末(PTFE)に変更し、ポリテトラフルオロエチレンと活性炭の合計100質量%に対してポリテトラフルオロエチレンが7.4質量%となるように添加した以外は、成形体4と同様にして活性炭8を得た。得られた成形体8は非常に脆く、形状を維持できなかったため、強度等を測定できなかった。
Molded body 8
Except that polyethylene was changed to polytetrafluoroethylene powder (PTFE) and added so that polytetrafluoroethylene was 7.4% by mass with respect to 100% by mass in total of polytetrafluoroethylene and activated carbon, molded body 4 In the same manner, activated carbon 8 was obtained. The obtained molded body 8 was very brittle and could not maintain its shape, so the strength and the like could not be measured.

各成形体の成形体密度、比表面積、全細孔容積、平均細孔径、強度を下記方法により測定して表1に記載した。 The molded body density, specific surface area, total pore volume, average pore diameter, and strength of each molded body were measured by the following methods and listed in Table 1.

成形体密度>
成形体密度は成形体から直方体ブロック(縦1cm×横1cm×高1cm)を切り出し、該ブロックの質量(g)と体積(cm3)から下記式により算出した。
成形体密度(g/cm3)=質量(g)/体積(cm3
< Molded body density>
The molded body density was calculated from the molded body by cutting a rectangular parallelepiped block (length 1 cm × width 1 cm × height 1 cm) from the mass (g) and volume (cm 3 ) of the block according to the following formula.
Compact density (g / cm 3 ) = mass (g) / volume (cm 3 )

<比表面積>
成形体0.2gを250℃にて真空加熱した後、窒素吸着装置(マイクロメリティックス社製:ASAP−2400)を用いて、窒素吸着等温線を求めBET法にて比表面積を算出した。
<Specific surface area>
After 0.2 g of the compact was heated at 250 ° C. under vacuum, a nitrogen adsorption isotherm was determined using a nitrogen adsorption device (manufactured by Micromeritics: ASAP-2400), and a specific surface area was calculated by the BET method.

<全細孔容積>
上記窒素吸着等温線から相対圧(p/p0)=0.93における窒素吸着量を全細孔容積(cm3/g)とした。
<Total pore volume>
The nitrogen adsorption amount at the relative pressure (p / p0) = 0.93 from the nitrogen adsorption isotherm was defined as the total pore volume (cm 3 / g).

<平均細孔径>
活性炭の細孔をシリンダー状と仮定し、以下の式により算出した。
平均細孔径(nm)=4×全細孔容積/比表面積×1000
<Average pore diameter>
The pores of the activated carbon were assumed to be cylindrical and were calculated according to the following formula.
Average pore diameter (nm) = 4 × total pore volume / specific surface area × 1000

<成形体体積当たりの細孔容積>
成形体体積当たりの細孔容積(cm3/cm3)=全細孔容積(cm3/g)×成形体密度(g/cm3
<Pore volume per volume of compact>
Pore volume per compact volume (cm 3 / cm 3) = total pore volume (cm 3 / g) × moldings Density (g / cm 3)

<成形体体積当たりの比表面積>
成形体体積当たりの比表面積(m2/cm3)=比表面積(m2/g)×成形体密度(g/cm3
<Specific surface area per molded body volume>
Specific surface area per compact volume (m 2 / cm 3) = specific surface area (m 2 / g) × moldings Density (g / cm 3)

<強度試験>
成形体を1cm角にカットした試験片を、テンシロン万能試験機(ORENTEC社製:RTC−1325A)を用いて、試験速度1mm/分で試験片が破壊に至るまでの強度測定を行った。破壊に至った時の最大荷重の値を試験片の断面積で割り戻すことにより強度を算出した。強度は0.7MPa以上を合格とし、1MPa以上をより優れた強度を有すると評価した。
<Strength test>
Using a Tensilon universal testing machine (ORENTEC Co., Ltd .: RTC-1325A), the strength of the test piece until the test piece was broken was measured at a test speed of 1 mm / min. The strength was calculated by dividing the value of the maximum load at the time of failure by the cross-sectional area of the test piece. The strength was evaluated to be 0.7 MPa or more, and 1 MPa or more to be more excellent.

表1に示すように本発明の要件を満足する成形体1〜5は0.7MPa以上の強度を有していた。特に成形体1〜4は1MPa以上のより高い強度を有していた。   As shown in Table 1, molded bodies 1 to 5 satisfying the requirements of the present invention had a strength of 0.7 MPa or more. In particular, the compacts 1 to 4 had higher strength of 1 MPa or more.

バインダー含有量のみが異なる成形体1(4.8質量%)、成形体2(9.1質量%)、成形体5(2.9質量%)を比べると、バインダー含有量が多くなるほど、強度が向上した。いずれも成形体体積当たりの細孔容積、および成形体体積当たりの比表面積が大きく、且つ高強度であった。   When the molded body 1 (4.8% by mass), the molded body 2 (9.1% by mass), and the molded body 5 (2.9% by mass) differing only in the binder content are compared, the strength increases as the binder content increases. Improved. In both cases, the pore volume per compact volume and the specific surface area per compact volume were large and high in strength.

また成形体1〜3(図中、○)、成形体5(図中、△)、成形体6(図中、◇)について、バインダー量と強度の関係をグラフにプロットした(図1)。冷間等方圧加圧処理(CIP)で成形した成形体1〜3、5は、バインダー量が増加する程、強度も高くなる傾向を示した。一方、一軸加圧処理で成形した成形体6は、成形方法以外は同じ条件の成形体1と比べると、強度が著しく劣っていた。   Further, the relationship between the binder amount and the strength was plotted on a graph for the molded bodies 1 to 3 (◯ in the figure), the molded body 5 (Δ in the figure), and the molded body 6 (◇ in the figure) (FIG. 1). The molded products 1 to 3 and 5 molded by cold isostatic pressing (CIP) showed a tendency that the strength increased as the amount of the binder increased. On the other hand, the molded body 6 molded by the uniaxial pressure treatment was significantly inferior in strength to the molded body 1 under the same conditions except for the molding method.

また成形方法以外は同じ条件でアルカリ賦活炭を成形した成形体4と7の強度をグラフに示した(図2)。冷間等方圧加圧処理(CIP)した成形体4と一軸加圧処理した成形体7は、表1に示すように強度以外の特性はほぼ同等であったが、成形体4は成形体7よりも強度が2倍以上高くなった。   Moreover, the intensity | strength of the molded objects 4 and 7 which shape | molded the alkali activated carbon on the same conditions except the shaping | molding method was shown on the graph (FIG. 2). The molded body 4 subjected to the cold isostatic pressing (CIP) and the molded body 7 subjected to the uniaxial pressure treatment were substantially equal in properties other than the strength as shown in Table 1, but the molded body 4 was the molded body. The strength was more than twice as high as 7.

水蒸気賦活炭を用いた成形体3とアルカリ賦活炭を用いた成形体4を比べると、バインダー含有量が多い成形体4よりも、成形体3の強度は高くなっていた。   When the molded body 3 using steam activated charcoal and the molded body 4 using alkali activated carbon were compared, the strength of the molded body 3 was higher than that of the molded body 4 having a high binder content.

Claims (12)

活性炭と平均粒子径1μm以上、50μm以下のポリオレフィン樹脂を混合し、得られた混合物を等方性加圧処理することによって得られることを特徴とする活性炭成形体。   An activated carbon molded article obtained by mixing activated carbon and a polyolefin resin having an average particle diameter of 1 μm or more and 50 μm or less and subjecting the obtained mixture to isotropic pressure treatment. 前記ポリオレフィン樹脂と前記活性炭の合計100質量%に対して、前記ポリオレフィン樹脂を1質量%以上、15質量%以下含むものである請求項1に記載の活性炭成形体。   The activated carbon molded body according to claim 1, wherein the polyolefin resin is contained in an amount of 1% by mass to 15% by mass with respect to a total of 100% by mass of the polyolefin resin and the activated carbon. 前記活性炭成形体は0.35g/cmThe activated carbon molded body is 0.35 g / cm. 3 以上の成形体密度を有するものである請求項1または2に記載の活性炭成形体。The activated carbon molded body according to claim 1 or 2, which has the above molded body density. 前記活性炭成形体は0.09cmThe activated carbon molded body is 0.09 cm 3 /cm/ Cm 3 以上の成形体体積当たりの細孔容積を有するものである請求項1〜3のいずれかに記載の活性炭成形体。The activated carbon molded body according to any one of claims 1 to 3, which has a pore volume per said molded body volume. 前記活性炭成形体は210mThe activated carbon molded body is 210m 2 /cm/ Cm 3 以上の成形体体積当たりの比表面積を有するものである請求項1〜4のいずれかに記載の活性炭成形体。The activated carbon molded body according to any one of claims 1 to 4, which has a specific surface area per volume of the molded body. 前記活性炭成形体は活性炭同士がバインダーで結着されてなるものである請求項1〜5のいずれかに記載の活性炭成形体。The activated carbon molded body according to any one of claims 1 to 5, wherein the activated carbon molded body is formed by binding activated carbon with a binder. 請求項1〜6のいずれかに記載の活性炭成形体を用いた吸着材。 An adsorbent using the activated carbon molded body according to any one of claims 1 to 6 . 請求項1〜6のいずれかに記載の活性炭成形体を用いた吸蔵材。 The occlusion material using the activated carbon molded object in any one of Claims 1-6 . 活性炭と平均粒子径1μm以上、50μm以下のポリオレフィン樹脂を混合し、得られた混合物を等方性加圧処理することを特徴とする活性炭成形体の製造方法。   A method for producing an activated carbon molded body, comprising mixing activated carbon and a polyolefin resin having an average particle diameter of 1 μm or more and 50 μm or less, and subjecting the obtained mixture to isotropic pressure treatment. 前記ポリオレフィン樹脂と前記活性炭の合計100質量%に対して、前記ポリオレフィン樹脂を1質量%以上、15質量%以下含むものである請求項9に記載の活性炭成形体の製造方法。The method for producing an activated carbon molded body according to claim 9, wherein the polyolefin resin is contained in an amount of 1% by mass to 15% by mass with respect to a total of 100% by mass of the polyolefin resin and the activated carbon. 前記活性炭は、The activated carbon is
比表面積:700mSpecific surface area: 700m 2 /g〜4000m/ G-4000m 2 /g、/ G,
細孔容積:0.35cmPore volume: 0.35cm 3 /g〜2.2cm/G-2.2cm 3 /g、/ G,
平均細孔径1.6nm〜3.0nmAverage pore diameter 1.6 nm to 3.0 nm
である請求項9または10に記載の活性炭成形体の製造方法。The method for producing an activated carbon molded body according to claim 9 or 10.
前記等方性加圧処理は、The isotropic pressure treatment is
処理圧力:50MPa〜300MPaProcessing pressure: 50 MPa to 300 MPa
加圧保持時間:1分〜60分Pressurization holding time: 1 minute to 60 minutes
である請求項9〜11のいずれかに記載の活性炭成形体の製造方法。The method for producing an activated carbon molded body according to any one of claims 9 to 11.
JP2015122813A 2015-06-18 2015-06-18 Activated carbon molded body, method for producing the activated carbon molded body, adsorbent using the activated carbon molded body, and occlusion material Active JP6085335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015122813A JP6085335B2 (en) 2015-06-18 2015-06-18 Activated carbon molded body, method for producing the activated carbon molded body, adsorbent using the activated carbon molded body, and occlusion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015122813A JP6085335B2 (en) 2015-06-18 2015-06-18 Activated carbon molded body, method for producing the activated carbon molded body, adsorbent using the activated carbon molded body, and occlusion material

Publications (2)

Publication Number Publication Date
JP2017007878A JP2017007878A (en) 2017-01-12
JP6085335B2 true JP6085335B2 (en) 2017-02-22

Family

ID=57763175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015122813A Active JP6085335B2 (en) 2015-06-18 2015-06-18 Activated carbon molded body, method for producing the activated carbon molded body, adsorbent using the activated carbon molded body, and occlusion material

Country Status (1)

Country Link
JP (1) JP6085335B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3335218B2 (en) * 1993-05-24 2002-10-15 日清紡績株式会社 Glassy carbon-activated carbon composite material, method for producing the same, and polarizable electrode for electric double layer capacitor using the glassy carbon-activated carbon composite material
JPH0986912A (en) * 1995-09-27 1997-03-31 Suzuki Motor Corp Molding of fine powder of gas adsorbing material and jig for heat treatment
JP2000263040A (en) * 1999-03-16 2000-09-26 Kuraray Chem Corp Adsorbent molded body and its production
JP3759372B2 (en) * 1999-09-08 2006-03-22 東京瓦斯株式会社 Method for producing activated carbon
JP2001130905A (en) * 1999-10-29 2001-05-15 Kyocera Corp Solid activated carbon-based structure, method for electric double-layered capacitor
JP2005119902A (en) * 2003-10-16 2005-05-12 Kuraray Chem Corp Activated carbon molded product and its manufacturing method
JP2011521775A (en) * 2008-05-14 2011-07-28 スリーエム イノベイティブ プロパティズ カンパニー Filter material and water filtration system including the same
JP6151691B2 (en) * 2012-06-22 2017-06-21 株式会社クラレ Activated carbon for precious metal adsorption, precious metal adsorption filter and precious metal recovery method

Also Published As

Publication number Publication date
JP2017007878A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6085336B2 (en) Activated carbon molded body, method for producing the activated carbon molded body, adsorbent using the activated carbon molded body, and occlusion material
Labus et al. Granular KOH-activated carbons from coal-based cokes and their CO2 adsorption capacity
Romero-Anaya et al. Spherical carbons: Synthesis, characterization and activation processes
JP5400892B2 (en) Method for producing porous activated carbon
WO2014017588A1 (en) Activated carbon having large active surface area
CN102460620B (en) Carbon material for electric double layer capacitor electrode and method for producing same
WO2003089371A1 (en) Process for producing active carbon, polarizable electrode and electric double layer capacitor
TW201708105A (en) Carbon activation method and energy storage device thereof
Hekimoğlu et al. Carbonized waste hazelnut wood‐based shape‐stable composite phase change materials for thermal management implementations
JP5770550B2 (en) Activated carbon and manufacturing method thereof
JP2012507470A5 (en)
JP7405647B2 (en) Carbon black press-molded body and method for producing the same
CN101356607A (en) Phosphorus compound combined active carbon for electric double layer capacitor, and its manufacturing method
TWI651266B (en) Spherical activated carbon and method of producing the same
Zhou et al. Carbon-based CO2 adsorbents
Tran et al. Review on the application of green and environmentally benign biowaste and natural substances in the synthesis of lithium‐ion batteries
JP6085335B2 (en) Activated carbon molded body, method for producing the activated carbon molded body, adsorbent using the activated carbon molded body, and occlusion material
KR20130045518A (en) Mixture of multi-layered graphene for adsorbing organic material
WO2006019013A1 (en) Transpiration fuel gas adsorbent and process for producing the same
RU2446098C1 (en) Carbon material
JP4219619B2 (en) Granulated coal and method for producing the same
US20170247259A1 (en) Method of making alkali activated carbon
JP3440515B2 (en) Electrode for electric double layer capacitor
CN116529207A (en) Carbonaceous material, process for producing the same, fluorine-containing organic compound removing material, filter for water purification, and water purifier
CN105056883A (en) Forming method for high surface active carbon

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170127

R150 Certificate of patent or registration of utility model

Ref document number: 6085335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250