JP6084063B2 - Production method of carbon black - Google Patents

Production method of carbon black Download PDF

Info

Publication number
JP6084063B2
JP6084063B2 JP2013032755A JP2013032755A JP6084063B2 JP 6084063 B2 JP6084063 B2 JP 6084063B2 JP 2013032755 A JP2013032755 A JP 2013032755A JP 2013032755 A JP2013032755 A JP 2013032755A JP 6084063 B2 JP6084063 B2 JP 6084063B2
Authority
JP
Japan
Prior art keywords
reaction
carbon black
raw material
zone
benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013032755A
Other languages
Japanese (ja)
Other versions
JP2013199641A (en
Inventor
興照 福田
興照 福田
東吾 山口
東吾 山口
美紀 矢中
美紀 矢中
公徳 小野
公徳 小野
泰洋 齋藤
泰洋 齋藤
青木 秀之
秀之 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Carbon Co Ltd
Original Assignee
Asahi Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Carbon Co Ltd filed Critical Asahi Carbon Co Ltd
Priority to JP2013032755A priority Critical patent/JP6084063B2/en
Publication of JP2013199641A publication Critical patent/JP2013199641A/en
Application granted granted Critical
Publication of JP6084063B2 publication Critical patent/JP6084063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

本発明は、ゴム補強、着色等の種々の工業用途に用いられるカーボンブラックの製造方法に関する。   The present invention relates to a method for producing carbon black used for various industrial applications such as rubber reinforcement and coloring.

カーボンブラックは工業用ゴムの補強性向上やインキの黒色度向上等、様々な用途に用いられる工業用品であり、各種用途に対応したカーボンブラックの性質(粒子径、ストラクチャー等)を得る為に原料や製法の検討が行われているが、これらに並行して収率向上に関する検討も以前から様々なアプローチにより行われてきた。一般的なカーボンブラックは原料油としてエチレンボトム油やFCC油を単独で用い、その収率は50〜55%程度であるが、収率は粒子径等のカーボンブラック物性によって変動することも知られている。しかし、それらの物性はゴムへの配合時にゴムの物性に多大な影響を及ぼすことから容易に変動させられない為、カーボンブラックの物性に依らない、例えば同一粒子径にあって収率向上効果のある製造方法の検討が必要とされていた。   Carbon black is an industrial product that is used in various applications, such as improving the reinforcing properties of industrial rubber and improving the blackness of ink, and is a raw material for obtaining the properties (particle diameter, structure, etc.) of carbon black corresponding to various applications. In parallel with these, studies on yield improvement have been conducted by various approaches. General carbon black uses ethylene bottom oil or FCC oil alone as a raw material oil, and the yield is about 50 to 55%, but the yield is also known to vary depending on the carbon black physical properties such as particle diameter. ing. However, these physical properties do not depend on the physical properties of carbon black because they have a great influence on the physical properties of the rubber when blended with rubber. There was a need to study a certain manufacturing method.

この問題に対し、まず原料炭化水素の噴霧ノズルの改善による試みとして、特許文献1に、従来よりも高温に耐え得る材質のノズルを用い、且つノズルを冷却ジャケットで保護して炉内へ導通させることにより、炉内のより温度の高い箇所へ原料炭化水素を導入する手法が開示されている。しかし、噴霧ノズルや噴霧方法を改良する手法には、新たな材料や設備の開発、維持が必要となり、結果的に製造コストが高くなるという問題がある。   In order to solve this problem, first, as an attempt to improve the raw material hydrocarbon spray nozzle, Patent Document 1 uses a nozzle made of a material that can withstand higher temperatures than the conventional one, and protects the nozzle with a cooling jacket so as to be conducted into the furnace. Thus, a technique for introducing the raw material hydrocarbon to a higher temperature part in the furnace is disclosed. However, the technique for improving the spray nozzle and spray method requires the development and maintenance of new materials and equipment, resulting in an increase in manufacturing cost.

次にカーボンブラック反応炉内における原料炭化水素の燃焼効率を向上させる試みとして、特許文献2に、炉内を1気圧以下の減圧下に保持することにより、高温の燃焼ガス流中に導入された原料炭化水素を速やかに気化し、より完全にガス化した状態で生成反応域に流入させる手法が開示されている。しかし、この手法も、特許文献1の試みよりも更に大がかりな設備(炉内を1気圧以下の減圧下に保持するための吸引や排気を行う設備)が必要となる。大型の製造炉の場合には、より大きな吸引、排気装置が必要となるのは自明であり、製造コストの増加や大型装置の設置場所の問題が発生する。   Next, as an attempt to improve the combustion efficiency of the raw material hydrocarbon in the carbon black reactor, it was introduced in Patent Document 2 into a high-temperature combustion gas stream by maintaining the inside of the furnace under a reduced pressure of 1 atm or less. A method is disclosed in which raw material hydrocarbons are quickly vaporized and flow into the production reaction zone in a more completely gasified state. However, this technique also requires a larger facility (equipment for performing suction and exhaust for maintaining the inside of the furnace under a reduced pressure of 1 atm or less) than the attempt of Patent Document 1. In the case of a large manufacturing furnace, it is obvious that a larger suction / exhaust device is required, resulting in an increase in manufacturing cost and a problem of the installation location of the large device.

同様の試みとして、特許文献3には、炉内に導入する空気を予め酸素富化空気と窒素富化空気とに分離し、このうち酸素富化空気を燃料用炭化水素の燃焼酸化剤として燃焼域に導入することにより燃焼温度を上昇させる手法が開示されている。この手法は窒素富化空気によるカーボンブラックの物性制御にも触れており、有用な面も有るが、酸素富化物質を取り扱うため、その使用量や操作を誤ると、反応炉の爆発や炎上などの危険が伴うという懸念があり、一般的とは言えない。   As a similar attempt, Patent Document 3 discloses that air to be introduced into a furnace is previously separated into oxygen-enriched air and nitrogen-enriched air, of which oxygen-enriched air is burned as a combustion oxidant for fuel hydrocarbons. A technique for increasing the combustion temperature by introducing it into the region is disclosed. This method touches on the control of the physical properties of carbon black with nitrogen-enriched air, and has some useful aspects, but it handles oxygen-enriched substances. There is a concern that there is a danger of this, it is not common.

また、原料油そのものの検討として、特許文献4に、コールタールを分留して得られる重質油留分と蒸留残渣であるタールピッチとをキノリン不溶分が0.7〜2.0重量%、コークス残分が15〜40重量%の範囲内で混和配合した組成、又はこれを主体組成とする原料油を使用する手法が開示されている。この原料油は比重が高く芳香族成分を多量に含むためカーボンブラックの収率向上にも寄与する技術的効果がある。しかし、該原料油は収率の向上効果はあるが、反応炉に導入するには比重が高く、また粘度が高いといった問題がある。更に、沸点が180℃以上と高温のため、作業時に火傷の危険もある。   In addition, as a study of the raw material oil itself, Patent Document 4 discloses that a heavy oil fraction obtained by fractionating coal tar and a tar pitch which is a distillation residue have a quinoline insoluble content of 0.7 to 2.0% by weight. In addition, a method is disclosed in which a coke residue is blended and blended within a range of 15 to 40% by weight, or a raw material oil comprising this as a main component is used. Since this raw material oil has a high specific gravity and contains a large amount of an aromatic component, it has a technical effect that contributes to an improvement in the yield of carbon black. However, although the feedstock has an effect of improving the yield, there are problems such as high specific gravity and high viscosity for introduction into the reaction furnace. Furthermore, since the boiling point is as high as 180 ° C. or higher, there is a risk of burns during work.

その他に、反応炉内の化学反応を最適化する試みとして、特許文献5に、カーボンブラック反応炉での反応停止領域において、冷却媒体にガスを用い、且つ炉軸に対して直角に導入することで反応停止効果を高める手法が開示されており、この手法によれば小粒子径カ−ボンブラックを高収率で得ることが出来ると記載されている。しかし、冷却媒体として一般に用いられる水と比べて、他の冷却媒体は維持管理上のコスト負担が大きいと考えられ、且つ大幅な設備変更を伴う為、これも一般的とは言えない。   In addition, as an attempt to optimize the chemical reaction in the reaction furnace, Patent Document 5 discloses that a gas is used as a cooling medium and is introduced at right angles to the furnace axis in the reaction stop region in the carbon black reactor. Discloses a technique for enhancing the reaction stopping effect, and it is described that carbon black with a small particle diameter can be obtained in a high yield according to this technique. However, compared with water generally used as a cooling medium, other cooling mediums are considered to be costly in terms of maintenance and management, and are accompanied by a significant change in equipment.

特開平9−31357号公報JP-A-9-31357 特開2004−161879号公報JP 2004-161879 A 特開平9−87542号公報JP-A-9-87542 特公平3−48228号公報Japanese Examined Patent Publication No. 3-48228 特開平9−40882号公報Japanese Patent Laid-Open No. 9-40882

本発明は、上記従来技術のような新たな設備増設等に依らず、取扱い易い原料を用いることにより一般的製法から容易に切り替えられると共に、収率の向上を図ることができるカーボンブラックの製造方法の提供を目的とする。   The present invention is a method for producing carbon black that can be easily switched from a general production method by using raw materials that are easy to handle, and that can improve the yield, without using new facilities such as the above-described prior art. The purpose is to provide.

上記課題は、次の1)〜2)の発明によって解決される。
1) 高温燃焼ガス生成帯域、反応帯域及び反応停止帯域からなるカーボンブラック製造装置を用い、高温燃焼ガス生成帯域において炭化水素の燃焼により高温燃焼ガスを生成させ、引き続き反応帯域上流端で前記高温燃焼ガス流中に原料油を噴霧導入し、不完全燃焼又は熱分解反応によりカーボンブラックを含む反応ガス流となし、次いで反応停止帯域において急冷媒体を前記反応ガス流中に導入することにより反応ガス流を急冷して反応を終結させるカーボンブラックの製造方法において、前記原料油として、ベンゼン(Bz)と直鎖状不飽和炭化水素(HC)の混合物を用い、その混合比を、〔HCの導入量×HCの炭素数〕/〔Bzの導入量×6(ベンゼンの炭素数)〕=0.12〜0.30とすることを特徴とするカーボンブラックの製造方法。
2) 前記直鎖状不飽和炭化水素の炭素数が2〜6であることを特徴とする1)に記載のカーボンブラックの製造方法。
The above problems are solved by the following inventions 1) to 2).
1) Using a carbon black production device comprising a high-temperature combustion gas generation zone, a reaction zone and a reaction stop zone, high-temperature combustion gas is generated by combustion of hydrocarbons in the high-temperature combustion gas generation zone, and then the high-temperature combustion at the upstream end of the reaction zone A raw material oil is spray-introduced into the gas stream to form a reaction gas stream containing carbon black by incomplete combustion or thermal decomposition reaction, and then a quenching medium is introduced into the reaction gas stream in the reaction stop zone. In the method for producing carbon black in which the reaction is terminated by quenching, a mixture of benzene (Bz) and linear unsaturated hydrocarbon (HC) is used as the raw material oil, and the mixing ratio is expressed as [introduced amount of HC]. X carbon number of HC] / [introduced amount of Bz x 6 (carbon number of benzene)] = 0.12 to 0.30 Manufacturing method.
2) The carbon black production method according to 1), wherein the linear unsaturated hydrocarbon has 2 to 6 carbon atoms.

本発明によれば、新たな設備増設等に依らず、取扱い易い原料を用いることにより一般的製法から容易に切り替えられると共に、収率の向上を図ることができるカーボンブラックの製造方法を提供できる。   According to the present invention, it is possible to provide a method for producing carbon black that can be easily switched from a general production method and can improve the yield by using raw materials that are easy to handle without depending on the addition of new facilities.

本発明のカーボンブラックを製造するのに好適な製造装置の一例を示す図。The figure which shows an example of the manufacturing apparatus suitable for manufacturing the carbon black of this invention.

以下、上記本発明について詳しく説明する。
本願発明の前提となる「高温燃焼ガス生成帯域、反応帯域及び反応停止帯域からなるカーボンブラック製造装置を用い、高温燃焼ガス生成帯域において炭化水素の燃焼により高温燃焼ガスを生成させ、引き続き反応帯域上流端で前記高温燃焼ガス流中に原料油を噴霧導入し、不完全燃焼又は熱分解反応によりカーボンブラックを含む反応ガス流となし、次いで反応停止帯域において急冷媒体を前記反応ガス流中に導入することにより反応ガス流を急冷して反応を終結させるカーボンブラックの製造方法」は本出願前周知である。
Hereinafter, the present invention will be described in detail.
The premise of the present invention is that a high temperature combustion gas generation zone, a reaction zone and a reaction stop zone are used to produce a high temperature combustion gas by combustion of hydrocarbons in the high temperature combustion gas generation zone, and then upstream of the reaction zone. At the end, the feedstock oil is sprayed into the high-temperature combustion gas stream to form a reaction gas stream containing carbon black by incomplete combustion or thermal decomposition reaction, and then a quenching refrigerant is introduced into the reaction gas stream in the reaction stop zone The method for producing carbon black, in which the reaction gas stream is rapidly quenched to terminate the reaction, is well known before the present application.

本発明は上記周知技術において、カーボンブラックの原料として、ベンゼンと直鎖状不飽和炭化水素の混合物を用いることを特徴とする。炭化水素の燃焼によるカーボンブラックの生成は、一般的に原料炭化水素の一部の熱分解によってカーボンブラックの核が生成した後、残りの原料炭化水素により核の成長反応が起こることによるが、本発明で規定する原料を用いることにより、カーボンブラック反応炉内でのカーボンブラック核生成段階の核発生率を高めることができ、同一のカーボンブラック物性、特に同一粒子径を有しながらも高い収率でカーボンブラックを得ることが可能となる。   The present invention is characterized in that, in the above-mentioned known technique, a mixture of benzene and a linear unsaturated hydrocarbon is used as a raw material for carbon black. The production of carbon black by combustion of hydrocarbons is generally due to the fact that carbon black nuclei are generated by the thermal decomposition of a part of the raw material hydrocarbons, and then the remaining raw material hydrocarbons cause a nuclear growth reaction. By using the raw materials specified in the invention, the nucleation rate of the carbon black nucleation stage in the carbon black reactor can be increased, and the yield is high while having the same carbon black physical properties, particularly the same particle diameter. This makes it possible to obtain carbon black.

ベンゼン(Bz)と直鎖状不飽和炭化水素(HC)の混合比は、〔HCの導入量×HCの炭素数〕/〔Bzの導入量×6(ベンゼンの炭素数)〕=0.12〜0.30とする。この混合比の範囲であれば、直鎖状不飽和炭化水素によるカーボンブラック核の発生量と、その後の成長反応の原料となるベンゼンの量のバランスが良く、その結果、上記生成反応と成長反応がバランス良く行われ、カーボンブラックの収率が向上する。ここで、導入量とは、製造装置に導入したBz又はHCの総導入量のことである。
本発明で用いる直鎖状不飽和炭化水素としては、ビニルラジカル、アセチレンラジカル、プロパルギルラジカルなどのラジカルを発生させるものが好ましい。入手し易さからは炭素数2〜6のものが好ましい。実用上好ましいものとしては、アセチレン、メチルアセチレン、モノビニルアセチレン、ジビニルアセチレン、ジアセチレン、トリアセチレン、エチレン、ブタジエン等が挙げられる。
The mixing ratio of benzene (Bz) and linear unsaturated hydrocarbon (HC) is [HC introduction amount × HC carbon number] / [Bz introduction amount × 6 (benzene carbon number)] = 0.12. ~ 0.30. Within this mixing ratio range, the balance between the amount of carbon black nuclei generated by the linear unsaturated hydrocarbon and the amount of benzene as the raw material for the subsequent growth reaction is good. Is performed in a well-balanced manner, and the yield of carbon black is improved. Here, the introduction amount is the total introduction amount of Bz or HC introduced into the production apparatus.
As the linear unsaturated hydrocarbon used in the present invention, those that generate radicals such as vinyl radical, acetylene radical, propargyl radical and the like are preferable. In view of availability, those having 2 to 6 carbon atoms are preferable. Practically preferred examples include acetylene, methyl acetylene, monovinyl acetylene, divinyl acetylene, diacetylene, triacetylene, ethylene, butadiene and the like.

ベンゼンを用いるメリットとしては、従来の石油、石炭系燃料よりも粘性が低く、液体であるため扱い易いことが挙げられる。また、芳香族炭化水素であるため、カーボンブラックの成長反応においてカーボンブラックになり易い特性を有する。更にプラスチック、樹脂、接着剤などの原料にも広く使用されているため入手し易いというメリットも有る。
一方、直鎖状不飽和炭化水素、例えばアセチレンは、単独使用の場合、一部を空気で燃焼させ、その熱で残りを分解する部分燃焼法によるアセチレンブラックの原料として用いられているが、一般的なカーボンブラックとは生成物の性状が異なり、広範な工業用途に用いることは難しく、収率も好ましいものではない。しかし、ベンゼンと混合して用いると、カーボンブラック生成反応における核として機能し、その後のベンゼンによる成長反応と相まって高い収率でカーボンブラックが得られる。
The merit of using benzene is that it is easier to handle because it is liquid and lower in viscosity than conventional petroleum and coal-based fuels. Moreover, since it is an aromatic hydrocarbon, it has the characteristic of becoming carbon black easily in the growth reaction of carbon black. Further, since it is widely used as a raw material for plastics, resins, adhesives, etc., there is an advantage that it is easily available.
On the other hand, linear unsaturated hydrocarbons such as acetylene, when used alone, are used as raw materials for acetylene black by a partial combustion method in which a part is combusted with air and the rest is decomposed by the heat. Carbon black has different product properties, is difficult to use in a wide range of industrial applications, and the yield is unfavorable. However, when used in combination with benzene, it functions as a nucleus in the carbon black generation reaction, and carbon black can be obtained in a high yield coupled with the subsequent growth reaction by benzene.

以下、実施例及び比較例を示して本発明を更に具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further more concretely, this invention is not limited by these Examples.

実施例1〜20、比較例1〜15
図1に示す装置を用いてカーボンブラックを製造した。
主原料(導入原料1)としてベンゼン、副原料(導入原料2)として直鎖状不飽和炭化水素を使用し、導入原料2の種類及びその混合比率を変えてカーボンブラックを製造した。
装置には、アルミナ製の反応管1(内径16mm)を中心とし、反応系内を所定温度に加熱する為、反応管1を取り囲む形で、反応流れの上流から順に、予熱用電気炉3、反応用電気炉2を配した。反応炉上流端には導入原料1の導入口5を設け、予熱用電気炉3の直前に導入原料2の導入口6を設けた。また、導入口5と導入口6の間にキャリアーである窒素の導入口7を設けた。更に、反応炉下流端に、生成したカーボンブラック捕集用のフィルター4を設け、末端に反応後のガスを吸引・排出する吸引口8を設けた。
製造の手順は、まず、窒素導入口7から反応管1内に窒素を導入して窒素雰囲気とし、予熱用電気炉3と反応用電気炉2をそれぞれ600℃、1400℃で加熱した。
次に、反応管1の上流端から導入原料1と導入原料2を、表1〜表8に示す原料種・導入量・混合比率で導入した。その際、反応系内の総流量は3L/min、原料導入時間は30minとした。また、導入原料は、各条件において総炭素供給量を一定とする為、混合比率に応じた導入濃度に調節して導入した。例えば、実施例1の場合、ベンゼンとアセチレンの炭素数はそれぞれ6個と2個であるから、ベンゼン:1.04vol%×6=6.24vol%、アセチレン:0.4vol%×2=0.8vol%より、総炭素供給量を6.24vol%+0.8vol%=7.04vol%として調節を行った。
吸引口8から反応ガスを排出しながら、原料導入開始から1時間反応を行い、その後、発生したカーボンブラックをフィルター4から回収して重量を測定し、原料導入量を重量換算した導入重量に対する収率を計算した。得られたカーボンブラックの収率及び一次粒子径を表1〜表8に示す。
また、表中の(A)は「導入原料1濃度(vol%)×6(ベンゼンの炭素数)」であり、(B)は「導入原料2濃度(vol%)×導入原料2の炭素数」である。請求項1では、直鎖状不飽和炭化水素(導入原料2)とベンゼン(導入原料1)の導入量の比を規定したが、導入原料1と導入原料2は、反応時間中、一定の濃度と流量で導入するので、それぞれの原料濃度に炭素数を掛けた数値を用いれば、実質的に、請求項1で規定する混合比と同じ比が得られる。この混合比を表中に「炭素比」として示した。
Examples 1-20, Comparative Examples 1-15
Carbon black was manufactured using the apparatus shown in FIG.
Carbon black was produced by using benzene as the main raw material (introducing raw material 1) and linear unsaturated hydrocarbon as the auxiliary raw material (introducing raw material 2), and changing the type and mixing ratio of the introducing raw material 2.
The apparatus is mainly composed of an alumina reaction tube 1 (inner diameter 16 mm), and in order to heat the inside of the reaction system to a predetermined temperature, in order to surround the reaction tube 1 in order from the upstream of the reaction flow, A reaction electric furnace 2 was arranged. An inlet 5 for the introduced raw material 1 was provided at the upstream end of the reaction furnace, and an inlet 6 for the introduced raw material 2 was provided immediately before the preheating electric furnace 3. Further, an introduction port 7 for nitrogen as a carrier was provided between the introduction port 5 and the introduction port 6. Further, a filter 4 for collecting the produced carbon black was provided at the downstream end of the reaction furnace, and a suction port 8 for sucking and discharging the gas after reaction was provided at the end.
The production procedure was as follows. First, nitrogen was introduced into the reaction tube 1 from the nitrogen inlet 7 to form a nitrogen atmosphere, and the preheating electric furnace 3 and the reaction electric furnace 2 were heated at 600 ° C. and 1400 ° C., respectively.
Next, the introduction raw material 1 and the introduction raw material 2 were introduced from the upstream end of the reaction tube 1 in the raw material types, introduction amounts, and mixing ratios shown in Tables 1 to 8. At that time, the total flow rate in the reaction system was 3 L / min, and the raw material introduction time was 30 min. In addition, the introduction raw material was introduced by adjusting the introduction concentration according to the mixing ratio in order to keep the total carbon supply amount constant in each condition. For example, in the case of Example 1, the number of carbon atoms of benzene and acetylene is 6 and 2, respectively. Therefore, benzene: 1.04 vol% × 6 = 6.24 vol%, acetylene: 0.4 vol% × 2 = 0. From 8 vol%, the total carbon supply amount was adjusted to 6.24 vol% + 0.8 vol% = 7.04 vol%.
While the reaction gas is discharged from the suction port 8, the reaction is performed for 1 hour from the start of the raw material introduction, and then the generated carbon black is collected from the filter 4 to measure the weight, and the raw material introduction amount is reduced to the introduced weight in terms of weight. The rate was calculated. The yield and primary particle size of the obtained carbon black are shown in Tables 1 to 8.
Further, (A) in the table is “introduced raw material 1 concentration (vol%) × 6 (carbon number of benzene)”, and (B) is “introduced raw material 2 concentration (vol%) × carbon number of introduced raw material 2”. Is. In claim 1, the ratio of the introduction amount of the linear unsaturated hydrocarbon (introduction raw material 2) and benzene (introduction raw material 1) is defined, but the introduction raw material 1 and the introduction raw material 2 have a constant concentration during the reaction time. Therefore, if a numerical value obtained by multiplying the respective raw material concentrations by the number of carbons is used, substantially the same ratio as the mixing ratio defined in claim 1 can be obtained. This mixing ratio is shown as “carbon ratio” in the table.

上記結果から分かるように、ベンゼンと直鎖状不飽和炭化水素を本発明で規定する混合比の範囲で用いた場合には、カーボンブラックの収率が増加した。
これに対し、規定範囲外の混合比の場合、直鎖状飽和炭化水素を用いた場合、ベンゼンのみを用いた場合は、実施例よりも低い収率となった。
また、実施例の一次粒子径は略同一であることから、本発明の効果がカーボンブラックの物性に依存せずに得られることが解った。
本発明を応用すれば、工業生産において高生産性、高収率が見込まれる。しかも既存の製造設備に直鎖状不飽和炭化水素原料を導入する設備を追加するだけであるから、設備コストの低下が図れるし、該設備はコンパクトで有るから設置面積も節約できる。
As can be seen from the above results, the yield of carbon black increased when benzene and linear unsaturated hydrocarbon were used within the range of the mixing ratio specified in the present invention.
On the other hand, in the case of a mixing ratio outside the specified range, when a linear saturated hydrocarbon was used, when only benzene was used, the yield was lower than in the examples.
Moreover, since the primary particle diameters of the examples are substantially the same, it has been found that the effects of the present invention can be obtained without depending on the physical properties of the carbon black.
If the present invention is applied, high productivity and high yield are expected in industrial production. In addition, since only the facility for introducing the linear unsaturated hydrocarbon raw material is added to the existing manufacturing facility, the facility cost can be reduced, and the installation area can be saved because the facility is compact.

1 反応管
2 反応用電気炉
3 予熱用電気炉
4 捕集用フィルター
5 導入原料1の導入口
6 導入原料2の導入口
7 窒素の導入口
8 吸引口
DESCRIPTION OF SYMBOLS 1 Reaction tube 2 Electric furnace for reaction 3 Electric furnace for preheating 4 Filter for collection 5 Inlet of introduction raw material 1 6 Inlet of introduction raw material 2 7 Inlet of nitrogen 8 Suction inlet

Claims (2)

高温燃焼ガス生成帯域、反応帯域及び反応停止帯域からなるカーボンブラック製造装置を用い、高温燃焼ガス生成帯域において炭化水素の燃焼により高温燃焼ガスを生成させ、引き続き反応帯域上流端で前記高温燃焼ガス流中に原料油を噴霧導入し、不完全燃焼又は熱分解反応によりカーボンブラックを含む反応ガス流となし、次いで反応停止帯域において急冷媒体を前記反応ガス流中に導入することにより反応ガス流を急冷して反応を終結させるカーボンブラックの製造方法において、前記原料油として、ベンゼン(Bz)と直鎖状不飽和炭化水素(HC)の混合物を用い、その混合比を、〔HCの導入量×HCの炭素数〕/〔Bzの導入量×6(ベンゼンの炭素数)〕=0.12〜0.30とすることを特徴とするカーボンブラックの製造方法。   Using a carbon black production apparatus comprising a high temperature combustion gas generation zone, a reaction zone and a reaction stop zone, high temperature combustion gas is generated by combustion of hydrocarbons in the high temperature combustion gas generation zone, and then the high temperature combustion gas flow at the upstream end of the reaction zone A raw material oil is sprayed into the reaction gas stream, and a reaction gas stream containing carbon black is formed by incomplete combustion or thermal decomposition reaction, and then a quenching refrigerant is introduced into the reaction gas stream in the reaction stop zone to quench the reaction gas stream. In the method for producing carbon black for terminating the reaction, a mixture of benzene (Bz) and linear unsaturated hydrocarbon (HC) is used as the raw material oil, and the mixing ratio is expressed as [HC introduction amount × HC Carbon number] / [Bz introduction amount × 6 (carbon number of benzene)] = 0.12 to 0.30 Method. 前記直鎖状不飽和炭化水素の炭素数が2〜6であることを特徴とする請求項1に記載のカーボンブラックの製造方法。   The carbon black production method according to claim 1, wherein the linear unsaturated hydrocarbon has 2 to 6 carbon atoms.
JP2013032755A 2012-02-23 2013-02-22 Production method of carbon black Active JP6084063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013032755A JP6084063B2 (en) 2012-02-23 2013-02-22 Production method of carbon black

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012037172 2012-02-23
JP2012037172 2012-02-23
JP2013032755A JP6084063B2 (en) 2012-02-23 2013-02-22 Production method of carbon black

Publications (2)

Publication Number Publication Date
JP2013199641A JP2013199641A (en) 2013-10-03
JP6084063B2 true JP6084063B2 (en) 2017-02-22

Family

ID=49520111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013032755A Active JP6084063B2 (en) 2012-02-23 2013-02-22 Production method of carbon black

Country Status (1)

Country Link
JP (1) JP6084063B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008214A (en) * 2015-06-23 2017-01-12 旭カーボン株式会社 Method of producing carbon black, carbon black, rubber composition, tire
CN109370268A (en) * 2018-10-24 2019-02-22 中昊黑元化工研究设计院有限公司 Mixed gas expands the production technology of acetylene carbon black single line production capacity
CN110204930B (en) * 2019-06-19 2020-04-28 焦作市和兴化学工业有限公司 Production method for controlling specific surface area of conductive carbon black and material conveying equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134073A (en) * 1984-03-29 1986-02-18 Denki Kagaku Kogyo Kk Acetylene black and production thereof
JP3438827B2 (en) * 1994-02-22 2003-08-18 電気化学工業株式会社 Method for producing carbon black

Also Published As

Publication number Publication date
JP2013199641A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
KR102385213B1 (en) Carbon Black Made from Natural Gas
CN102224221B (en) Conversion of co-fed methane and low hydrogen content hydrocarbon feedstocks to acetylene
DE112011100607B4 (en) Process for making carbon black using a preheated feedstock and apparatus for carrying out the process
CN105238430B (en) A kind of method that catalytic cracked oil pulp hydroisomerizing thermal polycondensation prepares mesophase pitch
EP3448553A1 (en) Secondary heat addition to particle production process and apparatus
JP6084063B2 (en) Production method of carbon black
CN106435840A (en) Preparation method of asphalt based carbon fiber
US10246642B2 (en) Process to produce blown asphalt
CN102949972B (en) Multi-stage plasma cracking carbonaceous material reactor and method for producing acetylene by using same
WO2023235486A1 (en) Recycled feedstocks for carbon and hydrogen production
EP2892864B1 (en) Method for producing acetylene and synthesis gas
CN105505423B (en) Down-flow fluidized bed using ECT quick catalysis pyrolysis reactor
CN104293371B (en) A kind of method of online preoxidation hydrocarbon cracking boiler tube
CN104056829B (en) A kind of continuous coke cleaning method of heat plasma reactor according
WO2012034295A1 (en) Apparatus and method for preparing lower olefin by cracking reaction
CN111393878A (en) Method for producing carbon black by mixing raw oil
WO2022166242A1 (en) Cracked carbon black secondary treatment process and device
CN209923236U (en) Carbon black raw oil nozzle
CN109593551B (en) Integrated equipment for gas-phase millisecond catalytic cracking reaction separation
US3046095A (en) Process for carbon black production
ZA200500373B (en) Method for reducing foam in a primary fractionator
CN104056828A (en) Decoking method for thermal plasma reactor
TW201313675A (en) Process for cracking hydrocarbons
US9187699B2 (en) Hydrocarbon pyrolysis process
JPH10168337A (en) Production of carbon black

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170124

R150 Certificate of patent or registration of utility model

Ref document number: 6084063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250