JP6080691B2 - Temperature measuring device, temperature measuring method, and semiconductor module - Google Patents

Temperature measuring device, temperature measuring method, and semiconductor module Download PDF

Info

Publication number
JP6080691B2
JP6080691B2 JP2013110493A JP2013110493A JP6080691B2 JP 6080691 B2 JP6080691 B2 JP 6080691B2 JP 2013110493 A JP2013110493 A JP 2013110493A JP 2013110493 A JP2013110493 A JP 2013110493A JP 6080691 B2 JP6080691 B2 JP 6080691B2
Authority
JP
Japan
Prior art keywords
temperature
temperature measuring
current
measuring element
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013110493A
Other languages
Japanese (ja)
Other versions
JP2014228500A (en
Inventor
和田 幸彦
幸彦 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013110493A priority Critical patent/JP6080691B2/en
Publication of JP2014228500A publication Critical patent/JP2014228500A/en
Application granted granted Critical
Publication of JP6080691B2 publication Critical patent/JP6080691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は温度測定装置および温度測定装置を用いた温度測定方法に関し、例えば、半導体モジュールの温度を測定する温度測定装置に関する。   The present invention relates to a temperature measurement device and a temperature measurement method using the temperature measurement device, and, for example, relates to a temperature measurement device that measures the temperature of a semiconductor module.

パワー半導体チップを搭載した半導体モジュールにおいて、パワー半導体チップを保護するために、パワー半導体チップの温度を測定して管理する必要がある。パワー半導体チップの温度を測定するために、温度測定装置がパワー半導体モジュール内に配置される。   In a semiconductor module equipped with a power semiconductor chip, it is necessary to measure and manage the temperature of the power semiconductor chip in order to protect the power semiconductor chip. In order to measure the temperature of the power semiconductor chip, a temperature measuring device is arranged in the power semiconductor module.

従来の温度測定装置は、定電流回路と、測温素子であるダイオードを備え、定電流回路によりダイオードを駆動する。ダイオードの両端に発生する電圧に基づき、ダイオードの電圧−温度特性を参照して温度を求める。   A conventional temperature measuring device includes a constant current circuit and a diode as a temperature measuring element, and the diode is driven by the constant current circuit. Based on the voltage generated at both ends of the diode, the temperature is obtained by referring to the voltage-temperature characteristic of the diode.

例えば、特許文献1では、ダイオードに流す電流を電流複製回路により複製して参照抵抗に流し、ダイオードの両端に発生する電圧と、参照抵抗による電圧とを比較することでダイオードの温度を求めている。   For example, in Patent Document 1, a current flowing through a diode is duplicated by a current duplicating circuit and is caused to flow through a reference resistor, and a voltage generated at both ends of the diode is compared with a voltage due to the reference resistor to obtain the temperature of the diode. .

特開昭58−127134号公報JP 58-127134 A

従来の温度測定装置は、定電流回路が生成する電流は温度によらず一定値であるとの前提のもとに温度を測定していた。ところが、実際には定電流回路自体の温度が変化すると定電流回路の出力する電流値も変化する。よって、温度測定装置により測定した温度と、実際の温度にずれが生じる問題があった。   The conventional temperature measuring device measures the temperature on the assumption that the current generated by the constant current circuit is a constant value regardless of the temperature. However, in practice, when the temperature of the constant current circuit itself changes, the current value output from the constant current circuit also changes. Therefore, there has been a problem that a deviation occurs between the temperature measured by the temperature measuring device and the actual temperature.

本発明は以上のような課題を解決するためになされたものであり、測温素子に流れる電流が変化しても正確な温度測定が可能な温度測定装置の提供を目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a temperature measuring device that can accurately measure a temperature even when a current flowing through a temperature measuring element changes.

本発明に係る温度測定装置は、駆動電流を出力する測温素子駆動部と、駆動電流によって駆動される測温素子と、を備え、測温素子駆動部と測温素子との温度差を検出温度差として検出する温度差測定器をさらに備えるか、もしくは、測温素子駆動部は参照抵抗と、当該参照抵抗に流れる電流が複製された電流が流れる測温抵抗とを備える。   A temperature measuring device according to the present invention includes a temperature measuring element driving unit that outputs a driving current and a temperature measuring element driven by the driving current, and detects a temperature difference between the temperature measuring element driving unit and the temperature measuring element. A temperature difference measuring device that detects a temperature difference is further provided, or the temperature measuring element driving unit includes a reference resistance and a temperature measuring resistance through which a current that is a duplicate of the current flowing through the reference resistance flows.

本発明に係る温度測定装置によれば、測温素子駆動部と測温素子との温度差を検出温度差として検出する温度差測定器を備える場合、駆動電流は、測温素子駆動部の温度上昇に伴って減少するように設定され、かつ測温素子の出力電圧は、測温素子の温度上昇に伴って減少するように設定されるか、もしくは、駆動電流は、測温素子駆動部の温度上昇に伴って増大するように設定され、かつ測温素子の出力電圧は、測温素子の温度上昇に伴って増大するように設定されていれば、所定の計算を行うことにより、出力電圧と検出温度差から、測温素子の正確な温度を求めることが可能である。   According to the temperature measurement device of the present invention, when a temperature difference measuring device that detects a temperature difference between the temperature measuring element driving unit and the temperature measuring element as a detected temperature difference is provided, the drive current is the temperature of the temperature measuring element driving unit. The output voltage of the temperature measuring element is set so as to decrease as the temperature rises, and the output current of the temperature measuring element is set to decrease as the temperature of the temperature measuring element increases. If the output voltage of the temperature measuring element is set so as to increase as the temperature rises, and if the output voltage of the temperature measuring element is set so as to increase as the temperature of the temperature measuring element increases, the output voltage can be calculated by performing a predetermined calculation. From the detected temperature difference, it is possible to obtain the accurate temperature of the temperature measuring element.

また、本発明に係る温度測定装置によれば、測温素子駆動部が参照抵抗と、当該参照抵抗に流れる電流が複製された電流が流れる測温抵抗とを備える場合、駆動電流は、参照抵抗に流れる電流が複製された電流であり、測温抵抗の抵抗値は、参照抵抗の抵抗値よりも温度依存性が大きければ、駆動電流が温度により変化する場合であっても、精度良く温度を測定することが可能である。   Further, according to the temperature measuring device according to the present invention, when the temperature measuring element driving unit includes the reference resistance and the temperature measuring resistance through which the current flowing through the reference resistance is duplicated, the driving current is the reference resistance. If the resistance value of the resistance temperature detector is more temperature-dependent than the resistance value of the reference resistor, the temperature can be accurately controlled even when the drive current varies with temperature. It is possible to measure.

実施の形態1における温度測定装置の構成を示す図である。1 is a diagram illustrating a configuration of a temperature measurement device in Embodiment 1. FIG. 実施の形態1における参照抵抗に流れる電流の温度依存性を示す図である。FIG. 3 is a diagram illustrating temperature dependence of a current flowing through a reference resistor in the first embodiment. 実施の形態1における出力電圧VFの温度依存性を示す図である。FIG. 3 is a diagram showing temperature dependence of an output voltage VF in the first embodiment. 実施の形態2における温度測定方法に使用する相互マトリクスを示す図である。FIG. 10 is a diagram showing a mutual matrix used in the temperature measurement method in the second embodiment. 実施の形態3における温度測定装置の構成を示す図である。FIG. 6 is a diagram showing a configuration of a temperature measuring device in a third embodiment. 実施の形態3における測温抵抗の抵抗値の温度依存性を示す図である。It is a figure which shows the temperature dependence of the resistance value of the temperature measuring resistance in Embodiment 3. 実施の形態3における測温抵抗の両端電圧の温度依存性を示す図である。It is a figure which shows the temperature dependence of the both-ends voltage of the temperature measuring resistance in Embodiment 3.

<実施の形態1>
<構成>
図1に、本実施の形態における温度測定装置100の構成を示す。温度測定装置100は、測温素子駆動部8と、測温部9と、温度差測定器16とから構成される。温度測定装置100は、例えば、パワーモジュール内部のパワー半導体チップの温度を測定するために用いられる。測温素子駆動部8は、パワーモジュールの制御基板上に配置される。また、測温部9は、パワー半導体チップが配置されるパワー基板上に配置される。制御基板はパワーモジュールの上部に設置されていて、一般にパワーモジュールの下部にあるパワー基板よりも温度が低い。例えばパワー基板の温度が150℃前後の時、制御基板は100℃前後となる。
<Embodiment 1>
<Configuration>
In FIG. 1, the structure of the temperature measuring apparatus 100 in this Embodiment is shown. The temperature measuring device 100 includes a temperature measuring element driving unit 8, a temperature measuring unit 9, and a temperature difference measuring device 16. The temperature measuring device 100 is used, for example, to measure the temperature of the power semiconductor chip inside the power module. The temperature measuring element driving unit 8 is disposed on the control board of the power module. Moreover, the temperature measuring part 9 is arrange | positioned on the power board | substrate with which a power semiconductor chip is arrange | positioned. The control board is installed in the upper part of the power module, and generally has a lower temperature than the power board in the lower part of the power module. For example, when the temperature of the power board is around 150 ° C., the control board is around 100 ° C.

測温素子駆動部8は、電流複製回路8Aと電流制御回路8Bとを備える。電流複製回路8Aは例えばカレントミラー回路であり、電流供給源5からの電流I6と、電流I6を複製した駆動電流IFを出力する。   The temperature measuring element drive unit 8 includes a current replication circuit 8A and a current control circuit 8B. The current duplication circuit 8A is, for example, a current mirror circuit, and outputs a current I6 from the current supply source 5 and a drive current IF obtained by duplicating the current I6.

電流制御回路8Bは、電流I6に温度依存性を与える回路である。電流制御回路8Bは、温度依存性を有する参照抵抗R7、定電圧源1に直列接続された分圧抵抗R2,R3を備える。分圧抵抗R2,R3は定電圧源1の電圧を分圧して基準電圧を発生させる。電流制御回路8Bは、さらに電圧比較器4とトランジスタを備える。電圧比較器4は、参照抵抗R7により発生する電圧と基準電圧との差を増幅してトランジスタのゲートに入力する。トランジスタのドレインは電流複製回路8Aの電流I6の出力に接続され、ソースは参照抵抗R7に接続される。   The current control circuit 8B is a circuit that gives temperature dependency to the current I6. The current control circuit 8B includes a reference resistor R7 having temperature dependency and voltage dividing resistors R2 and R3 connected in series to the constant voltage source 1. The voltage dividing resistors R2 and R3 divide the voltage of the constant voltage source 1 to generate a reference voltage. The current control circuit 8B further includes a voltage comparator 4 and a transistor. The voltage comparator 4 amplifies the difference between the voltage generated by the reference resistor R7 and the reference voltage and inputs it to the gate of the transistor. The drain of the transistor is connected to the output of the current I6 of the current replication circuit 8A, and the source is connected to the reference resistor R7.

測温部9は、測温素子としての測温ダイオード10、直列接続された分圧抵抗R12,R13を備える。測温ダイオード10には、電流複製回路8Aから出力される駆動電流IFが流れる。抵抗R12,R13は、定電圧源11を分圧して基準電圧を発生させる。測温部9は、電圧比較器14をさらに備える。電圧比較器14は、測温ダイオード10による電圧と基準電圧との差を増幅して出力電圧VFを出力する。   The temperature measuring unit 9 includes a temperature measuring diode 10 as a temperature measuring element, and voltage dividing resistors R12 and R13 connected in series. A driving current IF output from the current duplicating circuit 8A flows through the temperature measuring diode 10. Resistors R12 and R13 divide the constant voltage source 11 to generate a reference voltage. The temperature measuring unit 9 further includes a voltage comparator 14. The voltage comparator 14 amplifies the difference between the voltage by the temperature measuring diode 10 and the reference voltage and outputs the output voltage VF.

温度差測定器16は熱電対であり、測温素子駆動部8と測温部9の温度差を検出する。より具体的には、図1に示す様に、基準抵抗R7と測温ダイオード10との温度差、即ち制御基板とパワー基板の温度差を検出する。   The temperature difference measuring device 16 is a thermocouple and detects a temperature difference between the temperature measuring element driving unit 8 and the temperature measuring unit 9. More specifically, as shown in FIG. 1, the temperature difference between the reference resistor R7 and the temperature measuring diode 10, that is, the temperature difference between the control board and the power board is detected.

<動作>
定電圧源1の電圧を分圧抵抗R2,R3で分圧した電圧を基準電圧とし、参照抵抗7に生じる電圧が基準電圧と一致するように電流供給源5からの電流I6を電圧比較器4によって制御する。これにより電流I6は参照抵抗7の抵抗値に依存した一定の電流となる。
<Operation>
The voltage obtained by dividing the voltage of the constant voltage source 1 by the voltage dividing resistors R2 and R3 is used as a reference voltage, and the current I6 from the current supply source 5 is converted to the voltage comparator 4 so that the voltage generated in the reference resistor 7 matches the reference voltage. Control by. As a result, the current I6 becomes a constant current depending on the resistance value of the reference resistor 7.

電流I6は電流複製回路8Aによって複製され、複製された駆動電流IFは、測温素子である測温ダイオード10に流れる。駆動電流IFによって測温ダイオード10に発生した電圧は、電圧比較器14によって、定電圧源11の電圧を分圧抵抗R12,R13で分圧した電圧と比較され、その比較結果によって出力電圧VFが発生する。   The current I6 is duplicated by the current duplication circuit 8A, and the duplicated drive current IF flows to the temperature measuring diode 10 which is a temperature measuring element. The voltage generated in the temperature measuring diode 10 by the drive current IF is compared with the voltage obtained by dividing the voltage of the constant voltage source 11 by the voltage dividing resistors R12 and R13 by the voltage comparator 14, and the output voltage VF is determined by the comparison result. Occur.

温度差測定器16は、参照抵抗7の温度と測温ダイオード10の温度の差を検出する。この温度差を検出温度差として定義する。   The temperature difference measuring device 16 detects the difference between the temperature of the reference resistor 7 and the temperature of the temperature measuring diode 10. This temperature difference is defined as the detected temperature difference.

本実施の形態では、参照抵抗R7の抵抗値は温度の上昇とともに大きくなる温度依存性を有する。つまり、参照抵抗R7の温度が上昇に伴って、電流I6は減少する。よって、参照抵抗R7に流れる電流I6の温度依存性は図2の様に表される。なお、駆動電流IFは電流I6を複製した電流であるため、駆動電流IFの温度依存性も図2の様に表される。   In the present embodiment, the resistance value of the reference resistor R7 has a temperature dependency that increases as the temperature rises. That is, the current I6 decreases as the temperature of the reference resistor R7 increases. Therefore, the temperature dependence of the current I6 flowing through the reference resistor R7 is expressed as shown in FIG. Note that since the drive current IF is a duplicate of the current I6, the temperature dependence of the drive current IF is also expressed as shown in FIG.

また、測温ダイオード10の抵抗値は、温度の上昇とともに小さくなる温度依存性を有する。つまり、測温ダイオード10の両端に発生する電圧は測温ダイオード10の温度上昇とともに小さくなる。測温ダイオード10の両端に発生する電圧が小さくなると、出力電圧VFも小さくなる。   Further, the resistance value of the temperature measuring diode 10 has a temperature dependency that decreases as the temperature rises. That is, the voltage generated at both ends of the temperature measuring diode 10 decreases as the temperature of the temperature measuring diode 10 increases. When the voltage generated at both ends of the temperature measuring diode 10 is reduced, the output voltage VF is also reduced.

即ち、本実施の形態では、図3に示すように、一定の駆動電流IFの元での出力電圧VFは、温度上昇とともに減少する。また、駆動電流IFが減少すると、出力電圧VFも減少する。本実施の形態では、駆動電流IFおよび出力電圧VFのどちらも、温度の上昇に伴って減少するように設定してある。   That is, in the present embodiment, as shown in FIG. 3, the output voltage VF under a constant drive current IF decreases as the temperature rises. Further, when the drive current IF decreases, the output voltage VF also decreases. In the present embodiment, both the drive current IF and the output voltage VF are set so as to decrease as the temperature rises.

<温度測定方法>
温度測定装置100を使用した温度測定方法について説明する。図2に、測温素子駆動部8により発生する駆動電流IFの温度依存性を示す。図3に、一定の駆動電流IFの元での出力電圧VFの温度依存性を示す。温度測定装置100の出力電圧をVF、温度差測定器16が検出する温度差を検出温度差とする。
<Temperature measurement method>
A temperature measurement method using the temperature measurement device 100 will be described. FIG. 2 shows the temperature dependence of the drive current IF generated by the temperature measuring element drive unit 8. FIG. 3 shows the temperature dependence of the output voltage VF under a constant drive current IF. The output voltage of the temperature measuring device 100 is VF, and the temperature difference detected by the temperature difference measuring device 16 is a detected temperature difference.

最初に、参照抵抗7の温度を任意の温度に仮定する。これを第1温度とする。次に、図2を参照して、第1温度において参照抵抗R7を流れる電流I6を求める。駆動電流IFは電流I6を複製した電流であるため、駆動電流IFが求まる。   First, the temperature of the reference resistor 7 is assumed to be an arbitrary temperature. This is the first temperature. Next, referring to FIG. 2, a current I6 flowing through the reference resistor R7 at the first temperature is obtained. Since the drive current IF is a duplicate of the current I6, the drive current IF is obtained.

次に、図3を参照して、求めた駆動電流IFの元での出力電圧VFの温度依存性から、得られた出力電圧VFにおける測温ダイオード10の温度を求める。これを第2温度とする。そして、第2温度から第1温度を差し引いて温度差を計算する。この温度差を仮定温度差として定義する。   Next, referring to FIG. 3, the temperature of the temperature measuring diode 10 at the obtained output voltage VF is obtained from the temperature dependency of the output voltage VF under the obtained drive current IF. This is the second temperature. Then, the temperature difference is calculated by subtracting the first temperature from the second temperature. This temperature difference is defined as an assumed temperature difference.

仮定温度差が検出温度差よりも大きい場合、第1温度をより大きく仮定して第2温度を求めなおし、再び仮定温度差を計算する。一方、仮定温度差が検出温度差よりも小さい場合、第1温度をより小さく仮定して第2温度を求めなおし、再び仮定温度差を計算する。この工程を繰り返すことにより、仮定温度差の値は徐々に検出温度差に近づいていく。仮定温度差が検出温度差に一致したときの第1温度、第2温度が、それぞれ測温素子駆動部8と測温ダイオード10の正確な温度である。   When the assumed temperature difference is larger than the detected temperature difference, the second temperature is recalculated assuming that the first temperature is larger, and the assumed temperature difference is calculated again. On the other hand, if the assumed temperature difference is smaller than the detected temperature difference, the second temperature is recalculated assuming that the first temperature is smaller, and the assumed temperature difference is calculated again. By repeating this process, the value of the assumed temperature difference gradually approaches the detected temperature difference. The first temperature and the second temperature when the assumed temperature difference coincides with the detected temperature difference are accurate temperatures of the temperature measuring element driver 8 and the temperature measuring diode 10, respectively.

以下で、上述の手順により測温素子駆動部8と測温ダイオード10の正確な温度が求められる理由を説明する。本実施の形態における温度測定装置100の構成では、参照抵抗R7の温度の仮定値(第1温度)をより高く変更すると、参照抵抗7の抵抗値はより大きいと仮定されるため、その結果として電流I6および駆動電流IFの仮定値は小さくなる(図2)。   Hereinafter, the reason why accurate temperatures of the temperature measuring element driving unit 8 and the temperature measuring diode 10 are required by the above-described procedure will be described. In the configuration of temperature measuring apparatus 100 in the present embodiment, if the assumed value (first temperature) of reference resistor R7 is changed higher, the resistance value of reference resistor 7 is assumed to be larger, and as a result, The assumed values of the current I6 and the drive current IF are small (FIG. 2).

一方、図3に示すように、一定の駆動電流IFの元での測温ダイオード10の出力は温度の上昇ととともに小さくなるようにしてあるから、所定の出力電圧を生じるのに必要な測温ダイオード10の温度は、駆動電流IFの減少に伴って小さくなる。よって、参照抵抗R7の第1温度を高くすると、測温ダイオード10の第2温度は、より低くなる。よって、参照抵抗R7の温度が測温ダイオード10の温度より低い場合、仮定温度差は必ず縮小する。逆に、参照抵抗R7の第1温度を低く仮定すると、測温ダイオード10の第2温度は高くなるため、仮定温度差は必ず拡大する。   On the other hand, as shown in FIG. 3, since the output of the temperature measuring diode 10 under the constant drive current IF is made smaller as the temperature rises, the temperature measurement necessary for producing a predetermined output voltage is performed. The temperature of the diode 10 decreases as the drive current IF decreases. Therefore, when the first temperature of the reference resistor R7 is increased, the second temperature of the temperature measuring diode 10 is further decreased. Therefore, when the temperature of the reference resistor R7 is lower than the temperature of the temperature measuring diode 10, the assumed temperature difference is necessarily reduced. On the contrary, if the first temperature of the reference resistor R7 is assumed to be low, the second temperature of the temperature measuring diode 10 becomes high, so that the assumed temperature difference always increases.

以上より、仮定温度差と検出温度差とが一致しない場合、仮定温度差が検出温度差よりも大きい場合は、参照抵抗R7の第1温度をより高く仮定しなおす。一方、仮定温度差が検出温度差よりも小さい場合は、参照抵抗R7の第1温度をより低く仮定しなおす。この工程を繰り返すことにより、必ず仮定温度差を検出温度差に一致させることができる。すなわち、測温素子駆動部8の温度と測温ダイオード10の温度を正確に求めることができる。   As described above, when the assumed temperature difference does not match the detected temperature difference, and when the assumed temperature difference is larger than the detected temperature difference, the first temperature of the reference resistor R7 is assumed to be higher. On the other hand, when the assumed temperature difference is smaller than the detected temperature difference, the first temperature of the reference resistor R7 is assumed to be lower. By repeating this process, the assumed temperature difference can be made to coincide with the detected temperature difference. That is, the temperature of the temperature measuring element driving unit 8 and the temperature of the temperature measuring diode 10 can be accurately obtained.

以下で、数値的実例を挙げて説明する。図3に示すように、駆動電流IFが減少すると、同じ温度であっても出力電圧VFが低下する。つまり、駆動電流IFが温度によらず一定であると仮定する従来の技術では、温度が上昇したものと誤解される。例えば、図3に従えば、測温ダイオード10の温度が150℃のとき、駆動電流IFが100μAであれば出力電圧VFは1.6Vである。もしも制御基板温度の変動により駆動電流IFが95μAに減少すると、パワー基板の温度が実際には150℃のまま変わらなくても、その出力電圧VFは1.5Vに減少する。駆動電流IFが100μAで変わらないと仮定する従来の技術では、温度が155℃程度に上昇したものと間違えて、不正確な温度を得ることになる。   In the following, a description will be given with a numerical example. As shown in FIG. 3, when the drive current IF decreases, the output voltage VF decreases even at the same temperature. In other words, the conventional technique that assumes that the drive current IF is constant regardless of the temperature is misunderstood as an increase in temperature. For example, according to FIG. 3, when the temperature of the temperature measuring diode 10 is 150 ° C. and the drive current IF is 100 μA, the output voltage VF is 1.6V. If the drive current IF is reduced to 95 μA due to fluctuations in the control substrate temperature, the output voltage VF is reduced to 1.5V even if the temperature of the power substrate is actually kept at 150 ° C. In the conventional technique that assumes that the drive current IF does not change at 100 μA, it is mistaken for the temperature rising to about 155 ° C., and an incorrect temperature is obtained.

例えば、最初に参照抵抗R7の第1温度を100℃と仮定して、測温ダイオード10の温度(第2温度)を求める。図2を参照すると、参照抵抗R7の温度(制御基板の温度)が100℃のときの電流I6(即ち駆動電流IF)は100μAである。このとき、出力電圧VFが1.6Vであるとすると、図3を参照して、測温ダイオード10の温度、即ちパワー基板の温度は150℃となる。ここで、温度差測定器16が検出した検出温度差が50℃であったなら、仮定温度差と検出温度差の値は一致するため、第1温度および第2温度は正しい。   For example, assuming that the first temperature of the reference resistor R7 is 100 ° C., the temperature (second temperature) of the temperature measuring diode 10 is obtained. Referring to FIG. 2, when the temperature of the reference resistor R7 (control board temperature) is 100 ° C., the current I6 (that is, the drive current IF) is 100 μA. At this time, assuming that the output voltage VF is 1.6 V, referring to FIG. 3, the temperature of the temperature measuring diode 10, that is, the temperature of the power substrate is 150.degree. Here, if the detected temperature difference detected by the temperature difference measuring device 16 is 50 ° C., the assumed temperature difference and the detected temperature difference coincide with each other, and therefore the first temperature and the second temperature are correct.

次に、仮定温度差が50℃で、検出温度差が40℃であった場合について考える。この場合、仮定温度差を縮小させる必要がある。つまり、第1温度をより大きく仮定し直す(即ち、駆動電流IFをより小さく仮定し直す)必要がある。例えば駆動電流IFを95μAと仮定し直すと、第1温度(即ち制御基板の温度)は、図2に従えば105℃となる。また、図3より、駆動電流IFが95μAのときに1.6Vの出力電圧VFが得られる測温ダイオード10の第2温度(即ちパワー基板の温度)は、145℃である。よって、仮定温度差は40℃となり、検出温度差と一致する。1回の仮定値変更で仮定温度差と検出温度差が一致しない場合は、仮定温度差を縮小させる必要があるか拡大させる必要があるかに従って繰り返し反復計算を行えば必ず仮定温度差を検出温度差に一致させることができる。   Next, consider a case where the assumed temperature difference is 50 ° C. and the detected temperature difference is 40 ° C. In this case, it is necessary to reduce the assumed temperature difference. That is, it is necessary to re-assum the first temperature (that is, re-assum the driving current IF to be smaller). For example, assuming that the drive current IF is 95 μA, the first temperature (ie, the temperature of the control board) is 105 ° C. according to FIG. Further, from FIG. 3, the second temperature (that is, the temperature of the power substrate) of the temperature measuring diode 10 at which the output voltage VF of 1.6 V is obtained when the drive current IF is 95 μA is 145 ° C. Therefore, the assumed temperature difference is 40 ° C., which coincides with the detected temperature difference. If the assumed temperature difference does not match the detected temperature difference after one change in the assumed value, the assumed temperature difference will always be detected if repeated calculations are performed according to whether the assumed temperature difference needs to be reduced or expanded. Can match the difference.

次に、仮定温度差が50℃で、検出温度差が60℃であった場合について考える。この場合、仮定温度差を大きくする必要がある。つまり、第1温度をより小さく仮定し直す(即ち、駆動電流IFをより大きく仮定しなおす)必要がある。例えば駆動電流IFを105μAと仮定し直すと、第1温度(即ち制御基板の温度)は、図2に従えば95℃となる。また、図3より、駆動電流IFが105μAのときに1.6Vの出力電圧VFが得られる測温ダイオード10の第2温度(即ちパワー基板の温度)は、155℃である。よって、仮定温度差は60℃となり、検出温度差と一致する。   Next, consider a case where the assumed temperature difference is 50 ° C. and the detected temperature difference is 60 ° C. In this case, it is necessary to increase the assumed temperature difference. That is, it is necessary to re-assum the first temperature (that is, re-assum the driving current IF to be larger). For example, assuming that the drive current IF is 105 μA again, the first temperature (ie, the temperature of the control board) is 95 ° C. according to FIG. Further, as shown in FIG. 3, the second temperature (that is, the temperature of the power substrate) of the temperature measuring diode 10 at which the output voltage VF of 1.6 V is obtained when the drive current IF is 105 μA is 155 ° C. Therefore, the assumed temperature difference is 60 ° C., which matches the detected temperature difference.

本実施の形態における温度測定装置100では、駆動電流IFおよび出力電圧VFが温度上昇に伴って減少するように設計されているため、仮定温度差と検出温度差とを必ず一致させて、測温素子駆動部8(参照抵抗R7)および測温部9(測温ダイオード10)の正確な温度を求めることができる。   In temperature measuring apparatus 100 in the present embodiment, since drive current IF and output voltage VF are designed to decrease as the temperature rises, the assumed temperature difference and the detected temperature difference are always matched to measure temperature. Accurate temperatures of the element driving unit 8 (reference resistor R7) and the temperature measuring unit 9 (temperature measuring diode 10) can be obtained.

本実施の形態における温度測定装置100では、温度の上昇とともに出力電圧VFが小さくなるように設計されているため、一定の出力電圧VFが得られている状況下で駆動電流IFをより小さく仮定し直すと、計算される測温ダイオード10の温度(第2温度)はより低くなる。例えば1.6Vの出力電圧VFが得られているとき、駆動電流IFを100μAと仮定すると、図3に従えば測温ダイオード10の温度(第2温度)は150℃と求められる。駆動電流IFを95μAと低く仮定し直すと、図3に従えば測温ダイオード10の温度(第2温度)は145℃に低下する。   Since temperature measuring apparatus 100 in the present embodiment is designed so that output voltage VF decreases as temperature rises, drive current IF is assumed to be smaller under the condition that constant output voltage VF is obtained. In other words, the calculated temperature (second temperature) of the temperature measuring diode 10 becomes lower. For example, when an output voltage VF of 1.6 V is obtained, assuming that the drive current IF is 100 μA, the temperature (second temperature) of the temperature measuring diode 10 is determined to be 150 ° C. according to FIG. Assuming that the drive current IF is as low as 95 μA, the temperature of the temperature measuring diode 10 (second temperature) decreases to 145 ° C. according to FIG.

また、本実施の形態における温度測定装置100では、温度の上昇とともに駆動電流IFが小さくなるように設計されているため、駆動電流IFを小さく仮定し直すということは参照抵抗R7の第1温度(即ち、制御基板の温度)を高く仮定し直すということと同義である。   Further, since temperature measuring apparatus 100 in the present embodiment is designed so that drive current IF decreases as temperature rises, re-assuming drive current IF is reduced to the first temperature of reference resistor R7 ( That is, it is synonymous with re-assuming that the temperature of the control board is high.

前述したように、温度測定装置100を半導体モジュール内に配置する場合、参照抵抗R7の温度は測温ダイオード10の温度よりも低くなるため、駆動電流IFを小さく仮定し直すと、参照抵抗R7の第1温度(即ち制御基板の温度)は上がり、測温ダイオード10の第2温度(即ちパワー基板の温度)は下がるため、両者の温度差(即ち仮定温度差)は必ず縮小する。逆も同様で、駆動電流IFを大きく仮定し直すと、参照抵抗R7の第1温度は下がり、測温ダイオード10の第2温度は上がるため、仮定温度差は必ず拡大する。   As described above, when the temperature measuring device 100 is arranged in the semiconductor module, the temperature of the reference resistor R7 is lower than the temperature of the temperature measuring diode 10, so that if the drive current IF is re-assumed, the reference resistor R7 Since the first temperature (that is, the temperature of the control board) increases and the second temperature of the temperature measuring diode 10 (that is, the temperature of the power board) decreases, the temperature difference between them (that is, the assumed temperature difference) is necessarily reduced. The reverse is also true, and assuming that the drive current IF is large again, the first temperature of the reference resistor R7 decreases and the second temperature of the temperature measuring diode 10 increases, so the assumed temperature difference necessarily increases.

上述のように、駆動電流IF(または第1温度)を仮定し直すことで、必ず仮定温度差を拡大または縮小させることができ、仮定温度差を検出温度差に一致させることが可能である。   As described above, the assumed temperature difference can always be enlarged or reduced by re-assuming the drive current IF (or the first temperature), and the assumed temperature difference can be matched with the detected temperature difference.

また、駆動電流IFおよび出力電圧VFが温度上昇に伴って増大するように設計されている場合は、駆動電流IFを大きく仮定し直すと、参照抵抗R7の第1温度(即ち制御基板の温度)は上がり、測温ダイオードの第2温度(即ちパワー基板の温度)は下がるため、両者の温度差(即ち仮定温度差)は必ず縮小する。逆も同様で、駆動電流IFを小さく仮定し直すと、参照抵抗R7の第1温度は下がり、測温ダイオード10の第2温度は上がるため、仮定温度差は必ず拡大するので、同様に一致させることが可能である。   Further, when the drive current IF and the output voltage VF are designed to increase as the temperature rises, if the drive current IF is reassured largely, the first temperature of the reference resistor R7 (that is, the temperature of the control board) As the temperature rises and the second temperature of the temperature measuring diode (ie, the temperature of the power substrate) drops, the temperature difference between them (ie, the assumed temperature difference) is necessarily reduced. The reverse is also true, and if the drive current IF is assumed to be small again, the first temperature of the reference resistor R7 decreases and the second temperature of the temperature measuring diode 10 increases. It is possible.

なお、例えば、温度上昇に伴って、駆動電流IFが増大し、出力電圧VFが低下する、などのように、駆動電流IFの温度依存性の方向と出力電圧VFの温度依存性の方向が異なる場合は、駆動電流IF(または第1温度)を仮定し直しても仮定温度差が変化せず検出温度差に一致し得ない場合がある。この場合、正しい温度を求めることができない。   Note that the direction of temperature dependency of the drive current IF and the direction of temperature dependency of the output voltage VF are different, for example, the drive current IF increases and the output voltage VF decreases as the temperature rises. In this case, even if the drive current IF (or the first temperature) is re-assumed, the assumed temperature difference does not change and may not match the detected temperature difference. In this case, the correct temperature cannot be obtained.

<効果>
本実施の形態における温度測定装置100は、駆動電流IFを出力する測温素子駆動部8と、駆動電流IFによって駆動される測温素子(即ち測温ダイオード10)と、を備え、測温素子駆動部8と測温素子との温度差を検出温度差として検出する温度差測定器16をさらに備える。
<Effect>
The temperature measuring apparatus 100 in the present embodiment includes a temperature measuring element driving unit 8 that outputs a driving current IF and a temperature measuring element (that is, a temperature measuring diode 10) driven by the driving current IF. A temperature difference measuring device 16 for detecting a temperature difference between the drive unit 8 and the temperature measuring element as a detected temperature difference is further provided.

従って、駆動電流IFは、測温素子駆動部8の温度上昇に伴って減少するように設定され、かつ測温素子の出力電圧は、測温素子の温度上昇に伴って減少するように設定されるか、もしくは、駆動電流IFは、測温素子駆動部8の温度上昇に伴って増大するように設定され、かつ測温素子の出力電圧は、測温素子の温度上昇に伴って増大するように設定されていれば、所定の計算を行うことにより、出力電圧VFと検出温度差から、測温素子の正確な温度を求めることが可能である。   Therefore, the drive current IF is set so as to decrease as the temperature of the temperature measuring element drive unit 8 increases, and the output voltage of the temperature measuring element is set so as to decrease as the temperature of the temperature measuring element increases. Alternatively, the drive current IF is set so as to increase as the temperature of the temperature measuring element drive unit 8 increases, and the output voltage of the temperature measuring element increases as the temperature of the temperature measuring element increases. If it is set to, it is possible to obtain the accurate temperature of the temperature measuring element from the output voltage VF and the detected temperature difference by performing a predetermined calculation.

また、本実施の形態における温度測定装置100は、駆動電流IFを出力する測温素子駆動部8と、駆動電流IFによって駆動される測温素子(即ち測温ダイオード10)と、測温素子駆動部8と測温素子との温度差を検出温度差として検出する温度差測定器16と、を備え、駆動電流IFは、測温素子駆動部8の温度上昇に伴って減少するように設定され、かつ測温素子の出力電圧は、測温素子の温度上昇に伴って減少するように設定されるか、もしくは、駆動電流IFは、測温素子駆動部8の温度上昇に伴って増大するように設定され、かつ測温素子の出力電圧は、測温素子の温度上昇に伴って増大するように設定されることを特徴とする。   The temperature measuring apparatus 100 according to the present embodiment includes a temperature measuring element driving unit 8 that outputs a driving current IF, a temperature measuring element driven by the driving current IF (that is, a temperature measuring diode 10), and a temperature measuring element driving. A temperature difference measuring device 16 that detects a temperature difference between the temperature measuring element 8 and the temperature measuring element as a detected temperature difference, and the drive current IF is set to decrease as the temperature of the temperature measuring element driving unit 8 increases. In addition, the output voltage of the temperature measuring element is set so as to decrease as the temperature of the temperature measuring element increases, or the drive current IF increases as the temperature of the temperature measuring element driving unit 8 increases. And the output voltage of the temperature measuring element is set to increase as the temperature of the temperature measuring element increases.

従って、駆動電流IFおよび出力電圧(即ち温度測定装置100の出力電圧VF)は、それぞれ、測温素子駆動部8と測温ダイオード10の温度上昇に伴って減少し、かつ、測温素子の出力電圧は駆動電流IFの減少にともなって減少するように設定されているため、所定の計算を行うことにより、出力電圧VFと検出温度差から、測温素子の正確な温度を求めることが可能である。   Accordingly, the drive current IF and the output voltage (that is, the output voltage VF of the temperature measuring device 100) decrease as the temperature measuring element drive unit 8 and the temperature measuring diode 10 increase in temperature, respectively, and the output of the temperature measuring element. Since the voltage is set to decrease as the drive current IF decreases, it is possible to obtain the accurate temperature of the temperature measuring element from the output voltage VF and the detected temperature difference by performing a predetermined calculation. is there.

また、本実施の形態における温度測定装置100を用いた温度測定方法は、測温素子駆動部8の温度を第1温度として仮定するステップ(a)と、測温素子駆動部8の駆動電流−温度特性から、第1温度に対する駆動電流IFを求めるステップ(b)と、ステップ(b)で求めた第1温度に対する駆動電流の元での測温素子(即ち測温ダイオード10)の出力電圧−温度特性から、測温素子の出力電圧に対する温度を第2温度として求めるステップ(c)と、第2温度から第1温度を差し引いた仮定温度差を求めるステップ(d)と、仮定温度差と検出温度差との大小関係に応じて、第1温度を仮定しなおすステップ(e)と、を備え、ステップ(a)〜(e)を、仮定温度差と検出温度差とが一致するまで繰り返すことを特徴とする。   Further, the temperature measurement method using the temperature measuring device 100 in the present embodiment includes the step (a) in which the temperature of the temperature measuring element driving unit 8 is assumed as the first temperature, and the driving current of the temperature measuring element driving unit 8 − Step (b) for determining the drive current IF for the first temperature from the temperature characteristics, and the output voltage of the temperature measuring element (that is, the temperature measuring diode 10) under the drive current for the first temperature determined in step (b) − Step (c) for obtaining the temperature relative to the output voltage of the temperature measuring element as the second temperature from the temperature characteristics, Step (d) for obtaining an assumed temperature difference obtained by subtracting the first temperature from the second temperature, and detection of the assumed temperature difference (E) re-assuming the first temperature according to the magnitude relationship with the temperature difference, and repeating steps (a) to (e) until the assumed temperature difference matches the detected temperature difference It is characterized by.

従って、仮定温度差と検出温度差が一致するまで第1温度(即ち測温素子駆動部8の温度)を、仮定温度差と検出温度差との大小関係に応じて仮定し直すことにより、必ず仮定温度差と検出温度差を一致させて、正確な測温素子駆動部8の温度と測温素子(即ち測温ダイオード10)の温度を得ることが可能である。   Therefore, the first temperature (that is, the temperature of the temperature measuring element drive unit 8) is assumed again according to the magnitude relationship between the assumed temperature difference and the detected temperature difference until the assumed temperature difference and the detected temperature difference coincide with each other. By making the assumed temperature difference and the detected temperature difference coincide with each other, it is possible to obtain an accurate temperature of the temperature measuring element driving unit 8 and a temperature of the temperature measuring element (that is, the temperature measuring diode 10).

また、本実施の形態における半導体モジュールは、温度測定装置100と、半導体チップと、を備えることを特徴とする。   In addition, the semiconductor module according to the present embodiment includes the temperature measurement device 100 and a semiconductor chip.

従って、半導体モジュール内に温度差がある場合であっても、温度測定装置100を用いて、温度差による駆動電流IFの変化の影響を受けずに温度測定が可能なため、半導体チップの温度を精度良く測定することが可能である。   Therefore, even when there is a temperature difference in the semiconductor module, the temperature can be measured using the temperature measuring device 100 without being affected by the change in the drive current IF due to the temperature difference. It is possible to measure with high accuracy.

<実施の形態2>
本実施の形態における温度測定装置は、実施の形態1における温度測定装置100(図1)と同じため、説明を省略する。実施の形態1においては、仮定温度差と検出温度差とを繰り返し比べることによって、正確な温度を求めた。
<Embodiment 2>
Since the temperature measuring device in the present embodiment is the same as temperature measuring device 100 (FIG. 1) in the first embodiment, description thereof is omitted. In the first embodiment, an accurate temperature is obtained by repeatedly comparing the assumed temperature difference and the detected temperature difference.

一方、本実施の形態では、第1温度、第2温度および検出温度のあらゆる組み合わせについて得られる測温ダイオード10の温度を予め計算し、例えば図4に示す相互マトリクスを予め用意しておく。なお、第2温度は、出力電圧VFと第1温度により決まる。図4は、第1温度(測温素子駆動部の仮定の温度)を100℃に固定し、第2温度と検出温度差とを変化させた場合に得られる測温ダイオード10の正確な温度である。   On the other hand, in the present embodiment, the temperature of the temperature measuring diode 10 obtained for every combination of the first temperature, the second temperature, and the detected temperature is calculated in advance, and for example, a mutual matrix shown in FIG. 4 is prepared in advance. The second temperature is determined by the output voltage VF and the first temperature. FIG. 4 shows an accurate temperature of the temperature measuring diode 10 obtained when the first temperature (assumed temperature sensor driving unit temperature) is fixed at 100 ° C. and the second temperature and the detected temperature difference are changed. is there.

検出温度差が40℃、出力電圧VFが1.6Vであった場合について説明する。まず、第1温度を、例えば100℃に設定する。次に、図2を参照して測温素子駆動部8の温度が100℃のときの駆動電流IFを求める。この場合、100μAと求まる。次に、図3を参照して、駆動電流IFが100μAの元での出力電圧VF=1.6Vに対する測温ダイオード10の温度を求める。この場合、150℃と求まる。   A case where the detected temperature difference is 40 ° C. and the output voltage VF is 1.6 V will be described. First, the first temperature is set to 100 ° C., for example. Next, with reference to FIG. 2, the driving current IF when the temperature measuring element driving unit 8 is 100 ° C. is obtained. In this case, 100 μA is obtained. Next, referring to FIG. 3, the temperature of the temperature measuring diode 10 with respect to the output voltage VF = 1.6V when the drive current IF is 100 μA is obtained. In this case, it is determined to be 150 ° C.

よって、図4において、測温ダイオード10の温度が150℃で検出温度差が40℃の欄を参照することで、測温ダイオード10の正確な温度は145℃であることがわかる。   Therefore, in FIG. 4, it can be seen that the accurate temperature of the temperature measuring diode 10 is 145 ° C. by referring to the column where the temperature of the temperature measuring diode 10 is 150 ° C. and the detected temperature difference is 40 ° C.

なお、相互マトリクスの細かさは必要に応じて調整できる。また、例えば図4において、第2温度、検出温度差の値が相互マトリクスの行又は列の中間にある場合は、相互マトリクスを補間することにより、検出温度を求めればよい。   The fineness of the mutual matrix can be adjusted as necessary. For example, in FIG. 4, when the value of the second temperature and the detected temperature difference is in the middle of the row or column of the mutual matrix, the detected temperature may be obtained by interpolating the mutual matrix.

<効果>
本実施の形態にける温度測定装置を用いた温度測定方法において、温度測定装置は、相互マトリクスをさらに備え、相互マトリクスには、第1温度、前記第2温度および検出温度差のあらゆる組み合わせに対して、実施の形態1におけるステップ(a)〜(e)を仮定温度差と検出温度差とが一致するまで繰り返して得た測温素子の温度が記載されており、第1温度、前記第2温度および検出温度差に基づいて相互マトリクスを参照して、測温素子の温度を求めるステップ(f)をさらに備える。
<Effect>
In the temperature measurement method using the temperature measurement device according to the present embodiment, the temperature measurement device further includes a mutual matrix, and the mutual matrix includes any combination of the first temperature, the second temperature, and the detected temperature difference. The temperature of the temperature measuring element obtained by repeating steps (a) to (e) in the first embodiment until the assumed temperature difference and the detected temperature difference coincide with each other is described. A step (f) of determining the temperature of the temperature measuring element with reference to the mutual matrix based on the temperature and the detected temperature difference is further provided.

従って、繰り返し計算が収束した後の値を予め相互マトリクスとして用意しておくことにより、測定の都度繰り返し計算をすることなく、即座に正確な測温素子(即ち測温ダイオード10)の温度を求めることが可能である。よって、繰り返し計算を行うための回路が不要であり、より低コストの温度測定装置を実現できる。   Therefore, by preparing the values after the convergence of the repeated calculation as a mutual matrix in advance, the temperature of the temperature measuring element (that is, the temperature measuring diode 10) is immediately obtained without performing the repeated calculation for each measurement. It is possible. Therefore, a circuit for performing repetitive calculations is not required, and a lower cost temperature measuring device can be realized.

<実施の形態3>
<構成>
図5に、本実施の形態における温度測定装置200の構成を示す。温度測定装置200は、測温素子駆動部18と、測温素子としての測温ダイオード24とから構成される。温度測定装置200は、実施の形態1における温度測定装置100と同様に、例えば、パワーモジュール内部のパワー半導体チップの温度を測定するために用いられる。
<Embodiment 3>
<Configuration>
FIG. 5 shows a configuration of temperature measuring apparatus 200 in the present embodiment. The temperature measuring device 200 includes a temperature measuring element driving unit 18 and a temperature measuring diode 24 as a temperature measuring element. The temperature measuring device 200 is used to measure the temperature of the power semiconductor chip inside the power module, for example, similarly to the temperature measuring device 100 in the first embodiment.

測温素子駆動部18は、電流複製回路18A、参照抵抗R22および測温抵抗R20を備える。電流複製回路18Aは例えばカレントミラー回路であり、参照抵抗R22に電流供給源17からの電流I21を流す。また、電流複製回路18Aは、電流I21を複製した電流I19と駆動電流IFとを、測温抵抗R20と測温ダイオード24にそれぞれ流す。   The temperature measuring element driving unit 18 includes a current duplicating circuit 18A, a reference resistor R22, and a temperature measuring resistor R20. The current replication circuit 18A is, for example, a current mirror circuit, and allows the current I21 from the current supply source 17 to flow through the reference resistor R22. In addition, the current duplicating circuit 18A passes the current I19 and the drive current IF that are duplicated from the current I21 to the temperature measuring resistor R20 and the temperature measuring diode 24, respectively.

<動作>
測温抵抗R20の抵抗値の温度依存性は、参照抵抗R22の抵抗値の温度依存性よりも大きい。測温抵抗R20の抵抗値の温度依存性は、例えば図6により表される。測温抵抗R20は例えばサーミスタであり、非常に大きい温度依存性を有する。つまり、測温抵抗R20の温度依存性の曲線は大きく傾いている。図6から、測温抵抗R20の温度が1℃変化しただけでその抵抗値は3パーセント変化することがわかる。抵抗値が3パーセント変化するということは、電流I19を一定とすると、測温抵抗R20の両端に発生する電圧が3パーセント変化することを意味する(図7)。
<Operation>
The temperature dependency of the resistance value of the temperature measuring resistor R20 is larger than the temperature dependency of the resistance value of the reference resistor R22. The temperature dependence of the resistance value of the temperature measuring resistor R20 is expressed by, for example, FIG. The resistance temperature detector R20 is a thermistor, for example, and has a very large temperature dependency. That is, the temperature dependency curve of the temperature measuring resistor R20 is greatly inclined. From FIG. 6, it can be seen that the resistance value changes by 3% only when the temperature of the resistance temperature resistor R20 changes by 1 ° C. That the resistance value changes by 3 percent means that if the current I19 is constant, the voltage generated across the temperature measuring resistor R20 changes by 3 percent (FIG. 7).

例えば、温度を一定として、測温抵抗R20に流れる電流I19が1パーセント変化したと仮定すると、測温抵抗R20の両端の電圧は1パーセント変化する。これは、およそ0.3℃の温度変化と同等の電圧変化である。一方、温度が例えば5℃変化したと仮定すると、測温抵抗R20の両端の電圧は、およそ15パーセント(3パーセント×5)変化する。つまり、測温抵抗R20の両端の電圧は、温度変化と電流I19の変化の両方の影響を受けるが、主として温度変化の影響を受けることがわかる。   For example, assuming that the temperature is constant and the current I19 flowing through the temperature measuring resistor R20 changes by 1%, the voltage across the temperature measuring resistor R20 changes by 1%. This is a voltage change equivalent to a temperature change of approximately 0.3 ° C. On the other hand, assuming that the temperature has changed by, for example, 5 ° C., the voltage across the temperature measuring resistor R20 changes by approximately 15 percent (3 percent × 5). That is, it can be seen that the voltage across the temperature measuring resistor R20 is affected both by the temperature change and the current I19 change, but mainly by the temperature change.

よって、測温抵抗R20の両端電圧の温度依存性に対する、電流I19の変化の影響は小さいと考えられる。以上から、図7に示すように、電流I19の変化を無視して、電流I19は標準の値(例えば100μA)で一定であると仮定して、1本の曲線のみで測温抵抗R20の両端電圧の温度依存性を表しても誤差は小さい。   Therefore, it is considered that the influence of the change of the current I19 on the temperature dependence of the voltage across the temperature measuring resistor R20 is small. From the above, as shown in FIG. 7, it is assumed that the current I19 is constant at a standard value (for example, 100 μA), ignoring the change of the current I19, and the both ends of the resistance temperature detector R20 are only one curve. Even if the temperature dependence of voltage is expressed, the error is small.

また、参照抵抗R22を流れる電流I21(即ち駆動電流IF)の、制御基板の温度(即ち、測温抵抗R20および参照抵抗R22の温度)依存性は、理想的にはゼロであるが、非常に小さい。例えば1℃温度が変化すると、0.1パーセント電流が変化する関係であるとする。つまり、参照抵抗R22の抵抗値の温度依存性は、測温抵抗R20の抵抗値の温度依存性よりも小さく設定される。参照抵抗R22の電流−温度依存性は予めわかっているとする。   Further, the dependence of the current I21 flowing through the reference resistor R22 (ie, the driving current IF) on the temperature of the control board (ie, the temperature of the temperature measuring resistor R20 and the reference resistor R22) is ideally zero, but is very high. small. For example, it is assumed that when the temperature changes by 1 ° C., 0.1% current changes. That is, the temperature dependency of the resistance value of the reference resistor R22 is set smaller than the temperature dependency of the resistance value of the temperature measuring resistor R20. It is assumed that the current-temperature dependency of the reference resistor R22 is known in advance.

また、測温ダイオード24(即ちパワー基板)の温度と出力電圧VFの関係は、実施の形態1と同じく図3で表されるとする。   Further, the relationship between the temperature of the temperature measuring diode 24 (that is, the power substrate) and the output voltage VF is represented by FIG. 3 as in the first embodiment.

<温度測定方法>
まず、測温抵抗R20の両端の電圧を測定する。次に、図7を参照して、測定により得た電圧に対応する測温抵抗R20の温度(即ち制御基板の温度)を求める。
<Temperature measurement method>
First, the voltage across the temperature measuring resistor R20 is measured. Next, with reference to FIG. 7, the temperature of the temperature measuring resistor R20 (that is, the temperature of the control board) corresponding to the voltage obtained by the measurement is obtained.

次に、図2を参照して、制御基板の温度に対応する、参照抵抗R22に流れる電流I21を求める。駆動電流IFは電流I21を複製したものであるから、駆動電流IFが求まる。参照抵抗R22の抵抗値の温度依存性は、測温抵抗R20の抵抗値の温度依存性よりも小さいため、駆動電流IFをほぼ正確に求めることができる。   Next, referring to FIG. 2, a current I21 flowing through the reference resistor R22 corresponding to the temperature of the control board is obtained. Since the drive current IF is a duplicate of the current I21, the drive current IF is obtained. Since the temperature dependency of the resistance value of the reference resistor R22 is smaller than the temperature dependency of the resistance value of the temperature measuring resistor R20, the drive current IF can be obtained almost accurately.

次に、図3を参照して、図2により求めた駆動電流IFの元での出力電圧VFの温度依存性から、測定で得た出力電圧VFにおける測温ダイオード24の温度を求める。以上の手順により、温度変化により駆動電流IFが変化した場合であっても、精度良く測温ダイオード10の温度(即ちパワー基板の温度)を測定することが可能である。   Next, with reference to FIG. 3, the temperature of the temperature measuring diode 24 at the output voltage VF obtained by measurement is obtained from the temperature dependence of the output voltage VF under the drive current IF obtained from FIG. According to the above procedure, even when the drive current IF changes due to a temperature change, the temperature of the temperature measuring diode 10 (that is, the temperature of the power substrate) can be measured with high accuracy.

本実施の形態では、測温抵抗R20の抵抗値(両端の電圧)は、大きな温度依存性を持つ。図7の例によると、1℃温度が変化すると3パーセント両端電圧が変化する。また、1パーセント電流I19が変化すると、当然1パーセント両端電圧が変化する。つまり、電流I19が±1パーセント程度変化している場合であっても、温度誤差を0.3℃程度に抑制して、制御基板の温度を測定することが可能である。さらに、参照抵抗R22の抵抗値(電流値)は、温度が1℃変化すると0.1パーセント変化するため、0.3℃の温度誤差は0.03パーセントの電流誤差に転化され、結果として電流の誤差を1パーセントから0.03パーセントへと、1/30程度に抑制して駆動電流IFを求めることが可能である。よって、参照抵抗R22に対して比較的大きい温度依存性を有する測温抵抗R20を備える構成とすることにより、温度の測定精度を30倍程度向上させることが可能である。   In the present embodiment, the resistance value (voltage at both ends) of the temperature measuring resistor R20 has a large temperature dependency. According to the example of FIG. 7, the voltage at both ends changes by 3% when the temperature of 1 ° C. changes. Further, when the 1% current I19 changes, the 1% voltage at both ends naturally changes. That is, even when the current I19 changes by about ± 1%, it is possible to measure the temperature of the control board while suppressing the temperature error to about 0.3 ° C. Further, since the resistance value (current value) of the reference resistor R22 changes by 0.1 percent when the temperature changes by 1 ° C., the temperature error of 0.3 ° C. is converted into a current error of 0.03 percent. It is possible to obtain the drive current IF while suppressing the above error from 1% to 0.03% to about 1/30. Therefore, the temperature measurement accuracy can be improved about 30 times by adopting a configuration including the temperature measurement resistor R20 having a relatively large temperature dependency with respect to the reference resistor R22.

なお、図6に示したように、測温抵抗R20の抵抗値は温度上昇に伴って減少するが、温度上昇に伴って増大する特性を有してもよい。   As shown in FIG. 6, the resistance value of the temperature measuring resistor R20 decreases as the temperature rises, but may have a characteristic of increasing as the temperature rises.

<効果>
本実施の形態における温度測定装置200は、駆動電流IFを出力する測温素子駆動部18と、駆動電流IFによって駆動される測温素子(即ち測温ダイオード24)と、を備え、測温素子駆動部18は参照抵抗R22と、参照抵抗R22に流れる電流I21が複製された電流I19が流れる測温抵抗R20とを備える。
<Effect>
The temperature measuring apparatus 200 in the present embodiment includes a temperature measuring element driving unit 18 that outputs a driving current IF and a temperature measuring element (that is, a temperature measuring diode 24) driven by the driving current IF. The drive unit 18 includes a reference resistor R22 and a temperature measuring resistor R20 through which a current I19 obtained by copying a current I21 flowing through the reference resistor R22 flows.

従って、駆動電流IFは、参照抵抗R22に流れる電流I21が複製された電流であり、測温抵抗R20の抵抗値は、参照抵抗R22の抵抗値よりも温度依存性が大きければ、駆動電流IFが温度により変化する場合であっても、精度良く温度を測定することが可能である。   Accordingly, the drive current IF is a current obtained by duplicating the current I21 flowing through the reference resistor R22. If the resistance value of the temperature measuring resistor R20 is more temperature-dependent than the resistance value of the reference resistor R22, the drive current IF is Even when the temperature varies depending on the temperature, it is possible to accurately measure the temperature.

また、本実施の形態における温度測定装置200は、駆動電流IFを出力する測温素子駆動部18と、駆動電流IFによって駆動される測温素子(即ち測温ダイオード24)と、を備え、測温素子駆動部18は、参照抵抗R22と、参照抵抗R22に流れる電流I21が複製された電流I19が流れる測温抵抗R20とを備え、駆動電流IFは、参照抵抗R22に流れる電流I21が複製された電流であり、測温抵抗R20の抵抗値は、参照抵抗R22の抵抗値よりも温度依存性が大きいことを特徴とする。   The temperature measuring apparatus 200 in the present embodiment includes a temperature measuring element driving unit 18 that outputs a driving current IF and a temperature measuring element (that is, a temperature measuring diode 24) driven by the driving current IF. The temperature element driving unit 18 includes a reference resistor R22 and a temperature measuring resistor R20 through which a current I19 that is a copy of the current I21 that flows through the reference resistor R22. The drive current IF is a copy of the current I21 that flows through the reference resistor R22. The resistance value of the temperature measuring resistor R20 is characterized in that the temperature dependency is larger than the resistance value of the reference resistor R22.

従って、温度依存性の小さい参照抵抗R22と、温度依存性の大きい測温抵抗R20とを備える構成とすることにより、駆動電流IFが温度により変化する場合であっても、精度良く温度を測定することが可能である。   Therefore, by providing the reference resistor R22 having a small temperature dependency and the temperature measuring resistor R20 having a large temperature dependency, the temperature is accurately measured even when the drive current IF changes depending on the temperature. It is possible.

また、本実施の形態における温度測定方法は、温度測定装置200を用いた温度測定方法であって、測温抵抗R20の両端の電圧を測定するステップ(a)と、測温抵抗R20の電圧−温度特性から、ステップ(a)において測定した電圧における測温素子駆動部18の温度を求めるステップ(b)と、参照抵抗R22の電流−温度特性から、ステップ(b)で求めた温度において参照抵抗R22に流れる電流を求めるステップ(c)と、ステップ(c)で求めた電流を駆動電流IFとして、駆動電流IFの元での測温素子(即ち測温ダイオード24)の出力電圧VF−温度特性から、測温素子の出力電圧VFに対する温度を求めるステップと、を備える。   Further, the temperature measurement method in the present embodiment is a temperature measurement method using the temperature measurement device 200, and includes the step (a) of measuring the voltage at both ends of the temperature measurement resistor R20, and the voltage of the temperature measurement resistor R20− The step (b) for obtaining the temperature of the temperature measuring element drive unit 18 at the voltage measured in step (a) from the temperature characteristic, and the reference resistance at the temperature obtained in step (b) from the current-temperature characteristic of the reference resistor R22. Step (c) for obtaining the current flowing through R22, and using the current obtained in step (c) as the drive current IF, the output voltage VF-temperature characteristics of the temperature measuring element (ie, the temperature measurement diode 24) under the drive current IF. And obtaining a temperature with respect to the output voltage VF of the temperature measuring element.

従って、まず、参照抵抗R22よりも温度依存性の大きい測温抵抗R20により制御基板の温度を測定することにより、電流変化の影響を抑制して、正確な温度を得ることが可能である。そして、測温抵抗R20よりも温度依存性の小さい参照抵抗R22の電流−温度特性により駆動電流を測定することにより、温度変化による誤差を抑制して、精度の高い駆動電流IFを得ることが可能である。よって、精度の高い駆動電流IFを得ることにより、測温素子(即ち測温ダイオード24)によって測温素子の温度(即ちパワー基板の温度)を精度良く測定することが可能である。   Therefore, first, by measuring the temperature of the control board with the temperature measuring resistor R20 having a temperature dependency larger than that of the reference resistor R22, it is possible to suppress the influence of the current change and obtain an accurate temperature. Then, by measuring the drive current based on the current-temperature characteristic of the reference resistor R22 having a temperature dependency smaller than that of the temperature measuring resistor R20, it is possible to suppress an error due to a temperature change and obtain a highly accurate drive current IF. It is. Therefore, by obtaining a highly accurate drive current IF, the temperature of the temperature measuring element (that is, the temperature of the power board) can be measured with high accuracy by the temperature measuring element (that is, the temperature measuring diode 24).

また、本実施の形態における半導体モジュールは、温度測定装置200と、半導体チップと、を備えることを特徴とする。   In addition, the semiconductor module in this embodiment includes a temperature measurement device 200 and a semiconductor chip.

従って、半導体モジュール内に温度差がある場合であっても、温度測定装置200を用いて、温度差による駆動電流IFの変化の影響を受けずに温度測定が可能なため、半導体チップの温度を精度良く測定することが可能である。   Therefore, even when there is a temperature difference in the semiconductor module, the temperature can be measured using the temperature measuring device 200 without being affected by the change in the drive current IF due to the temperature difference. It is possible to measure with high accuracy.

なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

1,11 定電圧源、4,14 電圧比較器、5,17 電流供給源、8 測温素子駆動部、8A,18A 電流複製回路、8B 電流制御回路、9 測温部、10,24 測温ダイオード、16 温度差測定器、R2,R3,R12,R13 分圧抵抗、R7,R22 参照抵抗、R20 測温抵抗、100,200 温度測定装置、VF 出力電圧、I6,I19,I21 電流、IF 駆動電流。   1,11 constant voltage source, 4,14 voltage comparator, 5,17 current supply source, 8 temperature measuring element driving unit, 8A, 18A current duplicating circuit, 8B current control circuit, 9 temperature measuring unit, 10, 24 temperature measuring Diode, 16 Temperature difference measuring device, R2, R3, R12, R13 Voltage dividing resistor, R7, R22 Reference resistance, R20 Temperature measuring resistor, 100, 200 Temperature measuring device, VF output voltage, I6, I19, I21 Current, IF drive Current.

Claims (7)

駆動電流を出力する測温素子駆動部と、
前記駆動電流によって駆動される測温素子と、
を備え、
前記測温素子駆動部と前記測温素子との温度差を検出温度差として検出する温度差測定器をさらに備えるか、もしくは、前記測温素子駆動部は参照抵抗と、当該参照抵抗に流れる電流が複製された電流が流れる測温抵抗とを備える、
温度測定装置。
A temperature measuring element driving unit for outputting a driving current;
A temperature measuring element driven by the drive current;
With
A temperature difference measuring device that detects a temperature difference between the temperature measuring element driving unit and the temperature measuring element as a detected temperature difference, or the temperature measuring element driving unit includes a reference resistor and a current flowing through the reference resistor; And a resistance temperature detector through which replicated current flows,
Temperature measuring device.
前記測温素子駆動部と前記測温素子との温度差を検出温度差として検出する温度差測定器を備え、
前記駆動電流は、前記測温素子駆動部の温度上昇に伴って減少するように設定され、かつ前記測温素子の出力電圧は、当該測温素子の温度上昇に伴って減少するように設定されるか、もしくは、
前記駆動電流は、前記測温素子駆動部の温度上昇に伴って増大するように設定され、かつ前記測温素子の出力電圧は、当該測温素子の温度上昇に伴って増大するように設定されることを特徴とする、
請求項1に記載の温度測定装置。
A temperature difference measuring device for detecting a temperature difference between the temperature measuring element driving unit and the temperature measuring element as a detected temperature difference;
The driving current is set so as to decrease as the temperature measuring element driving unit increases in temperature, and the output voltage of the temperature measuring element is set so as to decrease as the temperature measuring element increases. Or
The drive current is set to increase as the temperature measuring element driving unit increases in temperature, and the output voltage of the temperature measuring element is set to increase as the temperature measuring element increases. It is characterized by
The temperature measuring device according to claim 1.
請求項2に記載の温度測定装置を用いた温度測定方法であって、
(a)前記測温素子駆動部の温度を第1温度として仮定するステップと、
(b)前記測温素子駆動部の駆動電流−温度特性から、前記第1温度に対する駆動電流を求めるステップと、
(c)前記ステップ(b)で求めた前記第1温度に対する駆動電流の元での前記測温素子の出力電圧−温度特性から、当該測温素子の出力電圧に対する温度を第2温度として求めるステップと、
(d)前記第2温度から前記第1温度を差し引いた仮定温度差を求めるステップと、
(e)前記仮定温度差と、前記検出温度差との大小関係に応じて、前記第1の温度を仮定しなおすステップと、
を備え、
前記ステップ(a)〜(e)を、前記仮定温度差と前記検出温度差とが一致するまで繰り返すことを特徴とする、
温度測定方法。
A temperature measuring method using the temperature measuring device according to claim 2,
(A) assuming the temperature of the temperature measuring element drive unit as a first temperature;
(B) obtaining a driving current for the first temperature from a driving current-temperature characteristic of the temperature measuring element driving unit;
(C) A step of obtaining a temperature corresponding to the output voltage of the temperature measuring element as a second temperature from an output voltage-temperature characteristic of the temperature measuring element under the driving current for the first temperature obtained in the step (b). When,
(D) obtaining an assumed temperature difference obtained by subtracting the first temperature from the second temperature;
(E) re-asserting the first temperature according to a magnitude relationship between the assumed temperature difference and the detected temperature difference;
With
The steps (a) to (e) are repeated until the assumed temperature difference and the detected temperature difference coincide with each other,
Temperature measurement method.
前記温度測定装置は、相互マトリクスをさらに備え、
前記相互マトリクスには、前記第1温度、前記第2温度および前記検出温度差のあらゆる組み合わせに対して、前記ステップ(a)〜(e)を前記仮定温度差と前記検出温度差とが一致するまで繰り返して得た前記測温素子の温度が記載されており、
(f)前記第1温度、前記第2温度および前記検出温度差に基づいて前記相互マトリクスを参照して、前記測温素子の温度を求めるステップをさらに備える、
請求項3に記載の温度測定方法。
The temperature measuring device further comprises a mutual matrix,
In the mutual matrix, for each combination of the first temperature, the second temperature, and the detected temperature difference, the steps (a) to (e) are the same as the assumed temperature difference and the detected temperature difference. The temperature of the temperature measuring element obtained repeatedly until is described,
(F) The method further includes the step of obtaining the temperature of the temperature measuring element with reference to the mutual matrix based on the first temperature, the second temperature, and the detected temperature difference.
The temperature measuring method according to claim 3.
前記駆動電流は、前記参照抵抗に流れる電流が複製された電流であり、
前記測温抵抗の抵抗値は、前記参照抵抗の抵抗値よりも温度依存性が大きいことを特徴とする、
請求項1に記載の温度測定装置。
The drive current is a current obtained by replicating the current flowing through the reference resistor,
The resistance value of the temperature measuring resistor has a temperature dependency larger than the resistance value of the reference resistor,
The temperature measuring device according to claim 1.
請求項5に記載の温度測定装置を用いた温度測定方法であって、
(a)前記測温抵抗の両端の電圧を測定するステップと、
(b)前記測温抵抗の電圧−温度特性から、前記ステップ(a)において測定した電圧における前記測温素子駆動部の温度を求めるステップと、
(c)前記参照抵抗の電流−温度特性から、前記ステップ(b)で求めた温度において前記参照抵抗に流れる電流を求めるステップと、
(d)前記ステップ(c)で求めた電流を前記駆動電流として、前記駆動電流の元での前記測温素子の出力電圧−温度特性から、当該測温素子の出力電圧に対する温度を求めるステップと、
を備える、
温度測定方法。
A temperature measurement method using the temperature measurement device according to claim 5,
(A) measuring a voltage across the resistance temperature detector;
(B) obtaining the temperature of the temperature measuring element driving unit at the voltage measured in the step (a) from the voltage-temperature characteristics of the temperature measuring resistor;
(C) obtaining a current flowing through the reference resistor at the temperature obtained in the step (b) from the current-temperature characteristic of the reference resistor;
(D) obtaining the temperature relative to the output voltage of the temperature measuring element from the output voltage-temperature characteristics of the temperature measuring element under the driving current, using the current obtained in step (c) as the driving current; ,
Comprising
Temperature measurement method.
請求項1、請求項2、請求項5のいずれかに記載の温度測定装置と、
半導体チップと、
を備える、
半導体モジュール。
A temperature measuring device according to any one of claims 1, 2, and 5;
A semiconductor chip;
Comprising
Semiconductor module.
JP2013110493A 2013-05-27 2013-05-27 Temperature measuring device, temperature measuring method, and semiconductor module Active JP6080691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013110493A JP6080691B2 (en) 2013-05-27 2013-05-27 Temperature measuring device, temperature measuring method, and semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013110493A JP6080691B2 (en) 2013-05-27 2013-05-27 Temperature measuring device, temperature measuring method, and semiconductor module

Publications (2)

Publication Number Publication Date
JP2014228500A JP2014228500A (en) 2014-12-08
JP6080691B2 true JP6080691B2 (en) 2017-02-15

Family

ID=52128455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013110493A Active JP6080691B2 (en) 2013-05-27 2013-05-27 Temperature measuring device, temperature measuring method, and semiconductor module

Country Status (1)

Country Link
JP (1) JP6080691B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7069988B2 (en) * 2018-04-06 2022-05-18 富士電機株式会社 Temperature detector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107381U (en) * 1978-01-13 1979-07-28
JP2696808B2 (en) * 1992-11-30 1998-01-14 関西日本電気株式会社 Overheat detection circuit
JPH0755588A (en) * 1993-08-10 1995-03-03 Fujitsu Ltd Temperature detector

Also Published As

Publication number Publication date
JP2014228500A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP5577141B2 (en) Circuit and method for temperature detection
JP5836074B2 (en) Temperature detection circuit and adjustment method thereof
US10302509B2 (en) Temperature sensing for integrated circuits
JP2007281139A (en) Temperature-control system
US20160003686A1 (en) Intake air temperature sensor and flow measurement device
JP5168927B2 (en) Semiconductor device and trimming method thereof
JP6080691B2 (en) Temperature measuring device, temperature measuring method, and semiconductor module
JP6250418B2 (en) Voltage regulator
US20170038784A1 (en) High Current Limit Trim Apparatus and Methodology
CN112945418B (en) Temperature measuring device and temperature measuring method of integrated chip
JP3726261B2 (en) Thermal flow meter
JP6188170B2 (en) Glow plug fault diagnosis method and glow plug fault diagnosis device
US20050038625A1 (en) Temperature detection cell, and method to determine the detection threshold of such a cell
JP6579378B2 (en) Abnormal temperature detection circuit
JP6688648B2 (en) Current detection circuit
CN114325315A (en) Chip aging compensation method and device, SOC chip and electronic equipment
US9310261B2 (en) Production-test die temperature measurement method and apparatus
EP3644080B1 (en) Sensor circuit with offset compensation
US20130077652A1 (en) Apparatus for measuring temperature and method for measuring temperature
JP6624303B2 (en) Temperature measuring device, temperature controller and short circuit judgment program
JP2010045286A (en) Semiconductor device
TWI690697B (en) Temperature sensor evaluation method
JP2000307402A (en) Current detecting circuit
JP5062720B2 (en) Flow detection device
JP5511120B2 (en) Gas concentration detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170117

R150 Certificate of patent or registration of utility model

Ref document number: 6080691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250