JP6074614B2 - Synchronous drive - Google Patents

Synchronous drive Download PDF

Info

Publication number
JP6074614B2
JP6074614B2 JP2012174643A JP2012174643A JP6074614B2 JP 6074614 B2 JP6074614 B2 JP 6074614B2 JP 2012174643 A JP2012174643 A JP 2012174643A JP 2012174643 A JP2012174643 A JP 2012174643A JP 6074614 B2 JP6074614 B2 JP 6074614B2
Authority
JP
Japan
Prior art keywords
motor
response
axis
command input
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012174643A
Other languages
Japanese (ja)
Other versions
JP2014036449A (en
Inventor
鈴木 健一
健一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012174643A priority Critical patent/JP6074614B2/en
Publication of JP2014036449A publication Critical patent/JP2014036449A/en
Application granted granted Critical
Publication of JP6074614B2 publication Critical patent/JP6074614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Multiple Motors (AREA)

Description

本発明は、一つの物体を複数のモータを用いて同一方向に駆動する同期駆動装置における周波数特性の測定に関する。   The present invention relates to measurement of frequency characteristics in a synchronous drive device that drives one object in the same direction using a plurality of motors.

一つの物体を複数のモータを用いて同一方向に駆動する同期駆動装置は、モータが一つでは力の作用線が重心を通らず物体に回転モーメントが生じる場合や、一つのモータでは駆動力が不足する場合などによく用いられる。   A synchronous drive device that drives a single object in the same direction using multiple motors is used when a single motor has a line of force that does not pass through the center of gravity and a rotational moment is generated in the object. It is often used when there is a shortage.

例えば、ヘッドを駆動するX軸がY軸で駆動されるX−Yテーブルの場合、X軸は片持ち構造となり、Y軸駆動時にX軸の重心回りの回転モーメントが発生するため、X軸の支持構造に起因する弾性が共振現象を引き起こす。このときX軸の両端を2軸のY1・Y2軸で同期駆動する、いわゆるガントリー構成とすることで、X軸を重心回りの回転なしで並行移動させることができる。また駆動力を稼ぐ例としては、液晶パネルや半導体ウェハなどの重量物を搬送する走行台車で、車輪を駆動するモータが一つではトルクが不足する場合に、2輪駆動や4輪駆動などとする例が挙げられる。   For example, in the case of an XY table in which the X axis for driving the head is driven by the Y axis, the X axis has a cantilever structure, and a rotational moment around the center of gravity of the X axis is generated when the Y axis is driven. Elasticity caused by the support structure causes a resonance phenomenon. At this time, by adopting a so-called gantry configuration in which both ends of the X axis are synchronously driven by the two Y1 and Y2 axes, the X axis can be moved in parallel without rotating around the center of gravity. Also, as an example of earning driving force, in a traveling cart that transports heavy objects such as liquid crystal panels and semiconductor wafers, if one motor drives the wheel and the torque is insufficient, such as two-wheel drive or four-wheel drive An example is given.

昨今これらを駆動するモータにはサーボモータが用いられており、これらモータを駆動するモータ駆動装置の調整においては、同期駆動対象の周波数特性を知ることが、高速・高精度な制御のために重要となる。   Recently, servo motors are used as the motors that drive these. In adjusting the motor drive devices that drive these motors, it is important to know the frequency characteristics of the synchronous drive target for high-speed and high-precision control. It becomes.

この周波数特性の測定方法としては、例えば特許文献1のように、掃引正弦波指令を制御器(モータ駆動装置)に入力し、電動機(モータ)の出力を検出器で観測し、これら入出力を信号処理器で解析し、負荷の周波数特性の代表的な値である共振周波数を得る方法や、特許文献2のように、複数の電動機を備えた装置の場合に、少なくとも一つの制御器に指令を与えて、複数軸の電動機出力を観測した結果から、機械の共振周波数を得る方法がある。   As a method for measuring this frequency characteristic, for example, as in Patent Document 1, a sweep sine wave command is input to a controller (motor drive device), the output of the motor (motor) is observed by a detector, and these inputs and outputs are In the case of a method of obtaining a resonance frequency that is a representative value of the frequency characteristic of a load by analyzing with a signal processor, or a device having a plurality of electric motors as in Patent Document 2, command to at least one controller There is a method of obtaining the resonance frequency of the machine from the result of observing the motor output of a plurality of axes.

特開2003−134868号公報JP 2003-134868 A 特開2004−215455号公報JP 2004-215455 A

しかしこれらの周波数特性測定方法を同期駆動装置に適用するにあたっては、以下の課題が生じる。   However, the following problems arise when applying these frequency characteristic measurement methods to the synchronous drive device.

まず特許文献1の一つのモータに対する周波数特性測定方法を、同期駆動装置にそのまま適用すると、例えば前記X−Yテーブルの場合、X軸の重心回りの回転モーメントによる共振現象が、Y1軸またはY2軸の周波数特性にあらわれてしまう。   First, when the frequency characteristic measurement method for one motor of Patent Document 1 is applied to a synchronous drive device as it is, for example, in the case of the XY table, the resonance phenomenon caused by the rotational moment around the center of gravity of the X axis is the Y1 axis or Y2 axis. It appears in the frequency characteristics.

また特許文献2の方式を同期駆動方式の装置に適用する場合、まず周波数特性測定時にも複数軸間の完全な同期性が保たれていることが、暗黙の前提となる。しかし同期駆動時と異なる指令の与え方や、制御方式で実行される周波数特性測定では、各軸間が非同期であったり、各軸個別にしか起動できなかったりする場合が多い。指令入力に複数軸間のずれがあると、遅延時間の逆数の1/2倍、3/2倍、…、(2n−1)/2倍(nは正の
整数)の周波数で応答出力が打ち消しあう偽のノッチ特性が表れ、同期駆動時の正しい周波数特性を得ることはできない。さらに特許文献2では、さまざまな指令入力手段と、さまざまな応答出力の組み合わせ手段で、さまざまな共振周波数の結果が得られるが、実際の同期駆動時と一致する特性がどれかは特定できない。
In addition, when the method of Patent Document 2 is applied to an apparatus of a synchronous drive system, it is an implicit assumption that perfect synchrony between a plurality of axes is maintained even when measuring frequency characteristics. However, in the case of giving a command different from that at the time of synchronous driving and the frequency characteristic measurement executed by the control method, the axes are often asynchronous or can only be activated individually. If there is a deviation between multiple axes in the command input, response output is generated at a frequency of 1/2 times, 3/2 times, ..., (2n-1) / 2 times (n is a positive integer) of the reciprocal of the delay time. A false notch characteristic that cancels out appears, and a correct frequency characteristic during synchronous driving cannot be obtained. Furthermore, in Patent Document 2, various resonance frequency results can be obtained by various command input means and various response output combination means, but it is not possible to specify which characteristic coincides with the actual synchronous drive.

本発明は上記従来の課題を解決するものであり、同期駆動装置において、個々の測定が非同期の場合でも、実際に同期駆動した場合の周波数特性を、正しく測定する手段を提供するものである。   The present invention solves the above-described conventional problems, and provides a means for correctly measuring frequency characteristics in a synchronous driving apparatus even when individual measurements are asynchronous even when the synchronous driving is actually performed.

上記課題を解決するために、請求項1に記載の同期駆動装置は、物体の重心回りの回転モーメントが0となる複数のモータ駆動装置への非回転指令入力を事前計算する非回転指令生成器と、周波数特性測定時に前記非回転指令入力をモータ駆動装置に対し一度に一つずつ与える指令発生器と、前記非回転指令入力に対するモータの応答出力を、一つずつ個別に記憶する応答記憶器を備え、測定完了後に記憶された、非回転指令入力と非回転指令入力に対する応答出力との間の遅延時間を補正して補正後出力を得る出力補正器と、モータ毎に複数の補正後出力を加算し、これと前記モータを直接駆動するモータ駆動装置への指令入力から、周波数応答特性を算出する周波数解析器を備える。 In order to solve the above problem, the synchronous drive device according to claim 1 is a non-rotation command generator that pre-calculates non-rotation command inputs to a plurality of motor drive devices in which the rotational moment about the center of gravity of the object is zero. A command generator that gives the non-rotation command input to the motor drive device one at a time when measuring frequency characteristics, and a response memory that individually stores the motor response outputs to the non-rotation command input one by one An output corrector that corrects the delay time between the non-rotation command input and the response output to the non-rotation command input stored after the measurement is completed, and obtains a corrected output, and a plurality of corrected outputs for each motor. And a frequency analyzer that calculates frequency response characteristics from a command input to the motor drive device that directly drives the motor.

また請求項2に記載の同期駆動装置は、前記非回転指令入力として、同一の平均値0のM系列信号を基準指令とし、振幅だけを複数のモータ駆動装置で変えて、重心回りの回転モーメントが0となるようにすることを特徴とする。   Further, the synchronous drive device according to claim 2 uses the same M-sequence signal having the same average value 0 as a reference command as the non-rotation command input, changes only the amplitude by a plurality of motor drive devices, and rotates around the center of gravity. Is set to be zero.

また請求項3に記載の同期駆動装置は、前記出力補正器は、個別に記憶された応答出力に対し、同じ非回転指令入力に対する応答出力間で相互相関関数を求め、その最大または最小値から応答出力の遅延時間を判定し、応答出力を補正することを特徴とする。   Further, in the synchronous drive device according to claim 3, the output corrector obtains a cross-correlation function between response outputs for the same non-rotation command input with respect to individually stored response outputs, and determines from the maximum or minimum value thereof. The delay time of the response output is determined, and the response output is corrected.

請求項1に記載の同期駆動装置によれば、同期駆動対象を回転させない非回転指令入力を用いることで、指令入力をモータ駆動装置に対し一度に一つずつ与えた場合のモータ応答出力にあらわれる、回転モーメントによる共振特性を、周波数解析器での補正後出力の加算により打ち消すことができる。また同期性が確保できないモータ駆動装置においても、出力補正器による遅延補償が働くため、測定結果の遅延による周波数特性の歪みを回避することができる。   According to the synchronous drive device of the first aspect, by using the non-rotation command input that does not rotate the synchronous drive target, the command response appears when the command input is given to the motor drive device one at a time. The resonance characteristics due to the rotational moment can be canceled by adding the corrected output by the frequency analyzer. Even in a motor drive device in which synchronization cannot be ensured, delay compensation by the output corrector works, so that it is possible to avoid distortion of frequency characteristics due to delay in measurement results.

請求項2に記載の同期駆動装置によれば、M系列信号を用いることで広帯域の周波数特性測定を短時間で測定することができる。   According to the synchronous drive device of the second aspect, the broadband frequency characteristic measurement can be measured in a short time by using the M-sequence signal.

請求項3に記載の同期駆動装置によれば、測定結果の遅延が不明な場合も、測定データから正確な遅延時間を割り出すことができ、高い周波数まで周波数特性の信頼性を確保できる。   According to the synchronous drive device of the third aspect, even when the delay of the measurement result is unknown, the accurate delay time can be determined from the measurement data, and the reliability of the frequency characteristics can be ensured up to a high frequency.

本発明における同期駆動装置の構成図Configuration diagram of synchronous drive device in the present invention 本発明における周波数特性測定時の周波数特性解析装置およびモータ駆動装置のブロック図Block diagram of a frequency characteristic analyzing apparatus and motor driving apparatus when measuring frequency characteristics in the present invention 本発明の指令入力と応答出力および補正出力のタイミングチャートTiming chart of command input, response output and correction output of the present invention

(実施の形態1)
まず図1に示す同期駆動装置の構成図について説明する。
(Embodiment 1)
First, a configuration diagram of the synchronous drive device shown in FIG. 1 will be described.

ガントリー構成の同期駆動装置を示しており、ヘッドを直接駆動するX軸を、2軸のY1軸・Y2軸で同期駆動している。各軸はボールねじ、モータ、検出器、モータ駆動装置から構成される。同期駆動時は、上位コントローラからの指令入力を受けたモータ駆動装置は、指令通りにモータを駆動し、モータの状態を検出する検出器で応答出力を上位コントローラに返す。これらの同期データの流れは実線の矢印で示されている。   A synchronous drive device having a gantry configuration is shown, and the X axis for directly driving the head is synchronously driven by two Y1 axes and Y2 axes. Each shaft is composed of a ball screw, a motor, a detector, and a motor driving device. At the time of synchronous driving, the motor driving device that has received a command input from the host controller drives the motor according to the command and returns a response output to the host controller by a detector that detects the motor state. The flow of these synchronization data is indicated by solid arrows.

図2に周波数特性測定時の周波数特性解析装置およびモータ駆動装置のブロック図を示す。   FIG. 2 shows a block diagram of the frequency characteristic analyzing apparatus and the motor driving apparatus when measuring the frequency characteristics.

周波数特性解析装置1では、まず非回転指令生成器11で、X軸6の重心まわりのモーメントが0となるような、Y1軸41およびY2軸42への非回転指令を計算する。この非回転指令は、例えばX軸6の重心がY1軸41およびY2軸42から等距離の線上にある場合は、Y1軸41およびY2軸42を常に同じトルクで駆動すれば実現できる。また重心がどちらかに偏る場合にも、各軸と重心間の距離に各軸トルク指令を乗じたもの、すなわちX軸重心回りのモーメントが、大きさ同じで逆向きとなるように、各軸トルク指令を設定すればよい。   In the frequency characteristic analyzing apparatus 1, first, the non-rotation command generator 11 calculates a non-rotation command to the Y1 axis 41 and the Y2 axis 42 so that the moment around the center of gravity of the X axis 6 becomes zero. For example, when the center of gravity of the X axis 6 is on a line equidistant from the Y1 axis 41 and the Y2 axis 42, this non-rotation command can be realized by always driving the Y1 axis 41 and the Y2 axis 42 with the same torque. In addition, even when the center of gravity is biased to either direction, the distance between each axis and the center of gravity is multiplied by each axis torque command. A torque command may be set.

なお一般に周波数特性測定では低周波数から高周波数の広い範囲にわたって、一定のパワーを持つ入力を印加する必要があるため、一定周波数帯域の正弦波をベースとしたSweptSine波や、全周波数域に渡って均一なホワイトノイズに近い特性をもつM系列信号などが、指令入力として用いられる。この場合もその振幅を前記の方針で決定することで、X軸6の重心まわりのモーメントが常に0となる非回転指令を生成できる。   In general, in frequency characteristic measurement, it is necessary to apply an input having a constant power over a wide range from a low frequency to a high frequency. Therefore, a sweep sine wave based on a sine wave in a constant frequency band or over the entire frequency range. An M-sequence signal having a characteristic close to uniform white noise is used as a command input. Also in this case, a non-rotation command in which the moment around the center of gravity of the X axis 6 is always zero can be generated by determining the amplitude according to the above policy.

この非回転指令を指令発生器12に入力する。指令発生器12は、同期駆動するモータ駆動装置に対し、一度に一つずつ非回転指令を与える。図2の例では同期駆動するモータ駆動装置は2つなので、非回転指令のY1軸成分をY1軸指令発生器211に与え、Y2軸指令発生器221には0を与える場合と、Y1軸指令発生器211に0を与え、Y2軸指令発生器221に非回転指令のY2軸成分を与える場合の2通りのパターンがある。   This non-rotation command is input to the command generator 12. The command generator 12 gives a non-rotation command one at a time to the motor drive device that drives synchronously. In the example of FIG. 2, since there are two motor drive devices that are synchronously driven, the Y1 axis component of the non-rotation command is given to the Y1 axis command generator 211, and 0 is given to the Y2 axis command generator 221; There are two patterns when 0 is given to the generator 211 and the Y2 axis component of the non-rotation command is given to the Y2 axis command generator 221.

応答記憶器13は、指令発生器12が印加する指令パターンに対する、Y1軸検出器51およびY2軸検出器52の2通りの出力を個別に保存する。したがって指令入力と応答出力の組み合わせで4通りの応答が記憶されることになる。   The response memory 13 individually stores two outputs of the Y1-axis detector 51 and the Y2-axis detector 52 for the command pattern applied by the command generator 12. Therefore, four types of responses are stored by combining the command input and the response output.

図3の左側に指令入力と応答記憶のタイミングチャートを示す。この例では単軸に対する周波数特性測定機能を用いることをイメージしているため、Y1軸への指令生成とY1軸の応答測定、およびY2軸への指令生成とY2軸の自軸応答測定は、完全に同期していると考える。しかしY1軸への指令生成とY2軸の応答測定、およびY2軸への指令生成とY1軸の応答測定は、軸間では非同期なので、毎回では異なった遅延時間で応答出力データが得られることになる。   A timing chart of command input and response storage is shown on the left side of FIG. In this example, it is assumed that the frequency characteristic measurement function for a single axis is used, so command generation to the Y1 axis and response measurement of the Y1 axis, and command generation to the Y2 axis and self axis response measurement of the Y2 axis are Think of it as completely synchronized. However, since the command generation to the Y1 axis and the response measurement of the Y2 axis, and the command generation to the Y2 axis and the response measurement of the Y1 axis are asynchronous between the axes, response output data can be obtained with different delay times each time. Become.

出力補正器14は、この遅延時間の補正を行う。図3の右側のように出力補正を必要とする、非回転指令と応答出力が異なる軸の場合に、遅延時間の分だけ応答出力データを進めるまたは遅らせて、空いた時間は0を追加した補正後応答出力を生成する。   The output corrector 14 corrects this delay time. When the non-rotation command and response output are different axes that require output correction as shown on the right side of FIG. 3, the response output data is advanced or delayed by the delay time, and 0 is added to the free time. Generate post-response output.

なお遅延時間については、Y1軸に対する指令入力とY2軸に対する指令入力の出力タイミングの差を周波数特性解析装置側でタイマやカウンタで測定してもよい。   As for the delay time, the difference in output timing between the command input for the Y1 axis and the command input for the Y2 axis may be measured by a timer or counter on the frequency characteristic analyzer side.

また同じ非回転指令に対応する指令同期の応答出力と、指令非同期の応答出力について
、遅延時間の関数である相補相関関数を計算することで、その最大値あるいは最小値から遅延時間を推定できる。また相補相関関数の絶対値が最大となるのが、最小値の方か最大値の方かから、応答出力の反転・非反転を判別することもできる。
Further, by calculating a complementary correlation function that is a function of the delay time for the command synchronous response output and the command asynchronous response output corresponding to the same non-rotation command, the delay time can be estimated from the maximum value or the minimum value. It is also possible to determine whether the response output is inverted or non-inverted based on whether the absolute value of the complementary correlation function is the maximum or the minimum value.

最後に周波数解析器15は、Y1軸が非反転入力時のY1軸応答出力と、Y2軸が非反転入力時のY1軸補正後応答出力を加算した出力と、非回転指令生成器11からのY1軸非反転指令とY2軸非反転指令を加算した入力を、個々にFFT変換し、出力のFFT変換結果(複素数)を入力のFFT変換結果(複素数)で除することで、同期駆動時の周波数特性を正確に算出することができる。   Finally, the frequency analyzer 15 adds the Y1 axis response output when the Y1 axis is non-inverting input, the output obtained by adding the Y1 axis corrected response output when the Y2 axis is non-inverting input, and the non-rotation command generator 11 Inputs obtained by adding the Y1-axis non-inversion command and the Y2-axis non-inversion command are individually subjected to FFT conversion, and the output FFT conversion result (complex number) is divided by the input FFT conversion result (complex number). The frequency characteristic can be accurately calculated.

以上、本発明の同期駆動装置は、同期駆動装置において、個々の測定に完全な同期性が得られない場合でも、実際に同期駆動した場合の周波数特性を、正しく測定する手段を提供するものである。   As described above, the synchronous drive device of the present invention provides a means for correctly measuring the frequency characteristics when the synchronous drive is actually synchronously driven, even when perfect synchronization is not obtained in each measurement. is there.

1 周波数特性解析装置
11 非回転指令生成器
12 指令発生器
13 応答記憶器
14 出力補正器
15 周波数解析器
2 モータ駆動装置
21 Y1軸モータ駆動装置
211 Y1軸指令発生器
212 Y1軸応答記憶器
22 Y2軸モータ駆動装置
221 Y2軸指令発生器
222 Y2軸応答記憶器
3 モータ
31 Y1軸モータ
32 Y2軸モータ
4 Y軸
41 Y1軸
42 Y2軸
5 検出器
51 Y1軸検出器
52 Y2軸検出器
6 X軸
DESCRIPTION OF SYMBOLS 1 Frequency characteristic analyzer 11 Non-rotation command generator 12 Command generator 13 Response memory 14 Output corrector 15 Frequency analyzer 2 Motor drive device 21 Y1 axis motor drive device 211 Y1 axis command generator 212 Y1 axis response memory 22 Y2 axis motor drive device 221 Y2 axis command generator 222 Y2 axis response memory 3 Motor 31 Y1 axis motor 32 Y2 axis motor 4 Y axis 41 Y1 axis 42 Y2 axis 5 Detector 51 Y1 axis detector 52 Y2 axis detector 6 X axis

Claims (3)

体を同一方向に駆動する複数のモータと、この複数のモータのそれぞれのモータを制御する複数のモータ駆動装置を含む同期駆動装置において、前記物体の重心回りの回転モーメントが0となる前記複数のモータ駆動装置への非回転指令入力を事前計算する非回転指令生成器を備え、それぞれの前記モータ駆動装置に対し、周波数特性測定時に前記非回転指令入力を一度に一つずつ与える指令発生器と、前記非回転指令入力に対する前記モータの応答出力を一つずつ個別に記憶する応答記憶器を有し、測定完了後に記憶された、前記非回転指令入力と前記非回転指令入力に対する前記応答出力との間の遅延時間を補正して補正後出力を得る出力補正器と、前記モータ毎に複数の補正後出力を加算し、これと前記モータを直接駆動する前記モータ駆動装置への指令入力から、周波数応答特性を算出する周波数特性解析器を備えることを特徴とする同期駆動装置。 A plurality of motors for driving the object body in the same direction, the plurality in the synchronous drive system including a plurality of motor drive device for controlling the respective motors of the plurality of motors, the center of gravity about the rotational moment of the object becomes 0 A non-rotation command generator that pre-calculates non-rotation command input to the motor drive device of the motor, and a command generator that gives the non-rotation command input to the motor drive devices one at a time when measuring frequency characteristics And a response storage device for individually storing the response outputs of the motor for the non-rotation command input one by one, and the response output for the non-rotation command input and the non-rotation command input stored after completion of the measurement. the motor delay and time correction to the corrected output corrector to obtain an output, and adding a plurality of corrected output for each of the motor, to drive the motor and this directly between the From the command input to the motor driving device, synchronous drive apparatus comprising: a frequency characteristic analyzer for calculating the frequency response characteristic. 前記非回転指令入力として、同一の平均値0のM系列信号を基準指令とし、振幅だけを複数のモータ駆動装置で変えて、重心回りの回転モーメントが0となるようにすることを特徴とする請求項1記載の同期駆動装置。 As the non-rotation command input, the same M-sequence signal having an average value of 0 is used as a reference command, and only the amplitude is changed by a plurality of motor driving devices so that the rotational moment around the center of gravity becomes zero. The synchronous drive device according to claim 1. 前記出力補正器は、個別に記憶された応答出力に対し、同じ非回転指令入力に対する応答出力間で相互相関関数を求め、その最大または最小値から応答出力の遅延時間を判定し、応答出力を補正することを特徴とする請求項1記載の同期駆動装置。 The output corrector obtains a cross-correlation function between response outputs for the same non-rotation command input with respect to individually stored response outputs, determines a delay time of the response output from the maximum or minimum value, and outputs the response output. The synchronous drive device according to claim 1, wherein correction is performed.
JP2012174643A 2012-08-07 2012-08-07 Synchronous drive Active JP6074614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012174643A JP6074614B2 (en) 2012-08-07 2012-08-07 Synchronous drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012174643A JP6074614B2 (en) 2012-08-07 2012-08-07 Synchronous drive

Publications (2)

Publication Number Publication Date
JP2014036449A JP2014036449A (en) 2014-02-24
JP6074614B2 true JP6074614B2 (en) 2017-02-08

Family

ID=50285140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012174643A Active JP6074614B2 (en) 2012-08-07 2012-08-07 Synchronous drive

Country Status (1)

Country Link
JP (1) JP6074614B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996148B1 (en) * 2015-04-23 2016-09-21 三菱電機株式会社 Multi-axis control system setting adjustment support device
CN106911268B (en) * 2015-12-21 2019-06-04 施耐德电气工业公司 For controlling the method and system of motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139039U (en) * 1989-04-20 1990-11-20
JP4501368B2 (en) * 2003-06-27 2010-07-14 株式会社安川電機 Multi-inertia machine model estimation device for motor control device and motor control device
JP2006333594A (en) * 2005-05-25 2006-12-07 Yaskawa Electric Corp Mechanical characteristic modeling apparatus and method, motor controller, and machine control system

Also Published As

Publication number Publication date
JP2014036449A (en) 2014-02-24

Similar Documents

Publication Publication Date Title
US8531141B2 (en) System for calibrating an electrical control system
JP5933844B2 (en) Angular error correction device and angular error correction method for position detector
US20130106332A1 (en) Current Sensor Error Compensation
WO2016117029A1 (en) Angle error correction device for position detector and angle error correction method
Zhong et al. Vision-based measurement system for instantaneous rotational speed monitoring using linearly varying-density fringe pattern
JP2019066479A (en) Calibration of magnetometer system
JP6074614B2 (en) Synchronous drive
JP2014139561A (en) Angular velocity sensor calibration device and calibration method for the same
JP2008272900A (en) Oscillation state measuring method at machining stage of work and/or tool
WO2019084807A1 (en) Method and device for acquiring mechanical position of electric motor
JP2010158123A (en) Controller of electric motor
US10801863B2 (en) High speed AC sensor phase measurement
JP5865059B2 (en) Waveform measuring instrument
US20200225062A1 (en) High speed ac input sensor conversion
TW201720044A (en) Driving method for AC motor and motor driving apparatus using the same
JP5251768B2 (en) Test apparatus and test method
JP6452232B2 (en) Magnet analyzer
Babel et al. Parametric sensitivity in the analysis and control of permanent magnet synchronous machines
JP4631615B2 (en) Surface acoustic wave propagation state measuring device, surface acoustic wave propagation state measuring method, environment change measuring device, environment change measuring method, and multi-round surface acoustic wave element
Coenen et al. Evaluating the influence of manufacturing tolerances in permanent magnet synchronous machines
CN114930712A (en) Method and system for calibrating a control device of an electric machine
JP2011089926A (en) Signal analyzer, scanning white color interferometer, signal analyzing method, and signal analyzing program
JP6214480B2 (en) Frequency response measuring device
JP2010164357A (en) Device for measuring amount of eccentricity in rotor
JP2010172187A (en) Inverter testing device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150716

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R151 Written notification of patent or utility model registration

Ref document number: 6074614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151