TW201720044A - Driving method for AC motor and motor driving apparatus using the same - Google Patents

Driving method for AC motor and motor driving apparatus using the same Download PDF

Info

Publication number
TW201720044A
TW201720044A TW104140746A TW104140746A TW201720044A TW 201720044 A TW201720044 A TW 201720044A TW 104140746 A TW104140746 A TW 104140746A TW 104140746 A TW104140746 A TW 104140746A TW 201720044 A TW201720044 A TW 201720044A
Authority
TW
Taiwan
Prior art keywords
motor
driving
parameter
phase
voltage
Prior art date
Application number
TW104140746A
Other languages
Chinese (zh)
Other versions
TWI577127B (en
Inventor
何志明
王廣塔
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Application granted granted Critical
Publication of TWI577127B publication Critical patent/TWI577127B/en
Publication of TW201720044A publication Critical patent/TW201720044A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A driving method for an AC motor and a motor driving apparatus using the same are provided. The driving method for the AC motor includes following steps: generating a three-phase driving voltage to drive the AC motor according to a rotating speed setting and a preset driving parameter; respectively superposing disturbance values with different polarity onto the preset driving parameter during a mechanical period, so as to disturb a phase angle of the three-phase driving voltage; detecting an operational status of the disturbed AC motor, so as to generate an output data; calculating operation efficiencies of the AC motor applied the disturbance values with the different polarity according to the output data; and comparing the operation efficiencies, so as to select the parameter setting corresponding to the higher efficiency as a current setting of the preset driving parameter.

Description

交流馬達的驅動方法及應用其之馬達驅動裝置 Driving method of AC motor and motor driving device using same

本發明是有關於一種馬達驅動技術,且特別是有關於一種交流馬達的驅動方法及應用其之馬達驅動裝置。 The present invention relates to a motor driving technique, and more particularly to a driving method of an AC motor and a motor driving device using the same.

交流馬達具有成本低、效率及可靠性高等優點,基於這些優點及變頻技術的快速發展,由交流馬達及馬達驅動裝置/變頻器所構成的變頻馬達系統正在全面地取代直流馬達系統。 AC motors have the advantages of low cost, high efficiency and high reliability. Based on these advantages and the rapid development of frequency conversion technology, the variable frequency motor system consisting of AC motor and motor drive/inverter is completely replacing the DC motor system.

在交流馬達的控制中,為了可令交流馬達具有較佳的工作效率,設計者會致力於最佳化馬達驅動裝置的控制手段,使得交流馬達可在各種速度與轉矩下皆可運行在最佳工作效率上。 In the control of the AC motor, in order to make the AC motor have better working efficiency, the designer will work to optimize the control method of the motor drive device, so that the AC motor can run at most speeds and torques. Good work efficiency.

然而,在現今的馬達驅動裝置的最佳化控制手段中,針對不同類型的交流馬達應用需要採用對應的最佳效率跟蹤手段,而所述最佳效率跟蹤手段通常需要設計者耗費時間製作驅動參數與工作效率之對應關係的查找表,或是需要特定的負載測試設備才能實現。此外,現有的最佳化效率跟蹤手段通常會受到交流馬 達的規格參數隨運作狀態發生改變而造成的跟蹤錯誤。 However, in the current optimization control method of the motor drive device, corresponding optimal efficiency tracking means is required for different types of AC motor applications, and the optimal efficiency tracking means usually requires the designer to spend time making the drive parameters. A lookup table that corresponds to work efficiency or that requires a specific load test equipment. In addition, the existing optimization efficiency tracking methods are usually subject to exchange horses. Tracking errors caused by changes in the specifications of the operating parameters.

本發明提供一種交流馬達的驅動方法及應用其之馬達驅動裝置,其可依據交流馬達的運作狀態動態地調整三相驅動電壓,藉以針對任何類型之交流馬達,皆可實現最佳工作效率的自動跟蹤。 The invention provides a driving method of an alternating current motor and a motor driving device using the same, which can dynamically adjust a three-phase driving voltage according to an operating state of the alternating current motor, thereby realizing an optimum working efficiency for any type of alternating current motor. track.

本發明的交流馬達的驅動方法包括以下步驟:依據轉速設定值與預設驅動參數產生三相驅動電壓來驅動交流馬達;在一機械週期中,以不同極性之擾動量分別疊加於預設驅動參數,藉以擾動三相驅動電壓的相位角度;檢測擾動後的交流馬達的運作狀態,並據以產生輸出數據;依據輸出數據計算交流馬達於施加不同極性之擾動量時的工作效率;以及比較所述工作效率,藉以選取其中較高者所對應之參數設定值作為當前的預設驅動參數的設定值。 The driving method of the AC motor of the present invention comprises the steps of: generating a three-phase driving voltage according to the rotation speed setting value and the preset driving parameter to drive the AC motor; in a mechanical cycle, respectively, the disturbance amounts of different polarities are superimposed on the preset driving parameters respectively. , by which the phase angle of the three-phase driving voltage is disturbed; detecting the operating state of the disturbed AC motor, and generating output data according to the output data; calculating the working efficiency of the AC motor when applying the disturbance amount of different polarities according to the output data; The working efficiency is used to select the parameter setting value corresponding to the higher one as the setting value of the current preset driving parameter.

在本發明一實施例中,所述交流馬達的驅動方法更包括:在下一機械週期中,交換所述不同極性之擾動量的施加順序。 In an embodiment of the invention, the driving method of the alternating current motor further comprises: exchanging an application sequence of the disturbance amounts of the different polarities in a next mechanical cycle.

在本發明一實施例中,以不同極性之擾動量分別疊加於預設驅動參數,藉以擾動三相驅動電壓的相位角度的步驟包括:將第一擾動量疊加至預設驅動參數以產生第一控制參數;以及將極性相反於第一擾動量的第二擾動量疊加至預設驅動參數以產生第二控制參數。 In an embodiment of the invention, the disturbing amounts of different polarities are respectively superimposed on the preset driving parameters, and the step of disturbing the phase angle of the three-phase driving voltage comprises: superimposing the first disturbance amount on the preset driving parameters to generate the first And controlling a parameter; and superimposing a second disturbance amount having a polarity opposite to the first disturbance amount to a preset drive parameter to generate a second control parameter.

在本發明一實施例中,計算交流馬達於施加不同極性之擾動量時的工作效率的步驟包括:依據對應於第一控制參數的輸出數據計算第一工作效率;以及依據對應於第二控制參數的輸出數據計算第二工作效率。 In an embodiment of the invention, the step of calculating the working efficiency of the AC motor when applying the disturbance amount of different polarities comprises: calculating the first working efficiency according to the output data corresponding to the first control parameter; and according to the corresponding second control parameter The output data calculates the second work efficiency.

在本發明一實施例中,比較所述工作效率,藉以選取其中較高者所對應之參數設定值作為當前的預設驅動參數的設定值的步驟包括:當第一工作效率大於第二工作效率時,將第一控制參數設定為預設驅動參數;以及當第一工作效率小於第二工作效率時,將第二控制參數設定為預設驅動參數。 In an embodiment of the present invention, the step of selecting the parameter setting value corresponding to the higher one as the setting value of the current preset driving parameter by comparing the working efficiency includes: when the first working efficiency is greater than the second working efficiency And setting the first control parameter to the preset driving parameter; and setting the second control parameter to the preset driving parameter when the first working efficiency is less than the second working efficiency.

在本發明一實施例中,依據轉速設定值與預設驅動參數產生三相驅動電壓來驅動交流馬達的步驟包括:依據轉速設定值以及交流馬達的轉子速度產生定子電壓設定值;依據預設驅動參數與轉子運轉資訊產生相位角度設定值以及依據定子電壓設定值與相位角度設定值將直流鏈電壓與直流鏈電流轉換為三相驅動電壓。 In an embodiment of the invention, the step of generating a three-phase driving voltage to drive the alternating current motor according to the set value of the rotating speed and the preset driving parameter comprises: generating a stator voltage setting value according to the set value of the rotating speed and the rotor speed of the alternating current motor; The parameter and rotor operation information generate a phase angle setting value and convert the DC link voltage and the DC link current into a three-phase driving voltage according to the stator voltage setting value and the phase angle setting value.

在本發明一實施例中,檢測擾動後的交流馬達的運作狀態,並據以產生輸出數據的步驟包括:取樣直流鏈電壓與直流鏈電流;從交流馬達接收多個霍爾訊號,以依據所述多個霍爾訊號定義交流馬達的轉子位置;以及依據轉子位置計算交流馬達的轉子速度。 In an embodiment of the invention, the step of detecting the operating state of the disturbed AC motor and generating the output data includes: sampling the DC link voltage and the DC link current; receiving a plurality of Hall signals from the AC motor to The plurality of Hall signals define the rotor position of the AC motor; and calculate the rotor speed of the AC motor based on the rotor position.

在本發明一實施例中,所述工作效率是基於轉子速度、直流鏈電壓以及直流鏈電流所計算出。 In an embodiment of the invention, the operating efficiency is calculated based on rotor speed, DC link voltage, and DC link current.

在本發明一實施例中,取樣直流鏈電壓與直流鏈電流的步驟包括:在機械週期中的多個不同時間點下取樣直流鏈電流之電流值;以及計算所述多個電流值之平均以作為計算所述工作效率的基礎。 In an embodiment of the invention, the step of sampling the DC link voltage and the DC link current comprises: sampling a current value of the DC link current at a plurality of different time points in the mechanical cycle; and calculating an average of the plurality of current values to As a basis for calculating the efficiency of the work.

在本發明一實施例中,交流馬達包括多個霍爾感測器,所述多個電流值之取樣點數量係依據交流馬達的極對數與所述多個霍爾感測器的數量所決定。 In an embodiment of the invention, the AC motor includes a plurality of Hall sensors, and the number of sampling points of the plurality of current values is determined according to the number of pole pairs of the AC motor and the number of the plurality of Hall sensors. .

在本發明一實施例中,取樣所述多個電流值之時間點係依據所述多個霍爾感測器所發出的霍爾訊號的脈衝沿所決定。 In an embodiment of the invention, the time point for sampling the plurality of current values is determined according to a pulse edge of the Hall signal emitted by the plurality of Hall sensors.

在本發明一實施例中,所述的交流馬達的驅動方法更包括:在疊加擾動量於預設驅動參數,從而令三相驅動電壓的改變後,延遲預設期間再檢測擾動後的交流馬達的運作狀態。 In an embodiment of the present invention, the driving method of the AC motor further includes: after superimposing the disturbance amount on the preset driving parameter, thereby causing the change of the three-phase driving voltage, delaying the preset period and then detecting the disturbed AC motor. The state of operation.

在本發明一實施例中,交流馬達為永磁同步馬達,預設驅動參數為永磁同步馬達的定子電壓與轉子之間的夾角。 In an embodiment of the invention, the AC motor is a permanent magnet synchronous motor, and the preset driving parameter is an angle between a stator voltage of the permanent magnet synchronous motor and the rotor.

在本發明一實施例中,交流馬達為交流感應馬達,預設驅動參數為交流感應馬達的轉子頻率與定子頻率之間的轉差速度。 In an embodiment of the invention, the AC motor is an AC induction motor, and the preset driving parameter is a slip speed between the rotor frequency of the AC induction motor and the stator frequency.

本發明的馬達驅動裝置適於驅動交流馬達,並且包括三相電壓產生器、驅動控制器以及檢測電路。三相電壓產生器依據轉速設定值以及預設驅動參數產生三相驅動電壓以驅動交流馬達。驅動控制器耦接三相電壓產生器,用以依據交流馬達與三相電壓產生器的運作狀態產生預設驅動參數來調整三相驅動電壓的 相位角度。檢測電路耦接三相電壓產生器與驅動控制器,用以檢測交流馬達與三相電壓產生器的運作狀態,並據以產生輸出數據。在交流馬達的一機械週期中,驅動控制器以不同極性之擾動量分別疊加於預設驅動參數,藉以擾動三相驅動電壓的相位角度,並且依據輸出數據計算交流馬達於施加不同極性之擾動量時的工作效率,再比較所述工作效率,藉以選取工作效率較高之參數設定值作為當前的預設驅動參數的設定值。 The motor driving device of the present invention is adapted to drive an AC motor and includes a three-phase voltage generator, a drive controller, and a detection circuit. The three-phase voltage generator generates a three-phase driving voltage to drive the AC motor according to the speed setting value and the preset driving parameter. The driving controller is coupled to the three-phase voltage generator for adjusting the three-phase driving voltage according to the operating state of the alternating current motor and the three-phase voltage generator to generate a preset driving parameter. Phase angle. The detecting circuit is coupled to the three-phase voltage generator and the driving controller for detecting the operating state of the AC motor and the three-phase voltage generator, and generating output data accordingly. In a mechanical cycle of the AC motor, the drive controller is superimposed on the preset drive parameters with different polarity disturbances, thereby disturbing the phase angle of the three-phase drive voltage, and calculating the disturbance amount of the AC motor to apply different polarities according to the output data. The working efficiency of the time is compared with the working efficiency, so that the parameter setting value with higher working efficiency is selected as the setting value of the current preset driving parameter.

在本發明一實施例中,驅動控制器在下一機械週期中交換所述不同極性之擾動量的施加順序。 In an embodiment of the invention, the drive controller exchanges the order of application of the disturbance amounts of the different polarities in the next mechanical cycle.

在本發明一實施例中,驅動控制器將第一擾動量疊加至預設驅動參數以產生第一控制參數,使得檢測電路檢測出對應於第一控制參數的輸出數據,驅動控制器依據對應於第一控制參數的輸出數據計算第一工作效率。 In an embodiment of the invention, the driving controller superimposes the first disturbance amount to the preset driving parameter to generate the first control parameter, so that the detecting circuit detects the output data corresponding to the first control parameter, and the driving controller according to the corresponding The output data of the first control parameter calculates the first work efficiency.

在本發明一實施例中,驅動控制器將極性相反於第一擾動量的第二擾動量疊加至預設驅動參數以產生第二控制參數,使得檢測電路檢測出對應於第二控制參數的輸出數據,驅動控制器依據對應於第二控制參數的輸出數據計算第二工作效率。 In an embodiment of the invention, the driving controller superimposes the second disturbance amount having a polarity opposite to the first disturbance amount to the preset driving parameter to generate the second control parameter, so that the detecting circuit detects the output corresponding to the second control parameter. Data, the drive controller calculates the second work efficiency according to the output data corresponding to the second control parameter.

在本發明一實施例中,當驅動控制器判定第一工作效率大於第二工作效率時,驅動控制器將第一控制參數設定為預設驅動參數,以及當驅動控制器判定第一工作效率小於第二工作效率時,驅動控制器將第二控制參數設定為預設驅動參數。 In an embodiment of the invention, when the driving controller determines that the first working efficiency is greater than the second working efficiency, the driving controller sets the first control parameter as the preset driving parameter, and when the driving controller determines that the first working efficiency is less than In the second working efficiency, the drive controller sets the second control parameter as the preset driving parameter.

在本發明一實施例中,驅動控制器依據預設驅動參數與 轉子運轉資訊產生相位角度設定值。 In an embodiment of the invention, the driving controller is based on the preset driving parameters and The rotor operation information produces a phase angle setting.

在本發明一實施例中,三相電壓產生裝置係依據轉速設定值以及交流馬達的轉子速度產生定子電壓設定值,並且三相電壓產生裝置依據定子電壓設定值與相位角度設定值將直流鏈電壓與直流鏈電流轉換為三相驅動電壓。 In an embodiment of the invention, the three-phase voltage generating device generates the stator voltage setting value according to the speed setting value and the rotor speed of the AC motor, and the three-phase voltage generating device sets the DC link voltage according to the stator voltage setting value and the phase angle setting value. The DC link current is converted to a three-phase drive voltage.

在本發明一實施例中,檢測電路取樣直流鏈電壓與直流鏈電流,從交流馬達接收多個霍爾訊號,以依據所述多個霍爾訊號定義交流馬達的轉子位置,並且依據轉子位置計算轉子速度。 In an embodiment of the invention, the detecting circuit samples the DC link voltage and the DC link current, and receives a plurality of Hall signals from the AC motor to define the rotor position of the AC motor according to the plurality of Hall signals, and calculates the rotor position according to the rotor position. Rotor speed.

在本發明一實施例中,驅動控制器基於轉子速度、直流鏈電壓以及直流鏈電流計算所述工作效率。 In an embodiment of the invention, the drive controller calculates the operating efficiency based on the rotor speed, the DC link voltage, and the DC link current.

在本發明一實施例中,檢測電路係在機械週期中的多個不同時間點下取樣直流鏈電流之電流值,再計算所述多個電流值之平均以作為計算所述工作效率的基礎。 In an embodiment of the invention, the detection circuit samples the current value of the DC link current at a plurality of different time points in the mechanical cycle, and then calculates an average of the plurality of current values as a basis for calculating the working efficiency.

在本發明一實施例中,檢測電路會在驅動控制器疊加擾動量於預設驅動參數,從而令三相驅動電壓的相位角度改變後,延遲預設期間再檢測擾動後的交流馬達的運作狀態。 In an embodiment of the invention, the detecting circuit superimposes the disturbance state on the preset driving parameter, so that the phase angle of the three-phase driving voltage is changed, and then delays the preset period to detect the operating state of the disturbed AC motor. .

基於上述,本發明實施例提出一種交流馬達的驅動方法及應用其之馬達驅動裝置,其可透過類似擾動觀察法的方式計算出對應最佳工作效率的預設驅動參數,並據此控制提供給交流馬達的三相驅動電壓的相位角度,使得馬達驅動裝置在運作期間可自動地趨近於最佳的工作效率。同時,藉由所述驅動方法可適用於任何類型的交流馬達還可省去對負載測試設備的要求,並且避 免了最佳效率跟蹤可能會受到交流馬達的規格參數隨運作狀態發生改變而造成的跟蹤錯誤。 Based on the above, an embodiment of the present invention provides a driving method of an AC motor and a motor driving device using the same, which can calculate a preset driving parameter corresponding to an optimal working efficiency by means of a similar disturbance observation method, and provide control according to the The phase angle of the three-phase drive voltage of the AC motor allows the motor drive to automatically approach optimum operating efficiency during operation. At the same time, the driving method can be applied to any type of AC motor, and the requirements for the load testing device can be omitted and avoided. Eliminating the best efficiency tracking may result in tracking errors caused by changes in the operating parameters of the AC motor.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

10‧‧‧交流馬達 10‧‧‧AC motor

12‧‧‧霍爾感測器 12‧‧‧ Hall sensor

70‧‧‧永磁同步馬達 70‧‧‧ Permanent magnet synchronous motor

80‧‧‧交流感應馬達 80‧‧‧AC induction motor

100、700、800‧‧‧馬達驅動裝置 100, 700, 800‧‧‧ motor drive

110、710、810‧‧‧三相電壓產生器 110, 710, 810 ‧ ‧ three-phase voltage generator

120、720、820‧‧‧驅動控制器 120, 720, 820‧‧‧ drive controller

122‧‧‧參數優化跟蹤單元 122‧‧‧Parameter Optimization Tracking Unit

124、724、824‧‧‧相位角度計算單元 124, 724, 824‧‧‧ phase angle calculation unit

130、730、830‧‧‧檢測電路 130, 730, 830 ‧ ‧ detection circuit

712、812‧‧‧電源控制單元 712, 812‧‧‧Power Control Unit

714、814‧‧‧電源轉換單元 714, 814‧‧‧Power Conversion Unit

722‧‧‧效率優化角跟蹤單元 722‧‧‧Efficiency Optimized Angle Tracking Unit

822‧‧‧效率優化轉差跟蹤單元 822‧‧‧Efficiency-optimized slip tracking unit

732、832‧‧‧電源取樣單元 732, 832‧‧‧ power sampling unit

734、834‧‧‧轉速計算單元 734, 834‧‧‧Speed calculation unit

CP、CP1、CP2、CP3、CP4‧‧‧控制參數 CP, CP1, CP2, CP3, CP4‧‧‧ control parameters

EFF1、EFF2、EFF3、EFF4‧‧‧工作效率 EFF1, EFF2, EFF3, EFF4‧‧‧ work efficiency

HZ‧‧‧電壓頻率設定值 HZ‧‧‧voltage frequency setting

Iin‧‧‧直流鏈電流 Iin‧‧‧ DC link current

IP‧‧‧取樣電流值 I P ‧‧‧Sampling current value

MP1、MP2‧‧‧機械週期 MP1, MP2‧‧‧ mechanical cycle

OD、OD1、OD2、OD3、OD4‧‧‧輸出數據 OD, OD1, OD2, OD3, OD4‧‧‧ output data

PDP、PDP’、PDP”‧‧‧預設驅動參數 PDP, PDP', PDP" ‧‧‧Preset drive parameters

Pin‧‧‧直流電源 Pin‧‧‧DC power supply

RP‧‧‧轉子位置 RP‧‧‧Rotor position

RI‧‧‧轉子運轉資訊 RI‧‧‧Rotor operation information

RS‧‧‧轉子速度 RS‧‧‧Rotor speed

S210~S250、S302~S324、S232~S236、S2321~S2322‧‧‧步驟 S210~S250, S302~S324, S232~S236, S2321~S2322‧‧‧ steps

SA‧‧‧角度設定參數 SA‧‧‧ angle setting parameters

SPD‧‧‧轉速設定值 SPD‧‧‧Speed set value

SRDS‧‧‧轉差設定參數 SRDS‧‧‧ slip setting parameters

Sh‧‧‧霍爾訊號 Sh‧‧‧Hall Signal

VAMP‧‧‧電壓振幅設定值 VAMP‧‧‧Voltage amplitude setting

VANG‧‧‧相位角度設定值 VANG‧‧‧ phase angle setting

VTP‧‧‧三相驅動電壓 VTP‧‧‧ three-phase driving voltage

Vin‧‧‧直流鏈電壓 Vin‧‧‧ DC link voltage

VP‧‧‧取樣電壓值 V P ‧‧‧Sampling voltage value

VU、VV、VW‧‧‧相電壓 V U , V V , V W ‧‧‧ phase voltage

△D、△D1、△D2、+△D、-△D‧‧‧擾動量 △D, △D1, △D2, +△D, -△D‧‧‧ disturbance amount

圖1A與圖1B為本發明一實施例的馬達驅動裝置的示意圖。 1A and 1B are schematic views of a motor driving device according to an embodiment of the present invention.

圖2為本發明一實施例的交流馬達的驅動方法的步驟流程圖。 2 is a flow chart showing the steps of a driving method of an AC motor according to an embodiment of the present invention.

圖3為本發明另一實施例的交流馬達的驅動方法的步驟流程圖。 3 is a flow chart showing the steps of a driving method of an AC motor according to another embodiment of the present invention.

圖4為依照圖3之一實施例的交流馬達的驅動方法的驅動時序示意圖。 4 is a schematic diagram showing the driving sequence of the driving method of the alternating current motor according to an embodiment of FIG.

圖5為本發明一實施例的檢測交流馬達的運作狀態的步驟流程圖。 FIG. 5 is a flow chart showing the steps of detecting an operating state of an AC motor according to an embodiment of the present invention.

圖6為本發明一實施例的取樣直流鏈電流的步驟流程圖。 6 is a flow chart showing the steps of sampling a DC link current according to an embodiment of the present invention.

圖7為本發明一實施例之應用於永磁同步馬達的馬達驅動裝置的示意圖。 Fig. 7 is a schematic view of a motor driving device applied to a permanent magnet synchronous motor according to an embodiment of the present invention.

圖8為本發明一實施例之應用於交流感應馬達的馬達驅動裝置的示意圖。 Fig. 8 is a schematic view of a motor driving device applied to an AC induction motor according to an embodiment of the present invention.

為了使本揭露之內容可以被更容易明瞭,以下特舉實施例做為本揭露確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。 In order to make the disclosure of the present disclosure easier to understand, the following specific embodiments are examples of the disclosure that can be implemented. In addition, wherever possible, the same elements, components, and steps in the drawings and embodiments are used to represent the same or similar components.

圖1A為本發明一實施例的馬達驅動裝置的示意圖。請參照圖1A,本實施例的馬達驅動裝置100適於驅動交流馬達10。所述交流馬達10可例如為永磁同步馬達(包括表貼式永磁同步馬達以及內嵌式永磁同步馬達)或交流感應馬達,本發明不以此為限。此外,交流馬達10包括霍爾感測器12,其可偵測交流馬達的磁場變化並據以產生霍爾訊號Sh。 1A is a schematic view of a motor driving device according to an embodiment of the present invention. Referring to FIG. 1A, the motor driving device 100 of the present embodiment is adapted to drive the AC motor 10. The AC motor 10 can be, for example, a permanent magnet synchronous motor (including a surface-mounted permanent magnet synchronous motor and an in-line permanent magnet synchronous motor) or an AC induction motor, and the invention is not limited thereto. In addition, the AC motor 10 includes a Hall sensor 12 that detects a change in the magnetic field of the AC motor and generates a Hall signal Sh accordingly.

馬達驅動裝置100例如為變頻器(variable-frequency driver,VFD),其可用以產生一三相驅動電壓VTP(包括相電壓VU、VV及VW),並且依據轉速設定值SPD與其他控制參數來調整所產生的三相驅動電壓VTP的頻率與振幅,並據以控制交流馬達10的轉速與轉矩。 The motor driving device 100 is, for example, a variable-frequency driver (VFD), which can be used to generate a three-phase driving voltage VTP (including phase voltages V U , V V and V W ), and according to the speed setting value SPD and other controls The parameters are used to adjust the frequency and amplitude of the generated three-phase driving voltage VTP, and accordingly, the rotational speed and torque of the AC motor 10 are controlled.

在本實施例中,馬達驅動裝置100包括三相電壓產生器110、驅動控制器120以及檢測電路130。三相電壓產生器110會從直流電源Pin接收直流鏈電壓Vin與直流鏈電流Iin,並且將所接收的直流鏈電壓Vin與直流鏈電流Iin轉換為交流形式的三相驅動電壓VTP以驅動交流馬達10。 In the present embodiment, the motor driving device 100 includes a three-phase voltage generator 110, a drive controller 120, and a detection circuit 130. The three-phase voltage generator 110 receives the DC link voltage Vin and the DC link current Iin from the DC power source Pin, and converts the received DC link voltage Vin and the DC link current Iin into a three-phase drive voltage VTP in the form of an AC to drive the AC motor. 10.

其中,三相電壓產生器110會根據轉速設定值SPD與交 流馬達10的轉子速度RS來產生一定子電壓設定值,藉以調整所產生的三相驅動電壓VTP的頻率與振幅,並且根據相位角度設定值來調整三相驅動電壓VTP的相位角度,藉以調控交流馬達10的轉速與轉矩。 Wherein, the three-phase voltage generator 110 is based on the speed setting value SPD The rotor speed RS of the flow motor 10 generates a certain sub-voltage set value, thereby adjusting the frequency and amplitude of the generated three-phase driving voltage VTP, and adjusting the phase angle of the three-phase driving voltage VTP according to the phase angle setting value, thereby regulating the alternating current. The speed and torque of the motor 10.

於此,所述相位角度設定值VANG是由驅動控制器120依據一預設驅動參數PDP而產生。所述預設驅動參數PDP會根據交流馬達10的類型不同而有不同的定義。舉例來說,若交流馬達10為永磁同步馬達,則所述預設驅動參數PDP可例如為永磁同步馬達的定子電壓與轉子之間的夾角。又例如,若交流馬達10為交流感應馬達,則所述預設驅動參數PDP可例如為交流感應馬達的轉子頻率與定子頻率之間的轉差速度。 Here, the phase angle setting value VANG is generated by the driving controller 120 according to a preset driving parameter PDP. The preset drive parameter PDP may have different definitions depending on the type of the AC motor 10. For example, if the AC motor 10 is a permanent magnet synchronous motor, the preset drive parameter PDP can be, for example, the angle between the stator voltage of the permanent magnet synchronous motor and the rotor. For another example, if the AC motor 10 is an AC induction motor, the preset drive parameter PDP may be, for example, a slip speed between the rotor frequency of the AC induction motor and the stator frequency.

換言之,本實施例的三相電壓產生器110會依據轉速設定值SPD以及相位角度設定值VANG產生三相驅動電壓VTP來驅動交流馬達10。 In other words, the three-phase voltage generator 110 of the present embodiment generates the three-phase driving voltage VTP to drive the AC motor 10 in accordance with the rotational speed set value SPD and the phase angle set value VANG.

驅動控制器120耦接三相電壓產生器110,其可用以依據交流馬達10與三相電壓產生器110的運作狀態來計算並產生對應的預設驅動參數PDP,並且根據預設驅動參數PDP及當前交流馬達10的轉速/轉子位置來產生對應的相位角度設定值VANG以調整三相驅動電壓VTP的相位角度,從而令交流馬達10的運轉可趨於穩定。 The driving controller 120 is coupled to the three-phase voltage generator 110, and can be used to calculate and generate a corresponding preset driving parameter PDP according to the operating states of the AC motor 10 and the three-phase voltage generator 110, and according to the preset driving parameter PDP and The rotational speed/rotor position of the AC motor 10 is currently generated to generate a corresponding phase angle set value VANG to adjust the phase angle of the three-phase drive voltage VTP, so that the operation of the AC motor 10 can be stabilized.

檢測電路130耦接三相電壓產生器110與120驅動控制器。檢測電路130可用以檢測交流馬達10與三相電壓產生器110 的運作狀態,並據以產生關聯於所述運作狀態的輸出數據OD。舉例來說,輸出數據OD可例如包括三相電壓產生器110所接收的直流鏈電壓Vin與直流鏈電流Iin大小之電源資訊,並且根據從交流馬達10所接收的霍爾訊號Sh計算交流馬達10的轉子位置及/或轉子速度等轉子運轉資訊。 The detection circuit 130 is coupled to the three-phase voltage generators 110 and 120 to drive the controller. The detection circuit 130 can be used to detect the AC motor 10 and the three-phase voltage generator 110 The operational state, and accordingly, produces output data OD associated with the operational state. For example, the output data OD may include, for example, power source information of the DC link voltage Vin and the DC link current Iin received by the three-phase voltage generator 110, and calculate the AC motor 10 based on the Hall signal Sh received from the AC motor 10. Rotor operation information such as rotor position and/or rotor speed.

在本實施例中,驅動控制器120可在不需預先建立關聯於預設驅動參數PDP與工作效率對應關係之查找表的前提下,實時地依據交流馬達10的運作狀態來計算出當前工作效率,再透過類似擾動觀察法(perturb and observe method)的馬達驅動控制機制來計算出對應最佳工作效率的預設驅動參數PDP,並據以產生對應的相位角度設定值VANG來動態地控制三相電壓產生器110的運作,使得馬達驅動裝置100可在運作期間皆令交流馬達10趨近於最佳的工作效率。 In this embodiment, the driving controller 120 can calculate the current working efficiency according to the operating state of the AC motor 10 in real time without pre-establishing a lookup table associated with the preset driving parameter PDP and the work efficiency correspondence relationship. Then, through a motor drive control mechanism similar to the perturb and observe method, a preset drive parameter PDP corresponding to the optimal working efficiency is calculated, and a corresponding phase angle set value VANG is generated to dynamically control the three phases. The operation of the voltage generator 110 allows the motor drive unit 100 to bring the AC motor 10 closer to optimum operating efficiency during operation.

底下以搭配圖2實施例來具體說明本案的馬達驅動方法。其中,圖2為本發明一實施例的交流馬達的驅動方法的步驟流程圖。 The motor driving method of the present invention will be specifically described below in conjunction with the embodiment of FIG. 2. 2 is a flow chart showing the steps of a method for driving an AC motor according to an embodiment of the present invention.

請同時參照圖1A與圖2,在本實施例的馬達驅動方法中,首先,三相電壓產生器110會依據轉速設定值SPD與依據預設驅動參數PDP所產生的相位角度設定值VANG來產生三相驅動電壓VTP(步驟S210)。接著,在每一機械週期(即,交流馬達10之轉子旋轉一周所需之時間)中,驅動控制器120會以不同極性之擾動量分別疊加於預設驅動參數PDP,藉以擾動三相電壓產 生器110所產生的三相驅動電壓VTP的相位角度(步驟S220)。在交流馬達10運作的過程中,檢測電路130會實時地檢測擾動後的交流馬達10的運作狀態,並據以產生輸出數據OD(步驟S230),使得驅動控制器120可依據輸出數據OD計算交流馬達10於施加不同極性之擾動量時的工作效率(步驟S240)。在計算出工作效率後,驅動控制器120會比較所計算出的工作效率,藉以選取工作效率較高者所對應之參數設定值作為當前的預設驅動參數的設定值(步驟S250)。 Referring to FIG. 1A and FIG. 2 simultaneously, in the motor driving method of the embodiment, first, the three-phase voltage generator 110 generates the phase angle setting value SPD generated according to the preset driving parameter PDP according to the rotation speed setting value SPD. The three-phase driving voltage VTP (step S210). Then, in each mechanical cycle (ie, the time required for the rotor of the AC motor 10 to rotate one revolution), the drive controller 120 superimposes the disturbance driving amount of different polarities on the preset driving parameter PDP, thereby disturbing the three-phase voltage production. The phase angle of the three-phase driving voltage VTP generated by the generator 110 (step S220). During the operation of the AC motor 10, the detecting circuit 130 detects the operating state of the disturbed AC motor 10 in real time, and accordingly generates output data OD (step S230), so that the driving controller 120 can calculate the alternating current according to the output data OD. The operating efficiency of the motor 10 when a disturbance amount of a different polarity is applied (step S240). After calculating the working efficiency, the driving controller 120 compares the calculated working efficiency, so as to select the parameter setting value corresponding to the higher working efficiency as the setting value of the current preset driving parameter (step S250).

藉由上述的驅動方法,三相驅動電壓VTP的相位角度會實時地朝向較高工作效率的趨勢逐步調整,使得馬達驅動裝置100可針對任何類型的交流馬達10實現自動的最佳效率跟蹤,而不再需要測試人員預先進行測試來建立預設驅動參數PDP的查找表。此外,藉由所述驅動方法也可以省去對負載測試設備的要求,並且避免了最佳效率跟蹤可能會受到交流馬達的規格參數隨運作狀態發生改變而造成的跟蹤錯誤。 With the above-described driving method, the phase angle of the three-phase driving voltage VTP is gradually adjusted in real time toward a trend of higher operating efficiency, so that the motor driving device 100 can achieve automatic optimal efficiency tracking for any type of AC motor 10, and It is no longer necessary for the tester to perform a test in advance to establish a lookup table of the preset drive parameter PDP. In addition, the driving method can also eliminate the requirement for the load testing device, and avoid the tracking error caused by the optimal efficiency tracking that may be changed by the operating parameters of the AC motor.

其中,上述驅動方法可利用如圖1B所示之驅動控制器320的功能方塊來實現。請參照圖1B,驅動控制器120包括參數優化跟蹤單元122以及相位角度計算單元124。參數優化跟蹤單元122可將擾動量△D疊加至預設驅動參數PDP以產生控制參數CP。相位角度計算單元124會依據控制參數CP與轉子運轉資訊RI計算對應的相位角度設定值VANG。其中,參數優化跟蹤單元122會依據輸出數據OD來計算交流馬達10於施加不同極性之擾 動量△D時的工作效率,並且據以決定所提供的擾動量△D之極性。所述參數優化跟蹤單元122計算控制參數CP的方式以及所產生的控制參數CP會根據應用的交流馬達10的類型而有所差異,後續實施例將會進一步舉例說明。 The above driving method can be implemented by using the functional blocks of the driving controller 320 as shown in FIG. 1B. Referring to FIG. 1B, the drive controller 120 includes a parameter optimization tracking unit 122 and a phase angle calculation unit 124. The parameter optimization tracking unit 122 may superimpose the disturbance amount ΔD to the preset drive parameter PDP to generate the control parameter CP. The phase angle calculation unit 124 calculates a corresponding phase angle setting value VANG according to the control parameter CP and the rotor operation information RI. The parameter optimization tracking unit 122 calculates the interference of the AC motor 10 to apply different polarities according to the output data OD. The operating efficiency at the momentum ΔD, and the polarity of the provided disturbance amount ΔD is determined accordingly. The manner in which the parameter optimization tracking unit 122 calculates the control parameter CP and the generated control parameter CP may vary depending on the type of the AC motor 10 to be applied, which will be further exemplified in the following embodiments.

在上述驅動方法中,本案至少具有三個可帶來有益功效的技術手段:(1)跟蹤最佳工作效率的相位擾動控制;(2)工作效率的計算;以及(3)直流鏈電流的取樣。其中,上述技術手段可個別地、部分地或總和地應用在一交流馬達驅動方法中,本發明並不限定上述技術手段必須同時應用。 In the above driving method, the present invention has at least three technical means that can bring about beneficial effects: (1) phase disturbance control to track optimal working efficiency; (2) calculation of working efficiency; and (3) sampling of DC link current . Wherein, the above technical means can be applied individually, partially or collectively in an AC motor driving method, and the present invention does not limit that the above technical means must be simultaneously applied.

為了更具體地說明本發明實施例的馬達驅動方法及上述技術手段,底下以圖3至圖5之步驟流程搭配圖1A、1B的馬達驅動裝置100的架構來進行說明。 In order to more specifically describe the motor driving method and the above-described technical means of the embodiment of the present invention, the structure of the motor driving device 100 of FIGS. 1A and 1B will be described below with reference to the flow chart of FIGS. 3 to 5.

(1)跟蹤最佳工作效率的相位擾動控制 (1) Phase disturbance control to track optimal working efficiency

請先參照圖1A、圖1B及圖3,其中,圖3為本發明另一實施例的交流馬達的驅動方法的步驟流程圖。在本實施例的驅動方法中,首先,三相電壓產生器110會依據轉速設定值SPD與基於預設驅動參數PDP所產生的相位角度設定值VANG來產生三相驅動電壓VTP(步驟S302)。接著,驅動控制器120會依據交流馬達10的運作狀態判斷是否符合最佳化效率跟蹤的啟動條件(步驟S304)。其中,所述啟動條件例如為直流鏈電壓Vin的變動幅度位在一正常區間內(可由設計者自行定義)。 Please refer to FIG. 1A, FIG. 1B and FIG. 3, wherein FIG. 3 is a flow chart showing the steps of the driving method of the alternating current motor according to another embodiment of the present invention. In the driving method of the present embodiment, first, the three-phase voltage generator 110 generates the three-phase driving voltage VTP in accordance with the rotation speed set value SPD and the phase angle setting value VANG generated based on the preset driving parameter PDP (step S302). Next, the drive controller 120 determines whether or not the activation condition of the optimized efficiency tracking is met in accordance with the operational state of the AC motor 10 (step S304). The starting condition is, for example, that the fluctuation amplitude of the DC link voltage Vin is within a normal interval (which can be defined by the designer).

若驅動控制器120判定交流馬達10的運作狀態不符合最 佳化效率跟蹤的啟動條件,則驅動控制器120不會執行後續的最佳化效率跟蹤步驟S306~S324,而是重複進行偵測啟動條件的步驟S304。反之,若驅動控制器120判定交流馬達10的運作狀態符合最佳化效率跟蹤的啟動條件,則驅動控制器會接續進行步驟S306~S324。 If the drive controller 120 determines that the operating state of the AC motor 10 does not meet the most After the startup condition of the optimization efficiency tracking, the drive controller 120 does not perform the subsequent optimization efficiency tracking steps S306 to S324, but repeats the step S304 of detecting the activation condition. On the other hand, if the drive controller 120 determines that the operating state of the AC motor 10 meets the activation condition of the optimized efficiency tracking, the drive controller continues to perform steps S306 to S324.

在步驟S306~S310中,驅動控制器120會將擾動量△D1疊加至預設驅動參數PDP上以產生控制參數CP1(步驟S306),並且令驅動控制器120依據控制參數CP1產生對應的相位角度設定值ANG。接著,檢測電路130會檢測對應於控制參數CP1的輸出數據OD1(步驟S308),以令驅動控制器120依據輸出數據OD1計算對應的工作效率EFF1(步驟S310)。 In steps S306-S310, the drive controller 120 superimposes the disturbance amount ΔD1 on the preset drive parameter PDP to generate the control parameter CP1 (step S306), and causes the drive controller 120 to generate a corresponding phase angle according to the control parameter CP1. Set value ANG. Next, the detection circuit 130 detects the output data OD1 corresponding to the control parameter CP1 (step S308), so that the drive controller 120 calculates the corresponding work efficiency EFF1 based on the output data OD1 (step S310).

類似地,在接續的步驟S312~S316中,驅動控制器120會改以將極性相反於擾動量△D1之擾動量△D2(亦即,若擾動量△D1為正擾動量,則擾動量△D2即為負擾動量;若擾動量△D1為負擾動量,則擾動量△D2即為正擾動量)疊加至預設驅動參數PDP上以產生控制參數CP2(步驟S312),並且令驅動控制器120依據控制參數CP2產生對應的相位角度設定值ANG。接著,檢測電路130會檢測出對應於控制參數CP2的輸出數據OD2(步驟S314),以令驅動控制器120依據輸出數據OD2計算對應的工作效率EFF2(步驟S316)。 Similarly, in the subsequent steps S312 to S316, the drive controller 120 changes the disturbance amount ΔD2 whose polarity is opposite to the disturbance amount ΔD1 (that is, if the disturbance amount ΔD1 is the positive disturbance amount, the disturbance amount △ D2 is the negative disturbance amount; if the disturbance amount ΔD1 is the negative disturbance amount, the disturbance amount ΔD2 is the positive disturbance amount) is superimposed on the preset drive parameter PDP to generate the control parameter CP2 (step S312), and the drive control is performed. The device 120 generates a corresponding phase angle set value ANG according to the control parameter CP2. Next, the detection circuit 130 detects the output data OD2 corresponding to the control parameter CP2 (step S314), so that the drive controller 120 calculates the corresponding work efficiency EFF2 based on the output data OD2 (step S316).

接著,驅動控制器120會比較工作效率EFF1與EFF2(步驟S318)。當驅動控制器120判定工作效率EFF1大於EFF2時, 驅動控制器120會將控制參數CP1設定為預設驅動參數PDP(步驟S320)。反之,當驅動控制器120判定工作效率EFF1小於EFF2時,驅動控制器120則會將控制參數CP2設定為預設驅動參數PDP(步驟S322)。換言之,驅動控制器120會選取工作效率較高者所對應之參數設定值CP1/CP2作為當前的預設驅動參數PDP的設定值。 Next, the drive controller 120 compares the operating efficiencies EFF1 and EFF2 (step S318). When the drive controller 120 determines that the working efficiency EFF1 is greater than EFF2, The drive controller 120 sets the control parameter CP1 as the preset drive parameter PDP (step S320). On the other hand, when the drive controller 120 determines that the operating efficiency EFF1 is less than EFF2, the drive controller 120 sets the control parameter CP2 as the preset drive parameter PDP (step S322). In other words, the drive controller 120 selects the parameter setting value CP1/CP2 corresponding to the higher working efficiency as the set value of the current preset driving parameter PDP.

上述的步驟會在一個機械週期中執行完畢,在進入下一機械週期時,驅動控制器120會交換不同極性之擾動量△D1與△D2的施加順序(步驟S324)。亦即,若此一機械週期中,是先施加正擾動量(以“+△D”表示之)再施加負擾動量(以“-△D”表示之),則在下一機械週期中,會改為先施加負擾動量-△D再施加正擾動量+△D,並據此計算工作效率與決定預設驅動參數PDP的設定值。透過此一雙向掃描的跟蹤演算機制,可以避免以同一方向疊加擾動量△D所可能造成的慣性誤差,從而進一步提高最佳化工作效率跟蹤的準確性。 The above steps are performed in one mechanical cycle, and upon entering the next mechanical cycle, the drive controller 120 exchanges the order of application of the disturbance amounts ΔD1 and ΔD2 of different polarities (step S324). That is, if in this mechanical cycle, the positive disturbance amount (indicated by "+△D") is applied first and the negative disturbance amount (indicated by "-△D") is applied, then in the next mechanical cycle, Instead, the negative disturbance amount -ΔD is applied first and then the positive disturbance amount +ΔD is applied, and the working efficiency is calculated accordingly and the set value of the preset driving parameter PDP is determined. Through the tracking calculation mechanism of the two-way scanning, the inertia error caused by superimposing the disturbance amount ΔD in the same direction can be avoided, thereby further improving the accuracy of the optimized working efficiency tracking.

為了更清楚的說明雙向掃描的跟蹤演算機制,底下以圖4來說明圖3的步驟流程在不同機械週期內的時序關係。其中,圖4為依照圖3之一實施例的交流馬達的驅動方法的驅動時序示意圖。 In order to more clearly illustrate the tracking calculation mechanism of the two-way scanning, the timing relationship of the step flow of FIG. 3 in different mechanical cycles will be described below with reference to FIG. 4. 4 is a schematic diagram of driving timing of a driving method of an AC motor according to an embodiment of FIG. 3.

請參照圖1B與圖4,類似於前述圖3實施例的步驟流程,在第一個機械週期MP1中,參數優化跟蹤單元122會先將正擾動量+△D疊加於預設驅動參數PDP上,並據以產生對應的控制參數CP1(即,PDP+△D),使得相位角度計算單元124依據控制參數 CP1產生對應的相位角度設定值VANG來控制三相電壓產生器110。接著,參數優化跟蹤單元122會根據檢測電路130所檢測出的輸出數據OD1計算對應控制參數CP1的工作效率EFF1。 Referring to FIG. 1B and FIG. 4, similar to the step flow of the foregoing embodiment of FIG. 3, in the first mechanical period MP1, the parameter optimization tracking unit 122 first superimposes the positive disturbance amount + ΔD on the preset driving parameter PDP. And correspondingly generating a corresponding control parameter CP1 (ie, PDP + ΔD), so that the phase angle calculation unit 124 is based on the control parameter The CP1 generates a corresponding phase angle set value VANG to control the three-phase voltage generator 110. Next, the parameter optimization tracking unit 122 calculates the working efficiency EFF1 of the corresponding control parameter CP1 according to the output data OD1 detected by the detection circuit 130.

在計算出控制參數CP1所對應的工作效率EFF1後,參數優化跟蹤單元122會改以將負擾動量-△D疊加於預設驅動參數PDP上,並據以產生對應的控制參數CP2(即,PDP-△D),使得相位角度計算單元124依據控制參數CP2產生對應的相位角度設定值VANG來控制三相電壓產生器110。接著,參數優化跟蹤單元122會根據檢測電路130所檢測出的輸出數據OD2計算對應控制參數CP2的工作效率EFF2。 After calculating the working efficiency EFF1 corresponding to the control parameter CP1, the parameter optimization tracking unit 122 may change the negative disturbance amount -ΔD to the preset driving parameter PDP, and accordingly generate the corresponding control parameter CP2 (ie, PDP-ΔD) causes the phase angle calculation unit 124 to control the three-phase voltage generator 110 according to the control parameter CP2 to generate a corresponding phase angle set value VANG. Next, the parameter optimization tracking unit 122 calculates the working efficiency EFF2 of the corresponding control parameter CP2 according to the output data OD2 detected by the detection circuit 130.

在計算出工作效率EFF1與EFF2後,參數優化跟蹤單元122會判斷工作效率EFF1與EFF2何者較高,並且將其中較高者設定為下一機械週期MP2的預設驅動參數PDP’(即,PDP’=PDP+△D或PDP’=PDP-△D)。 After calculating the working efficiency EFF1 and EFF2, the parameter optimization tracking unit 122 determines which of the working efficiency EFF1 and EFF2 is higher, and sets the higher one as the preset driving parameter PDP' of the next mechanical period MP2 (ie, PDP). '=PDP+ΔD or PDP'=PDP-△D).

在進入下一機械週期MP2後,參數優化跟蹤單元122會改以先將負擾動量-△D疊加於預設驅動參數PDP’上,並且依據輸出數據OD3計算對應的工作效率EFF3後,再將正擾動量+△D疊加於預設驅動參數PDP’上,並且依據輸出數據OD4計算對應的工作效率EFF4。此後,類似於前一機械週期MP1的控制,參數優化跟蹤單元122會判斷工作效率EFF3與EFF4何者較高,並且將其中較高者設定為下一機械週期的預設驅動參數PDP”(即,PDP”=PDP’+△D或PDP”=PDP’-△D)。 After entering the next mechanical period MP2, the parameter optimization tracking unit 122 may first superimpose the negative disturbance amount -ΔD on the preset driving parameter PDP', and calculate the corresponding working efficiency EFF3 according to the output data OD3, and then The positive disturbance amount + ΔD is superimposed on the preset drive parameter PDP', and the corresponding work efficiency EFF4 is calculated according to the output data OD4. Thereafter, similar to the control of the previous mechanical period MP1, the parameter optimization tracking unit 122 determines which of the operating efficiency EFF3 and EFF4 is higher, and sets the higher one as the preset driving parameter PDP of the next mechanical period (ie, PDP" = PDP' + ΔD or PDP" = PDP' - ΔD).

在後續的機械週期中,驅動控制器120會以前述的控制方式持續地交換不同極性之擾動量+△D/-△D的施加順序,於此不再重複贅述。 In the subsequent mechanical cycle, the drive controller 120 continuously exchanges the order of application of the disturbance amount + ΔD / - ΔD of different polarities in the aforementioned control manner, and details are not described herein again.

換言之,在所述雙向掃描的跟蹤演算機制中,驅動控制器120會在一機械週期(例如MP1)中採用先加後減(或先減後加)的方式來擾動預設驅動參數PDP,並且在下一機械週期(例如MP2)中改採先減後加(或先加後減)的方式來擾動預設驅動參數PDP’。透過所述雙向掃描的跟蹤演算機制,本案的馬達驅動裝置100即可以避免以同一方向疊加擾動量△D所可能造成的慣性誤差,從而進一步提高最佳化工作效率跟蹤的準確性。 In other words, in the tracking calculation mechanism of the two-way scanning, the driving controller 120 may perturb the preset driving parameter PDP by using a first addition and then subtraction (or subtraction first) in a mechanical cycle (for example, MP1), and In the next mechanical cycle (for example, MP2), the preset drive parameter PDP' is disturbed by first subtracting and then adding (or adding and then subtracting). Through the tracking calculation mechanism of the two-way scanning, the motor driving device 100 of the present invention can avoid the inertia error caused by superimposing the disturbance amount ΔD in the same direction, thereby further improving the accuracy of the optimized working efficiency tracking.

除此之外,在一範例實施例中,為了避免檢測電路130所檢測出的輸出數據OD在擾動預設驅動參數PDP時發生失真,檢測電路130可在驅動控制器120疊加擾動量△D於預設驅動參數PDP,從而令三相驅動電壓VTP的相位角度改變後,延遲一段預設期間(可由設計者自行定義)再檢測擾動後的交流馬達10的運作狀態。 In addition, in an exemplary embodiment, in order to prevent the output data OD detected by the detecting circuit 130 from being distorted when the preset driving parameter PDP is disturbed, the detecting circuit 130 may superimpose the disturbance amount ΔD on the driving controller 120. The driving parameter PDP is preset, so that the phase angle of the three-phase driving voltage VTP is changed, and the operating state of the disturbed AC motor 10 is detected after a predetermined period of time (which can be defined by the designer).

另外應說明的是,如圖3與圖4實施例所述之交換不同極性之擾動量的施加順序的步驟是可選擇性地應用於本案的驅動方法中,藉以提高最佳化工作效率跟蹤的準確性,但本案並不對此加以限制。 In addition, it should be noted that the steps of exchanging the application order of the disturbance amounts of different polarities as described in the embodiments of FIG. 3 and FIG. 4 are selectively applicable to the driving method of the present invention, thereby improving the tracking of the optimized working efficiency. Accuracy, but this case does not limit this.

(2)工作效率的計算 (2) Calculation of work efficiency

請參照圖1A與圖5,在本實施例的檢測擾動後的交流馬 達的運作狀態的步驟S230中,首先,檢測電路130會取樣直流鏈電壓Vin與直流鏈電流Iin(步驟S232),並且從交流馬達10接收霍爾感測器12所發出的霍爾訊號Sh,以依據接收到的霍爾訊號Sh定義交流馬達10的轉子位置(步驟S234)。接著,檢測電路130會依據交流馬達10的轉子位置計算交流馬達10的轉子速度RS(步驟S236)。檢測電路130會以所檢測到的直流鏈電壓Vin、直流鏈電流Iin、交流馬達10的轉子位置以及轉子速度RS知至少其中一者作為輸出數據OD提供給三相電壓產生器110與驅動控制器120,藉以做為控制的依據。 Referring to FIG. 1A and FIG. 5, the alternating horse after detecting the disturbance in the embodiment In step S230 of the operational state, first, the detection circuit 130 samples the DC link voltage Vin and the DC link current Iin (step S232), and receives the Hall signal Sh emitted by the Hall sensor 12 from the AC motor 10, The rotor position of the AC motor 10 is defined in accordance with the received Hall signal Sh (step S234). Next, the detecting circuit 130 calculates the rotor speed RS of the AC motor 10 in accordance with the rotor position of the AC motor 10 (step S236). The detecting circuit 130 supplies at least one of the detected DC link voltage Vin, the DC link current Iin, the rotor position of the AC motor 10, and the rotor speed RS as the output data OD to the three-phase voltage generator 110 and the drive controller. 120, as a basis for control.

在本實施例中,檢測電路130不像一般的恆壓控制手段採用檢測交流馬達10繞組的相電流或線電流,而是以取樣直流鏈電壓Vin與直流鏈電流Iin作為計算工作效率的基礎,因此可以降低驅動控制器120之工作效率計算的複雜度。 In the present embodiment, the detection circuit 130 does not use the phase current or line current of the winding of the AC motor 10 as the general constant voltage control means, but uses the sampled DC link voltage Vin and the DC link current Iin as the basis for calculating the working efficiency. Therefore, the complexity of the calculation of the operational efficiency of the drive controller 120 can be reduced.

更具體地說,本實施例中的工作效率可以下式(1)表示之: More specifically, the working efficiency in this embodiment can be expressed by the following formula (1):

η為工作效率,PIN為輸入功率,以及POUT為輸出功率。其中,輸入功率PIN與輸出功率POUT又可分別以下式(2)、(3)表示:P IN =V IN ×I IN (2) η is the working efficiency, P IN is the input power, and P OUT is the output power. Among them, the input power P IN and the output power P OUT can be expressed by the following equations (2) and (3): P IN = V IN × I IN (2)

P OUT =ω g ×T g (3) P OUT = ω g × T g (3)

ωg為三相驅動電壓VTP的電角頻率以及Tg為交流馬達10的輸出力矩。在本實施例中,由於輸出力矩Tg並無法直接檢測出,因此於本案一範例實施例的計算方式下,係令輸出力矩Tg在一個短時間內(例如為100ms)假定為一恆定量,進而進一步簡化工作效率的計算式。 Ω g is the electrical angular frequency of the three-phase driving voltage VTP and T g is the output torque of the alternating current motor 10. In the present embodiment, since the output torque T g and can not be directly detected, and therefore in this case the calculation of an exemplary embodiment of the embodiment, so that the output torque T g based on a short period of time (for example, 100ms) is assumed to be a constant amount , thereby further simplifying the calculation formula of work efficiency.

基此,依據上式(1)~(3),工作效率η可以代換為下式(4): Based on the above formulas (1) to (3), the work efficiency η can be replaced by the following formula (4):

在本案之一範例實施例中,驅動控制器120會利用上式(4)來執行計算交流馬達10的工作效率的步驟S240,藉以在合理的工作效率計算誤差範圍內,避免工作效率的計算過於複雜。 In an exemplary embodiment of the present application, the driving controller 120 performs the step S240 of calculating the working efficiency of the AC motor 10 by using the above formula (4), thereby avoiding the calculation of the working efficiency too much within a reasonable working efficiency calculation error range. complex.

(3)直流鏈電流的取樣 (3) Sampling of DC link current

驅動控制器120是依據檢測電路130所取樣的直流鏈電壓Vin與直流鏈電流Iin作為計算工作效率的依據,因此所取樣的直流鏈電壓Vin與直流鏈電流Iin是否準確即會影響工作效率的計算結果。更具體地說,在交流馬達10的運作中,由於轉子磁鋼安裝的不均勻性,在同一機械週期內的直流鏈電流Iin往往會發生週期性波動,從而造成檢測電路130在單一時間點下所取樣到的直流鏈電流Iin並不能反應實質的直流鏈電流Iin大小。如此便可能造成驅動控制器120的工作效率運算發生誤差,從而造成控制錯誤。 The driving controller 120 is based on the DC link voltage Vin and the DC link current Iin sampled by the detecting circuit 130 as a basis for calculating the working efficiency. Therefore, whether the sampled DC link voltage Vin and the DC link current Iin are accurate will affect the calculation of the working efficiency. result. More specifically, in the operation of the AC motor 10, due to the unevenness of the installation of the rotor magnet, the DC link current Iin during the same mechanical period tends to periodically fluctuate, thereby causing the detection circuit 130 to be at a single time point. The sampled DC link current Iin does not reflect the substantial DC link current Iin. As a result, an error occurs in the operation efficiency calculation of the drive controller 120, thereby causing a control error.

因此,在本案之一範例實施例中,提出了一種直流鏈電流Iin的取樣方法,如圖6所示,其中,圖6為本發明一實施例的取樣直流鏈電流的步驟流程圖。 Therefore, in an exemplary embodiment of the present invention, a sampling method of a DC link current Iin is proposed, as shown in FIG. 6, wherein FIG. 6 is a flow chart of a step of sampling a DC link current according to an embodiment of the present invention.

請同時參照圖1A與圖6,在步驟S232中,檢測電路130會在每一機械週期中的多個不同時間點下取樣直流鏈電流Iin之電流值(步驟S2321),接著再計算取樣到的電流值之平均以作為計算工作效率的基礎(步驟S2322)。其中,在一範例實施例中,直流鏈電流Iin的電流值取樣點數量係依據交流馬達10的極對數(number of pole pairs)與交流馬達10中的霍爾感測器12的數量所決定。 Referring to FIG. 1A and FIG. 6 simultaneously, in step S232, the detecting circuit 130 samples the current value of the DC link current Iin at a plurality of different time points in each mechanical cycle (step S2321), and then calculates the sampled value. The average of the current values is used as a basis for calculating the work efficiency (step S2322). In an exemplary embodiment, the number of current value sampling points of the DC link current Iin is determined according to the number of pole pairs of the AC motor 10 and the number of Hall sensors 12 in the AC motor 10.

舉例來說,取樣點數量可以定義為極對數乘上各霍爾感測器12所發出的霍爾訊號Sh在1個電週期內的上升沿(rising edge)與下降沿(falling edge)的數量。假設交流馬達為8極馬達(即,極對數為4),並且霍爾感測器12數量為3。於此態樣下,一個機械週期會包括有4個電週期,並且1個電週期內會出現6個霍爾訊號Sh的上升沿與下降沿(每一霍爾訊號Sh在一電週期中有一個上升沿與一個下降沿)。因此,在一個機械週期內的取樣點數量會等於4×6共24點。 For example, the number of sampling points can be defined as the number of the rising edge and the falling edge of the Hall signal Sh emitted by each Hall sensor 12 in one electrical cycle. . It is assumed that the AC motor is an 8-pole motor (ie, the number of pole pairs is 4), and the number of Hall sensors 12 is 3. In this aspect, a mechanical cycle will include 4 electrical cycles, and there will be 6 rising and falling edges of the Hall signal Sh in one electrical cycle (each Hall signal Sh has one cycle) A rising edge with a falling edge). Therefore, the number of sampling points in one mechanical cycle will be equal to 4 × 6 total 24 points.

更進一步地說,檢測電路130會依據霍爾感測器12所發出的霍爾訊號Sh的脈衝沿(即,上升沿與下降沿)來決定取樣直流鏈電流Iin之電流值的時間點,並且依據此24個取樣時間點所取樣到的電流值進行平均運算,藉以計算出代表實際直流鏈電流 Iin的取樣電流值。所述的平均運算可以下式(5)表示之: Further, the detecting circuit 130 determines the time point of sampling the current value of the DC link current Iin according to the pulse edge (ie, the rising edge and the falling edge) of the Hall signal Sh emitted by the Hall sensor 12, and The current value sampled at the 24 sampling time points is averaged to calculate a sample current value representative of the actual DC link current Iin. The average operation can be expressed by the following formula (5):

其中,IP為取樣電流值,N為取樣點數量,並且k為取樣時間點。 Where I P is the sampling current value, N is the number of sampling points, and k is the sampling time point.

透過上述取樣直流鏈電流的方式,檢測電路130可以提供一個相對精確的直流鏈電流Iin之取樣電流值給驅動控制器120作為計算工作效率的依據,從而提高電流取樣的準確性與精度。 Through the above method of sampling the DC link current, the detecting circuit 130 can provide a relatively accurate sampling current value of the DC link current I in to the driving controller 120 as a basis for calculating the working efficiency, thereby improving the accuracy and accuracy of the current sampling.

底下以圖7與圖8實施例來具體說明本發明實施例的馬達驅動裝置100在不同類型之交流馬達10下的硬體架構。其中,圖7為本發明一實施例之應用於永磁同步馬達的馬達驅動裝置的示意圖。圖8為本發明一實施例之應用於交流感應馬達的馬達驅動裝置的示意圖。 The hardware structure of the motor driving device 100 of the embodiment of the present invention under different types of AC motors 10 will be specifically described below with reference to the embodiment of FIG. 7 and FIG. 7 is a schematic view of a motor driving device applied to a permanent magnet synchronous motor according to an embodiment of the present invention. Fig. 8 is a schematic view of a motor driving device applied to an AC induction motor according to an embodiment of the present invention.

請先參照圖7,在本實施例中,馬達驅動裝置700適於提供三相驅動電壓VTP以驅動永磁同步馬達70。馬達驅動裝置700包括三相電壓產生器710、驅動控制器720以及檢測電路730。 Referring first to FIG. 7, in the present embodiment, the motor driving device 700 is adapted to provide a three-phase driving voltage VTP to drive the permanent magnet synchronous motor 70. The motor drive device 700 includes a three-phase voltage generator 710, a drive controller 720, and a detection circuit 730.

在電源轉換單元710中,包括電源控制單元712以及電源轉換單元714。電源控制單元712會接收轉速設定值SPD與檢測電路730所提供的轉子速度RS來產生電壓振幅設定值VAMP以及電壓頻率設定值HZ。電源轉換單元714會依據電壓振幅設定值VAMP、電壓頻率設定值HZ以及驅動控制器720所提供的相位角度設定值VANG進行電源轉換,藉以將所接收的直流鏈電壓Vin 與直流鏈電流Iin轉換為三相驅動電壓VTP。 In the power conversion unit 710, a power control unit 712 and a power conversion unit 714 are included. The power control unit 712 receives the rotational speed set value SPD and the rotor speed RS provided by the detection circuit 730 to generate a voltage amplitude set value VAMP and a voltage frequency set value HZ. The power conversion unit 714 performs power conversion according to the voltage amplitude setting value VAMP, the voltage frequency setting value HZ, and the phase angle setting value VANG provided by the driving controller 720, thereby receiving the DC link voltage Vin. The DC link current Iin is converted into a three-phase driving voltage VTP.

驅動控制器720的預設驅動參數為永磁同步馬達70的定子電壓與轉子之間的夾角(即,效率優化角)。驅動控制器720包括效率優化角跟蹤單元722以及相位角度計算單元724。效率優化角跟蹤單元722可用以依據從檢測電路730所接收的取樣電壓值VP、取樣電流值IP以及轉子速度RS,執行前述圖2至圖4所述之最佳化效率跟蹤的運算,並據以產生一角度設定參數SA。相位角度計算單元724接收角度設定參數SA與檢測電路730所提供的轉子位置RP,並且依據角度設定參數SA與轉子位置RP計算對應的相位角度設定值VANG。 The preset drive parameter of the drive controller 720 is the angle between the stator voltage of the permanent magnet synchronous motor 70 and the rotor (ie, the efficiency optimization angle). The drive controller 720 includes an efficiency optimized angle tracking unit 722 and a phase angle calculation unit 724. The efficiency optimization angle tracking unit 722 can be configured to perform the operation of optimizing the efficiency tracking described in the foregoing FIGS. 2 to 4 according to the sampled voltage value V P , the sampled current value I P , and the rotor speed RS received from the detection circuit 730 . And according to the generation of an angle setting parameter SA. The phase angle calculation unit 724 receives the angle setting parameter SA and the rotor position RP provided by the detection circuit 730, and calculates a phase angle setting value VANG corresponding to the rotor position RP according to the angle setting parameter SA.

檢測電路730包括電源取樣單元732以及轉速計算單元734。電源取樣單元732可取樣直流鏈電壓Vin與直流鏈電流Iin,並且分別依據取樣到的直流鏈電壓Vin與直流鏈電流Iin產生取樣電壓值VP以及取樣電流值IP。轉速計算單元734會從永磁同步馬達70接收霍爾訊號Sh,並且依據所接收到的霍爾訊號Sh定義永磁同步馬達70的轉子位置RP。此外,轉速計算單元734還會依據所定義出的轉子位置RP計算永磁同步馬達70的轉子速度RS。 The detection circuit 730 includes a power supply sampling unit 732 and a rotational speed calculation unit 734. The power sampling unit 732 can sample the DC link voltage Vin and the DC link current Iin, and generate the sampled voltage value V P and the sampled current value I P according to the sampled DC link voltage Vin and the DC link current Iin, respectively. The rotational speed calculation unit 734 receives the Hall signal Sh from the permanent magnet synchronous motor 70, and defines the rotor position RP of the permanent magnet synchronous motor 70 in accordance with the received Hall signal Sh. Further, the rotational speed calculation unit 734 also calculates the rotor speed RS of the permanent magnet synchronous motor 70 in accordance with the defined rotor position RP.

請參照圖8,在本實施例中,馬達驅動裝置800適於提供三相驅動電壓VTP以驅動交流感應馬達80。馬達驅動裝置800包括三相電壓產生器810、驅動控制器820以及檢測電路830。 Referring to FIG. 8, in the present embodiment, the motor driving device 800 is adapted to provide a three-phase driving voltage VTP to drive the AC induction motor 80. The motor drive device 800 includes a three-phase voltage generator 810, a drive controller 820, and a detection circuit 830.

本實施例的電源轉換單元810包括電源控制單元812以及電源轉換單元814。所述電源控制單元812以及電源轉換單元 814的功能及配置大致上與圖7實施例的電源控制單元712以及電源轉換單元714相同,故於此不再贅述。 The power conversion unit 810 of the present embodiment includes a power supply control unit 812 and a power conversion unit 814. The power control unit 812 and the power conversion unit The function and configuration of the 814 are substantially the same as those of the power control unit 712 and the power conversion unit 714 of the embodiment of FIG. 7, and thus will not be described again.

驅動控制器820的預設驅動參數為交流感應馬達80的轉子頻率與定子頻率之間的轉差速度(即,效率優化轉差)。驅動控制器820包括效率優化轉差跟蹤單元822以及相位角度計算單元824。效率優化轉差跟蹤單元822可用以依據從檢測電路730所接收的取樣電壓值VP、取樣電流值IP以及轉子速度RS,執行前述圖2至圖4所述之最佳化效率跟蹤的運算,並據以產生一轉差設定參數SRDS。相位角度計算單元724接收轉差設定參數SRDS與檢測電路730所提供的轉子速度RS,並且依據轉差設定參數SRDS與轉子速度RS計算對應的相位角度設定值VANG。 The preset drive parameter of the drive controller 820 is the slip speed between the rotor frequency of the AC induction motor 80 and the stator frequency (ie, efficiency optimized slip). The drive controller 820 includes an efficiency optimized slip tracking unit 822 and a phase angle calculation unit 824. The efficiency-optimized slip tracking unit 822 can be used to perform the optimization efficiency tracking operation described in the foregoing FIGS. 2 to 4 according to the sampled voltage value V P , the sampled current value I P , and the rotor speed RS received from the detection circuit 730 . And according to the result of generating a slip setting parameter SRDS. The phase angle calculation unit 724 receives the slip setting parameter SRDS and the rotor speed RS supplied from the detection circuit 730, and calculates a phase angle setting value VANG corresponding to the rotor speed RS according to the slip setting parameter SRDS.

檢測電路830包括電源取樣單元832以及轉速計算單元834。本實施例的電源取樣單元832的功能與配置大致上與圖7實施例的電源取樣單元732相同,故於此不再贅述。 The detection circuit 830 includes a power supply sampling unit 832 and a rotational speed calculation unit 834. The function and configuration of the power sampling unit 832 of this embodiment are substantially the same as those of the power sampling unit 732 of the embodiment of FIG. 7, and thus will not be described herein.

轉速計算單元834會從交流感應馬達80接收霍爾訊號Sh,並且依據所接收到的霍爾訊號Sh定義永磁同步馬達80的轉子位置,再依據所定義出的轉子位置計算永磁同步馬達70的轉子速度RS。由於本實施例的效率優化轉差跟蹤單元822所輸出的是關聯於轉子轉速的轉差設定參數SRDS,因此相位角度計算單元824僅需取得轉子速度RS即可計算得出對應的相位角度設定值VANG。換言之,本實施例的轉速計算單元834與前述圖7實施例的轉速計算單元734的差別在於本實施例的轉速計算單元834僅 需輸出轉子速度RS的訊號而不需額外產生轉子位置RP的訊號。 The rotational speed calculation unit 834 receives the Hall signal Sh from the AC induction motor 80, and defines the rotor position of the permanent magnet synchronous motor 80 according to the received Hall signal Sh, and calculates the permanent magnet synchronous motor 70 according to the defined rotor position. Rotor speed RS. Since the efficiency-optimized slip tracking unit 822 of the present embodiment outputs the slip setting parameter SRDS associated with the rotor speed, the phase angle calculating unit 824 only needs to obtain the rotor speed RS to calculate the corresponding phase angle setting value. VANG. In other words, the difference between the rotational speed calculation unit 834 of the present embodiment and the rotational speed calculation unit 734 of the foregoing embodiment of FIG. 7 is that the rotational speed calculation unit 834 of the present embodiment only The signal of the rotor speed RS needs to be output without additionally generating a signal of the rotor position RP.

綜上所述,本發明實施例提出一種交流馬達的驅動方法及應用其之馬達驅動裝置,其可透過類似擾動觀察法的方式計算出對應最佳工作效率的預設驅動參數,並據此控制提供給交流馬達的三相驅動電壓的相位角度,使得馬達驅動裝置在運作期間可自動地令交流馬達趨近於最佳的工作效率。同時,藉由所述驅動方法可適用於任何類型的交流馬達還可省去對負載測試設備的要求,並且避免了最佳效率跟蹤可能會受到交流馬達的規格參數隨運作狀態發生改變而造成的跟蹤錯誤。除此之外,本案還提出了雙向掃描的相位擾動控制、簡化的工作效率計算以及高精確度的直流鏈電流取樣方法,其可有效地提升交流馬達控制的效率及穩定性。 In summary, the embodiment of the present invention provides a driving method of an AC motor and a motor driving device using the same, which can calculate a preset driving parameter corresponding to an optimal working efficiency through a similar disturbance observation method, and control according to the same. The phase angle of the three-phase drive voltage supplied to the AC motor allows the motor drive to automatically bring the AC motor closer to optimum operating efficiency during operation. At the same time, the driving method can be applied to any type of AC motor, and the requirements for the load testing device can be omitted, and the optimal efficiency tracking can be avoided due to the change of the specification parameters of the AC motor with the operating state. Tracking errors. In addition, the case also proposes phase disturbance control for two-way scanning, simplified work efficiency calculation and high-accuracy DC link current sampling method, which can effectively improve the efficiency and stability of AC motor control.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

S210~S250‧‧‧步驟 S210~S250‧‧‧Steps

Claims (21)

一種交流馬達的驅動方法,包括:依據一轉速設定值與一預設驅動參數產生一三相驅動電壓來驅動該交流馬達;在一機械週期中,以不同極性之擾動量分別疊加於該預設驅動參數,藉以擾動該三相驅動電壓的一相位角度;檢測擾動後的交流馬達的運作狀態,並據以產生一輸出數據;依據該輸出數據計算該交流馬達於施加不同極性之擾動量時的工作效率;以及比較所述工作效率,藉以選取其中較高者所對應之參數設定值作為當前的預設驅動參數的設定值。 A driving method of an AC motor, comprising: generating a three-phase driving voltage according to a set value of a driving speed and a predetermined driving parameter to drive the AC motor; in a mechanical cycle, respectively, the disturbance amount of different polarities is superimposed on the preset Driving a parameter, thereby disturbing a phase angle of the three-phase driving voltage; detecting an operating state of the disturbed AC motor, and generating an output data; and calculating, according to the output data, the AC motor when applying a disturbance of different polarities The work efficiency; and comparing the work efficiency, by selecting the parameter set value corresponding to the higher one as the set value of the current preset drive parameter. 如申請專利範圍第1項所述的交流馬達的驅動方法,更包括:在下一機械週期中,交換所述不同極性之擾動量的施加順序。 The driving method of the alternating current motor according to claim 1, further comprising: exchanging the order of application of the disturbance amounts of the different polarities in the next mechanical cycle. 如申請專利範圍第1項所述的交流馬達的驅動方法,其中以不同極性之擾動量分別疊加於該預設驅動參數,藉以擾動該三相驅動電壓的相位角度的步驟包括:將一第一擾動量疊加至該預設驅動參數以產生一第一控制參數;以及將極性相反於該第一擾動量的一第二擾動量疊加至該預設驅動參數以產生一第二控制參數。 The driving method of the alternating current motor according to claim 1, wherein the step of disturbing the phase angle of the three-phase driving voltage by superimposing the disturbance amounts of different polarities respectively comprises: first And superimposing the disturbance amount on the preset driving parameter to generate a first control parameter; and superimposing a second disturbance amount having a polarity opposite to the first disturbance amount to the preset driving parameter to generate a second control parameter. 如申請專利範圍第3項所述的交流馬達的驅動方法,其中 計算該交流馬達於施加不同極性之擾動量時的工作效率的步驟包括:依據對應於該第一控制參數的輸出數據計算一第一工作效率;以及依據對應於該第二控制參數的輸出數據計算一第二工作效率。 The driving method of the alternating current motor according to claim 3, wherein Calculating the working efficiency of the AC motor when applying the disturbance amount of different polarities comprises: calculating a first working efficiency according to the output data corresponding to the first control parameter; and calculating according to the output data corresponding to the second control parameter A second work efficiency. 如申請專利範圍第4項所述的交流馬達的驅動方法,其中比較所述工作效率,藉以選取其中較高者所對應之參數設定值作為當前的預設驅動參數的設定值的步驟包括:當該第一工作效率大於該第二工作效率時,將該第一控制參數設定為該預設驅動參數;以及當該第一工作效率小於該第二工作效率時,將該第二控制參數設定為該預設驅動參數。 The driving method of the alternating current motor according to claim 4, wherein comparing the working efficiency, the step of selecting a parameter setting value corresponding to the higher one as the setting value of the current preset driving parameter comprises: when When the first working efficiency is greater than the second working efficiency, setting the first control parameter to the preset driving parameter; and when the first working efficiency is less than the second working efficiency, setting the second control parameter to The preset drive parameter. 如申請專利範圍第1項所述的交流馬達的驅動方法,其中依據該轉速設定值與該預設驅動參數產生該三相驅動電壓來驅動該交流馬達的步驟包括:依據該轉速設定值以及該交流馬達的一轉子速度產生一定子電壓設定值;依據該預設驅動參數與一轉子運轉資訊產生一相位角度設定值以及依據該定子電壓設定值與該相位角度設定值將一直流鏈電壓與一直流鏈電流轉換為該三相驅動電壓。 The driving method of the AC motor according to the first aspect of the invention, wherein the step of generating the three-phase driving voltage according to the rotation speed setting value and the preset driving parameter to drive the AC motor comprises: setting the value according to the rotation speed and the A rotor speed of the AC motor generates a certain sub-voltage set value; a phase angle setting value is generated according to the preset driving parameter and a rotor running information, and the current chain voltage is always used according to the stator voltage setting value and the phase angle setting value. The streamline current is converted to the three-phase drive voltage. 如申請專利範圍第6項所述的交流馬達的驅動方法,其中檢測擾動後的交流馬達的運作狀態,並據以產生該輸出數據的步驟包括:取樣該直流鏈電壓與該直流鏈電流;從交流馬達接收多個霍爾訊號,以依據該些霍爾訊號定義該交流馬達的一轉子位置;以及依據該轉子位置計算該轉子速度。 The method for driving an AC motor according to claim 6, wherein the detecting the operating state of the disturbed AC motor and generating the output data comprises: sampling the DC link voltage and the DC link current; The AC motor receives a plurality of Hall signals to define a rotor position of the AC motor based on the Hall signals; and calculates the rotor speed based on the rotor position. 如申請專利範圍第7項所述的交流馬達的驅動方法,其中取樣該直流鏈電壓與該直流鏈電流的步驟包括:在該機械週期中的多個不同時間點下取樣該直流鏈電流之電流值;以及計算該些電流值之平均以作為計算所述工作效率的基礎。 The method for driving an AC motor according to claim 7, wherein the step of sampling the DC link voltage and the DC link current comprises: sampling a current of the DC link current at a plurality of different time points in the mechanical cycle; And calculating an average of the current values as a basis for calculating the operating efficiency. 如申請專利範圍第8項所述的交流馬達的驅動方法,其中該交流馬達包括多個霍爾感測器,該些電流值之取樣點數量係依據該交流馬達的一極對數與該些霍爾感測器的數量所決定。 The driving method of the alternating current motor according to claim 8, wherein the alternating current motor comprises a plurality of Hall sensors, and the number of sampling points of the current values is based on the number of poles of the alternating current motor and the plurality of The number of sensors is determined. 如申請專利範圍第1項所述的交流馬達的驅動方法,更包括:在疊加該擾動量於該預設驅動參數,從而令該三相驅動電壓的相位角度改變後,延遲一預設期間再檢測擾動後的交流馬達的運作狀態。 The method for driving an AC motor according to claim 1, further comprising: after superimposing the disturbance amount on the preset driving parameter, thereby changing a phase angle of the three-phase driving voltage, delaying a predetermined period of time The operating state of the disturbed AC motor is detected. 一種馬達驅動裝置,適於驅動一交流馬達,該馬達驅動裝置包括: 一三相電壓產生器,依據一轉速設定值以及一預設驅動參數產生一三相驅動電壓以驅動該交流馬達;一驅動控制器,耦接該三相電壓產生器,用以依據該交流馬達與該三相電壓產生器的運作狀態產生該預設驅動參數來調整該三相驅動電壓的一相位角度;以及一檢測電路,耦接該三相電壓產生器與該驅動控制器,用以檢測該交流馬達與該三相電壓產生器的運作狀態,並據以產生一輸出數據,其中,在該交流馬達的一機械週期中,該驅動控制器以不同極性之擾動量分別疊加於該預設驅動參數,藉以擾動該三相驅動電壓的相位角度,並且依據該輸出數據計算該交流馬達於施加不同極性之擾動量時的工作效率,再比較所述工作效率,藉以選取工作效率較高之參數設定值作為當前的預設驅動參數的設定值。 A motor driving device is adapted to drive an AC motor, the motor driving device comprising: a three-phase voltage generator generates a three-phase driving voltage to drive the alternating current motor according to a speed setting value and a preset driving parameter; a driving controller coupled to the three-phase voltage generator for using the alternating current motor And the operating state of the three-phase voltage generator generates the preset driving parameter to adjust a phase angle of the three-phase driving voltage; and a detecting circuit coupled to the three-phase voltage generator and the driving controller for detecting And operating the AC motor and the three-phase voltage generator to generate an output data, wherein, in a mechanical cycle of the AC motor, the drive controller is superimposed on the preset with different polarity disturbances Driving parameters, thereby disturbing a phase angle of the three-phase driving voltage, and calculating an operating efficiency of the alternating current motor when applying a disturbance amount of different polarities according to the output data, and comparing the working efficiency, thereby selecting a parameter with higher working efficiency The set value is used as the set value of the current preset drive parameter. 如申請專利範圍第11項所述的馬達驅動裝置,其中該驅動控制器在下一機械週期中交換所述不同極性之擾動量的施加順序。 The motor drive device of claim 11, wherein the drive controller exchanges the order of application of the disturbance amounts of the different polarities in a next mechanical cycle. 如申請專利範圍第11項所述的馬達驅動裝置,其中該驅動控制器將一第一擾動量疊加至該預設驅動參數以產生一第一控制參數,使得該檢測電路檢測出對應於該第一控制參數的輸出數據,該驅動控制器依據對應於該第一控制參數的輸出數據計算一第一工作效率。 The motor driving device of claim 11, wherein the driving controller superimposes a first disturbance amount on the preset driving parameter to generate a first control parameter, so that the detecting circuit detects the corresponding And controlling output data of the parameter, the driving controller calculating a first working efficiency according to the output data corresponding to the first control parameter. 如申請專利範圍第13項所述的馬達驅動裝置,其中該驅 動控制器將極性相反於該第一擾動量的一第二擾動量疊加至該預設驅動參數以產生一第二控制參數,使得該檢測電路檢測出對應於該第二控制參數的輸出數據,該驅動控制器依據對應於該第二控制參數的輸出數據計算一第二工作效率。 The motor drive device of claim 13, wherein the drive The dynamic controller superimposes a second disturbance amount whose polarity is opposite to the first disturbance amount to the preset driving parameter to generate a second control parameter, so that the detection circuit detects the output data corresponding to the second control parameter, The drive controller calculates a second operating efficiency based on the output data corresponding to the second control parameter. 如申請專利範圍第14項所述的馬達驅動裝置,其中當該驅動控制器判定該第一工作效率大於該第二工作效率時,該驅動控制器將該第一控制參數設定為該預設驅動參數,以及當該驅動控制器判定該第一工作效率小於該第二工作效率時,該驅動控制器將該第二控制參數設定為該預設驅動參數。 The motor driving device of claim 14, wherein the driving controller sets the first control parameter to the preset driving when the driving controller determines that the first working efficiency is greater than the second working efficiency. a parameter, and when the drive controller determines that the first work efficiency is less than the second work efficiency, the drive controller sets the second control parameter as the preset drive parameter. 如申請專利範圍第11項所述的馬達驅動裝置,其中該驅動控制器依據該預設驅動參數與一轉子運轉資訊產生一相位角度設定值。 The motor driving device of claim 11, wherein the driving controller generates a phase angle setting value according to the preset driving parameter and a rotor running information. 如申請專利範圍第16項所述的馬達驅動裝置,其中該三相電壓產生裝置係依據該轉速設定值以及該交流馬達的一轉子速度產生一定子電壓設定值,並且該三相電壓產生裝置依據該定子電壓設定值與該相位角度設定值將一直流鏈電壓與一直流鏈電流轉換為該三相驅動電壓。 The motor driving device of claim 16, wherein the three-phase voltage generating device generates a certain sub-voltage setting value according to the rotation speed setting value and a rotor speed of the AC motor, and the three-phase voltage generating device is based on The stator voltage set value and the phase angle set value convert the flow chain voltage and the DC link current into the three-phase drive voltage. 如申請專利範圍第17項所述的馬達驅動裝置,其中該檢測電路取樣該直流鏈電壓與該直流鏈電流,從交流馬達接收多個霍爾訊號,以依據該些霍爾訊號定義該交流馬達的一轉子位置,並且依據該轉子位置計算該轉子速度。 The motor driving device of claim 17, wherein the detecting circuit samples the DC link voltage and the DC link current, and receives a plurality of Hall signals from the AC motor to define the AC motor according to the Hall signals. a rotor position and the rotor speed is calculated based on the rotor position. 如申請專利範圍第18項所述的馬達驅動裝置,其中該檢 測電路係在該機械週期中的多個不同時間點下取樣該直流鏈電流之電流值,再計算該些電流值之平均以作為計算所述工作效率的基礎。 The motor driving device of claim 18, wherein the inspection The measuring circuit samples the current value of the DC link current at a plurality of different time points in the mechanical cycle, and calculates an average of the current values as a basis for calculating the working efficiency. 如申請專利範圍第19項所述的馬達驅動裝置,其中該交流馬達包括多個霍爾感測器,該些電流值之取樣點數量係依據該交流馬達的一極對數與該些霍爾感測器的數量所決定。 The motor driving device of claim 19, wherein the AC motor comprises a plurality of Hall sensors, and the number of sampling points of the current values is based on a pole number of the AC motor and the sense of Hall The number of detectors is determined. 如申請專利範圍第11項所述的馬達驅動裝置,其中該檢測電路會在該驅動控制器疊加該擾動量於該預設驅動參數,從而令該三相驅動電壓的相位角度改變後,延遲一預設期間再檢測擾動後的交流馬達的運作狀態。 The motor driving device of claim 11, wherein the detecting circuit delays the phase of the three-phase driving voltage after the driving controller superimposes the disturbance amount on the preset driving parameter, thereby delaying one The operating state of the disturbed AC motor is detected again during the preset period.
TW104140746A 2015-11-27 2015-12-04 Driving method for ac motor and motor driving apparatus using the same TWI577127B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510845030.7A CN106817064B (en) 2015-11-27 2015-11-27 The driving method of alternating current generator and the motor driver for applying it

Publications (2)

Publication Number Publication Date
TWI577127B TWI577127B (en) 2017-04-01
TW201720044A true TW201720044A (en) 2017-06-01

Family

ID=59102677

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104140746A TWI577127B (en) 2015-11-27 2015-12-04 Driving method for ac motor and motor driving apparatus using the same

Country Status (2)

Country Link
CN (1) CN106817064B (en)
TW (1) TWI577127B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846173B (en) * 2017-10-28 2022-03-08 珠海磐磊智能科技有限公司 Motor control method, motor control system and running device
CN107743006B (en) * 2017-10-28 2020-05-19 珠海磐磊智能科技有限公司 Motor control method, motor control system and running device
CN110057306B (en) * 2019-06-03 2024-06-07 呜啦啦(广州)科技有限公司 Driving device of circumference sensor and automatic zeroing initialization method thereof
CN110108234B (en) * 2019-06-03 2024-06-07 呜啦啦(广州)科技有限公司 Current type bidirectional bending sensor driving device and automatic return-to-zero initialization method
CN111293953A (en) * 2020-03-27 2020-06-16 重庆金康动力新能源有限公司 Motor control method and device, electric vehicle and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949794B2 (en) * 1997-10-17 2007-07-25 ダイキン工業株式会社 Brushless DC motor control method and apparatus
JP4067949B2 (en) * 2002-12-03 2008-03-26 サンデン株式会社 Motor control device
CN201118513Y (en) * 2007-10-31 2008-09-17 广西工学院 Efficiency optimization control system for three-phase inductance electromotor
JP5413400B2 (en) * 2011-04-20 2014-02-12 株式会社安川電機 AC motor control device
JP5357232B2 (en) * 2011-10-11 2013-12-04 三菱電機株式会社 Synchronous machine controller
CN103759870B (en) * 2014-01-22 2015-10-28 佛山市川东磁电股份有限公司 A kind of measuring method for intermittent work device output power value and system

Also Published As

Publication number Publication date
TWI577127B (en) 2017-04-01
CN106817064B (en) 2019-01-11
CN106817064A (en) 2017-06-09

Similar Documents

Publication Publication Date Title
TWI577127B (en) Driving method for ac motor and motor driving apparatus using the same
RU2613357C2 (en) Method and device for electric current input into electric network
KR101244299B1 (en) Method and system for sensorless torque control for ironless permanent magnet machine
CN107086835B (en) Permanent magnet synchronous motor rotation initial zero-potential angle calibration system and calibration method
JP2014518604A (en) Method and system for evaluating electrical connection between a motor controller and a motor
JP2010504731A (en) Anomaly detection by evaluating the amount of magnetic field orientation control
WO2016117029A1 (en) Angle error correction device for position detector and angle error correction method
JP2008220096A (en) Sensorless controller of synchronous electric motor
KR20090084045A (en) Motor, controlling apparatus for a motor and starting method for the motor
CN109565251B (en) Start induction machine
JP5753474B2 (en) Synchronous motor controller
CN104079215A (en) Precise detection and adjustment method for initial position of permanent-magnet synchronous motor rotor for vehicle
KR102604003B1 (en) Apparatus for controlling motor, system for controlling motor and method for controlling motor
US20150061640A1 (en) Method and Device for Sensorless Control of a Separately Excited Synchronous Machine
US9520824B2 (en) Inverter apparatus
KR20080058070A (en) Controlling method and apparatus of bldc motor
JP4207810B2 (en) PM motor evaluation test equipment
US9680403B2 (en) Control device and method for controlling an induction machine
JP2005237172A (en) Control device for synchronous machine
CN110365270A (en) Rotation for AC magnetoelectric machine becomes zero bias setting method
US9401618B2 (en) Control circuit, and power generation device having the same
KR20160068478A (en) Image forming apparatus and method of operating the same
JP2007336645A (en) Controller for synchronous machines
JP2005039889A (en) Method for controlling electric motor
EP3396846A1 (en) Method for controlling medium-voltage inverter and system comprising the same