JP6214480B2 - Frequency response measuring device - Google Patents

Frequency response measuring device Download PDF

Info

Publication number
JP6214480B2
JP6214480B2 JP2014131181A JP2014131181A JP6214480B2 JP 6214480 B2 JP6214480 B2 JP 6214480B2 JP 2014131181 A JP2014131181 A JP 2014131181A JP 2014131181 A JP2014131181 A JP 2014131181A JP 6214480 B2 JP6214480 B2 JP 6214480B2
Authority
JP
Japan
Prior art keywords
excitation
frequency response
frequency
vibration
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014131181A
Other languages
Japanese (ja)
Other versions
JP2016010287A (en
Inventor
弘太朗 長岡
弘太朗 長岡
智哉 藤田
智哉 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014131181A priority Critical patent/JP6214480B2/en
Publication of JP2016010287A publication Critical patent/JP2016010287A/en
Application granted granted Critical
Publication of JP6214480B2 publication Critical patent/JP6214480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、産業用機械において周波数応答を測定する周波数応答測定装置に関するものである。   The present invention relates to a frequency response measuring apparatus for measuring a frequency response in an industrial machine.

産業用機械では、機械系の状態を診断しあるいは振動特性を把握するため、機械系の周波数応答を測定することが行われる。また、サーボ系の調整を行なう際に、速度ループおよび位置ループといった制御ループの周波数応答を測定することも行われる。周波数応答は、特定の周波数の入力信号を与えた場合の出力信号に対して、入力信号と出力信号との振幅の比と位相の比であり、周波数と振幅比(ゲイン)および周波数と位相の関係で表現される。   In an industrial machine, a frequency response of a mechanical system is measured in order to diagnose a mechanical system state or grasp a vibration characteristic. Further, when adjusting the servo system, the frequency response of a control loop such as a speed loop and a position loop is also measured. The frequency response is the ratio of the amplitude and the phase of the input signal and the output signal with respect to the output signal when an input signal of a specific frequency is given. The frequency and amplitude ratio (gain) and the frequency and phase Expressed in relationships.

周波数応答の測定に際しては、従来は正弦波状の入力信号を与え、入力する正弦波の周波数を順次変更して周波数ごとのゲインおよび位相の測定を行っていたが、入力信号の周波数を徐々に変えて出力信号を測定していく方法であり、周波数応答の測定に多大な時間を要するという問題があった。   Conventionally, when measuring the frequency response, a sinusoidal input signal was given, and the frequency of the input sine wave was sequentially changed to measure the gain and phase for each frequency. However, the frequency of the input signal was gradually changed. Thus, there is a problem that it takes a long time to measure the frequency response.

このような問題を解決するため、下記特許文献1に代表される従来技術には、ホワイトノイズを入力信号とし、速度指令であるホワイトノイズを与えたときの速度をサンプリングし、サンプリングして得られた速度データと速度指令とをフーリエ変換することによって、速度指令から速度までの周波数応答特性を求めることが開示されている。理想的なホワイトノイズはすべての周波数成分を含む信号であるため、短い測定時間ですべての周波数領域における周波数応答を測定することが可能となる。ホワイトノイズにはM系列信号と呼ばれる擬似ランダム信号が用いられる。   In order to solve such a problem, the conventional technique represented by Patent Document 1 below is obtained by sampling the white noise as an input signal, sampling the speed when the white noise as a speed command is given, and sampling. It is disclosed that a frequency response characteristic from a speed command to a speed is obtained by performing a Fourier transform between the speed data and the speed command. Since ideal white noise is a signal including all frequency components, it is possible to measure frequency responses in all frequency regions in a short measurement time. For the white noise, a pseudo-random signal called an M-sequence signal is used.

特開2000−278990号公報JP 2000-278990 A

特許文献1では、すべての周波数成分を含むホワイトノイズを印加して機械系を加振したときの機械系の応答波形、例えば速度フィードバックデータを測定する。ところが、機械系に外乱要因である摩擦が存在する場合、ホワイトノイズを与えても機械系が加振されず、周波数応答を正しく求めることができないという問題がある。特に、機械系の摩擦の影響によって低周波数領域の応答性が悪くなってしまい、低い周波数領域における周波数応答を正しく求めることができない。   In Patent Document 1, a response waveform of a mechanical system, for example, speed feedback data, is measured when white noise including all frequency components is applied to vibrate the mechanical system. However, when there is friction as a disturbance factor in the mechanical system, there is a problem that even if white noise is applied, the mechanical system is not vibrated and the frequency response cannot be obtained correctly. In particular, the response in the low frequency region deteriorates due to the influence of mechanical friction, and the frequency response in the low frequency region cannot be obtained correctly.

具体的には、トルクから速度フィードバックまでの周波数応答を測定する場合、機械系が剛体系で近似できる場合であれば、低い周波数領域の周波数応答は、ゲイン線図が−20dB/decの直線状となり、位相線図が−90°で一定となるはずである。これに対して、摩擦の影響によって低い周波数領域が加振されない場合、入力に対して出力が応答していないとみなされるため、その領域ではゲインが、本来の値よりも小さくなってしまい、位相が0°に近い値となってしまう。   Specifically, when measuring the frequency response from torque to speed feedback, if the mechanical system can be approximated by a rigid system, the frequency response in the low frequency region is linear with a gain diagram of −20 dB / dec. And the phase diagram should be constant at -90 °. On the other hand, when the low frequency region is not vibrated due to the influence of friction, the output is considered not to respond to the input, so the gain becomes smaller than the original value in that region, and the phase Becomes a value close to 0 °.

このように周波数応答測定結果を正しく求めることができなければ、低周波数領域のゲインの値を読み取って機械系のイナーシャを推定する場合、大きな推定誤差が生じる。また、ゲイン曲線のピークや位相曲線の変化を読み取って機械系の共振周波数や減衰比を推定するといった場合、誤った値を推定してしまう。さらに制御系の調整のために周波数応答を測定する場合、低い周波数領域のゲインが本来の値よりも小さい値が測定されてしまうと、制御系の帯域を正しく求めることができず、制御系のゲインチューニングの適切な調整ができないという問題が生じる。   If the frequency response measurement result cannot be obtained correctly as described above, a large estimation error occurs when the mechanical system inertia is estimated by reading the gain value in the low frequency region. Further, when reading the gain curve peak or phase curve change to estimate the resonance frequency or damping ratio of the mechanical system, an incorrect value is estimated. Furthermore, when measuring the frequency response to adjust the control system, if the gain in the low frequency region is smaller than the original value, the bandwidth of the control system cannot be determined correctly, and the control system There arises a problem that the gain tuning cannot be properly adjusted.

本発明は、上記に鑑みてなされたものであって、外乱を受けても広い周波数範囲にわたって周波数応答を精度よく求めることができる周波数応答測定装置を得ることを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to obtain a frequency response measuring apparatus capable of accurately obtaining a frequency response over a wide frequency range even when subjected to a disturbance.

上述した課題を解決し、目的を達成するために、本発明は、機械系をフィードバック制御するサーボ系の周波数応答を測定する周波数応答測定装置において、複数の異なる擬似ランダム信号の基準周期を加振周期として設定する加振周期設定部と、前記異なる加振周期の加振信号で前記サーボ系を複数回加振する加振実行部と、前記複数回の加振がなされた前記サーボ系から、前記複数回の加振ごとに同定入力信号と同定出力信号の組を取得し、前記複数回の加振ごとの前記加振周期と、前記複数回の加振ごとの前記同定入力信号と前記同定出力信号の組とに基づいて、前記周波数応答を演算する周波数応答演算部と、前記複数回の加振周期ごとの周波数応答を合成して、前記サーボ系の周波数応答を演算する周波数応答合成部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a frequency response measuring apparatus for measuring a frequency response of a servo system that performs feedback control of a mechanical system, and excites a reference period of a plurality of different pseudo-random signals. From the excitation cycle setting unit that is set as a cycle, the excitation execution unit that vibrates the servo system a plurality of times with the excitation signal of the different excitation cycle, and the servo system that has been subjected to the plurality of excitations, A set of an identification input signal and an identification output signal is acquired for each of the plurality of excitations, the excitation cycle for each of the plurality of excitations, the identification input signal and the identification for each of the plurality of excitations A frequency response calculation unit that calculates the frequency response based on a set of output signals, and a frequency response synthesis unit that calculates a frequency response of the servo system by synthesizing a frequency response for each of the plurality of excitation periods And comprising And wherein the door.

この発明によれば、複数の異なる加振周期を用いて周波数応答を演算することにより、外乱を受けても広い周波数範囲にわたって周波数応答を精度よく求めることができる、という効果を奏する。   According to the present invention, by calculating the frequency response using a plurality of different excitation periods, there is an effect that the frequency response can be accurately obtained over a wide frequency range even if a disturbance is received.

図1は、本発明の実施の形態1に係る周波数応答測定装置の構成図である。FIG. 1 is a configuration diagram of a frequency response measuring apparatus according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る周波数応答測定装置が適用されるサーボ系の構成図である。FIG. 2 is a configuration diagram of a servo system to which the frequency response measuring apparatus according to the first embodiment of the present invention is applied. 図3は、本発明の実施の形態1に係る周波数応答測定装置の測定対象である機械系の構成図である。FIG. 3 is a configuration diagram of a mechanical system that is a measurement target of the frequency response measuring apparatus according to the first embodiment of the present invention. 図4は、本発明の実施の形態2に係る周波数応答測定装置の構成図である。FIG. 4 is a configuration diagram of a frequency response measuring apparatus according to Embodiment 2 of the present invention. 図5は、本発明の実施の形態3に係る周波数応答測定装置の測定対象である機械系の構成図である。FIG. 5 is a configuration diagram of a mechanical system that is a measurement target of the frequency response measuring apparatus according to the third embodiment of the present invention.

以下に、本発明に係る周波数応答測定装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a frequency response measuring apparatus according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は本発明の実施の形態1に係る周波数応答測定装置100の構成図、図2は本発明の実施の形態1に係る周波数応答測定装置100が適用されるサーボ系3の構成図、図3は本発明の実施の形態1に係る周波数応答測定装置100の測定対象である機械系35の構成図である。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a frequency response measuring apparatus 100 according to Embodiment 1 of the present invention. FIG. 2 is a configuration diagram of a servo system 3 to which the frequency response measuring apparatus 100 according to Embodiment 1 of the present invention is applied. 3 is a configuration diagram of a mechanical system 35 that is a measurement target of the frequency response measuring apparatus 100 according to the first embodiment of the present invention.

図1に示される周波数応答測定装置100は、サーボ系3の周波数応答を測定する装置であり、加振周期設定部1、加振実行部2、周波数応答演算部4、および周波数応答合成部5を備える。   A frequency response measuring device 100 shown in FIG. 1 is a device that measures the frequency response of the servo system 3, and includes an excitation period setting unit 1, an excitation execution unit 2, a frequency response calculation unit 4, and a frequency response synthesis unit 5. Is provided.

加振周期設定部1は、加振実行部2における加振信号Vinの加振周期Tを設定する。加振実行部2は、加振周期設定部1で設定された加振周期Tに対応する加振信号Vinを出力する。   The excitation cycle setting unit 1 sets the excitation cycle T of the excitation signal Vin in the excitation execution unit 2. The excitation execution unit 2 outputs an excitation signal Vin corresponding to the excitation cycle T set by the excitation cycle setting unit 1.

加振実行部2から出力された加振信号Vinはサーボ系3に入力され、後述する構成のサーボ系3において加振が実行される。加振時におけるサーボ系3内部の同定入力信号3aと同定出力信号3bとが周波数応答演算部4に送られる。   The vibration signal Vin output from the vibration execution unit 2 is input to the servo system 3, and the vibration is executed in the servo system 3 having a configuration described later. An identification input signal 3 a and an identification output signal 3 b inside the servo system 3 at the time of vibration are sent to the frequency response calculation unit 4.

周波数応答演算部4は、同定入力信号3aと同定出力信号3bの間の周波数応答を演算する。具体的には、周波数応答演算部4の内部では、複数回行われる加振ごとに入力された同定入力信号3aと同定出力信号3bによって各回の周波数応答が演算される。演算された各回の周波数応答は、周波数応答合成部5に入力される。   The frequency response calculation unit 4 calculates a frequency response between the identification input signal 3a and the identification output signal 3b. Specifically, in the frequency response calculation unit 4, the frequency response of each time is calculated by the identification input signal 3 a and the identification output signal 3 b that are input every time the vibration is performed a plurality of times. The calculated frequency response of each time is input to the frequency response synthesis unit 5.

周波数応答合成部5には、周波数応答演算部4で演算された各回の周波数応答と、加振周期設定部1からの加振周期Tとが入力される。周波数応答合成部5は、各回の加振周期Tに対応した周波数応答を合成し、合成した周波数応答を出力する。   Each frequency response calculated by the frequency response calculation unit 4 and the excitation cycle T from the excitation cycle setting unit 1 are input to the frequency response synthesis unit 5. The frequency response synthesizer 5 synthesizes the frequency response corresponding to each excitation period T and outputs the synthesized frequency response.

図2に示されるサーボ系3は、減算部31、位置制御部32、加減算部33、速度制御部34、機械系35を備える。機械系35は主にサーボモータ36および負荷37で構成され、サーボモータ36には負荷37が接続されている。機械系35の詳細は後述する。加減算部33、速度制御部34、サーボモータ36は速度制御ループを構成し、減算部31、位置制御部32、加減算部33、速度制御部34、およびサーボモータ36は位置制御ループを構成する。   The servo system 3 shown in FIG. 2 includes a subtraction unit 31, a position control unit 32, an addition / subtraction unit 33, a speed control unit 34, and a mechanical system 35. The mechanical system 35 is mainly composed of a servo motor 36 and a load 37, and a load 37 is connected to the servo motor 36. Details of the mechanical system 35 will be described later. The addition / subtraction unit 33, the speed control unit 34, and the servo motor 36 constitute a speed control loop, and the subtraction unit 31, the position control unit 32, the addition / subtraction unit 33, the speed control unit 34, and the servo motor 36 constitute a position control loop.

位置指令6は、図示しない数値制御装置によって指令され、通常はNCプログラムで仕様するGコード(EIAコード)に従って時々刻々に更新される。ただし加振信号Vinを与えて加振を行う際には、一定値の位置指令6が与えられているものとする。   The position command 6 is commanded by a numerical control device (not shown), and is normally updated every moment according to a G code (EIA code) specified by the NC program. However, it is assumed that a position command 6 having a constant value is given when the excitation is performed by giving the excitation signal Vin.

減算部31では、位置指令6とモータ位置θとの偏差31aが演算され、偏差31aは位置制御部32に入力される。加減算部33では、位置制御部32の出力信号32aと加振信号Vinとの和からモータ速度vを減算することで速度偏差eが演算される。   In the subtraction unit 31, a deviation 31 a between the position command 6 and the motor position θ is calculated, and the deviation 31 a is input to the position control unit 32. In the addition / subtraction unit 33, the speed deviation e is calculated by subtracting the motor speed v from the sum of the output signal 32a of the position control unit 32 and the vibration signal Vin.

速度偏差eは速度制御部34に入力され、速度制御部34ではトルク指令τが演算され、サーボモータ36は、トルク指令τに従って駆動制御される。なお、実際には速度制御ループの内部にトルク制御部および電力変換部が存在するが、その応答は非常に速く、その応答遅れは無視できるため図2では記載を省略している。また位置制御部32の位置制御には比例制御を用い、速度制御部34の速度制御には比例積分制御を用いる。   The speed deviation e is input to the speed control unit 34, the torque command τ is calculated by the speed control unit 34, and the servo motor 36 is driven and controlled according to the torque command τ. In practice, the torque control unit and the power conversion unit exist inside the speed control loop, but the response is very fast and the response delay is negligible, so the description is omitted in FIG. Proportional control is used for position control of the position control unit 32, and proportional-integral control is used for speed control of the speed control unit 34.

図3には機械系35の構成例が示される。トルク指令τを受けて回転トルクを発生するサーボモータ36には、シャフト39を介して負荷イナーシャである負荷37が接続されている。さらにサーボモータ36には、位置検出器であるロータリーエンコーダ38が取り付けられており、ロータリーエンコーダ38は、サーボモータ36の位置である回転角度を検出し、回転角度を微分演算することにより、モータ速度vを得る。   FIG. 3 shows a configuration example of the mechanical system 35. A load 37 that is a load inertia is connected to a servo motor 36 that receives a torque command τ and generates rotational torque via a shaft 39. Further, a rotary encoder 38 as a position detector is attached to the servo motor 36. The rotary encoder 38 detects the rotation angle that is the position of the servo motor 36, and differentially calculates the rotation angle, thereby obtaining a motor speed. Get v.

次に実施の形態1に係る周波数応答測定装置100における周波数応答測定動作を説明する。加振周期設定部1は、2種類の加振周期T1,T2を設定する。実施の形態1では加振周期T2が加振周期T1より長い値であるものとする。具体的には、加振周期T1はサーボ制御系のサンプリング周期と同一とし、加振周期T2は加振周期T1の数倍程度、一例としては4倍から8倍とする。   Next, the frequency response measurement operation in frequency response measurement apparatus 100 according to Embodiment 1 will be described. The excitation cycle setting unit 1 sets two types of excitation cycles T1 and T2. In Embodiment 1, it is assumed that the excitation cycle T2 is longer than the excitation cycle T1. Specifically, the excitation period T1 is the same as the sampling period of the servo control system, and the excitation period T2 is about several times the excitation period T1, for example, 4 to 8 times.

加振実行部2は、加振周期T1に対応した1回目の加振信号Vin1と、加振周期T2に対応した2回目の加振信号Vin2とを生成する。なお、加振信号Vinは、それぞれ擬似ランダム信号であるM系列信号の生成アルゴリズムに従って設定された点数に対応する−1と+1の2値信号を生成した後に、2値信号に加振振幅が乗算されたものである。   The vibration execution unit 2 generates a first vibration signal Vin1 corresponding to the vibration period T1 and a second vibration signal Vin2 corresponding to the vibration period T2. The excitation signal Vin is generated by generating a binary signal of −1 and +1 corresponding to the number of points set according to the generation algorithm of the M-sequence signal, which is a pseudo-random signal, and then multiplying the binary signal by the excitation amplitude. It has been done.

このとき、M系列信号は離散的に変化する信号となり、その変化のタイミング、すなわち2値信号が一方の値から他方の値に変化してから次に変化が生じるまでの時間間隔は、設定された基準周期の整数倍となる。基準周期は、1回目の加振信号Vin1では加振周期T1であり、2回目の加振信号Vin2では加振周期T2である。加振周期T2は加振周期T1より長いため、2回目の加振信号Vin2は1回目の加振信号Vin1よりも値の変化の頻度が少なくなる。なお、M系列信号の生成方法は信号処理の分野では公知であるので、ここでは説明を省略する。   At this time, the M-sequence signal becomes a discretely changing signal, and the timing of the change, that is, the time interval from when the binary signal changes from one value to the other value until the next change is set. It is an integral multiple of the reference period. The reference period is the excitation period T1 for the first excitation signal Vin1, and the excitation period T2 for the second excitation signal Vin2. Since the vibration period T2 is longer than the vibration period T1, the second vibration signal Vin2 changes less frequently than the first vibration signal Vin1. Note that a method for generating an M-sequence signal is known in the field of signal processing, and thus description thereof is omitted here.

サーボ系3では、まず1回目の加振信号Vin1が加振信号Vinとして印加され、1回目の加振が行われる。加振の際、位置指令6は一定値とする。すなわち加振信号Vinによって機械系35の加振が行われる。実施の形態1では、周波数応答測定装置100を用いて機械系35の周波数応答、すなわちトルク指令τからモータ速度vまでの周波数応答を求めるものとする。そのため、周波数応答演算部4は、加振中のトルク指令τである1回目の同定入力信号3aと、加振中のモータ速度vである1回目の同定出力信号3bとを取得する。   In the servo system 3, first, the first vibration signal Vin1 is applied as the vibration signal Vin, and the first vibration is performed. At the time of vibration, the position command 6 is a constant value. That is, the mechanical system 35 is vibrated by the vibration signal Vin. In the first embodiment, the frequency response of the mechanical system 35, that is, the frequency response from the torque command τ to the motor speed v is obtained using the frequency response measuring apparatus 100. Therefore, the frequency response calculation unit 4 acquires the first identification input signal 3a that is the torque command τ during vibration and the first identification output signal 3b that is the motor speed v during vibration.

周波数応答演算部4では、1回目の同定入力信号3aと1回目の同定出力信号3bに基づいて、トルク指令τからモータ速度vまでの周波数応答が演算される。同定入力信号3aと同定出力信号3bとから入出力間の周波数応答を求める方法については、ペリオドグラムFFT法やARXモデル同定、部分空間法など公知の手法を用いることができる。それらの手法の詳細の一例は「MATLABによる制御のためのシステム同定」(東京電機出版)R.Pintelon,J.Schoukens著「System Identification」(IEEE Press)に記載されているので、ここでは説明を省略する。1回目の加振における周波数応答をG1(j2πf)とする。fは、周波数でありその単位はHzである。G1(j2πf)の絶対値がゲインとなり、G1(j2πf)の複素領域での偏角が位相となる。   The frequency response calculation unit 4 calculates a frequency response from the torque command τ to the motor speed v based on the first identification input signal 3a and the first identification output signal 3b. As a method for obtaining a frequency response between input and output from the identification input signal 3a and the identification output signal 3b, a known method such as a periodogram FFT method, ARX model identification, or a subspace method can be used. An example of the details of these methods is described in “System identification for control by MATLAB” (Tokyo Denki Shuppan). Pintelon, J.M. Since it is described in “System Identification” (IEEE Press) by Schukens, description thereof is omitted here. Let the frequency response in the first excitation be G1 (j2πf). f is a frequency and its unit is Hz. The absolute value of G1 (j2πf) becomes the gain, and the declination angle in the complex region of G1 (j2πf) becomes the phase.

2回目の加振信号Vin2による加振も、1回目の加振と同様に行われる。2回目の加振において得られた周波数応答をG2(j2πf)とする。   Excitation using the second excitation signal Vin2 is performed in the same manner as the first excitation. Let the frequency response obtained in the second excitation be G2 (j2πf).

次に、周波数応答合成部5における周波数応答の演算手順を説明する。周波数応答合成部5は、1回目の加振周期T1の逆数を1回目の加振周波数F1に設定し、2回目の加振周期T2の逆数を2回目の加振周波数F2に設定する。加振周期T2は加振周期T1よりも長いため、加振周波数F2は加振周波数F1よりも低い値となる。ここで2回目の加振周波数F2の1/2よりも低い周波数を境界周波数Fbとしたとき、境界周波数Fbの一例としては加振周波数F2の1/4とする。周波数応答合成部5は、1回目の加振における周波数応答G1(j2πf)の境界周波数Fb以上の周波数領域の応答と、2回目の加振における周波数応答G2(j2πf)の境界周波数Fb未満の領域における応答とを合成し、合成した周波数応答、すなわちトルク指令τから速度までの周波数応答G(j2πf)を出力する。以上の合成演算は次式で表すことができる。   Next, the frequency response calculation procedure in the frequency response synthesis unit 5 will be described. The frequency response synthesizer 5 sets the reciprocal number of the first vibration period T1 to the first vibration frequency F1, and sets the reciprocal number of the second vibration period T2 to the second vibration frequency F2. Since the excitation cycle T2 is longer than the excitation cycle T1, the excitation frequency F2 is lower than the excitation frequency F1. Here, when a frequency lower than 1/2 of the second excitation frequency F2 is defined as the boundary frequency Fb, an example of the boundary frequency Fb is 1/4 of the excitation frequency F2. The frequency response synthesizing unit 5 responds in a frequency region that is equal to or higher than the boundary frequency Fb of the frequency response G1 (j2πf) in the first excitation and a region less than the boundary frequency Fb in the frequency response G2 (j2πf) in the second excitation And the combined frequency response, that is, the frequency response G (j2πf) from the torque command τ to the speed is output. The above composition operation can be expressed by the following equation.

Figure 0006214480
Figure 0006214480

ホワイトノイズの一例であるM系列信号で加振を行う場合、ナイキストの定理により、基準周波数の1/2以上の周波数成分は加振信号に含まれない。また、基準周波数よりも相対的に低い周波数領域では、信号のS/N比または摩擦といった外乱の影響の関係から、当該領域の成分が加振信号に含まれにくくなる。従って、単一の加振周期で加振した場合には、低周波数領域および高周波数領域の周波数応答を正しく求めることができなくなる。   When excitation is performed with an M-sequence signal that is an example of white noise, a frequency component that is 1/2 or more of the reference frequency is not included in the excitation signal according to the Nyquist theorem. In the frequency region relatively lower than the reference frequency, components in the region are less likely to be included in the excitation signal due to the influence of disturbance such as the S / N ratio of the signal or friction. Therefore, when vibration is performed with a single vibration cycle, it is impossible to correctly obtain the frequency responses in the low frequency region and the high frequency region.

実施の形態1の周波数応答測定装置100は、複数の加振周期T1,T2を設定して、低周波数領域では、加振周期T1よりも長い加振周期T2、すなわち加振周波数F1よりも低い加振周波数F2で加振した場合の周波数応答を用い、高周波数領域では、加振周期T2よりも短い加振周期T1、すなわち加振周波数F2よりも高い加振周波数F1で加振した場合の周波数応答を用いるようにしたので、広い周波数範囲にわたって周波数応答を精度よく求めることができる。   The frequency response measuring apparatus 100 according to the first embodiment sets a plurality of excitation periods T1, T2, and in the low frequency region, the excitation period T2, which is longer than the excitation period T1, that is, lower than the excitation frequency F1. In the high frequency region, using the frequency response when the vibration is performed at the vibration frequency F2, the vibration period T1 shorter than the vibration period T2, that is, when the vibration is performed at the vibration frequency F1 higher than the vibration frequency F2. Since the frequency response is used, the frequency response can be accurately obtained over a wide frequency range.

なお実施の形態1では、機械系35の周波数応答を取得するため、同定入力信号3aであるトルク指令τと同定出力信号3bであるモータ速度vとを用いたが、サーボ系3の内部のその他の信号を用いてもよい。具体的には、速度開ループの周波数応答を測定する場合、速度偏差eを同定入力信号3aに用い、モータ速度vを同定出力信号3bに用いればよい。また、速度閉ループの周波数応答を測定する場合、位置制御部32の出力信号32aを同定入力信号3aに用い、モータ速度vを同定出力信号3bに用いればよい。   In the first embodiment, the torque command τ as the identification input signal 3a and the motor speed v as the identification output signal 3b are used to acquire the frequency response of the mechanical system 35. These signals may be used. Specifically, when measuring the frequency response of the speed open loop, the speed deviation e may be used for the identification input signal 3a and the motor speed v may be used for the identification output signal 3b. When measuring the frequency response of the speed closed loop, the output signal 32a of the position controller 32 may be used as the identification input signal 3a, and the motor speed v may be used as the identification output signal 3b.

実施の形態2.
図4は本発明の実施の形態2に係る周波数応答測定装置100の構成図である。実施の形態1との相違点は、加振周期設定部1において3種類の加振周期T1,T2,T3が設定されている点である。以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
Embodiment 2. FIG.
FIG. 4 is a configuration diagram of the frequency response measuring apparatus 100 according to the second embodiment of the present invention. The difference from the first embodiment is that three types of excitation periods T1, T2, and T3 are set in the excitation period setting unit 1. Hereinafter, the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof is omitted, and only different parts will be described here.

実施の形態2では、加振周期T2が加振周期T1より長い値であり、加振周期T3が加振周期T2より長い値であるものとする。具体的には、加振周期T1はサーボ制御系のサンプリング周期と同一とし、加振周期T2は加振周期T1の数倍程度、一例としては4倍から8倍とする。加振周期T3は加振周期T2の数倍程度、一例としては4倍から8倍とする。   In the second embodiment, it is assumed that the excitation cycle T2 is longer than the excitation cycle T1, and the excitation cycle T3 is longer than the excitation cycle T2. Specifically, the excitation period T1 is the same as the sampling period of the servo control system, and the excitation period T2 is about several times the excitation period T1, for example, 4 to 8 times. The excitation period T3 is about several times the excitation period T2, for example, 4 to 8 times.

加振実行部2は、加振周期T1に対応した1回目の加振信号Vin1と、加振周期T2に対応した2回目の加振信号Vin2と、加振周期T3に対応した3回目の加振信号Vin3とを生成する。各加振周期ごとの加振信号Vinの生成方法は実施の形態1と同様である。また加振実行部2は、実施の形態1と同様に加振を行い、1回目の加振における周波数応答をG1(j2πf)、2回目の加振において得られた周波数応答をG2(j2πf)、3回目の加振において得られた周波数応答をG3(j2πf)とする。   The vibration execution unit 2 performs the first vibration signal Vin1 corresponding to the vibration period T1, the second vibration signal Vin2 corresponding to the vibration period T2, and the third vibration signal corresponding to the vibration period T3. An oscillation signal Vin3 is generated. The generation method of the excitation signal Vin for each excitation cycle is the same as that in the first embodiment. The vibration executing unit 2 performs vibration in the same manner as in the first embodiment, and the frequency response in the first vibration is G1 (j2πf), and the frequency response obtained in the second vibration is G2 (j2πf). Let the frequency response obtained in the third excitation be G3 (j2πf).

次に、周波数応答合成部5における周波数応答の演算手順を説明する。1回目の加振周期T1の逆数を1回目の加振周波数F1、2回目の加振周期T2の逆数を2回目の加振周波数F2、3回目の加振周期T3の逆数を3回目の加振周波数F3とする。T1,T2,T3の大小関係により、加振周波数F3は加振周波数F2よりも低い値となり、加振周波数F2は加振周波数F1よりも低い値となる。2回目の加振周波数F2の1/2よりも低い周波数を第1の境界周波数Fb1とする。第1の境界周波数Fb1の一例としては加振周波数F2の1/4とする。また、3回目の加振周波数F3の1/2よりも低い周波数を第2の境界周波数Fb2とする。第2の境界周波数Fb2の一例としては加振周波数F3の1/4とする。   Next, the frequency response calculation procedure in the frequency response synthesis unit 5 will be described. The reciprocal of the first excitation cycle T1 is the first excitation frequency F1, the reciprocal of the second excitation cycle T2 is the second excitation frequency F2, and the reciprocal of the third excitation cycle T3 is the third addition. The oscillation frequency is F3. Due to the magnitude relationship between T1, T2, and T3, the excitation frequency F3 is lower than the excitation frequency F2, and the excitation frequency F2 is lower than the excitation frequency F1. A frequency lower than ½ of the second excitation frequency F2 is defined as a first boundary frequency Fb1. An example of the first boundary frequency Fb1 is ¼ of the excitation frequency F2. Further, a frequency lower than ½ of the third excitation frequency F3 is set as a second boundary frequency Fb2. An example of the second boundary frequency Fb2 is ¼ of the excitation frequency F3.

周波数応答合成部5は、1回目の加振における周波数応答G1(j2πf)の中の第1の境界周波数Fb1以上の周波数領域の応答と、2回目の加振における周波数応答G2(j2πf)の中の第2の境界周波数Fb2以上かつ第1の境界周波数Fb1未満の領域における応答と、3回目の加振における周波数応答G3(j2πf)の境界周波数Fb2未満の領域における応答とを合成し、合成した周波数応答、すなわちトルク指令τから速度までの周波数応答G(j2πf)を出力する。   The frequency response synthesizer 5 has a frequency domain response equal to or higher than the first boundary frequency Fb1 in the frequency response G1 (j2πf) in the first excitation and a frequency response G2 (j2πf) in the second excitation. The response in the region of the second boundary frequency Fb2 or more and less than the first boundary frequency Fb1 is synthesized with the response in the region of the frequency response G3 (j2πf) in the third excitation less than the boundary frequency Fb2. The frequency response, that is, the frequency response G (j2πf) from the torque command τ to the speed is output.

Figure 0006214480
Figure 0006214480

実施の形態2に係る周波数応答測定装置100は、3種類の加振周期T1,T2,T3を設定して、低周波数領域では、加振周期T2よりも長い加振周期T3、すなわち加振周波数F2よりも低い加振周波数F3で加振した場合の周波数応答を用い、中周波数領域では、加振周期T3よりも短く加振周期T1よりも長い加振周期T2、すなわち加振周波数F1よりも低く加振周波数F3よりも高い加振周波数F2で加振した場合の周波数応答を用い、高周波数領域では、加振周期T2よりも短い加振周期T1、すなわち加振周波数F2よりも高い加振周波数F1で加振した場合の周波数応答を用いるため、より広い周波数範囲にわたって周波数応答を精度よく求めることができる。   The frequency response measuring apparatus 100 according to the second embodiment sets three types of excitation periods T1, T2, and T3, and in the low frequency region, an excitation period T3 that is longer than the excitation period T2, that is, the excitation frequency In the middle frequency region, using the frequency response when the vibration is performed at a vibration frequency F3 lower than F2, the vibration period T2 is shorter than the vibration period T3 and is longer than the vibration period T1, that is, the vibration frequency F1. In the high frequency region, an excitation cycle T1 that is shorter than the excitation cycle T2, that is, an excitation that is higher than the excitation frequency F2, is used. Since the frequency response when the vibration is applied at the frequency F1 is used, the frequency response can be accurately obtained over a wider frequency range.

実施の形態3.
図5は本発明の実施の形態3に係る周波数応答測定装置100の測定対象である機械系の構成図である。実施の形態3の周波数応答測定装置100はその構成が実施の形態1と同一であるが、実施の形態3では測定対象である機械系の構造が異なり、図5にはその機械系の一例である2軸機械40が示されている。
Embodiment 3 FIG.
FIG. 5 is a configuration diagram of a mechanical system that is a measurement target of the frequency response measuring apparatus 100 according to the third embodiment of the present invention. The frequency response measuring apparatus 100 of the third embodiment has the same configuration as that of the first embodiment, but the structure of the mechanical system to be measured is different in the third embodiment. FIG. 5 shows an example of the mechanical system. A two-axis machine 40 is shown.

2軸機械40は、可動軸である第1軸41および第2軸45で構成されている。第1軸41は第1軸モータ42、第1軸位置検出器43、および第1軸負荷44で構成される。第1軸負荷44は、第1軸44aと第1テーブル44bとで構成され、第1軸モータ42の回転運動をボールねじである第1軸44aにより直線運動に変換し、第1テーブル44bを直線移動させる。第2軸45は第2軸モータ46、第2軸位置検出器47、および第2軸負荷48で構成される。第2軸負荷48は、第2軸48aおよび第2テーブル48bで構成され、第2軸モータ46の回転運動をボールねじである第2軸48aにより直線運動に変換し、第2テーブル48bを直線移動させる。第1軸モータ42および第2軸モータ46に対しては実施の形態1と同様に独立したサーボ制御が行われる。   The biaxial machine 40 includes a first shaft 41 and a second shaft 45 that are movable shafts. The first shaft 41 includes a first shaft motor 42, a first shaft position detector 43, and a first shaft load 44. The first shaft load 44 includes a first shaft 44a and a first table 44b. The first shaft 44a converts the rotational motion of the first shaft motor 42 into linear motion by the first shaft 44a, which is a ball screw. Move straight. The second shaft 45 includes a second shaft motor 46, a second shaft position detector 47, and a second shaft load 48. The second shaft load 48 includes a second shaft 48a and a second table 48b. The second shaft 48a converts the rotational motion of the second shaft motor 46 into linear motion by the second shaft 48a, which is a ball screw, and the second table 48b is linearly converted. Move. Independent servo control is performed on the first axis motor 42 and the second axis motor 46 as in the first embodiment.

次に実施の形態3に係る周波数応答測定装置100における周波数応答測定動作を説明する。加振周期設定部1は、2種類の加振周期T1,T2を設定する。前述した第1軸41を第1軸とし、第2軸45を第2軸としたとき、サーボ系3では、加振周期T1による第1軸の加振と加振周期T2による第2軸の加振とが同時に行われる。周波数応答演算部4では、第1軸の加振周期T1における周波数応答G1x(j2πf)と、第2軸の加振周期T2における周波数応答G2y(j2πf)とが同時に演算される。   Next, the frequency response measurement operation in the frequency response measurement apparatus 100 according to Embodiment 3 will be described. The excitation cycle setting unit 1 sets two types of excitation cycles T1 and T2. When the first axis 41 is the first axis and the second axis 45 is the second axis, in the servo system 3, the first axis is excited by the excitation cycle T1 and the second axis is rotated by the excitation cycle T2. Excitation is performed at the same time. The frequency response calculation unit 4 simultaneously calculates the frequency response G1x (j2πf) in the first axis excitation period T1 and the frequency response G2y (j2πf) in the second axis excitation period T2.

続いてサーボ系3では、加振周期T2による第1軸の加振と加振周期T1による第2軸の加振とが同時に行われる。周波数応答演算部4では、第1軸の加振周期T2における周波数応答G2x(j2πf)と、第2軸の加振周期T1における周波数応答G1y(j2πf)とが同時に演算される。   Subsequently, in the servo system 3, the first axis excitation with the excitation period T2 and the second axis excitation with the excitation period T1 are performed simultaneously. In the frequency response calculation unit 4, a frequency response G2x (j2πf) in the first axis excitation period T2 and a frequency response G1y (j2πf) in the second axis excitation period T1 are calculated simultaneously.

1回目の加振周期T1の逆数を高域の加振周波数F1とし、2回目の加振周期T2の逆数を低域の加振周波数F2とする。低域の加振周波数F2の1/2よりも低い周波数を境界周波数Fbとする。境界周波数Fbの一例としてはF2の1/4とする。周波数応答合成部5は、第1軸と第2軸の各々について、加振周期T1における周波数応答の境界周波数Fb以上の周波数領域の応答と、加振周期T2における周波数応答の境界周波数Fb未満の領域における応答とを合成し、合成した周波数応答、すなわちトルク指令τから速度までの周波数応答を出力する。第1軸のトルク指令τからモータ速度vまでの周波数応答をGx(j2πf)とし、第2軸のトルク指令τからモータ速度vまでの周波数応答をGy(j2πf)としたとき、以上の合成演算は次式で表すことができる。   The reciprocal of the first excitation cycle T1 is the high-frequency excitation frequency F1, and the reciprocal of the second excitation cycle T2 is the low-frequency excitation frequency F2. A frequency lower than 1/2 of the low-frequency excitation frequency F2 is defined as a boundary frequency Fb. An example of the boundary frequency Fb is 1/4 of F2. For each of the first axis and the second axis, the frequency response synthesizing unit 5 has a response in a frequency region equal to or higher than the boundary frequency Fb of the frequency response in the excitation cycle T1 and less than the boundary frequency Fb of the frequency response in the excitation cycle T2. The response in the region is combined, and the combined frequency response, that is, the frequency response from the torque command τ to the speed is output. When the frequency response from the torque command τ of the first axis to the motor speed v is Gx (j2πf) and the frequency response from the torque command τ of the second axis to the motor speed v is Gy (j2πf), the above composite calculation Can be expressed as:

Figure 0006214480
Figure 0006214480
Figure 0006214480
Figure 0006214480

複数の軸の周波数応答を測定する場合、1軸ずつ加振して測定すると測定時間が長くなってしまうため、複数の軸を同時に加振することで測定時間の短縮を図ることができる。ところが上記特許文献1に代表される従来技術では、すべての周波数成分を含むホワイトノイズを印加して機械系を加振するため、複数の軸を同時に加振したときに、軸間の干渉により周波数応答の測定が正しく行えないという問題があった。すなわち、X軸とY軸を有する機械において、X軸である第1軸とY軸である第2軸に対して同時にホワイトノイズを印加して加振した場合、例えばX軸の周波数応答には、X軸を加振したことに起因する応答成分とY軸を加振したことに起因する応答成分とが重畳されることになり、X軸単体の周波数応答を正しく求めることができなくなる。   When measuring the frequency response of a plurality of axes, if the measurement is performed by exciting one axis at a time, the measurement time becomes long. Therefore, the measurement time can be shortened by simultaneously exciting the plurality of axes. However, in the conventional technique represented by the above-mentioned Patent Document 1, white noise including all frequency components is applied to vibrate the mechanical system. Therefore, when a plurality of axes are simultaneously vibrated, the frequency due to the interference between the axes. There was a problem that the response could not be measured correctly. That is, in a machine having an X-axis and a Y-axis, when white noise is simultaneously applied to the first axis that is the X-axis and the second axis that is the Y-axis, for example, the frequency response of the X-axis The response component resulting from the vibration of the X axis and the response component resulting from the vibration of the Y axis are superimposed, and the frequency response of the single X axis cannot be obtained correctly.

これに対して実施の形態3に係る周波数応答測定装置100では、第1軸と第2軸とを同時に加振するとき、第1軸と第2軸の加振周期を変えている。そのため、第1軸と第2軸との間の干渉の影響を回避しながら、短時間で周波数応答の測定を行うことができる。すなわち、ホワイトノイズの一例であるM系列信号で加振を行う場合、ナイキストの定理により、基準周波数の1/2以上の周波数成分は加振信号には含まれない。また、基準周波数よりも相対的に低い周波数領域では、信号のS/N比または摩擦といった外乱の影響の関係から、当該領域の成分が加振信号に含まれにくくなる。従って、長い周期で第1軸を加振して短い周期で第2軸を加振した場合、低周波数領域における第1軸の加振が第2軸の挙動に及ぼしても、同時に加振する第2軸は短い周期の加振であるため低周波数領域の成分は加振結果には含まれなくなり、第1軸の加振の影響を受けずに第2軸の高周波数領域の周波数応答を測定することができる。   On the other hand, in the frequency response measuring apparatus 100 according to the third embodiment, when the first axis and the second axis are simultaneously excited, the excitation periods of the first axis and the second axis are changed. Therefore, the frequency response can be measured in a short time while avoiding the influence of interference between the first axis and the second axis. That is, when excitation is performed with an M-sequence signal that is an example of white noise, a frequency component that is 1/2 or more of the reference frequency is not included in the excitation signal according to the Nyquist theorem. In the frequency region relatively lower than the reference frequency, components in the region are less likely to be included in the excitation signal due to the influence of disturbance such as the S / N ratio of the signal or friction. Therefore, when the first axis is vibrated with a long period and the second axis is vibrated with a short period, even if the vibration of the first axis in the low frequency region affects the behavior of the second axis, the first axis is vibrated simultaneously. Since the second axis is an excitation with a short period, the low frequency region component is not included in the excitation result, and the frequency response in the high frequency region of the second axis is not affected by the excitation of the first axis. Can be measured.

なお、実施の形態3では機械系の一例である2軸機械40が用いられているが、実施の形態3の周波数応答測定装置100の測定対象は2軸の可動軸を有する機械系に限定されるものではなく、3軸以上の2軸の可動軸を有する機械系であってもよい。   In the third embodiment, a two-axis machine 40, which is an example of a mechanical system, is used. However, the measurement target of the frequency response measuring apparatus 100 according to the third embodiment is limited to a mechanical system having two movable axes. Instead, it may be a mechanical system having three or more movable axes.

以上に説明したように実施の形態1から3に係る周波数応答測定装置100は、複数の異なる加振周期を設定する加振周期設定部1と、異なる加振周期の加振信号でサーボ系3を複数回加振する加振実行部2と、複数回の加振がなされたサーボ系3から、複数回の加振ごとに同定入力信号3aと同定出力信号3bの組を取得し、複数回の加振ごとの加振周期と、複数回の加振ごとの同定入力信号3aと同定出力信号3bの組とに基づいて、周波数応答を演算する周波数応答演算部4と、複数回の加振周期ごとの周波数応答を合成して、サーボ系3の周波数応答を演算する周波数応答合成部5と、を備える。この構成により、単一の加振周期で加振した場合には低周波数領域および高周波数領域の周波数応答を正しく求めることができなくなるのに対し、実施の形態1から3に係る周波数応答測定装置100では、周波数範囲ごとに適切な加振周期の加振信号を用いて加振することができるので、広い周波数範囲にわたって周波数応答を精度よく求めることができる。   As described above, the frequency response measurement apparatus 100 according to the first to third embodiments includes the excitation cycle setting unit 1 that sets a plurality of different excitation cycles, and the servo system 3 using the excitation signals having different excitation cycles. From the vibration execution unit 2 that vibrates a plurality of times and the servo system 3 that has been subjected to the plurality of times of vibration, a set of the identification input signal 3a and the identification output signal 3b is obtained for each of the plurality of times of vibration. A frequency response calculation unit 4 for calculating a frequency response based on a vibration period for each vibration of the vibration and a set of the identification input signal 3a and the identification output signal 3b for each of the plurality of vibrations, and a plurality of vibrations A frequency response synthesizer 5 that synthesizes the frequency response of each period and calculates the frequency response of the servo system 3; With this configuration, the frequency response measuring apparatus according to Embodiments 1 to 3 cannot be obtained correctly when the vibration is performed with a single excitation cycle, whereas the frequency responses in the low frequency region and the high frequency region cannot be obtained correctly. In 100, since vibration can be performed using an excitation signal having an appropriate excitation period for each frequency range, the frequency response can be obtained with high accuracy over a wide frequency range.

また、実施の形態1から3に係る周波数応答合成部5は、加振周期の逆数である加振周波数に基づいて、複数回の加振周期ごとに異なる周波数範囲を設定し、複数回の加振周期ごとの周波数応答の中から、複数回の加振周期ごとに異なる周波数範囲に対応する応答を抽出して合成する。この構成により、測定対象である低周波数領域、中周波数領域、および高周波数領域を含む全ての周波数範囲が複数の周波数範囲に分割され、分割された各周波数範囲ごとに適切な加振周期の加振信号を用いて加振することができるので、全ての周波数範囲にわたって周波数応答を精度よく求めることができる。   Further, the frequency response synthesis unit 5 according to the first to third embodiments sets a different frequency range for each of a plurality of excitation cycles based on the excitation frequency that is the reciprocal of the excitation cycle, and performs a plurality of additions. Responses corresponding to different frequency ranges are extracted and synthesized from the frequency responses for each oscillation cycle. With this configuration, all frequency ranges including the low frequency region, medium frequency region, and high frequency region to be measured are divided into a plurality of frequency ranges, and an appropriate excitation period is added to each divided frequency range. Since vibration can be performed using the vibration signal, the frequency response can be obtained with high accuracy over the entire frequency range.

また、実施の形態1から3に係る周波数応答合成部5に設定される複数回の加振周期ごとに異なる周波数範囲は、加振周期の逆数である加振周波数が高いほど高い周波数範囲となる。この構成により、低周波数領域では相対的に長い加振周期、すなわち相対的に低い加振周波数で加振した場合の周波数応答を用い、高周波数領域では短い加振周期すなわち高い加振周波数で加振した場合の周波数応答を用いることができるので、広い周波数範囲にわたって周波数応答を精度よく求めることができる。   In addition, the frequency range that is different for each of the plurality of excitation periods set in the frequency response synthesis unit 5 according to the first to third embodiments is a higher frequency range as the excitation frequency that is the reciprocal of the excitation period is higher. . This configuration uses a relatively long excitation period in the low frequency range, that is, a frequency response when excitation is performed at a relatively low excitation frequency, and a short excitation period or high excitation frequency in the high frequency range. Since the frequency response in the case of shaking can be used, the frequency response can be accurately obtained over a wide frequency range.

また、実施の形態3に係る周波数応答測定装置100は、機械系が複数の可動軸を有し、加振実行部2は複数の可動軸を同時に互いに異なる加振周期で加振する。複数の可動軸を同時に加振することにより測定時間を短縮でき、また、同時に加振しても軸間の干渉に影響されることなく各軸の周波数応答を精度よく測定できる。   In the frequency response measuring apparatus 100 according to the third embodiment, the mechanical system has a plurality of movable shafts, and the vibration execution unit 2 vibrates the plurality of movable shafts simultaneously with different vibration periods. By simultaneously oscillating a plurality of movable axes, the measurement time can be shortened, and the frequency response of each axis can be accurately measured without being affected by the interference between the axes even when simultaneously oscillating.

以上のように、本発明は、産業用機械の状態を診断するために周波数応答を測定する周波数応答測定装置に有用である。   As described above, the present invention is useful for a frequency response measuring apparatus that measures a frequency response in order to diagnose the state of an industrial machine.

1 加振周期設定部、2 加振実行部、3 サーボ系、4 周波数応答演算部、5 周波数応答合成部、6 位置指令、31 減算部、32 位置制御部、33 加減算部、34 速度制御部、35 機械系、36 サーボモータ、37 負荷、38 ロータリーエンコーダ、39 シャフト、40 2軸機械、41 第1軸、42 第1軸モータ、43 第1軸位置検出器、44 第1軸負荷、45 第2軸、46 第2軸モータ、47 第2軸位置検出器、48 第2軸負荷、100 周波数応答測定装置。   1 excitation cycle setting unit, 2 excitation execution unit, 3 servo system, 4 frequency response calculation unit, 5 frequency response synthesis unit, 6 position command, 31 subtraction unit, 32 position control unit, 33 addition / subtraction unit, 34 speed control unit , 35 Mechanical system, 36 Servo motor, 37 Load, 38 Rotary encoder, 39 Shaft, 40 2-axis machine, 41 1st axis, 42 1st axis motor, 43 1st axis position detector, 44 1st axis load, 45 Second axis, 46 Second axis motor, 47 Second axis position detector, 48 Second axis load, 100 Frequency response measuring device.

Claims (4)

機械系をフィードバック制御するサーボ系の周波数応答を測定する周波数応答測定装置において、
複数の異なる擬似ランダム信号の基準周期を加振周期として設定する加振周期設定部と、
前記異なる加振周期の加振信号で前記サーボ系を複数回加振する加振実行部と、
前記複数回の加振がなされた前記サーボ系から、前記複数回の加振ごとに同定入力信号と同定出力信号の組を取得し、前記複数回の加振ごとの前記加振周期と、前記複数回の加振ごとの前記同定入力信号と前記同定出力信号の組とに基づいて、前記周波数応答を演算する周波数応答演算部と、
前記複数回の加振周期ごとの周波数応答を合成して、前記サーボ系の周波数応答を演算する周波数応答合成部と、
を備えることを特徴とする周波数応答測定装置。
In a frequency response measuring device that measures the frequency response of a servo system that performs feedback control of a mechanical system,
An excitation period setting unit that sets a reference period of a plurality of different pseudo-random signals as an excitation period;
A vibration execution unit that vibrates the servo system a plurality of times with vibration signals of the different vibration periods;
From the servo system that has been subjected to the plurality of excitations, a set of identification input signals and identification output signals is obtained for each of the plurality of excitations, and the excitation cycle for each of the plurality of excitations, A frequency response calculation unit for calculating the frequency response based on the set of the identification input signal and the identification output signal for each of a plurality of vibrations;
A frequency response synthesis unit that synthesizes a frequency response for each of the plurality of excitation cycles and calculates a frequency response of the servo system;
A frequency response measuring apparatus comprising:
前記周波数応答合成部は、前記加振周期の逆数である加振周波数に基づいて、前記複数回の加振周期ごとに異なる周波数範囲を設定し、前記複数回の加振周期ごとの周波数応答の中から、前記複数回の加振周期ごとに異なる周波数範囲に対応する応答を抽出して合成することを特徴とする請求項1に記載の周波数応答測定装置。   The frequency response synthesis unit sets a different frequency range for each of the plurality of excitation cycles based on an excitation frequency that is the reciprocal of the excitation cycle, and sets the frequency response for each of the plurality of excitation cycles. The frequency response measuring apparatus according to claim 1, wherein responses corresponding to different frequency ranges are extracted and synthesized from among the plurality of excitation periods. 前記周波数応答合成部に設定される前記複数回の加振周期ごとに異なる周波数範囲は、前記加振周波数が高いほど高い周波数範囲となることを特徴とする請求項2に記載の周波数応答測定装置。   3. The frequency response measuring apparatus according to claim 2, wherein the frequency range that is different for each of the plurality of excitation periods set in the frequency response synthesis unit is a higher frequency range as the excitation frequency is higher. . 前記機械系は、複数の可動軸を有し、
前記加振実行部は、前記複数の可動軸を同時に互いに異なる加振周期で加振することを特徴とする請求項1から3の何れか1項に記載の周波数応答測定装置。
The mechanical system has a plurality of movable shafts,
4. The frequency response measuring apparatus according to claim 1, wherein the vibration execution unit vibrates the plurality of movable shafts simultaneously with different vibration periods. 5.
JP2014131181A 2014-06-26 2014-06-26 Frequency response measuring device Active JP6214480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014131181A JP6214480B2 (en) 2014-06-26 2014-06-26 Frequency response measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014131181A JP6214480B2 (en) 2014-06-26 2014-06-26 Frequency response measuring device

Publications (2)

Publication Number Publication Date
JP2016010287A JP2016010287A (en) 2016-01-18
JP6214480B2 true JP6214480B2 (en) 2017-10-18

Family

ID=55227492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014131181A Active JP6214480B2 (en) 2014-06-26 2014-06-26 Frequency response measuring device

Country Status (1)

Country Link
JP (1) JP6214480B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7404947B2 (en) 2020-03-12 2023-12-26 オムロン株式会社 Control device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124461A (en) * 1985-11-26 1987-06-05 Toshiba Corp Abnormality diagnosing device
JP2002181670A (en) * 2000-12-11 2002-06-26 Japan System Engineering Kk Facility diagnosing device
US7640139B2 (en) * 2004-10-18 2009-12-29 Nsk Ltd. Abnormality diagnosing system for mechanical equipment
JP4279272B2 (en) * 2005-06-24 2009-06-17 Tdk株式会社 Two-stage actuator controller
CN101709733B (en) * 2009-10-19 2012-09-05 大连海事大学 Method for controlling real-time waveform replication of electro-fluid servo system
CN102789192B (en) * 2011-05-17 2016-01-20 大连科德数控有限公司 A kind of feedback control system and frequency response measurement apparatus and method thereof
CN103033358B (en) * 2012-12-13 2014-12-10 重庆理工大学 Automobile transmission shaft fatigue test method
US20160123796A1 (en) * 2013-06-03 2016-05-05 Mitsubishi Electric Corporation Frequency-response measurement device

Also Published As

Publication number Publication date
JP2016010287A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP5490335B1 (en) Frequency response measuring device
EP2571159B1 (en) Motor control apparatus
KR102087121B1 (en) Control program, control method, and control device
KR20170085138A (en) Dynamometer control device and method for estimating moment of inertia using same
JP5813151B2 (en) Numerical control device having function of calculating frequency characteristic of control loop
CN106655958B (en) permanent magnet motor torque compensation method and device
JP6430234B2 (en) Vibration analysis apparatus and program for rotating machine
US11125608B2 (en) Frequency identifying device
CN108829946A (en) A kind of thrust calculation method based on dynamic compensation technology
JP6214480B2 (en) Frequency response measuring device
JP6300371B2 (en) Motor drive control device and motor drive control method
US20210141347A1 (en) Method for optimising the performance of a servo control system of a mechatronic system, and suitable device
JP2007017365A (en) Vibration detection device
JP4700485B2 (en) Arithmetic apparatus and test apparatus
JP2014122885A (en) Angle detector
JP2007143224A (en) Vibration detector
Turk et al. Linear parameter-varying system identification of an industrial ball screw setup
JP6074614B2 (en) Synchronous drive
JP2010022138A (en) Motor controller
JP4730538B2 (en) Motor control device with machine constant identification device
JP6038063B2 (en) Trajectory error display device
JP2007189856A (en) Motor controller with inertial moment identifier
JP5688679B2 (en) Command generation function determination method, command generation method, command generation device, and motor control device
US20220146367A1 (en) Resonant frequency vibrational test
JP4784826B2 (en) System identification apparatus and motor control apparatus including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170919

R150 Certificate of patent or registration of utility model

Ref document number: 6214480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250