JP6071461B2 - Material deterioration diagnosis apparatus and material deterioration diagnosis method - Google Patents

Material deterioration diagnosis apparatus and material deterioration diagnosis method Download PDF

Info

Publication number
JP6071461B2
JP6071461B2 JP2012254464A JP2012254464A JP6071461B2 JP 6071461 B2 JP6071461 B2 JP 6071461B2 JP 2012254464 A JP2012254464 A JP 2012254464A JP 2012254464 A JP2012254464 A JP 2012254464A JP 6071461 B2 JP6071461 B2 JP 6071461B2
Authority
JP
Japan
Prior art keywords
optical fiber
magnet
deterioration diagnosis
oscillators
sensor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012254464A
Other languages
Japanese (ja)
Other versions
JP2014102157A (en
Inventor
恵 一 佐々木
恵 一 佐々木
倉 大 輔 朝
倉 大 輔 朝
藤 哲 央 遠
藤 哲 央 遠
井 武 広 白
井 武 広 白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012254464A priority Critical patent/JP6071461B2/en
Publication of JP2014102157A publication Critical patent/JP2014102157A/en
Application granted granted Critical
Publication of JP6071461B2 publication Critical patent/JP6071461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明の実施形態は、電磁超音波発振子、材料劣化診断装置、及び材料劣化診断方法に関する。   Embodiments described herein relate generally to an electromagnetic ultrasonic oscillator, a material deterioration diagnosis device, and a material deterioration diagnosis method.

配管の減肉や腐食の検査に超音波探傷法が用いられている。超音波探傷法は、被試験体の表面に超音波を送受信する探触子を押し当て、内部に各種周波数の超音波を伝播させる。そして、被試験体内部の欠陥や裏面で反射して戻ってきた超音波を受信し、被試験体内部の状態を把握する。欠陥位置は超音波の送信から受信までに要する時間から測定され、欠陥の大きさは受信したエコーの強度や欠陥エコーの出現する範囲の測定によって求められる。   Ultrasonic flaw detection is used for pipe thinning and corrosion inspection. In the ultrasonic flaw detection method, a probe that transmits and receives ultrasonic waves is pressed against the surface of a test object, and ultrasonic waves of various frequencies are propagated inside. And the ultrasonic wave which reflected and returned by the defect in a to-be-tested object and a back surface is received, and the state inside a to-be-tested object is grasped | ascertained. The defect position is measured from the time required from transmission to reception of the ultrasonic wave, and the size of the defect is obtained by measuring the intensity of the received echo and the range in which the defect echo appears.

超音波による検査法は、原子力発電プラントにおいて、素材の板厚測定や、ラミネーション等の溶接欠陥の検出に用いられている。また、原子炉圧力容器回りのノズル開口部、ブランチ、配管継手を補強する溶接肉盛部の検査においてもこのような検査法が用いられている。   The ultrasonic inspection method is used in nuclear power plants to measure the thickness of materials and to detect welding defects such as lamination. In addition, such an inspection method is also used in the inspection of the weld opening that reinforces the nozzle opening, branch, and pipe joint around the reactor pressure vessel.

発電プラントでは、流れ加速型腐食(FAC: Flow Accelerated Corrosion)やエロージョンなどによって、配管のエルボ部やオリフィスの下流側などに減肉が生じ易い傾向があることが分かっている。このような知見に基づいて、配管減肉管理に関する規格(発電用設備規格JSME S CA1-2005)が日本機械学会により策定されている。規格化された配管減肉管理技術として、超音波厚さ測定器を使った配管厚さ測定が行われている。しかし、この手法は、測定の度に配管を覆う断熱材を解体/復旧する必要があるため、多大な時間とコストを要する。   It has been found that in power plants, thinning tends to occur easily in the elbow part of the piping, the downstream side of the orifice, and the like due to flow accelerated corrosion (FAC) and erosion. Based on such knowledge, a standard (JSME S CA1-2005) for pipe thinning management has been established by the Japan Society of Mechanical Engineers. As a standardized pipe thinning management technique, pipe thickness measurement using an ultrasonic thickness measuring instrument is performed. However, this method requires a great deal of time and cost because it is necessary to disassemble / restore the heat insulating material covering the pipe every time measurement is performed.

そこで、低コストの減肉管理を実現するために、埋め込み型の定点測定用センサが開発されている。例えば、電磁超音波発振子(Electro Magnetic Acoustic Transducer :EMAT)と光ファイバ振動センサとを組み合わせた超音波光プローブが知られている。光ファイバ振動センサはポリイミドコーティングされ、ポリイミド系接着剤を用いて配管表面に貼り付けられる。電磁超音波発振子が、電磁力の作用によって配管内に超音波を直接励起し、励起された超音波の共振波が光ファイバ振動センサにより検出される。そして、検出結果を解析することによって、配管の厚さや内部欠陥の情報を得ることができる。   Therefore, in order to realize low-cost thinning management, an embedded type fixed point measuring sensor has been developed. For example, an ultrasonic optical probe in which an electromagnetic ultrasonic transducer (EMAT) and an optical fiber vibration sensor are combined is known. The optical fiber vibration sensor is polyimide-coated and attached to the pipe surface using a polyimide-based adhesive. The electromagnetic ultrasonic oscillator directly excites the ultrasonic wave in the pipe by the action of electromagnetic force, and the resonance wave of the excited ultrasonic wave is detected by the optical fiber vibration sensor. Then, by analyzing the detection result, it is possible to obtain information on the pipe thickness and internal defects.

従来の埋め込み型の定点測定用センサは、超音波光プローブを配管表面の数千点の箇所に設置する必要があった。すなわち、電磁超音波発振子と光ファイバ振動センサとをそれぞれ数千個準備して設置しなければならず、設置コストの増加を招いていた。   A conventional embedded type fixed point measuring sensor has to install ultrasonic optical probes at thousands of points on the pipe surface. That is, thousands of electromagnetic ultrasonic oscillators and optical fiber vibration sensors have to be prepared and installed, resulting in an increase in installation cost.

内ヶ崎儀一郎他:「原子力と設計技術」大河出版(1980)、pp.226-250Kiichiro Uchigasaki et al .: “Nuclear Power and Design Technology” Taiga Publishing (1980), pp.226-250

本発明が解決しようとする課題は、設置コストを削減した材料劣化診断装置、この材料劣化診断装置に用いられる電磁超音波発振子、及び材料劣化診断方法を提供することである。   The problem to be solved by the present invention is to provide a material deterioration diagnosis device with reduced installation cost, an electromagnetic ultrasonic oscillator used in the material deterioration diagnosis device, and a material deterioration diagnosis method.

本実施形態によれば、材料劣化診断装置は、金属製材料の表面に設けられた発振子と、前記金属製材料の表面に設けられた光ファイバと、前記金属製材料中の振動に応じた前記光ファイバを透過する光の変動を電気信号に変換する光干渉計と、前記電気信号に基づいて前記金属製材料の厚さを算出し、前記金属製材料の劣化度を判定する計測・制御部と、を備える。前記発振子は、電気コイル、及び電気コイル上に設けられ、前記金属製材料の表面方向に沿った磁場をかける磁石を有する。光干渉計は、前記発振子により励起された振動に応じた前記光ファイバを透過する光の変動を電気信号に変換する。   According to the present embodiment, the material deterioration diagnosis device responds to the oscillation provided in the surface of the metal material, the optical fiber provided on the surface of the metal material, and the vibration in the metal material. An optical interferometer that converts fluctuations of light transmitted through the optical fiber into an electrical signal, and a measurement / control that calculates the thickness of the metallic material based on the electrical signal and determines the degree of deterioration of the metallic material A section. The oscillator includes an electric coil and a magnet that is provided on the electric coil and applies a magnetic field along the surface direction of the metal material. The optical interferometer converts a change in light transmitted through the optical fiber according to vibration excited by the oscillator into an electric signal.

本発明の実施形態に係る材料劣化診断装置の概略構成図。1 is a schematic configuration diagram of a material deterioration diagnostic apparatus according to an embodiment of the present invention. 本発明の実施形態に係る電磁超音波発振子の概略構成図。1 is a schematic configuration diagram of an electromagnetic ultrasonic oscillator according to an embodiment of the present invention. 本発明の実施形態に係る光ファイバセンサ部の概略構成図。The schematic block diagram of the optical fiber sensor part which concerns on embodiment of this invention. 本発明の実施形態に係る材料劣化診断装置の設置例を示す図。The figure which shows the example of installation of the material degradation diagnostic apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る材料劣化診断方法を説明する図。The figure explaining the material degradation diagnostic method which concerns on embodiment of this invention. 比較例による材料劣化診断方法を説明する図。The figure explaining the material degradation diagnostic method by a comparative example. 比較例による材料劣化診断装置の設置例を示す図。The figure which shows the example of installation of the material deterioration diagnostic apparatus by a comparative example. 本実施形態及び比較例による計測結果を示すグラフ。The graph which shows the measurement result by this embodiment and a comparative example. 変形例による電磁超音波発振子の概略構成図。The schematic block diagram of the electromagnetic ultrasonic oscillator by a modification. 変形例による電磁超音波発振子の概略構成図。The schematic block diagram of the electromagnetic ultrasonic oscillator by a modification. 変形例による電磁超音波発振子の概略構成図。The schematic block diagram of the electromagnetic ultrasonic oscillator by a modification. 変形例による電磁超音波発振子の概略構成図。The schematic block diagram of the electromagnetic ultrasonic oscillator by a modification. 変形例による材料劣化診断装置の設置例を示す図。The figure which shows the example of installation of the material deterioration diagnostic apparatus by a modification.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に本発明の実施形態に係る材料劣化診断装置の概略構成を示す。材料劣化診断装置は、電磁超音波発振子(以下EMATと称する)1、光ファイバセンサ部2、光源3、光干渉計4、計測・制御部5、波形信号発生器6、及びアンプ7を備えている。EMAT1及び光ファイバセンサ部2は、厚さ測定対象の金属の表面に配置される。厚さ測定対象は例えば原子力発電プラントや火力発電プラントの配管である。波形信号発生器6及びアンプ7は計測・制御部5の制御に基づいて、EMAT1に高周波電流を供給する。   FIG. 1 shows a schematic configuration of a material deterioration diagnosis apparatus according to an embodiment of the present invention. The material deterioration diagnostic apparatus includes an electromagnetic ultrasonic oscillator (hereinafter referred to as EMAT) 1, an optical fiber sensor unit 2, a light source 3, an optical interferometer 4, a measurement / control unit 5, a waveform signal generator 6, and an amplifier 7. ing. The EMAT 1 and the optical fiber sensor unit 2 are arranged on the surface of the metal whose thickness is to be measured. The thickness measurement target is, for example, a piping of a nuclear power plant or a thermal power plant. The waveform signal generator 6 and the amplifier 7 supply a high-frequency current to the EMAT 1 based on the control of the measurement / control unit 5.

図2に、EMAT1の概略構成を示す。EMAT1は、アンプ7に接続され、高周波電流が供給される電気コイル12と、電気コイル12上に載置された永久磁石11とを有する。永久磁石11は、円筒型磁石11Aと、円筒型磁石11Aの内部に設けられた円柱型磁石11Bとを備えている。   FIG. 2 shows a schematic configuration of EMAT1. The EMAT 1 includes an electric coil 12 connected to the amplifier 7 and supplied with a high-frequency current, and a permanent magnet 11 placed on the electric coil 12. The permanent magnet 11 includes a cylindrical magnet 11A and a columnar magnet 11B provided inside the cylindrical magnet 11A.

永久磁石11の材質は例えばサマリウムコバルトである。サマリウムコバルトは350〜400℃の間に減磁点があるため、350℃以下の環境で使用することが好ましい。また、サマリウム鉄系の焼結磁石を用いてもよい。   The material of the permanent magnet 11 is, for example, samarium cobalt. Since samarium cobalt has a demagnetization point between 350 and 400 ° C., it is preferably used in an environment of 350 ° C. or less. A samarium iron-based sintered magnet may also be used.

永久磁石11を鍍金(めっき)して酸化を防止するとともに、電気コイル12をポリイミドコーティングしてもよい。このようにすることで、高温下でも発振パワーを保持することができる。   The permanent magnet 11 may be plated (plated) to prevent oxidation and the electric coil 12 may be coated with polyimide. In this way, the oscillation power can be maintained even at high temperatures.

光ファイバセンサ部2の上面を図3(a)に示し、側面を図3(b)に示す。図3(a)に示すように、光ファイバセンサ部2では光ファイバ21が渦巻状に巻かれ円形平板になっている。光ファイバ21の内側の一端が光干渉計4に接続され、内側から外側に一層の渦巻状に巻かれて外側の他端が光源3に接続されている。光ファイバ21は、光源3から基準レーザ光が入力される。また、光ファイバ21の中を透過する光の変動を光干渉計4が検出する。光ファイバ21は金、ニッケル等の金属、又はシリカによりコーティングされている。   The upper surface of the optical fiber sensor unit 2 is shown in FIG. 3A, and the side surface is shown in FIG. As shown in FIG. 3A, in the optical fiber sensor unit 2, the optical fiber 21 is spirally wound into a circular flat plate. One end on the inner side of the optical fiber 21 is connected to the optical interferometer 4, and the other end on the outer side is connected to the light source 3. The optical fiber 21 receives the reference laser light from the light source 3. Further, the optical interferometer 4 detects the fluctuation of the light transmitted through the optical fiber 21. The optical fiber 21 is coated with a metal such as gold or nickel, or silica.

なお、図示はしないが、光干渉計4と光源3の光ファイバに対する接続関係が逆になっていてもよい。   Although not shown, the connection relationship between the optical interferometer 4 and the light source 3 with respect to the optical fiber may be reversed.

図3(a)(b)に示すように、この光ファイバ21は、接着剤23を用いて、シート材22に貼着されている。シート材22には例えばシリコン箔、ガラス箔、セラミック箔等の金属を含まないフレキシブルシート材を使用することができる。光ファイバ21とシート材22とを接着する接着剤23は、光ファイバ21をコーティングする材料によって異なり、例えば、光ファイバ21が金コーティングされている場合には接着剤23に金ペーストを使用する。また、光ファイバ21がニッケルコーティングされている場合には接着剤23に金ペースト又は銀ペーストを使用する。あるいはまた、光ファイバ21がシリカコーティングされている場合には接着剤23にガラスペーストを使用する。   As shown in FIGS. 3A and 3B, the optical fiber 21 is attached to the sheet material 22 using an adhesive 23. For the sheet material 22, for example, a flexible sheet material that does not contain metal such as silicon foil, glass foil, ceramic foil, and the like can be used. The adhesive 23 for bonding the optical fiber 21 and the sheet material 22 differs depending on the material for coating the optical fiber 21. For example, when the optical fiber 21 is coated with gold, a gold paste is used for the adhesive 23. Further, when the optical fiber 21 is nickel-coated, a gold paste or a silver paste is used for the adhesive 23. Alternatively, when the optical fiber 21 is coated with silica, a glass paste is used for the adhesive 23.

図3(c)に示すように、光ファイバ21を、シート材22及び樹脂シート24で挟むような構成にしてもよい。シート材22と樹脂シート24との間に接着剤23を充填して光ファイバ21を固定する。樹脂シート24には、耐熱性エポキシ、ポリベンゾイミダゾール、マイカ強化ポリ四フッ化エチレン、芳香族ポリエステルなどの耐熱性樹脂シートを用いることができる。   As shown in FIG. 3C, the optical fiber 21 may be sandwiched between the sheet material 22 and the resin sheet 24. The optical fiber 21 is fixed by filling the adhesive 23 between the sheet material 22 and the resin sheet 24. For the resin sheet 24, a heat-resistant resin sheet such as heat-resistant epoxy, polybenzimidazole, mica-reinforced polytetrafluoroethylene, and aromatic polyester can be used.

図4(a)、(b)に、EMAT1及び光ファイバセンサ部2の配管40への取り付けの一例を示す。図4(b)は図4(a)のI−I線に沿った断面図である。   4A and 4B show an example of attachment of the EMAT 1 and the optical fiber sensor unit 2 to the pipe 40. FIG. FIG. 4B is a cross-sectional view taken along the line II of FIG.

図4(a)、(b)に示すように、EMAT1は配管40の断面に対して円周方向に8個(45°間隔)、配管40の軸方向に沿って所定間隔φ(φは配管40の外径長さ)を空けて配置されている。   As shown in FIGS. 4A and 4B, EMAT 1 has eight pieces (45 ° intervals) in the circumferential direction with respect to the cross section of the pipe 40, and a predetermined interval φ along the axial direction of the pipe 40 (φ is the pipe 40 (outer diameter length) is arranged with a gap.

光ファイバセンサ部2は、配管40の表面とEMAT1とに挟まれて設けられる。光ファイバセンサ部2は、円周方向に2個(180°間隔)、配管の軸方向に沿って間隔3φを空けて配置されている。   The optical fiber sensor unit 2 is provided between the surface of the pipe 40 and the EMAT 1. Two optical fiber sensor units 2 are arranged in the circumferential direction (at intervals of 180 °), and are arranged at an interval of 3φ along the axial direction of the pipe.

EMAT1は、永久磁石11の磁力によって配管40に固定され、光ファイバセンサ部2は、配管40の表面とEMAT1とに挟まれて固定される。   The EMAT1 is fixed to the pipe 40 by the magnetic force of the permanent magnet 11, and the optical fiber sensor unit 2 is sandwiched and fixed between the surface of the pipe 40 and the EMAT1.

本実施形態では、複数(図4(a)、(b)で示す例では12個)のEMAT1に対して、1つの光ファイバセンサ部2を設けている。図4(a)、(b)の破線で囲むように、12個のEMAT1と1つの光ファイバセンサ2とをグループ化し、1つの光ファイバセンサ2は、同一グループのEMAT1により励起された超音波を検出する。   In this embodiment, one optical fiber sensor unit 2 is provided for a plurality (12 in the example shown in FIGS. 4A and 4B) of EMAT1. 12 EMAT1 and one optical fiber sensor 2 are grouped so as to be surrounded by broken lines in FIGS. 4A and 4B, and one optical fiber sensor 2 is ultrasonic waves excited by EMAT1 of the same group. Is detected.

次に、このようにして配管40に取り付けられたEMAT1及び光ファイバセンサ部2を用いて配管40の厚みを測定する方法を、図5(a)(b)を用いて説明する。図5(a)は、配管40上に積層された光ファイバセンサ部2及びEMAT1の断面を示す。また、図5(b)は、配管40上に直接設けられたEMAT1の断面を示す。配管40の表面は曲面であるが、図5(a)、(b)では便宜上平面で示す。   Next, a method of measuring the thickness of the pipe 40 using the EMAT 1 and the optical fiber sensor unit 2 attached to the pipe 40 in this way will be described with reference to FIGS. FIG. 5A shows a cross section of the optical fiber sensor unit 2 and the EMAT 1 stacked on the pipe 40. FIG. 5B shows a cross section of EMAT 1 provided directly on the pipe 40. The surface of the pipe 40 is a curved surface, but is shown as a plane for convenience in FIGS. 5 (a) and 5 (b).

図5(a)、(b)に示すように、渦巻状に巻かれた円形平板の電気コイル12に高周波電流が流れると、電気コイルとほぼ同心円に配置された円筒型磁石11Aと円柱型磁石11Bの磁化方向が反対向きになり、配管40表面方向に沿った磁場が発生し、配管40が振動して電磁超音波が発生する。波形信号発生器6(図1参照)によって電気コイル12へ与える交流電流の周波数を変化させ、発生する電磁超音波の周波数を所望の周波数帯域でスイープさせる。   As shown in FIGS. 5 (a) and 5 (b), when a high-frequency current flows through a circular flat-plate electric coil 12 wound in a spiral shape, a cylindrical magnet 11A and a columnar magnet arranged substantially concentrically with the electric coil. The magnetization direction of 11B becomes the opposite direction, a magnetic field is generated along the surface direction of the pipe 40, and the pipe 40 vibrates to generate electromagnetic ultrasonic waves. The frequency of the alternating current applied to the electric coil 12 is changed by the waveform signal generator 6 (see FIG. 1), and the frequency of the generated electromagnetic ultrasonic waves is swept in a desired frequency band.

配管40内部(管壁内部)の振動は、高温ひずみゲージのひずみ計測と同様の原理で光ファイバセンサ部2に伝わる。光源3から基準レーザ光が入力されている状態で光ファイバセンサ部2に振動が到達すると、光ファイバ21が微小に伸び縮みして、レーザ光にドップラ効果や偏波面の変動が生じる。この変動(伸縮速度)を光干渉計4が光電変換により電圧値に変換することで、配管40内に伝播する超音波の周波数を計測できる。   The vibration inside the pipe 40 (inside the pipe wall) is transmitted to the optical fiber sensor unit 2 on the same principle as the strain measurement of the high-temperature strain gauge. When vibration reaches the optical fiber sensor unit 2 in a state where the reference laser beam is input from the light source 3, the optical fiber 21 is slightly expanded and contracted, and the Doppler effect and the polarization plane change occur in the laser beam. The frequency of the ultrasonic wave propagating in the pipe 40 can be measured by the optical interferometer 4 converting the fluctuation (stretching speed) into a voltage value by photoelectric conversion.

配管40の内部で発生させる振動の周波数は、波形信号発生器6により、配管40の厚さに応じて1Hz〜10MHzの任意の周波数を選択することができる。計測・制御部5は、光ファイバ21及び光干渉計4を介して、周波数1Hz〜20kHzの振動や、20kHz〜10MHzの超音波振動を検出する。   The frequency of vibration generated inside the pipe 40 can be selected by the waveform signal generator 6 from 1 Hz to 10 MHz in accordance with the thickness of the pipe 40. The measurement / control unit 5 detects vibration with a frequency of 1 Hz to 20 kHz and ultrasonic vibration with a frequency of 20 kHz to 10 MHz via the optical fiber 21 and the optical interferometer 4.

電磁超音波の周波数をスイープし、配管40の厚みdと、電磁超音波の波長λとの間にλ=2dの関係が成り立つとき、入射波と反射波が共振し、出力波の振幅が大きくなる。この関係は、超音波の周波数f、音速vを用いて、f=v/2dと表すことができる。従って、共振周波数と音速により、配管40の厚さを求めることができる。例えば、9mm厚の鋼板の場合、300kHzの超音波を入力すると共振が起きる。   When the frequency of the electromagnetic ultrasonic wave is swept and the relationship of λ = 2d is established between the thickness d of the pipe 40 and the wavelength λ of the electromagnetic ultrasonic wave, the incident wave and the reflected wave resonate, and the amplitude of the output wave is large. Become. This relationship can be expressed as f = v / 2d using the ultrasonic frequency f and sound velocity v. Therefore, the thickness of the pipe 40 can be obtained from the resonance frequency and the speed of sound. For example, in the case of a 9 mm thick steel plate, resonance occurs when an ultrasonic wave of 300 kHz is input.

電気コイル12に電流を流すEMAT1は、計測・制御部5により順次切り替えられ、対応する光ファイバセンサ部2が超音波振動を検出する。本実施形態では、図5(a)、(b)に示すように、配管40表面方向に沿った磁場を発生させることで、配管40厚さ方向での共振のSN比が高まる。そのため、EMAT1から離れた位置に設けられた光ファイバセンサ部2が共振信号を検出することができる。   The EMAT 1 for passing a current through the electric coil 12 is sequentially switched by the measurement / control unit 5, and the corresponding optical fiber sensor unit 2 detects ultrasonic vibration. In the present embodiment, as shown in FIGS. 5A and 5B, by generating a magnetic field along the surface direction of the pipe 40, the SN ratio of resonance in the thickness direction of the pipe 40 is increased. Therefore, the optical fiber sensor unit 2 provided at a position away from the EMAT 1 can detect the resonance signal.

(比較例)図6は、比較例による、配管40上に積層された光ファイバセンサ部200及びEMAT100の断面を示す。比較例によるEMAT100は、円柱状の永久磁石110と、電気コイル120とから構成されている。図6に示すように、電気コイル120に高周波電流が流れると、配管400の厚さ方向に沿った磁場が発生する。光ファイバセンサ部200は光ファイバセンサ部2と同様の構成である。   (Comparative Example) FIG. 6 shows a cross section of the optical fiber sensor unit 200 and the EMAT 100 laminated on the pipe 40 according to a comparative example. The EMAT 100 according to the comparative example includes a cylindrical permanent magnet 110 and an electric coil 120. As shown in FIG. 6, when a high frequency current flows through the electric coil 120, a magnetic field along the thickness direction of the pipe 400 is generated. The optical fiber sensor unit 200 has the same configuration as the optical fiber sensor unit 2.

このようなEMAT100及び光ファイバセンサ部200を図7(a)(b)に示すように配置し、第n+1列のEMAT100_1〜100_4を順に発振させ、第n列の光ファイバセンサ部200_1で計測した共振のSN比を図8に示す。図7(b)は図7(a)の第n列に相当する部分の断面図である。第n列と第n+1列との間隔は、配管400の外径長さφとなっている。EMAT100_1〜100_4は、それぞれ、光ファイバセンサ部200_1からみて円周方向に、0°、40°、90°、135°ずれた位置に設けられている。また、EMAT100及び光ファイバセンサ部200を本実施形態によるEMAT1及び光ファイバセンサ部2に置き換えて、同様の計測を行った結果も図8に示す。   Such an EMAT 100 and an optical fiber sensor unit 200 are arranged as shown in FIGS. 7A and 7B, and the EMATs 100_1 to 100_4 in the (n + 1) th column are sequentially oscillated and measured by the optical fiber sensor unit 200_1 in the nth column. The S / N ratio of resonance is shown in FIG. FIG. 7B is a cross-sectional view of a portion corresponding to the n-th column in FIG. The interval between the n-th column and the (n + 1) -th column is the outer diameter length φ of the pipe 400. The EMATs 100_1 to 100_4 are provided at positions shifted by 0 °, 40 °, 90 °, and 135 ° in the circumferential direction as viewed from the optical fiber sensor unit 200_1. Moreover, the result of having performed the same measurement by replacing the EMAT 100 and the optical fiber sensor unit 200 with the EMAT 1 and the optical fiber sensor unit 2 according to the present embodiment is also shown in FIG.

図8から、本実施形態によるEMAT1を用いることで、光ファイバセンサ部2からみて軸方向にφ、円周方向に90°ずれた箇所のEMAT1により励起された超音波信号を十分なSN比で計測できることがわかる。一方、比較例によるEMAT100では、配管40の厚さ方向に沿った磁場が発生するため、共振のSN比を高めることができない。   From FIG. 8, by using the EMAT1 according to the present embodiment, an ultrasonic signal excited by the EMAT1 at a position shifted by φ in the axial direction and 90 ° in the circumferential direction as viewed from the optical fiber sensor unit 2 can be obtained with a sufficient SN ratio. It can be seen that it can be measured. On the other hand, in the EMAT 100 according to the comparative example, since a magnetic field is generated along the thickness direction of the pipe 40, the S / N ratio of resonance cannot be increased.

このように、本実施形態によれば、1つの光ファイバセンサ部2で、グループ化された、軸方向±φ、円周方向±90°の領域に位置するEMAT1による共振信号を検出することができる。光ファイバセンサ部2を、複数のEMAT1に対し1つ準備すればよいため、材料劣化診断装置の設置コストを削減することができる。   As described above, according to the present embodiment, the single optical fiber sensor unit 2 can detect the resonance signals by the EMAT 1 that are located in the grouped regions of the axial direction ± φ and the circumferential direction ± 90 °. it can. Since only one optical fiber sensor unit 2 needs to be prepared for a plurality of EMATs 1, the installation cost of the material deterioration diagnosis apparatus can be reduced.

上記実施形態において、EMAT1は、配管減肉管理規格で規定される測定点に設置することが好ましい。配管減肉管理規格では、配管のサイズが150A(外径:約165mm)以上の場合は円周方向に8箇所(45°間隔)の測定点、配管のサイズが150A未満の場合は円周方向に4箇所(90°間隔)の測定点を設けることが規定されている。また、配管の軸方向は、配管の外径長さ以下の間隔で測定点を設けることが規定されている。   In the said embodiment, it is preferable to install EMAT1 in the measuring point prescribed | regulated by piping thinning management standard. In the pipe thinning management standard, when the pipe size is 150A (outer diameter: about 165mm) or more, there are 8 measurement points (45 ° intervals) in the circumferential direction, and when the pipe size is less than 150A, the circumferential direction It is stipulated that four measurement points (90 ° intervals) are provided. Moreover, it is prescribed | regulated that the axial direction of piping provides a measurement point with the space | interval below the outer diameter length of piping.

上記実施形態では、永久磁石11が円筒型磁石11A、及び円筒型磁石11Aの内部に設けられた円柱型磁石11Bを備えていたが、図9(a)(b)に示すように、円筒型磁石11Aに代えて、複数の直方体磁石11Cを円周状に配置した構成にしてもよい。図9(a)は上面図であり、図9(b)は図9(a)のII−II線に沿った断面図である。複数の直方体磁石11Cと円柱型磁石11Bの磁化方向が反対向きになり、配管40表面方向に沿った磁場を発生させることができる。EMAT1から離れた位置に設けられた光ファイバセンサ部2において共振信号を精度良く検出することができるため、複数のEMAT1に対し光ファイバセンサ部2を1つ設ければよく、材料劣化診断装置の設置コストを削減することができる。   In the above embodiment, the permanent magnet 11 includes the cylindrical magnet 11A and the columnar magnet 11B provided inside the cylindrical magnet 11A. However, as shown in FIGS. Instead of the magnet 11A, a plurality of rectangular magnets 11C may be arranged circumferentially. FIG. 9A is a top view, and FIG. 9B is a cross-sectional view taken along the line II-II in FIG. 9A. The magnetization directions of the plurality of rectangular magnets 11C and the columnar magnet 11B are opposite to each other, and a magnetic field along the surface direction of the pipe 40 can be generated. Since the resonance signal can be detected with high accuracy in the optical fiber sensor unit 2 provided at a position away from the EMAT 1, it is sufficient to provide one optical fiber sensor unit 2 for a plurality of EMATs 1 and Installation cost can be reduced.

また、図10(a)(b)に示すように、円筒型磁石11Aと円柱型磁石11Bとの間にアモルファス合金などの高透磁率材料11Dを設けるようにしてもよい。図10(a)は上面図であり、図10(b)は図10(a)のIII−III線に沿った断面図である。高透磁率材料11Dを設けることで、配管40表面方向に沿ってさらに強い磁場を発生させることができる。   10A and 10B, a high permeability material 11D such as an amorphous alloy may be provided between the cylindrical magnet 11A and the columnar magnet 11B. FIG. 10A is a top view, and FIG. 10B is a cross-sectional view taken along line III-III in FIG. By providing the high magnetic permeability material 11D, a stronger magnetic field can be generated along the surface direction of the pipe 40.

また、永久磁石11がハルバッハ配列となるようにしてもよい。例えば、図11(a)(b)に示すように、円筒型磁石11Aと円柱型磁石11Bとの間に、磁石の内側から外側又は外側から内側に磁場が向くように磁化させた円筒型磁石11Eを設けてもよい。図11(a)は上面図であり、図11(b)は図11(a)のIV−IV線に沿った断面図である。このような構成にすることで、永久磁石11の外径を増やさずに、配管40表面方向に沿った磁場を約2倍に増強させることができる。   Further, the permanent magnets 11 may be arranged in a Halbach array. For example, as shown in FIGS. 11A and 11B, a cylindrical magnet magnetized between a cylindrical magnet 11A and a columnar magnet 11B so that a magnetic field is directed from the inside to the outside or from the outside to the inside. 11E may be provided. 11A is a top view, and FIG. 11B is a cross-sectional view taken along the line IV-IV in FIG. 11A. With such a configuration, the magnetic field along the surface direction of the pipe 40 can be increased approximately twice without increasing the outer diameter of the permanent magnet 11.

また、図12(a)(b)に示すように、図11(a)(b)に示す構成から円筒型磁石11Aを省略して、構造を単純化させてもよい。図12(a)は上面図であり、図12(b)は図12(a)のV−V線に沿った断面図である。   Further, as shown in FIGS. 12A and 12B, the structure may be simplified by omitting the cylindrical magnet 11A from the configuration shown in FIGS. 11A and 11B. 12A is a top view, and FIG. 12B is a cross-sectional view taken along line VV in FIG. 12A.

上記実施形態では、光ファイバセンサ部2を配管40とEMAT1との間に設けていたが、図13に示すように、光ファイバセンサ部2をEMAT1とは独立に配置してもよい。例えば、配管40の軸方向に隣接するEMAT1の中間点に光ファイバセンサ部2を配置する。光ファイバセンサ部2は、この光ファイバセンサ部2からみて、軸方向±φ、円周方向±90°の領域に位置するEMAT1による共振信号を検出する。   In the above embodiment, the optical fiber sensor unit 2 is provided between the pipe 40 and the EMAT1, but the optical fiber sensor unit 2 may be disposed independently of the EMAT1 as shown in FIG. For example, the optical fiber sensor unit 2 is disposed at an intermediate point of the EMAT 1 adjacent to the pipe 40 in the axial direction. The optical fiber sensor unit 2 detects a resonance signal from the EMAT 1 located in the region of the axial direction ± φ and the circumferential direction ± 90 ° as viewed from the optical fiber sensor unit 2.

以上説明した少なくともひとつの実施形態又は変形例によれば、材料劣化診断装置の設置コストを削減することができる。   According to at least one embodiment or modification described above, the installation cost of the material deterioration diagnosis apparatus can be reduced.

本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although the embodiment of the present invention has been described, this embodiment is presented as an example and is not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1 EMAT
2 光ファイバセンサ部
3 光源
4 光干渉計
5 計測・制御部
6 波形信号発生器
7 アンプ
11 永久磁石
12 電気コイル
21 光ファイバ
40 配管
1 EMAT
2 Optical fiber sensor unit 3 Light source 4 Optical interferometer 5 Measurement / control unit 6 Waveform signal generator 7 Amplifier 11 Permanent magnet 12 Electric coil 21 Optical fiber 40 Piping

Claims (7)

金属製材料の表面に所定の間隔で複数設けられた発振子と、
前記金属製材料の表面に設けられ、前記所定の間隔で複数設けられた発振子をグループ化して当該グループ化された複数の発振子に対して1つ設けられる光ファイバから成る光ファイバセンサ部と、
前記金属製材料中の振動に応じた前記光ファイバセンサ部を構成する光ファイバを透過する光の変動を電気信号に変換する光干渉計と、
振動を発生させる前記グループ化された複数の発振子を順次切り替え、前記電気信号に基づいて共振周波数を求め、当該共振周波数によって前記金属製材料の厚さを算出し、前記金属製材料の劣化度を判定する計測・制御部と、
を備え、
前記発振子は、電気コイル、及び前記電気コイル上に設けられ、前記金属製材料の表面方向に沿った磁場をかける磁石を有し、
前記光干渉計は、前記所定の間隔で複数設けられた発振子により励起された振動に応じた前記光ファイバを透過する光の変動を電気信号に変換することを特徴とする材料劣化診断装置。
A plurality of oscillators provided at predetermined intervals on the surface of the metal material;
An optical fiber sensor unit comprising an optical fiber provided on the surface of the metal material and grouping a plurality of oscillators provided at a predetermined interval, and one provided for the grouped oscillators ; ,
An optical interferometer that converts fluctuations of light transmitted through the optical fiber that constitutes the optical fiber sensor unit in response to vibration in the metal material into an electrical signal;
The plurality of grouped oscillators that generate vibrations are sequentially switched, a resonance frequency is obtained based on the electrical signal, a thickness of the metal material is calculated based on the resonance frequency, and a deterioration degree of the metal material A measurement / control unit for determining
With
The oscillator includes an electric coil and a magnet that is provided on the electric coil and applies a magnetic field along a surface direction of the metal material,
The material interferometer, wherein the optical interferometer converts a fluctuation of light transmitted through the optical fiber according to vibration excited by a plurality of oscillators provided at the predetermined interval into an electric signal.
前記磁石は、
円筒型磁石と、
前記円筒型磁石の内部に設けられた円柱型磁石と、
を有することを特徴とする請求項1に記載の材料劣化診断装置。
The magnet
A cylindrical magnet;
A columnar magnet provided inside the cylindrical magnet;
The material deterioration diagnosis apparatus according to claim 1, wherein:
前記円筒型磁石と前記円柱型磁石との間に高透磁率材料が設けられていることを特徴とする請求項2に記載の材料劣化診断装置。   The material deterioration diagnosis apparatus according to claim 2, wherein a high permeability material is provided between the cylindrical magnet and the columnar magnet. 前記磁石はハルバッハ配列磁石であることを特徴とする請求項1に記載の材料劣化診断装置。   The material deterioration diagnosis apparatus according to claim 1, wherein the magnet is a Halbach array magnet. x個(xは1以上の整数)の前記光ファイバと、y個(yはy>xを満たす整数)の前記発振子と、を備えることを特徴とする請求項1乃至4のいずれかに記載の材料劣化診断装置。   5. The optical fiber according to claim 1, comprising x optical fibers (x is an integer equal to or greater than 1) and y oscillators (y is an integer satisfying y> x). The material deterioration diagnosis apparatus described. 前記発振子は、金属製材料の表面光ファイバを挟んで、又は直接設けられる電磁超音波発振子であって、
電気コイル、及び前記電気コイル上に設けられ、前記金属製材料の表面方向に沿った磁場をかける磁石を有することを特徴とする請求項1乃至5のいずれかに記載の材料劣化診断装置
The oscillator is, across the optical fiber to the surface of a metallic material, or an electromagnetic ultrasonic oscillator is provided directly,
6. The material deterioration diagnosis apparatus according to claim 1 , further comprising: an electric coil; and a magnet that is provided on the electric coil and applies a magnetic field along a surface direction of the metal material.
金属製材料の表面に所定の間隔で複数設けられ、前記金属製材料の表面方向に沿った磁場をかける磁石を含む第2発振子と、前記金属製材料の表面に設けられ、前記所定の間隔で複数設けられた発振子をグループ化して当該グループ化された複数の発振子に対して1つ設けられる光ファイバから成る光ファイバセンサ部と、を用いた材料劣化診断方法であって、
前記グループ化された複数の発振子により前記金属製材料中に振動を順次切り替えて励起する工程と
前記振動に応じた前記光ファイバを透過する光の変動を電気信号に変換する工程と、
前記電気信号に基づいて共振周波数を求め当該共振周波数によって前記発振子の設置位置に対応する前記金属製材料の厚さを算出する工程と、
を備える材料劣化診断方法。
A plurality of second oscillators provided on the surface of the metallic material at predetermined intervals and including a magnet for applying a magnetic field along the surface direction of the metallic material; and the predetermined intervals provided on the surface of the metallic material. A material deterioration diagnosis method using a plurality of resonators provided in a group and an optical fiber sensor unit including an optical fiber provided for one of the grouped resonators ,
A step of sequentially switching and exciting vibrations in the metal material by the grouped oscillators, and a step of converting fluctuations of light transmitted through the optical fiber in response to the vibrations into electrical signals;
Obtaining a resonance frequency based on the electrical signal, and calculating a thickness of the metallic material corresponding to an installation position of the oscillator by the resonance frequency ;
A material deterioration diagnosis method comprising:
JP2012254464A 2012-11-20 2012-11-20 Material deterioration diagnosis apparatus and material deterioration diagnosis method Active JP6071461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012254464A JP6071461B2 (en) 2012-11-20 2012-11-20 Material deterioration diagnosis apparatus and material deterioration diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012254464A JP6071461B2 (en) 2012-11-20 2012-11-20 Material deterioration diagnosis apparatus and material deterioration diagnosis method

Publications (2)

Publication Number Publication Date
JP2014102157A JP2014102157A (en) 2014-06-05
JP6071461B2 true JP6071461B2 (en) 2017-02-01

Family

ID=51024779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012254464A Active JP6071461B2 (en) 2012-11-20 2012-11-20 Material deterioration diagnosis apparatus and material deterioration diagnosis method

Country Status (1)

Country Link
JP (1) JP6071461B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10809232B2 (en) * 2014-10-17 2020-10-20 Kabushiki Kaisha Toshiba Optical fiber electromagnetic acoustic transducer pipe inspecting appartus and method
JP6570875B2 (en) * 2014-10-17 2019-09-04 株式会社東芝 Piping inspection device and piping inspection method
GB201604440D0 (en) 2016-03-16 2016-04-27 Imp Innovations Ltd Guided wave testing
CN108917805B (en) 2018-08-08 2019-11-26 苏州博昇科技有限公司 Electromagnetic ultrasonic wave double wave energy converter
CN113310805B (en) * 2021-05-28 2023-01-17 湖北工业大学 Axial stress measuring device with novel electromagnetic ultrasonic longitudinal transducer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107154A (en) * 1984-10-31 1986-05-26 Toshiba Corp Ultrasonic transducer
JP3727933B2 (en) * 2003-05-12 2005-12-21 核燃料サイクル開発機構 Electromagnetic ultrasonic probe
JP2005077298A (en) * 2003-09-02 2005-03-24 Ebara Corp Electromagnetic ultrasonic probe, damage progression degree evaluation method and damage progression degree evaluation device of conductive material, and axial force measuring method and axial force measuring device of fastening bolt or rivet
JP4881212B2 (en) * 2007-04-13 2012-02-22 株式会社東芝 Material thickness monitoring system and material thickness measuring method
US7711217B2 (en) * 2007-04-13 2010-05-04 Kabushiki Kaisha Toshiba Active sensor, multipoint active sensor, method for diagnosing deterioration of pipe, and apparatus for diagnosing deterioration of pipe, and apparatus for diagnosis deterioration of pipe
JP5258683B2 (en) * 2009-06-26 2013-08-07 株式会社東芝 Material degradation diagnosis apparatus and method
JP2011075499A (en) * 2009-10-01 2011-04-14 Toshiba Corp Method and device for inspecting reduced-thickness of piping using electromagnetic ultrasonic wave

Also Published As

Publication number Publication date
JP2014102157A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
CN105527342B (en) Pipe inspection apparatus and pipe inspection method
US8354842B2 (en) Segmented magnetostrictive patch array transducer, apparatus for diagnosing structural fault by using the same, and method of operating the same
JP6071461B2 (en) Material deterioration diagnosis apparatus and material deterioration diagnosis method
JP6570875B2 (en) Piping inspection device and piping inspection method
JP6272879B2 (en) Acoustic flow meter device and method for measuring flow in an object
JP5624271B2 (en) Piping thickness measurement method and apparatus
JP5258683B2 (en) Material degradation diagnosis apparatus and method
US7735373B2 (en) Apparatus for measuring pressure in a vessel using magnetostrictive acoustic transducer
JP6596536B2 (en) Piping inspection method
JP2007240447A (en) Material soundness evaluation device
WO2014192012A1 (en) Novel segmented strip design for a magnetostriction sensor (mss) using amorphous material for long range inspection of defects and bends in pipes at high temperatures
Liu et al. Development of a shear horizontal wave electromagnetic acoustic transducer with periodic grating coil
JP4881212B2 (en) Material thickness monitoring system and material thickness measuring method
JP5902980B2 (en) Ultrasonic plate thickness measuring apparatus and ultrasonic plate thickness measuring method
Xie et al. A flexible thin-film magnetostrictive patch guided-wave transducer for structural health monitoring
Wang et al. Design method of unidirectional wideband SH guided wave phased array magnetostrictive patch transducer
JP2012122751A (en) Material deterioration diagnostic device
JP2012098226A (en) Pipe inspection method, pipe inspection device and electromagnetic ultrasonic sensor
JP5784793B2 (en) Material deterioration diagnosis device
WO2018225525A1 (en) Sensor system
Li et al. Doppler effect-based fiber-optic sensor and its application in ultrasonic detection
Lima et al. Extrinsic and intrinsic fiber optic interferometric sensors for acoustic detection in high-voltage environments
JP2001074567A (en) Contactless fluid temperature maesuring method using electromagnetic ultrasonic wave
WO2020016576A1 (en) Ultrasonic transducer
CN116576807A (en) Electromagnetic ultrasonic body wave thickness measuring device for wireless energy and signal transmission

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R151 Written notification of patent or utility model registration

Ref document number: 6071461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151