JP4881212B2 - Material thickness monitoring system and material thickness measuring method - Google Patents

Material thickness monitoring system and material thickness measuring method Download PDF

Info

Publication number
JP4881212B2
JP4881212B2 JP2007106329A JP2007106329A JP4881212B2 JP 4881212 B2 JP4881212 B2 JP 4881212B2 JP 2007106329 A JP2007106329 A JP 2007106329A JP 2007106329 A JP2007106329 A JP 2007106329A JP 4881212 B2 JP4881212 B2 JP 4881212B2
Authority
JP
Japan
Prior art keywords
ultrasonic
material thickness
optical fiber
fiber sensor
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007106329A
Other languages
Japanese (ja)
Other versions
JP2008261806A (en
Inventor
雅士 高橋
恵一 佐々木
浩一 吉村
祐一 町島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007106329A priority Critical patent/JP4881212B2/en
Publication of JP2008261806A publication Critical patent/JP2008261806A/en
Application granted granted Critical
Publication of JP4881212B2 publication Critical patent/JP4881212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、材料中に入射した超音波信号の到達時間や共鳴現象を光ファイバセンサで検出し、材料厚さを測定する材料厚さモニタリングシステムおよび材料厚さ測定方法に関し、特にプラント運転中においても機器構成材料の厚さの測定・モニタリングが可能であると同時に、効率的にかつ高精度に材料厚さを測定できる材料厚さモニタリングシステムおよび材料厚さ測定方法に関するものである。   The present invention relates to a material thickness monitoring system and a material thickness measurement method for detecting the arrival time of an ultrasonic signal incident in a material and a resonance phenomenon with an optical fiber sensor and measuring the material thickness, and particularly during plant operation. The present invention also relates to a material thickness monitoring system and a material thickness measurement method that can measure and monitor the thickness of equipment constituent materials and at the same time efficiently and accurately measure the material thickness.

国内外の原子力発電所や火力発電所等において過去に発生した蒸気配管の不具合は、いずれも配管内部の蒸気によるエロージョン現象やコロージョン現象により配管肉厚が薄く減少して構造強度が不十分になっていたことが直接の原因である言われている。そのため、これらの配管の信頼性確保のあり方や検査方法についての重要性が再認識されている。   In the past, steam pipe failures that occurred in nuclear power plants and thermal power plants in Japan and overseas have reduced the pipe wall thickness due to erosion and corrosion caused by steam inside the piping, resulting in insufficient structural strength. It is said that having been a direct cause. For this reason, the importance of ensuring the reliability of these pipes and the importance of inspection methods have been recognized again.

従来から広く使用されている配管の肉厚検査方法としては、超音波法を基本とする方法が一般的である。この超音波法においては、超音波信号処理により配管の減肉部位や肉厚測定精度を向上させる方法が提案されている(例えば、特許文献1参照)。また、狭隘な場所や偏心形状配管での超音波を使用した精度良い配管厚さ測定方法も提案されている(例えば、特許文献2,3参照)。また、配管の表面を二次元的に走査して測定を行うことにより、効率の良い超音波配管測定装置(例えば、特許文献2参照)など、数多く提案されている。   As a pipe thickness inspection method that has been widely used, a method based on an ultrasonic method is generally used. In this ultrasonic method, there has been proposed a method for improving the thinned portion of the pipe and the thickness measurement accuracy by ultrasonic signal processing (see, for example, Patent Document 1). In addition, an accurate pipe thickness measurement method using ultrasonic waves in a narrow place or an eccentric pipe has been proposed (for example, see Patent Documents 2 and 3). Many proposals have been made, such as an efficient ultrasonic pipe measuring device (for example, see Patent Document 2) by performing measurement by scanning the surface of the pipe two-dimensionally.

しかしながら、上記の各種測定方法は、基本的にはプラントを運転開始する前または停止した状態で非破壊検査の一環として実施することを前提とするものであり、稼働中の火力発電プラントなどのように、配管中に高温蒸気が流通している高温状態では対応できない難点がある。また、上記の測定方法においては、最も減肉が生じている部位を特定するために肉厚分布を求めているが、そのためには多点(通常数百点)を測定する必要があり、多大の測定時間を必要とする問題もある。   However, the various measurement methods described above are basically premised on being implemented as part of nondestructive inspection before the plant is started or stopped, such as an operating thermal power plant. In addition, there is a difficulty that cannot be handled in a high temperature state where high-temperature steam is circulating in the pipe. Moreover, in the above measurement method, the thickness distribution is obtained in order to identify the portion where the thinning occurs most, but for that purpose, it is necessary to measure multiple points (usually several hundred points). There is also a problem that requires a long measurement time.

一方、電磁超音波による共鳴現象を利用して配管肉厚を測定する試みも提案されている(例えば、特許文献4参照)。しかしながら、この測定装置では台車により超音波の入射位置を変えるために装置構成が非常に大掛りなものになり装置製造コストが膨大化すると同時に、前述の超音波法と同様に高温状態では対応できず、測定に多大の時間が必要となる欠点があった。   On the other hand, an attempt to measure the pipe wall thickness using a resonance phenomenon by electromagnetic ultrasonic waves has also been proposed (see, for example, Patent Document 4). However, in this measuring device, since the position of the ultrasonic wave is changed by the carriage, the device configuration becomes very large and the manufacturing cost of the device becomes enormous. At the same time, as with the ultrasonic method described above, it can cope with high temperature conditions. In addition, there is a drawback that much time is required for the measurement.

さらに、減肉速度評価式を取り入れたシステムにより減肉量を予測する試みもある(例えば、特許文献5参照)。この方法によれば効率良く配管減肉を予測することが可能となる反面、配管のエロージョン現象やコロージョン現象の進行機構は非常に複雑であり、プラントの微妙な運転条件の差異を考慮して予測することは困難であり、測定精度に問題がある。   Furthermore, there is an attempt to predict the amount of thinning by a system incorporating a thinning rate evaluation formula (see, for example, Patent Document 5). This method makes it possible to predict pipe thinning efficiently, but the progress mechanism of pipe erosion and corrosion phenomena is very complex, and it is predicted in consideration of subtle differences in plant operating conditions. It is difficult to do, and there is a problem in measurement accuracy.

近年、通信分野を中心に光ファイバの適用が拡がり、その信頼性が向上するとともにコスト的にも低下する傾向にある。そのために、情報伝達媒体としての光ファイバの利点を利用した応用製品やサービスの開発も活発に行われている。その中でもFBG(Fiber Bragg Grating)型光ファイバ素子は、ひずみや温度などの検出を行うセンサとして注目されている(例えば、特許文献6,7参照)。また、電気ノイズも小さく非常に感度が高いことから、磁気、振動や音などの微小な環境変化を検出するセンサとしての応用も検討されている(例えば、特許文献8,9参照)。一方、光ファイバを用いて動的な振動(ひずみ速度)を測定する別の方法として、レーザドップラ現象を応用した方法が提案されている。とくに、光ファイバを湾曲させて対象物に取付けた状態で湾曲部に振動(ひずみ)を与えた場合、入力光とファイバを通過した出力光との間での波長変化がひずみ速度に対応し、広帯域の振動を高感度で測定できるという報告もある(例えば、特許文献10参照)。これらの光ファイバを用いた測定装置は600℃程度までの高温での測定を検討したものはあるが、ひずみ、変位、振動、温度などに限られており、配管などの材料肉厚測定に応用されたものは未だない。
特開2004−163250号公報 特開2002−48769号公報 特開2003−270217号公報 特開平9−281087号公報 特開2001−12698号公報 特開平10−141922号公報 特開平11−51783号公報 特開2003−130934号公報 特開2004−12280号公報 特願2003−508894号明細書
In recent years, the application of optical fibers has been expanded mainly in the communication field, and there is a tendency that the reliability is improved and the cost is lowered. For this reason, application products and services using the advantages of optical fibers as information transmission media are being actively developed. Among them, an FBG (Fiber Bragg Grating) type optical fiber element is attracting attention as a sensor for detecting strain, temperature, and the like (see, for example, Patent Documents 6 and 7). In addition, since the electrical noise is small and the sensitivity is very high, application as a sensor that detects minute environmental changes such as magnetism, vibration, and sound has been studied (for example, see Patent Documents 8 and 9). On the other hand, as another method for measuring dynamic vibration (strain rate) using an optical fiber, a method using a laser Doppler phenomenon has been proposed. In particular, when the bending portion is vibrated (strained) with the optical fiber bent and attached to the object, the wavelength change between the input light and the output light passing through the fiber corresponds to the strain rate, There is also a report that broadband vibration can be measured with high sensitivity (see, for example, Patent Document 10). Although some measuring devices using these optical fibers have been studied for measurement at high temperatures up to about 600 ° C, they are limited to strain, displacement, vibration, temperature, etc. Nothing has been done yet.
JP 2004-163250 A JP 2002-48769 A JP 2003-270217 A Japanese Patent Laid-Open No. 9-281087 Japanese Patent Laid-Open No. 2001-12698 JP-A-10-141922 Japanese Patent Laid-Open No. 11-51783 JP 2003-130934 A JP 2004-12280 A Japanese Patent Application No. 2003-508894 Specification

前記のように、超音波法または電磁超音波法により配管肉厚測定が種々試みられている。しかしながら、各配管肉厚測定装置・方法は基本的にはプラントを運転開始する前または停止した状態で非破壊検査の一環として実施することを前提に開発されたものであり、例えば火力発電プラント等において配管中に高温蒸気が流通している高温状態では対応できない問題があった。また、超音波探触子の走査のために駆動機構を設ける必要があり装置構成が大掛りなものになることが多く、測定装置の製造コストが上昇する難点があった。さらに、測定対象材料中で最も減肉が生じている部位を特定するためには肉厚分布を求める方式においては、多点(数百点)を測定する必要があり多大の測定時間が必要であるという問題点がある。   As described above, various pipe thickness measurements have been attempted by the ultrasonic method or the electromagnetic ultrasonic method. However, each pipe wall thickness measuring device / method is basically developed on the assumption that it is implemented as part of non-destructive inspection before the plant is started or stopped, such as a thermal power plant. There is a problem that cannot be handled in a high temperature state where high temperature steam is circulating in the pipe. In addition, it is necessary to provide a drive mechanism for scanning the ultrasonic probe, so that the apparatus configuration is often large, and the manufacturing cost of the measuring apparatus increases. Furthermore, in order to identify the part where the thinning occurs most in the material to be measured, in the method for obtaining the thickness distribution, it is necessary to measure multiple points (hundreds of points), requiring a lot of measurement time. There is a problem that there is.

また、減肉速度評価式から減肉量を予測するシステムも試行されているが、配管のエロージョン、コロージョン現象は非常に複雑であり、プラントの微妙な運転条件の差異による差を予測することは困難であり、測定精度が低い問題がある。   In addition, a system that predicts the amount of thinning from the thinning rate evaluation formula has also been tried, but the pipe erosion and corrosion phenomena are very complex, and it is not possible to predict differences due to subtle differences in plant operating conditions. There is a problem that it is difficult and measurement accuracy is low.

さらに、光ファイバ素子を利用した材料検査システムも実用化されているが、光ファイバ素子の用途は、ひずみ、変位、振動、温度などの測定に限定されており、配管の肉厚測定に応用されたものはない。   In addition, material inspection systems using optical fiber elements have been put into practical use, but the use of optical fiber elements is limited to measuring strain, displacement, vibration, temperature, etc., and is applied to the measurement of pipe wall thickness. There is nothing.

本発明は、上記従来技術の課題を解決するためになされたものであり、材料中に超音波を入射し、その信号を光ファイバを用いたセンサで受けて配管などの材料厚さを測定したものである。そして、プラント運転中にも材料厚さの測定・モニタリングが可能であると同時に、効率的にかつ高精度に材料厚さを測定できる材料厚さモニタリングシステムおよび材料厚さ測定方法を提供することを目的とする。   The present invention was made to solve the above-described problems of the prior art, and an ultrasonic wave was incident on the material, and the signal was received by a sensor using an optical fiber to measure the material thickness of a pipe or the like. Is. It is also possible to provide a material thickness monitoring system and a material thickness measuring method that can measure and monitor the material thickness even during plant operation, and at the same time efficiently and accurately measure the material thickness. Objective.

上記の目的を達成するために本発明は、次の手段を設けて構成されている。   In order to achieve the above object, the present invention is provided with the following means.

すなわち、本発明に係る材料厚さモニタリングシステムは、厚さの測定対象となる材料表面に渦巻き状に巻回し状態で貼着された光ファイバセンサと、この光ファイバセンサ中に光を供給するための光源と、上記渦巻き状に巻回した状態で貼着された光ファイバセンサの中心部に配置され上記材料中に超音波を入射させる超音波発振装置と、上記超音波の反射波を検出することによって波長が変化した光であって光ファイバセンサを透過した光と供給した際の光の波長とのシフト量を電気信号に変換するための光電変換装置と、予め求められた光ファイバセンサ内での波長のシフト量と入射された超音波の周波数との関係および各種材料内における超音波速度のデータと、上記シフト量を変換することによって得られた電気信号とに基づいて材料厚さを算出する演算装置と、上記全ての機器を制御する制御用計算機と、を備えることを特徴とする。 That is, the material thickness monitoring system according to the present invention is for supplying an optical fiber sensor that is spirally wound around the surface of a material whose thickness is to be measured, and for supplying light into the optical fiber sensor. A light source, an ultrasonic oscillation device that is disposed at the center of the optical fiber sensor that is attached in a spirally wound state, and injects ultrasonic waves into the material, and detects reflected waves of the ultrasonic waves A photoelectric conversion device for converting a shift amount between the light having a wavelength changed by the light transmitted through the optical fiber sensor and the wavelength of the light when supplied to an electrical signal, and a predetermined optical fiber sensor. and the ultrasonic speed of data in the context and various the material of the shift amount and the incident ultrasound frequencies wavelength at, based on the electric signal obtained by converting the shift amount An arithmetic unit for calculating a RyoAtsu is characterized by and a control computer for controlling all the devices described above.

また、上記材料厚さモニタリングシステムにおいて、前記材料中に超音波を入射させる超音波発振装置として、落下する球体を衝突させたときに発生する超音波を入射させる落球超音波発振装置を用いて構成することも可能である。   Further, in the material thickness monitoring system, the ultrasonic wave oscillating device that makes an ultrasonic wave enter the material is configured to use a falling ball ultrasonic oscillating device that makes an ultrasonic wave generated when a falling sphere collides with the material. It is also possible to do.

さらに、上記材料厚さモニタリングシステムにおいて、前記材料中に超音波を入射させる超音波発信装置として、入射させる超音波の周波数が可変である周波数可変型超音波発振装置を用いて構成することも可能である。   Furthermore, in the material thickness monitoring system, it is also possible to use a variable frequency ultrasonic oscillator that can change the frequency of the incident ultrasonic waves as an ultrasonic transmission device that makes ultrasonic waves enter the material. It is.

また、上記材料厚さモニタリングシステムにおいて、前記周波数可変型超音波発振装置として、厚さ測定対象となる材料表面に、コイルを巻回した鉄心を立設し、そのコイルに所定の周波数の電圧を印加することにより電磁超音波を発生させる電磁超音波発振装置を用いて構成することも可能である。   In the material thickness monitoring system, as the variable frequency ultrasonic oscillating device, an iron core around which a coil is wound is erected on the surface of a material whose thickness is to be measured, and a voltage having a predetermined frequency is applied to the coil. It is also possible to configure using an electromagnetic ultrasonic oscillation device that generates electromagnetic ultrasonic waves by applying.

さらに、上記材料厚さモニタリングシステムにおいて、前記周波数可変型超音波発振装置として、圧電素子に電圧を印加して振動(機械エネルギー)に変換することにより所定周波数の超音波を発生させる圧電素子超音波発振装置を用いて構成することも可能である。   Further, in the material thickness monitoring system, as the frequency variable type ultrasonic oscillating device, a piezoelectric element ultrasonic wave that generates an ultrasonic wave of a predetermined frequency by applying a voltage to the piezoelectric element and converting it to vibration (mechanical energy). It is also possible to configure using an oscillation device.

また、上記材料厚さモニタリングシステムにおいて、前記周波数可変型超音波発振装置として、球体の材質や径を変化させることにより周波数が変化した超音波を発生させることが可能な落球超音波発振装置を用いて構成することも可能である。   Further, in the material thickness monitoring system, a falling ball ultrasonic oscillator capable of generating an ultrasonic wave whose frequency is changed by changing a material or a diameter of a sphere is used as the variable frequency ultrasonic oscillator. It is also possible to configure.

さらに、上記材料厚さモニタリングシステムにおいて、前記超音波発振装置が10kHzから100MHzの周波数領域の超音波を前記材料中に入射させることが好ましい。材料中に入射させる超音波の周波数領域を過度に高めずに上記範囲内に設定することにより、超音波の吸収が少なくなり、高精度の測定が可能になる。   Furthermore, in the material thickness monitoring system, it is preferable that the ultrasonic oscillator causes an ultrasonic wave in a frequency range of 10 kHz to 100 MHz to enter the material. By setting the frequency range of the ultrasonic wave incident on the material within the above range without excessively increasing, the absorption of the ultrasonic wave is reduced, and high-accuracy measurement is possible.

また、上記材料厚さモニタリングシステムにおいて、前記材料表面に貼着された光ファイバセンサが、渦巻き状に巻回した状態で材料表面に貼着されていることが好ましい。光ファイバセンサを渦巻き状に巻回した状態で材料表面に貼着することにより、湾曲部でのドップラー効果によって、反射する超音波に対応してひずみの変化速度が大きくなり、高精度の測定が可能になる。   Moreover, in the said material thickness monitoring system, it is preferable that the optical fiber sensor stuck on the said material surface is stuck on the material surface in the state wound by the spiral shape. By sticking the optical fiber sensor in a spiral shape on the surface of the material, the Doppler effect at the curved portion increases the strain change rate corresponding to the reflected ultrasonic wave, enabling high-precision measurement. It becomes possible.

さらに、上記材料厚さモニタリングシステムにおいて、前記材料厚さを測定する対象材料において、超音波の発振源とその超音波を検出する光ファイバセンサとを上記材料の同一表面側に設けて構成することも可能である。   Further, in the material thickness monitoring system, in the target material for measuring the material thickness, an ultrasonic oscillation source and an optical fiber sensor for detecting the ultrasonic wave are provided on the same surface side of the material. Is also possible.

また、上記材料厚さモニタリングシステムにおいて、前記材料厚さを測定する対象材料において、超音波の発振源を材料の表面側に配設する一方、その超音波を検出する光ファイバセンサを材料の裏面側に配設して構成することも可能である。   Further, in the material thickness monitoring system, in the target material for measuring the material thickness, an ultrasonic oscillation source is disposed on the surface side of the material, and an optical fiber sensor for detecting the ultrasonic wave is provided on the back surface of the material. It is also possible to arrange it on the side.

本発明に係る材料厚さの測定方法は、厚さの測定対象となる材料表面に渦巻き状に巻回した状態で貼着された光ファイバセンサの中心部から材料中に超音波を入射させる一方、超音波の入射点の周囲に配置した前記光ファイバセンサに所定波長の光波を入射させ、上記超音波の反射波によって波長が変化した光波を光ファイバセンサにより検出し、その波長変化から動的なひずみ変化に変換し、そのひずみ変化の速度から材料厚さを算出することを特徴とする。 In the method for measuring the material thickness according to the present invention, an ultrasonic wave is incident on the material from the center portion of the optical fiber sensor attached in a spiral shape on the surface of the material to be measured for thickness. , the optical fiber sensor disposed around the incident point of the ultrasonic wave is incident light wave of predetermined wavelength, the light wave wavelength is changed by the reflection wave of the ultrasonic wave detected by the optical fiber sensor, the dynamic of the wavelength change The material thickness is calculated from the speed of the strain change.

上記光ファイバセンサからの光信号の波長変化から動的なひずみ変化に変換する操作は、例えば光ファイバレーザドップラー速度計(FLDV:Fiber−opt Laser Doppler Velocimeter)により実行される。   The operation of converting the wavelength change of the optical signal from the optical fiber sensor into a dynamic strain change is performed by, for example, an optical fiber laser Doppler velocimeter (FLV: Fiber-opt Laser Doppler Velocimeter).

さらに、上記材料厚さの測定方法において、前記材料中にパルス状の超音波を入射させた際、材料の裏面からの反射波により定期的に超音波が大きくなる現象を利用し、その超音波ピークの時間間隔(周波数)から材料厚さを求めることが好ましい。   Furthermore, in the method for measuring the material thickness, when a pulsed ultrasonic wave is incident on the material, a phenomenon that the ultrasonic wave periodically increases due to a reflected wave from the back surface of the material is used. It is preferable to obtain the material thickness from the peak time interval (frequency).

また、上記材料厚さの測定方法において、前記材料中に入射させる超音波の周波数を連続的に変化させた際に、入射波と反射波とが共鳴する特定周波数から材料厚さを求めることが好ましい。   Further, in the method for measuring the material thickness, when the frequency of the ultrasonic wave incident on the material is continuously changed, the material thickness can be obtained from a specific frequency at which the incident wave and the reflected wave resonate. preferable.

本発明に係る材料厚さモニタリングシステムおよび材料厚さ測定方法によれば、原子力発電プラント、火力発電プラントなどが運転中であっても、高温の配管などの機器構成部材の厚さのモニタリングを長期間にわたって継続的に実施することが可能になると共に、効率的にかつ高精度に材料厚さを測定できる。特に、プラント稼働中であっても上記継続的なモニタリングが可能であるために、配管等の機器構成部材の健全性が確保できるとともに、安全で無駄が無く機器構成部材の補修や交換時期が容易に特定できる。   According to the material thickness monitoring system and the material thickness measurement method according to the present invention, even when a nuclear power plant, a thermal power plant, or the like is in operation, monitoring of the thickness of equipment components such as high-temperature pipes is long. It becomes possible to carry out continuously over a period of time, and the material thickness can be measured efficiently and with high accuracy. In particular, since the above-mentioned continuous monitoring is possible even while the plant is in operation, the soundness of equipment components such as piping can be ensured, and the equipment components can be repaired and replaced easily and safely. Can be specified.

<実施例の構成>
以下に、本発明に係る材料厚さモニタリングシステムの一実施例について、図1〜図5を参照して説明する。
<Configuration of Example>
Below, one Example of the material thickness monitoring system which concerns on this invention is described with reference to FIGS.

図1は、本実施例に係る材料厚さモニタリングシステムの構成を示すブロック図である。この材料厚さモニタリングシステムは、厚さを測定する対象となる材料1の表面に貼り付けられた光ファイバセンサ3と、この光ファイバセンサ3中に所定波長のレーザ光を供給するための光源2と、材料中へ超音波を入射させる超音波発振装置4と、光ファイバセンサ3を透過したレーザ光を電気信号に変換するための光電変換装置5と、この光電変換装置で得られた電気信号を増幅する増幅器6と、その増幅された電気信号から材料厚さを算出するための演算装置7と、材料厚さの算出結果を出力する出力装置8と、上記各機器2〜8を制御する制御器としての制御用計算機(コンピュータ)9とから構成されている。   FIG. 1 is a block diagram illustrating a configuration of a material thickness monitoring system according to the present embodiment. This material thickness monitoring system includes an optical fiber sensor 3 attached to the surface of a material 1 whose thickness is to be measured, and a light source 2 for supplying laser light having a predetermined wavelength into the optical fiber sensor 3. An ultrasonic oscillation device 4 that causes ultrasonic waves to enter the material, a photoelectric conversion device 5 that converts laser light transmitted through the optical fiber sensor 3 into an electrical signal, and an electrical signal obtained by this photoelectric conversion device An amplifier 6, an arithmetic unit 7 for calculating a material thickness from the amplified electric signal, an output unit 8 for outputting a calculation result of the material thickness, and the devices 2 to 8 are controlled. It comprises a control computer (computer) 9 as a controller.

上記光ファイバセンサ3の一端には、片側に取り付けられた光源2から所定の波長のレーザ光が供給される一方、光ファイバセンサの他端側(出力側)は光電変換装置5に接続されている。この光電変換装置5では、光源2から出されるレーザ光の波長と、光ファイバセンサ3を通過した後のレーザ光の波長とを比較し、その波長の「ずれ」(光信号)や強度を電気信号に変換する。光電変換装置5からの電気信号は増幅器6で増幅される。その増幅された電気信号は、演算装置7でデジタル処理された後にデータベース7aを用いて材料厚さが算出される。得られた材料厚さの算出結果は、出力装置8で出力される。これらの全ての処理動作は制御用計算機9によって制御されている。   One end of the optical fiber sensor 3 is supplied with laser light of a predetermined wavelength from the light source 2 attached to one side, while the other end side (output side) of the optical fiber sensor is connected to the photoelectric conversion device 5. Yes. In this photoelectric conversion device 5, the wavelength of the laser light emitted from the light source 2 is compared with the wavelength of the laser light after passing through the optical fiber sensor 3, and the “deviation” (optical signal) and intensity of the wavelength are electrically measured. Convert to signal. The electric signal from the photoelectric conversion device 5 is amplified by the amplifier 6. The amplified electrical signal is digitally processed by the arithmetic unit 7 and then the material thickness is calculated using the database 7a. The calculation result of the obtained material thickness is output by the output device 8. All these processing operations are controlled by the control computer 9.

図2は、上記実施例に係る材料厚さモニタリングシステムを、蒸気タービン発電プラントの高温配管の厚さ測定に適用した場合の高温配管厚さモニタリングシステムを示すブロック図である。この高温配管厚さモニタリングシステムは、厚さを測定する対象である配管10の外表面に貼り付けられた光ファイバセンサ3と、この光ファイバセンサ3中に所定波長のレーザ光を供給するための光源2と、配管10中へ超音波を入射させる超音波発振装置4と、光ファイバセンサ3を透過したレーザ光を電気信号に変換するための光電変換装置5と、光電変換装置5で得られた電気信号を増幅する増幅器6と、その増幅した電気信号から材料厚さを算出するための演算装置7と、予め求められたファイバセンサ内での波長のずれ(シフト量)と入射された超音波の周波数との関係、各種材料内における超音波速度のデータ、等が格納されたデータベース7aと、上記材料厚さの算出結果を出力表示する出力装置8と、上記各機器2〜8を制御する制御用計算機9とから構成されている。   FIG. 2 is a block diagram showing a high-temperature pipe thickness monitoring system when the material thickness monitoring system according to the embodiment is applied to the measurement of the thickness of the high-temperature pipe of the steam turbine power plant. The high-temperature pipe thickness monitoring system includes an optical fiber sensor 3 attached to the outer surface of the pipe 10 that is a target for thickness measurement, and a laser beam having a predetermined wavelength supplied to the optical fiber sensor 3. Obtained by the light source 2, the ultrasonic oscillation device 4 that makes ultrasonic waves enter the pipe 10, the photoelectric conversion device 5 for converting the laser light transmitted through the optical fiber sensor 3 into an electrical signal, and the photoelectric conversion device 5. An amplifier 6 for amplifying the electrical signal, an arithmetic unit 7 for calculating the material thickness from the amplified electrical signal, a wavelength shift (shift amount) in the fiber sensor determined in advance and the incident super A database 7a in which the relationship with the frequency of sound waves, ultrasonic velocity data in various materials, and the like are stored, an output device 8 for outputting and displaying the calculation result of the material thickness, and the devices 2 to 8 are provided. And a Gosuru control computer 9.

上記光ファイバセンサ3は、図4に示すように、レーザ光が透過する中心にコア部11を有し、このコア部11を含めて光路は断面の直径が100〜500μm程度の細い石英線12から構成されている。その石英線12の外表面には厚さが数μmから数十μmの金(Au)コーティング層13が一体に形成されている。   As shown in FIG. 4, the optical fiber sensor 3 has a core portion 11 at the center through which laser light passes, and the optical path including the core portion 11 has a thin quartz wire 12 having a cross-sectional diameter of about 100 to 500 μm. It is composed of A gold (Au) coating layer 13 having a thickness of several μm to several tens of μm is integrally formed on the outer surface of the quartz wire 12.

その金コーティング層13を形成した光ファイバセンサ3は、図3および図5に示すように、円弧状(渦巻状)に捲回された後にNiCr系鋼コーティング層14内に埋設する状態で配管10の外表面に貼り付けられ、固定されている。   As shown in FIGS. 3 and 5, the optical fiber sensor 3 having the gold coating layer 13 is wound into an arc shape (spiral shape) and then embedded in the NiCr-based steel coating layer 14. It is affixed and fixed to the outer surface.

また、前記光源2としては、通信分野でも一般的に用いられている波長が1550nm程度の赤外線を発生する光源が使用される。配管10中へ超音波を入射させる超音波発振装置4は、図2に示すように、鉄心15周囲にコイル16を巻回した後に上部に磁石17を備えた電磁超音波発生装置である。上記鉄心15は、渦巻き状に巻回された光ファイバセンサ3の中心部または周辺近傍に配置され、直接的にまたは接触媒体18を介して間接的に配管10に接続されている。また、コイル端子はファンクションジェネレータ19に接続されており、このファンクションジェネレータ19によってコイル16に印加する電圧の周波数を変化させ調整できるように構成されている。なお、上記光電変換装置5は、10MHzの周波数にも対応できる高速フォトディテクタである。   As the light source 2, a light source that generates infrared rays having a wavelength of about 1550 nm, which is generally used in the communication field, is used. As shown in FIG. 2, the ultrasonic oscillator 4 that causes ultrasonic waves to enter the pipe 10 is an electromagnetic ultrasonic generator that includes a magnet 17 at the top after a coil 16 is wound around the iron core 15. The iron core 15 is disposed in the central portion or the vicinity of the periphery of the optical fiber sensor 3 wound in a spiral shape, and is directly or indirectly connected to the pipe 10 via the contact medium 18. The coil terminal is connected to a function generator 19, and is configured so that the function generator 19 can change and adjust the frequency of the voltage applied to the coil 16. The photoelectric conversion device 5 is a high-speed photodetector that can handle a frequency of 10 MHz.

次に、本実施例に係る材料厚さモニタリングシステムを使用した材料厚さの測定方法の実施例について、添付した図4〜図6を参照してより具体的に説明する。   Next, an example of a method for measuring a material thickness using the material thickness monitoring system according to the present embodiment will be described in more detail with reference to FIGS.

厚さ測定の対象となる材料(例えば炭素鋼配管)10の表面に渦巻き状に取り付けられた光ファイバセンサ3を通過した前後での波長変化の模式図を図6に示す。図6に示すように、材料10表面に渦巻き状に巻回されて取り付けられた光ファイバセンサ3では、材料10中に生じたひずみ速度(ε ;x方向のひずみ速度、ε ;y方向のひずみ速度)に対応し、湾曲部でのドップラー効果により下記(式1)に示すような波長のズレλが生じる。
[数1]
λ=neq・N・π・Ravε ε )/λ ……(式1)
eq;ファイバ中の透過屈折率
N;巻き数
av;平均巻き径
λ;入射光の波長
FIG. 6 shows a schematic diagram of the wavelength change before and after passing through the optical fiber sensor 3 attached spirally to the surface of the material 10 (for example, carbon steel pipe) that is the object of thickness measurement. As shown in FIG. 6, in the optical fiber sensor 3 attached to the surface of the material 10 in a spiral shape, the strain rate generated in the material 10 ( ε x ; strain rate in the x direction, ε y ; y direction) And a wavelength shift λ x as shown in the following (formula 1) occurs due to the Doppler effect at the curved portion.
[Equation 1]
λ x = n eq · N · π · R av ( ε x + ε y ) / λ 0 (Equation 1)
n eq ; Refractive index in fiber N; Number of turns R av ; Average winding diameter λ 0 ; Wavelength of incident light

例えば、超音波発振装置4から配管10内に入射した超音波は、入射面とは逆の裏面(反射面)で反射し、再び入射面に到達する。入射面に達した超音波は再び入射面で反射し、その入射・反射が繰り返される。すなわち、配管10の入射面または反射面に渦巻状に光ファイバセンサ3を取り付けておけば、反射する超音波に対応して配管内にはひずみが生じてひずみ速度が大きくなる現象が定期的に繰り返される。この周波数(1/周期)fは、下記(式2)に示すように、配管厚さtと配管内での超音波の音速vとに対応する。したがって、配管内における超音波の音速を測定しておけば、ひずみ速度が大きくなる周波数を測定することにより配管の厚さを算出することができる。 For example, the ultrasonic wave that has entered the pipe 10 from the ultrasonic oscillator 4 is reflected by the back surface (reflecting surface) opposite to the incident surface, and reaches the incident surface again. The ultrasonic wave that reaches the incident surface is reflected again by the incident surface, and the incidence and reflection are repeated. That is, if the optical fiber sensor 3 is attached to the incident surface or the reflecting surface of the pipe 10 in a spiral shape, a phenomenon in which the strain is generated in the pipe corresponding to the reflected ultrasonic wave and the strain rate is increased periodically. Repeated. This frequency (1 / cycle) f m, as shown in the following (Equation 2), corresponding to the pipe to the thickness t and the ultrasonic speed of sound v in the pipe. Therefore, if the speed of ultrasonic waves in the pipe is measured, the pipe thickness can be calculated by measuring the frequency at which the strain rate increases.

すなわち、予め入射した超音波の周波数と、その際に光ファイバセンサ3で測定されたレーザ光の波長のずれ(シフト量)との関係を求めておけば、逆に波長のずれ(シフト量)から配管中で共振周波数が求まる。そして、この共振周波数から(式2)に基づいて配管厚さを求めることができる。
[数2]
=v/m(2×t) ……(式2)
v;配管材料内での超音波音速
t;配管厚さ
m;入射と逆面での反射回数
That is, if the relationship between the frequency of the ultrasonic wave incident in advance and the wavelength shift (shift amount) of the laser beam measured by the optical fiber sensor 3 at that time is obtained, the wavelength shift (shift amount) is reversed. Therefore, the resonance frequency is obtained in the pipe. And piping thickness can be calculated | required from this resonance frequency based on (Formula 2).
[Equation 2]
f m = v / m (2 × t) (Formula 2)
v: Ultrasonic velocity in pipe material t: Pipe thickness m: Number of reflections on the opposite side of incidence

一方、別の測定方法として、超音波の共鳴現象を利用する方法がある。すなわち、配管内に生じた超音波のn次の共鳴周波数をfとすれば、以下の(式3)が成立する。
[数3]
=n×v/(2×t)
n;n次の共鳴周波数 ……(式3)
On the other hand, as another measurement method, there is a method using an ultrasonic resonance phenomenon. That is, if the n-th resonance frequency of the ultrasonic wave generated in the pipe is f n , the following (Equation 3) is established.
[Equation 3]
f n = n × v / (2 × t)
n: nth order resonance frequency (Equation 3)

図7は、代表例として、炭素鋼中の縦波(5.7×10m/s)および炭素鋼の横波(3.1×10m/s)の1次の共鳴周波数と炭素鋼厚さとの関係を示している。この図7に示す関係を利用すれば、共鳴周波数を測定することにより炭素鋼で製作された配管10の厚さtを測定できる。 FIG. 7 shows, as a representative example, the primary resonance frequency of the longitudinal wave (5.7 × 10 3 m / s) in carbon steel and the transverse wave (3.1 × 10 3 m / s) of carbon steel and the carbon steel. The relationship with thickness is shown. If the relationship shown in FIG. 7 is used, the thickness t of the pipe 10 made of carbon steel can be measured by measuring the resonance frequency.

図8は、配管10の厚さ分布の測定方法を模式的に示した斜視図である。配管10には複数の光ファイバセンサ3が湾曲形状(渦巻き状)に巻回された状態で貼り付けられ固定されている。このように配置した複数の光ファイバセンサ3,3−−を用い、超音波入射位置を変えながら、その入射位置での材料の厚さを測定することにより配管10の厚さ分布が測定される。また、超音波の入射位置を固定して測定すれば、各部位の厚さの確率分布が出る。その中で確率が大きな値を用いることにより厚さ分布を求めることができる。具体的に図8に示す配管10の表面に例示した等厚さ分布線に示すように、配管10の厚さ分布が効率的に得られる。   FIG. 8 is a perspective view schematically showing a method for measuring the thickness distribution of the pipe 10. A plurality of optical fiber sensors 3 are attached and fixed to the pipe 10 in a state of being wound in a curved shape (spiral shape). The thickness distribution of the pipe 10 is measured by measuring the thickness of the material at the incident position while changing the ultrasonic incident position using the plurality of optical fiber sensors 3, 3-arranged in this way. . Further, if the measurement is performed with the incident position of the ultrasonic wave fixed, a probability distribution of the thickness of each part appears. The thickness distribution can be obtained by using a value having a large probability. Specifically, as shown by the equal thickness distribution line illustrated on the surface of the pipe 10 shown in FIG. 8, the thickness distribution of the pipe 10 can be obtained efficiently.

<実施例の作用>
上記本実施例に係る材料厚さモニタリングシステムおよび材料厚さ測定方法の作用について、添付図9〜図11を参照して説明する。
<Operation of Example>
Operations of the material thickness monitoring system and the material thickness measurement method according to the present embodiment will be described with reference to FIGS.

図9は、図2〜図5に示す材料厚さモニタリングシステムにおいて、配管10中へ超音波を入射させる超音波発振装置4の作用を示し、コイル16に印加する電圧の周波数fvと入射超音波の周波数fuとの関係を示すグラフである。上記システムの超音波発振装置4は、前記した図2に示すように、鉄心15にコイル16を巻回した後に鉄心上部に磁石17を備えた電磁超音波発生装置であり、上記コイル16はファンクションジェネレータ19に接続されている。図9は、ファンクションジェネレータ19の電圧周波数fを変化させた時の材料(配管10)中に入射される超音波の周波数fとの関係を示したものである。この両者の関係線図より、fとfとには1次比例的な対応関係があり、コイル16に印加する電圧の周波数fを変化させることにより共振周波数を得ることが可能である。すなわち、材料中に入射させる超音波の波長を連続的に変え、半波長の整数倍が板厚に等しいときに入射波と反射波とが共振して定常波を生ずることを利用して板厚の測定あるいは共振の強さから腐食の程度をプラント操業中であっても容易に把握することができる。 FIG. 9 shows the operation of the ultrasonic oscillator 4 that causes ultrasonic waves to enter the pipe 10 in the material thickness monitoring system shown in FIGS. 2 to 5. The frequency fv of the voltage applied to the coil 16 and the incident ultrasonic waves are shown in FIG. It is a graph which shows the relationship with the frequency fu. As shown in FIG. 2, the ultrasonic oscillator 4 of the above system is an electromagnetic ultrasonic generator having a magnet 17 on the iron core after the coil 16 is wound around the iron core 15, and the coil 16 has a function. The generator 19 is connected. FIG. 9 shows the relationship with the frequency f u of the ultrasonic wave incident on the material (pipe 10) when the voltage frequency f V of the function generator 19 is changed. From these relationship diagrams, f V and f u have a first-order proportional correspondence, and it is possible to obtain the resonance frequency by changing the frequency f V of the voltage applied to the coil 16. . That is, the wavelength of the ultrasonic wave incident on the material is continuously changed, and when the integral multiple of the half wavelength is equal to the plate thickness, the incident wave and the reflected wave resonate to generate a stationary wave. The degree of corrosion can be easily grasped even during plant operation from the strength of measurement or resonance.

図10は、材料(例えば炭素鋼配管)10中に超音波パルスを入射させた時に、光ファイバセンサ3で得られる信号の一例を示すグラフである。すなわち、材料中に入射された超音波パルスは配管底面(裏面)で反射し、その後に配管表面で反射と、裏面と表面での反射を繰返す。このとき配管表面に貼付けられた光ファイバセンサ3では表面に反射してきた超音波によってひずみ速度が大きくなるために、ある周期で大きくなる傾向を示す。すなわち、この周期が、超音波が配管表面から底面にさらには底面から表面に到達する時間に対応する。したがって、超音波の音速が判明すれば、この周期から配管厚さが算出できる。   FIG. 10 is a graph illustrating an example of a signal obtained by the optical fiber sensor 3 when an ultrasonic pulse is incident on the material (for example, carbon steel pipe) 10. That is, the ultrasonic pulse incident on the material is reflected on the bottom surface (back surface) of the pipe, and thereafter, reflection on the surface of the pipe and reflection on the back surface and the surface are repeated. At this time, in the optical fiber sensor 3 affixed to the pipe surface, the strain rate increases due to the ultrasonic waves reflected on the surface, and therefore, tends to increase at a certain period. That is, this period corresponds to the time for the ultrasonic wave to reach the surface from the pipe surface to the bottom surface and further from the bottom surface to the surface. Therefore, if the sound speed of the ultrasonic wave is found, the pipe thickness can be calculated from this cycle.

図11は、ファンクションジェネレータ19の電圧周波数fを変化させることにより配管10に入射される超音波の周波数fを変化させた場合のひずみ速度を示したグラフである。この図11から、定期的にひずみ速度が大きくなる現象を示しており、このひずみ速度の定期的な増大は配管において共鳴現象が起こっていることに起因するものであり、ピーク位置に対応する周波数が共鳴周波数と言える。そして、図7において詳述したように、この共鳴周波数と配管厚さとは一定の相関関係で対応するために、上記共鳴周波数を測定することにより配管厚さを容易に算出することができる。なお、超音波発振装置として、電磁石を用いたEMAT(Electro Magnetic Acoustic Transducer)を用いた例で説明したが、これに限らず圧電素子を用いても良い。要するに、発生する超音波の周波数を電気信号によって制御でき、かつ被測定物に容易に超音波を伝播できる限りにおいては、その形式にこだわらない。 FIG. 11 is a graph showing the strain rate when the frequency f u of the ultrasonic wave incident on the pipe 10 is changed by changing the voltage frequency f V of the function generator 19. FIG. 11 shows a phenomenon in which the strain rate periodically increases, and the periodic increase in the strain rate is caused by the resonance phenomenon occurring in the pipe, and the frequency corresponding to the peak position. Is the resonance frequency. Then, as described in detail in FIG. 7, since the resonance frequency and the pipe thickness correspond with a certain correlation, the pipe thickness can be easily calculated by measuring the resonance frequency. In addition, although the example which used EMAT (Electro Magnetic Acoustic Transducer) using an electromagnet as an ultrasonic oscillator was demonstrated, it is not restricted to this, You may use a piezoelectric element. In short, as long as the frequency of the generated ultrasonic wave can be controlled by an electric signal and the ultrasonic wave can be easily propagated to the object to be measured, it does not stick to that type.

以上、本発明の材料厚さモニタリング装置の説明では、主に炭素鋼で製作された配管を例にとり説明してきたが、前述の(式2)における材料内での超音波の音速が判明すれば、材料には依存しない。また、厚さの測定においては、配管に限らず単なる板状の部材でも良い。   As described above, in the description of the material thickness monitoring apparatus of the present invention, the explanation has been given by taking the piping mainly made of carbon steel as an example, but if the sound velocity of the ultrasonic wave in the material in the above (Equation 2) is found. Independent of the material. Further, the thickness measurement is not limited to piping, and may be a simple plate-like member.

<実施例の効果>
本実施例に係る材料厚さモニタリングシステムおよび材料厚さ測定方法によれば、以下に列記するような実用上の作用効果が発揮される。
(1)厚さ測定の対象となる配管10表面に貼り付けた各光ファイバセンサ3の表面には、耐熱性および耐食性に優れた金コーティング層が形成され、かつ配管10が炭素鋼であればNiCr系鋼材で配管10表面に溶射で貼り付けられているために、システム要部は優れた耐熱性を有しており600℃程度までの高温状態での配管厚さの測定が可能となる。
(2)この高温状態での配管厚さの測定操作を繰返すことにより、原子力発電プラント、火力発電プラントなどが運転中であっても、配管などの機器構成部材の厚さのモニタリングを長期間にわたって継続的に実施することが可能になる。
(3)プラント稼働中であっても上記継続的なモニタリングが可能であるために、配管等の機器構成部材の健全性が確保できるとともに、安全で無駄が無く機器構成部材の補修や交換時期が容易に特定できる。
(4)配管等の材料表面に貼付けた光ファイバセンサを透過する光のひずみ速度が定期的に大きくなるという現象を利用し、配管等の材料厚さを容易に算出することができる。 (5)配管等の材料表面に多数の光ファイバを貼付けたり、配管等の材料内への超音波入射位置を変えながら測定を繰り返すことにより、配管の厚さ分布を得ることができる。
<Effect of Example>
According to the material thickness monitoring system and the material thickness measuring method according to the present embodiment, practical effects as listed below are exhibited.
(1) A gold coating layer excellent in heat resistance and corrosion resistance is formed on the surface of each optical fiber sensor 3 attached to the surface of the pipe 10 to be subjected to thickness measurement, and the pipe 10 is made of carbon steel. Since the NiCr steel material is applied to the surface of the pipe 10 by thermal spraying, the main part of the system has excellent heat resistance, and the pipe thickness can be measured at a high temperature up to about 600 ° C.
(2) By repeating this pipe thickness measurement operation in a high temperature state, monitoring the thickness of equipment components such as pipes over a long period of time, even when a nuclear power plant, a thermal power plant or the like is in operation. It becomes possible to carry out continuously.
(3) Since the above-mentioned continuous monitoring is possible even during operation of the plant, the soundness of equipment components such as piping can be ensured, and there is no need for wasteful repair and replacement of equipment components. Easy to identify.
(4) The material thickness of the pipe or the like can be easily calculated using the phenomenon that the strain rate of the light transmitted through the optical fiber sensor attached to the surface of the material such as the pipe increases periodically. (5) The thickness distribution of the pipe can be obtained by attaching a large number of optical fibers to the surface of the material such as the pipe or repeating the measurement while changing the ultrasonic incident position into the pipe or the like.

本発明に係る材料厚さモニタリングシステムの一実施例の構成を示すブロック図。The block diagram which shows the structure of one Example of the material thickness monitoring system which concerns on this invention. 本発明に係る材料厚さモニタリングシステムを蒸気タービン発電プラントの高温配管の厚さ測定に適用した場合の高温配管厚さモニタリングシステムの構成例を示すブロック図。The block diagram which shows the structural example of the high temperature piping thickness monitoring system at the time of applying the material thickness monitoring system which concerns on this invention to the thickness measurement of the high temperature piping of a steam turbine power plant. 高温配管厚さモニタリングシステムにおいて、光ファイバセンサの取り付け状態を示す平面図。The top view which shows the attachment state of an optical fiber sensor in a high-temperature piping thickness monitoring system. 光ファイバセンサの断面構成を示す断面図であり、図3におけるIV−IV矢視断面図。It is sectional drawing which shows the cross-sectional structure of an optical fiber sensor, and is IV-IV arrow sectional drawing in FIG. 渦巻き状に巻回した光ファイバセンサを配管表面に固定する構造を示す断面図であり、図3におけるV−V矢視断面図。It is sectional drawing which shows the structure which fixes the optical fiber sensor wound by the spiral to the piping surface, and is VV arrow sectional drawing in FIG. 渦巻き状に巻回した状態で材料表面に取り付けた光ファイバセンサを透過した光の波長変化を示すグラフ。The graph which shows the wavelength change of the light which permeate | transmitted the optical fiber sensor attached to the material surface in the state wound by the spiral shape. 炭素鋼中を伝播する縦波および横波の1次の共鳴周波数と炭素鋼厚さとの関係を示すグラフ。The graph which shows the relationship between the primary resonant frequency of the longitudinal wave and the transverse wave which propagate in carbon steel, and carbon steel thickness. 炭素鋼配管の厚さ分布の測定方法を模式的に示す斜視図。The perspective view which shows typically the measuring method of the thickness distribution of carbon steel piping. 材料厚さモニタリングシステムの超音波発振装置において、コイルに印加する電圧の周波数fvと材料中へ入射する超音波の周波数fuとの関係を示すグラフ。The graph which shows the relationship between the frequency fv of the voltage applied to a coil, and the frequency fu of the ultrasonic wave which injects into a material in the ultrasonic oscillation apparatus of a material thickness monitoring system. 材料中に超音波パルスを入射した場合における光ファイバセンサで得られた信号の一例を示すグラフ。The graph which shows an example of the signal obtained with the optical fiber sensor in the case of entering an ultrasonic pulse in material. ファンクションジェネレータの電圧周波数fを変化させることにより配管に入射される超音波の周波数fを変化させた場合のひずみ速度を示すグラフ。Graph showing strain rate in the case of changing the frequency f u of the ultrasonic wave incident on the pipe by changing the voltage frequency f V of the function generator.

符号の説明Explanation of symbols

1 厚さ測定対象材料
2 光源
3 光ファイバセンサ
4 超音波発振装置
5 光電変換装置
6 増幅器
7 演算装置
7a データベース
8 出力装置
9 制御用計算機
10 配管(厚さ測定対象材料)
11 コア部
12 石英線
13 金(Au)コーティング層
14 NiCr系鋼コーティング層
15 鉄心
16 コイル
17 磁石
18 接触媒体
19 ファンクションジェネレータ
DESCRIPTION OF SYMBOLS 1 Thickness measuring material 2 Light source 3 Optical fiber sensor 4 Ultrasonic oscillator 5 Photoelectric conversion device 6 Amplifier 7 Arithmetic device 7a Database 8 Output device 9 Control computer 10 Piping (Thickness measuring material)
DESCRIPTION OF SYMBOLS 11 Core part 12 Quartz wire 13 Gold (Au) coating layer 14 NiCr-type steel coating layer 15 Iron core 16 Coil 17 Magnet 18 Contact medium 19 Function generator

Claims (11)

厚さの測定対象となる材料表面に渦巻き状に巻回し状態で貼着された光ファイバセンサと、この光ファイバセンサ中に光を供給するための光源と、上記渦巻き状に巻回した状態で貼着された光ファイバセンサの中心部に配置され上記材料中に超音波を入射させる超音波発振装置と、上記超音波の反射波を検出することによって波長が変化した光であって光ファイバセンサを透過した光と供給した際の光の波長とのシフト量を電気信号に変換するための光電変換装置と、予め求められた光ファイバセンサ内での波長のシフト量と入射された超音波の周波数との関係および各種材料内における超音波速度のデータと、上記シフト量を変換することによって得られた電気信号とに基づいて材料厚さを算出する演算装置と、上記全ての機器を制御する制御用計算機と、を備えることを特徴とする材料厚さモニタリングシステム。 An optical fiber sensor attached in a spirally wound state on the surface of the material whose thickness is to be measured, a light source for supplying light into the optical fiber sensor, and a spirally wound state An ultrasonic oscillation device that is disposed in the center of an optical fiber sensor that is attached, and that makes an ultrasonic wave enter the material; and an optical fiber sensor that is a light whose wavelength is changed by detecting a reflected wave of the ultrasonic wave A photoelectric conversion device for converting the shift amount between the light transmitted through the light and the wavelength of the light when supplied to an electrical signal, the shift amount of the wavelength in the optical fiber sensor determined in advance and the incident ultrasonic wave controlling the ultrasonic velocity of the data in relation and various the material of the frequency, an arithmetic unit for calculating a material thickness based on the electrical signal obtained by converting the shift amount, all equipment described above Material thickness monitoring system comprising: the patronized computer, a. 前記材料中に超音波を入射させる超音波発信装置として、入射させる超音波の周波数が可変である周波数可変型超音波発振装置を用いることを特徴とする請求項1記載の材料厚さモニタリングシステム。 2. The material thickness monitoring system according to claim 1, wherein a frequency variable type ultrasonic oscillation device in which a frequency of an incident ultrasonic wave is variable is used as an ultrasonic wave transmission device that causes an ultrasonic wave to enter the material. 前記周波数可変型超音波発振装置として、厚さ測定対象となる材料表面に、コイルを巻回した鉄心を立設し、そのコイルに所定の周波数の電圧を印加することにより電磁超音波を発生させる電磁超音波発振装置を用いることを特徴とする請求項2記載の材料厚さモニタリングシステム。 As the variable frequency ultrasonic oscillating device, an iron core having a coil wound is erected on the surface of a material to be measured for thickness, and an electromagnetic ultrasonic wave is generated by applying a voltage of a predetermined frequency to the coil. 3. The material thickness monitoring system according to claim 2, wherein an electromagnetic ultrasonic oscillator is used. 前記周波数可変型超音波発振装置として、圧電素子に電圧を印加して振動(機械エネルギー)に変換することにより所定周波数の超音波を発生させる圧電素子超音波発振装置を用いることを特徴とする請求項2記載の材料厚さモニタリングシステム。 A piezoelectric element ultrasonic oscillator that generates ultrasonic waves of a predetermined frequency by applying a voltage to a piezoelectric element and converting it into vibration (mechanical energy) is used as the variable frequency ultrasonic oscillator. Item 2. The material thickness monitoring system according to Item 2. 前記超音波発振装置が10kHzから100MHzの周波数領域の超音波を前記材料中に入射させることを特徴とする請求項1記載の材料厚さモニタリングシステム。 2. The material thickness monitoring system according to claim 1, wherein the ultrasonic oscillator makes an ultrasonic wave in a frequency region of 10 kHz to 100 MHz enter the material. 3. 前記光電変換装置が前記シフト量を変換することによって得られた電気信号を増幅する増幅器と、前記材料厚さの算出結果を出力する出力装置と、をさらに備え、前記予め求められた光ファイバセンサ内での波長のシフト量と入射された超音波の周波数との関係および各種材料内における超音波速度のデータは、前記演算装置が読み出し可能なデータベースに格納されることを特徴とする請求項1記載の材料厚さモニタリングシステム。 The optical fiber sensor obtained in advance, further comprising: an amplifier that amplifies an electric signal obtained by the photoelectric conversion device converting the shift amount; and an output device that outputs the calculation result of the material thickness. 2. The relationship between the amount of shift of the wavelength inside and the frequency of the incident ultrasonic wave and the ultrasonic velocity data in various materials are stored in a database readable by the arithmetic unit. The material thickness monitoring system described. 前記材料厚さを測定する対象材料において、超音波の発振源とその超音波を検出する光ファイバセンサとを上記材料の同一表面側に設けたことを特徴とする請求項6記載の材料厚さモニタリングシステム。 7. The material thickness according to claim 6, wherein in the target material for measuring the material thickness, an ultrasonic oscillation source and an optical fiber sensor for detecting the ultrasonic wave are provided on the same surface side of the material. Monitoring system. 前記材料厚さを測定する対象材料において、超音波の発振源を材料の表面側に配設する一方、その超音波を検出する光ファイバセンサを材料の裏面側に配設したことを特徴とする請求項6記載の材料厚さモニタリングシステム。 In the target material for measuring the material thickness, an ultrasonic oscillation source is disposed on the surface side of the material, and an optical fiber sensor for detecting the ultrasonic wave is disposed on the back surface side of the material. The material thickness monitoring system according to claim 6. 厚さの測定対象となる材料表面に渦巻き状に巻回した状態で貼着された光ファイバセンサの中心部から材料中に超音波を入射させる一方、超音波の入射点の周囲に配置した前記光ファイバセンサに所定波長の光波を入射させ、上記超音波の反射波によって波長が変化した光波を光ファイバセンサにより検出し、その波長変化から動的なひずみ変化に変換し、そのひずみ変化の速度から材料厚さを算出することを特徴とする材料厚さの測定方法。 While be incident ultrasonic waves on the surface of the material to be measured in thickness from the center portion of the optical fiber sensor is stuck in a state wound in a spiral in the material, wherein disposed about the point of incidence of the ultrasonic A light wave of a predetermined wavelength is incident on the optical fiber sensor, the light wave whose wavelength is changed by the reflected wave of the ultrasonic wave is detected by the optical fiber sensor, and the change in the wavelength is converted into a dynamic strain change, and the speed of the strain change. A method for measuring a material thickness, comprising calculating the material thickness from 前記材料中にパルス状の超音波を入射させた際、材料の裏面からの反射波により定期的に超音波が大きくなる現象を利用し、その超音波ピークの時間間隔から材料厚さを求めることを特徴とする請求項9記載の材料厚さの測定方法。 When a pulsed ultrasonic wave is incident on the material, the phenomenon that the ultrasonic wave periodically increases due to the reflected wave from the back surface of the material, and the material thickness is obtained from the time interval of the ultrasonic peak. The material thickness measuring method according to claim 9. 前記材料中に入射させる超音波の周波数を連続的に変化させた際に、入射波と反射波とが共鳴する特定周波数から材料厚さを求めることを特徴とする請求項9記載の材料厚さの測定方法。 10. The material thickness according to claim 9, wherein the material thickness is obtained from a specific frequency at which the incident wave and the reflected wave resonate when the frequency of the ultrasonic wave incident on the material is continuously changed. Measuring method.
JP2007106329A 2007-04-13 2007-04-13 Material thickness monitoring system and material thickness measuring method Active JP4881212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106329A JP4881212B2 (en) 2007-04-13 2007-04-13 Material thickness monitoring system and material thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007106329A JP4881212B2 (en) 2007-04-13 2007-04-13 Material thickness monitoring system and material thickness measuring method

Publications (2)

Publication Number Publication Date
JP2008261806A JP2008261806A (en) 2008-10-30
JP4881212B2 true JP4881212B2 (en) 2012-02-22

Family

ID=39984380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106329A Active JP4881212B2 (en) 2007-04-13 2007-04-13 Material thickness monitoring system and material thickness measuring method

Country Status (1)

Country Link
JP (1) JP4881212B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258683B2 (en) * 2009-06-26 2013-08-07 株式会社東芝 Material degradation diagnosis apparatus and method
CN103185554B (en) * 2011-12-30 2016-10-05 北京林业大学 A kind of device of sheet metal thickness detection
CN102879469A (en) * 2012-09-26 2013-01-16 国家电网公司 Flaw detection system of electric power tower important part
JP6071461B2 (en) * 2012-11-20 2017-02-01 株式会社東芝 Material deterioration diagnosis apparatus and material deterioration diagnosis method
DE102013003500B4 (en) * 2013-02-28 2015-05-28 Areva Gmbh Method for detecting time-varying thermo-mechanical stresses and / or stress gradients across the wall thickness of metallic bodies
JP7189076B2 (en) * 2019-05-13 2022-12-13 日立Geニュークリア・エナジー株式会社 Ultrasonic sensor system
CN113267149B (en) * 2021-06-30 2023-05-05 广东电网有限责任公司 Equivalent icing thickness measurement system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610667B2 (en) * 1986-07-28 1994-02-09 日本鋼管株式会社 Non-contact ultrasonic flaw detector
JP2772481B2 (en) * 1989-05-24 1998-07-02 有限会社アーバンテクノス Ultrasonic measuring method and ultrasonic measuring device
JP2001194137A (en) * 2000-01-17 2001-07-19 Kawasaki Steel Corp Non-contact measuring method and apparatus for material thickness
WO2003002956A1 (en) * 2001-06-27 2003-01-09 Center For Advanced Science And Technology Incubation, Ltd. Device and method for vibration measurement

Also Published As

Publication number Publication date
JP2008261806A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP4881212B2 (en) Material thickness monitoring system and material thickness measuring method
JP5624271B2 (en) Piping thickness measurement method and apparatus
JP5288864B2 (en) Active sensor, multi-point active sensor, pipe deterioration diagnosis method and pipe deterioration diagnosis apparatus
JP6596536B2 (en) Piping inspection method
CN105527342B (en) Pipe inspection apparatus and pipe inspection method
JP4686378B2 (en) Pipe inspection device
JP6570875B2 (en) Piping inspection device and piping inspection method
JP5725969B2 (en) Laser shock peening measurement system and method
JP5258683B2 (en) Material degradation diagnosis apparatus and method
Sun et al. Multimode interference-based fiber-optic ultrasonic sensor for non-contact displacement measurement
CN108927314B (en) Distributed optical fiber laser ultrasonic transducer based on coreless optical fiber
JP4776484B2 (en) Pipe nondestructive inspection device, pipe nondestructive inspection method, and power plant
JP2009092444A (en) Method and device for measuring pile shape
JP6071461B2 (en) Material deterioration diagnosis apparatus and material deterioration diagnosis method
Gulino et al. Gas-coupled laser acoustic detection technique for NDT of mechanical components
KR101053415B1 (en) Laser Ultrasonic Measuring Device and Measuring Method
JP4795925B2 (en) Ultrasonic thickness measurement method and apparatus
CN108362777B (en) Fiber bragg grating micro-vibration and acoustic emission sensing device based on micro-nano fiber with vibrating wire
Li et al. Doppler effect-based fiber-optic sensor and its application in ultrasonic detection
JP2012122751A (en) Material deterioration diagnostic device
JP4565093B2 (en) Movable FBG ultrasonic sensor
JP5058196B2 (en) Apparatus and method for measuring phase transformation rate of material
JP5784793B2 (en) Material deterioration diagnosis device
JPS60105960A (en) Electromagnetical ultrasonic transducer
Qian et al. Remote measurement of material elastic property at elevated temperature with grating laser ultrasonic testing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

R151 Written notification of patent or utility model registration

Ref document number: 4881212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3