JP6070779B2 - Side face spline shape measurement method - Google Patents

Side face spline shape measurement method Download PDF

Info

Publication number
JP6070779B2
JP6070779B2 JP2015134219A JP2015134219A JP6070779B2 JP 6070779 B2 JP6070779 B2 JP 6070779B2 JP 2015134219 A JP2015134219 A JP 2015134219A JP 2015134219 A JP2015134219 A JP 2015134219A JP 6070779 B2 JP6070779 B2 JP 6070779B2
Authority
JP
Japan
Prior art keywords
tooth
reference surface
setting tool
teeth
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015134219A
Other languages
Japanese (ja)
Other versions
JP2016001177A (en
Inventor
将司 河本
将司 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015134219A priority Critical patent/JP6070779B2/en
Publication of JP2016001177A publication Critical patent/JP2016001177A/en
Application granted granted Critical
Publication of JP6070779B2 publication Critical patent/JP6070779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、車両用ハブユニットに形成されたサイドフェーススプラインの被動歯(スプライン歯)の形状を測定する形状測定方法に関する。   The present invention relates to a shape measuring method for measuring the shape of a driven tooth (spline tooth) of a side face spline formed in a vehicle hub unit.

自動車の車輪を懸架装置に対して回転自在に支持するためにハブユニットが用いられている。また、ハブユニットとして、駆動輪が取り付けられるハブホイールの軸方向内側(車両インナ側)の端面に、等速ジョイントの外輪に形成された駆動歯と噛み合う被動歯(スプライン歯)を有するサイドフェーススプラインを形成したものが知られている(例えば、特許文献1、2参照)。このハブユニットにおいては、自動車のドライブシャフトの回転動力が等速ジョイントから被動歯を経てハブホイールに伝達される。   A hub unit is used to rotatably support the wheels of an automobile with respect to a suspension device. In addition, as a hub unit, a side face spline having driven teeth (spline teeth) meshing with drive teeth formed on an outer ring of a constant velocity joint on an end surface on the inner side (vehicle inner side) of a hub wheel to which a drive wheel is mounted. (For example, see Patent Documents 1 and 2). In this hub unit, the rotational power of the drive shaft of the automobile is transmitted from the constant velocity joint to the hub wheel via the driven teeth.

特表2008−536737号公報Special Table 2008-5536737 特開2008−174178号公報JP 2008-174178 A

上記のようなサイドフェーススプラインにおける各被動歯は、等速ジョイントの駆動歯に対して適切に噛み合わせるために、歯面寸法、配列ピッチ、回転中心に対する同軸度などの各種寸法に対して所定の精度が要求される。そのため、ハブユニットの製造後には、三次元測定装置等を用いて被動歯の各種寸法を測定し、所定の精度が得られているか否かを確認する検査工程が行われている。   Each driven tooth in the side face spline as described above is predetermined for various dimensions such as tooth surface dimensions, arrangement pitch, and coaxiality with respect to the rotation center in order to properly mesh with the drive teeth of the constant velocity joint. Accuracy is required. For this reason, after the hub unit is manufactured, an inspection process is performed in which various dimensions of the driven teeth are measured using a three-dimensional measuring device or the like and whether or not a predetermined accuracy is obtained.

サイドフェーススプラインの被動歯は、通常、等速ジョイントの駆動歯との噛み合いにおけるピッチ面を基準面(例えば、図2に二点鎖線αで示される仮想面;以下、「設計基準面」ともいう)に設定して形状が設計されている。しかしながら、この設計基準面は、あくまで仮想面であるため、検査工程において実際の製品に対する被動歯の形状測定に当該設計基準面を用いることができない。そのため、従来は、ハブホイールのフランジ面や車輪嵌合面等の加工面を仮の基準面とすることによってスプライン歯の各種寸法を測定していたが、これでは測定誤差が大きくなり、正確な寸法測定を安定して行うことが困難であった。   The driven teeth of the side face spline usually have a pitch surface in meshing with the drive teeth of the constant velocity joint as a reference surface (for example, a virtual surface indicated by a two-dot chain line α in FIG. 2; hereinafter also referred to as “design reference surface”) ) And the shape is designed. However, since this design reference surface is a virtual surface, the design reference surface cannot be used for measuring the shape of the driven tooth for the actual product in the inspection process. Therefore, in the past, various dimensions of spline teeth were measured by using the machined surfaces such as the hub wheel flange surface and wheel mating surface as a temporary reference surface. It was difficult to measure the dimensions stably.

本発明は、被動歯の形状について所定の項目を容易に測定することができるサイドフェーススプラインの形状測定方法を提供することを目的とする。   An object of the present invention is to provide a side face spline shape measuring method capable of easily measuring a predetermined item for the shape of a driven tooth.

発明のサイドフェーススプラインの形状測定方法は、形状測定用の基準設定具を使用することにより、車両用ハブユニットのハブホイールの軸方向の端面に形成され、かつ等速ジョイントの駆動歯に噛み合わされる被動歯の形状を測定するサイドフェーススプラインの形状測定方法であって、前記基準設定具は、前記等速ジョイントの駆動歯の形状を模して円環状に配列して形成された基準歯と、前記基準歯の配列中心軸線に対して直交する第1基準面と、を有し、前記形状測定方法は、前記基準設定具の基準歯を前記ハブホイールの被動歯に噛み合わせる工程と、前記ハブホイールのフランジから前記被動歯の設計上の基準面までの高さに対し、前記基準設定具の基準歯の設計基準面から前記第1基準面までの間隔を足し合わせた寸法である、高さ寸法を求める工程と、前記車両用ハブユニットの軸心回りに前記ハブホイールを回転させたときに、前記第1基準面の高さの変化を測定する工程と、前記高さ寸法と前記第1基準面の高さの変化とを比較する工程と、を含むことを特徴とする。 The shape measurement method of the side face spline according to the present invention is formed on the axial end surface of the hub wheel of the vehicle hub unit and meshes with the drive teeth of the constant velocity joint by using a reference setting tool for shape measurement. A method for measuring the shape of a side face spline for measuring the shape of a driven tooth, wherein the reference setting tool is formed by arranging the reference teeth formed in an annular shape to imitate the shape of the drive teeth of the constant velocity joint And a first reference surface orthogonal to the arrangement center axis of the reference teeth, and the shape measuring method includes the step of meshing the reference teeth of the reference setting tool with the driven teeth of the hub wheel; The height from the flange of the hub wheel to the design reference surface of the driven tooth is a dimension obtained by adding the distance from the design reference surface of the reference tooth of the reference setting tool to the first reference surface. Obtaining a height dimension, measuring a change in height of the first reference plane when the hub wheel is rotated about an axis of the vehicle hub unit, and the height dimension. And a step of comparing a change in the height of the first reference surface.

以上の本発明においては、サイドフェーススプラインの被動歯の形状を測定するにあたって基準設定具を使用する。この基準設定具は、等速ジョイントの駆動歯の形状を模して形成された基準歯と、この基準歯に対して所定の関係を有する基準面、つまり、基準歯の配列中心軸線に対して直交する関係を有する第1基準面を有している。基準歯は、駆動歯の形状を模して形成されたものであるため、被動歯に噛み合わせた状態で被動歯と同一の仮想の設計基準面を有することになる。そして、基準歯に対して所定の関係を有する第1基準面は、当該設計基準面に対しても当然に所定の関係を有することになる。そして、被動歯に噛み合わせた基準設定具の第1基準面の高さ変化を測定することによって、被動歯を回転させたときの被動歯の高さ変化を容易に測定することが可能となる。 In the present invention described above, the reference setting tool is used for measuring the shape of the driven tooth of the side face spline. This reference setting tool has a reference tooth imitating the shape of the drive tooth of the constant velocity joint, and a reference surface having a predetermined relationship with the reference tooth, that is, with respect to the reference central axis of the reference tooth. The first reference plane has an orthogonal relationship. Since the reference tooth is formed by imitating the shape of the drive tooth, the reference tooth has the same virtual design reference surface as the driven tooth in a state of being engaged with the driven tooth. The first reference surface having a predetermined relationship with the reference tooth naturally has a predetermined relationship with the design reference surface. Then, by measuring the height change of the first reference surface of the reference setting device which engaged in Hidoha, it is possible to easily measure the height variation of the Doha when rotating the Hidoha Become.

本発明によれば、被動歯に噛み合わせた基準設定具の第1基準面を測定することによって被動歯の高さ変化を容易に測定することができる。 According to the present invention, it is possible to easily measure the height variation of the Doha by the measuring a first reference surface of the reference setting device which engaged the Hidoha.

本発明の実施形態における車両用ハブユニットを示す断面図である。It is sectional drawing which shows the hub unit for vehicles in embodiment of this invention. 図1に示される車両用ハブユニットのかしめ部の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a caulking portion of the vehicle hub unit shown in FIG. 1. 図2に示されるかしめ部端部の被動歯の測定基準位置を設定する様子を示す車両用ハブユニットの断面説明図である。FIG. 3 is a cross-sectional explanatory view of the vehicle hub unit showing how to set the measurement reference position of the driven tooth at the end of the caulking portion shown in FIG. 基準設定具の斜視図である。It is a perspective view of a reference setting tool. 測定装置の斜視図である。It is a perspective view of a measuring device. 基準設定具を利用した寸法測定の様子を示す車両用ハブユニットの断面説明図である。It is sectional explanatory drawing of the hub unit for vehicles which shows the mode of the dimension measurement using a reference | standard setting tool. 基準設定具を利用した寸法測定の様子を示す車両用ハブユニットの断面説明図である。It is sectional explanatory drawing of the hub unit for vehicles which shows the mode of the dimension measurement using a reference | standard setting tool.

以下、添付図面を参照しつつ本発明の実施形態を詳細に説明する。
[車両用ハブユニットの構成]
図1は、本発明の実施形態における車両用ハブユニットを示す断面図であり、図2は、同車両用ハブユニットのかしめ部の拡大断面図である。
車両用ハブユニット1は、自動車の車輪を懸架装置に対して回転自在に支持するものであり、円筒状のハブ軸2を有するハブホイール3と、前記ハブ軸2の車両インナ側の端部(図1における右側端部)にかしめ固定された内輪構成部材4と、前記ハブ軸2の径方向外方に配設された外輪5と、この外輪5の内周面の外輪軌道5a、5bと、前記ハブ軸2及び内輪構成部材4の外周面の内輪軌道2a、4aとの間に転動自在に配設された複数の転動体6とを備えている。複数の転動体6は、保持器20によって周方向に所定の間隔で保持されている。また、外輪5とハブホイール3との間に形成される環状空間には、当該環状空間を軸方向両端から封止するシール部材21が設けられている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[Configuration of vehicle hub unit]
FIG. 1 is a cross-sectional view showing a vehicle hub unit according to an embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of a caulking portion of the vehicle hub unit.
The vehicle hub unit 1 supports a vehicle wheel rotatably with respect to a suspension device, and includes a hub wheel 3 having a cylindrical hub shaft 2 and an end portion of the hub shaft 2 on the vehicle inner side ( An inner ring constituent member 4 that is caulked and fixed to the right end portion in FIG. A plurality of rolling elements 6 are provided between the hub shaft 2 and the inner ring raceways 2a and 4a on the outer peripheral surface of the inner ring constituting member 4 so as to be freely rollable. The plurality of rolling elements 6 are held at predetermined intervals in the circumferential direction by a cage 20. A seal member 21 is provided in the annular space formed between the outer ring 5 and the hub wheel 3 to seal the annular space from both axial ends.

前記ハブホイール3の車両アウタ側端部(図1において左側端部)にはフランジ部7が形成されており、このフランジ部7には、図示しないボルトが嵌合される孔7aが形成され、タイヤのホイールやブレーキディスクなどがボルトにより取り付けられる。また、外輪5の外周面には、ハブユニット1を、車両の懸架装置に支持された車体側部材(図示せず)に取り付けるための固定フランジ8が形成されている。   A flange portion 7 is formed at a vehicle outer side end portion (left end portion in FIG. 1) of the hub wheel 3, and a hole 7a into which a bolt (not shown) is fitted is formed in the flange portion 7, Tire wheels and brake discs are attached with bolts. A fixing flange 8 for attaching the hub unit 1 to a vehicle body side member (not shown) supported by a vehicle suspension is formed on the outer peripheral surface of the outer ring 5.

ハブ軸2は、フランジ部7側に形成された大径部9と、この大径部9よりも小径であり且つ当該大径部9と段差部10を介して連続して形成された小径部11とを一体的に有している。そして、大径部9の外周面に外輪5の外輪軌道5aに対応する内輪軌道2aが形成されている。   The hub shaft 2 includes a large-diameter portion 9 formed on the flange portion 7 side, and a small-diameter portion that is smaller in diameter than the large-diameter portion 9 and is continuously formed via the large-diameter portion 9 and the stepped portion 10. 11 integrally. An inner ring raceway 2 a corresponding to the outer ring raceway 5 a of the outer ring 5 is formed on the outer peripheral surface of the large diameter portion 9.

内輪構成部材4は、ハブ軸2の小径部11の外周面に嵌め込まれた後、小径部11の端部がかしめられることによって、段差部10と小径部11のかしめられた部分(かしめ部)12との間に固定される。   After the inner ring component 4 is fitted on the outer peripheral surface of the small diameter portion 11 of the hub shaft 2, the end portion of the small diameter portion 11 is caulked, whereby the stepped portion 10 and the small diameter portion 11 are caulked portions (caulking portions). 12 is fixed.

ハブユニット1には等速ジョイント30を介して駆動軸31の駆動力が伝達される。図示されている等速ジョイント30は、バーフィールド型の等速ジョイントであり、駆動軸31の一端に一体的に連結された内輪32と、この内輪32の外方に配設された外輪33と、内輪32と外輪33との間に配設された複数のボール34と、これら複数のボール34を保持する保持器35とを備えている。   The driving force of the drive shaft 31 is transmitted to the hub unit 1 through the constant velocity joint 30. The illustrated constant velocity joint 30 is a Barfield type constant velocity joint, and includes an inner ring 32 integrally connected to one end of a drive shaft 31, and an outer ring 33 disposed outside the inner ring 32. A plurality of balls 34 disposed between the inner ring 32 and the outer ring 33 and a cage 35 for holding the plurality of balls 34 are provided.

等速ジョイント30の外輪33は、略椀形状の外輪筒部33aと、この外輪筒部33aの端面の中心部から突設された外輪軸部33bとを備えており、この外輪軸部33bには、軸方向に沿って孔部36が形成されている。そして、この孔部36の内周面には雌ねじが形成されている。この孔部36の雌ねじにはキャップボルト38の雄ねじ37が螺合され、このキャップボルト38によってハブユニット1と等速ジョイント30が接続される。   The outer ring 33 of the constant velocity joint 30 includes a substantially bowl-shaped outer ring cylinder part 33a and an outer ring shaft part 33b protruding from the center of the end surface of the outer ring cylinder part 33a. The hole 36 is formed along the axial direction. An internal thread is formed on the inner peripheral surface of the hole 36. A male screw 37 of a cap bolt 38 is screwed into the female screw of the hole 36, and the hub unit 1 and the constant velocity joint 30 are connected by the cap bolt 38.

図2にも示されるように、ハブ軸2の車両インナ側の軸方向端部のかしめ部12の端面には複数の被動歯(スプライン歯)13を有するサイドフェーススプライン15が形成されている。複数の被動歯13は、ハブユニット1の軸心O(図1参照)回りに円環状に配列された状態で、当該軸心Oを中心として放射状に形成されている。また、前記かしめ部12と対向する外輪筒部33aの端面には複数の駆動歯14が外輪33の軸心回りに円環状に配列された状態で、当該軸心を中心として放射状に形成されている。そして、被動歯13と駆動歯14との噛み合いにより、駆動軸31の回転駆動力が等速ジョイント30を介してハブユニット1に伝達される。なお、図2において、被動歯13と外輪筒部33aの駆動歯14との噛み合い部16には斜線が付されている。また、図2には、被動歯13の歯先と歯底に符号13c、13bが付され、駆動歯14の歯先と歯底には符号14c、14bが付されている。   As shown in FIG. 2, a side face spline 15 having a plurality of driven teeth (spline teeth) 13 is formed on the end surface of the caulking portion 12 at the axial end portion of the hub shaft 2 on the vehicle inner side. The plurality of driven teeth 13 are radially formed around the axis O in a state of being annularly arranged around the axis O (see FIG. 1) of the hub unit 1. A plurality of drive teeth 14 are formed on the end face of the outer ring cylinder portion 33a facing the caulking portion 12 in a radial pattern around the axis center of the outer ring 33 around the axis center. Yes. The rotational driving force of the drive shaft 31 is transmitted to the hub unit 1 through the constant velocity joint 30 due to the meshing of the driven teeth 13 and the drive teeth 14. In FIG. 2, the meshing portion 16 of the driven tooth 13 and the driving tooth 14 of the outer ring cylinder portion 33a is shaded. In FIG. 2, reference numerals 13 c and 13 b are attached to the tooth tip and the bottom of the driven tooth 13, and reference signs 14 c and 14 b are attached to the tooth tip and the tooth bottom of the driving tooth 14.

被動歯13の数は、例えば37個とされ、駆動歯14は被動歯13と同数とされている。被動歯13と駆動歯14との噛み合い位置にはピッチ面(ピッチ線)αが設定されている。被動歯13及び駆動歯14は、歯面や歯すじ等の寸法がピッチ面αを基準として設計され、例えば、型鍛造により成型される。   The number of driven teeth 13 is, for example, 37, and the number of drive teeth 14 is the same as the number of driven teeth 13. A pitch surface (pitch line) α is set at the meshing position of the driven tooth 13 and the driving tooth 14. The driven teeth 13 and the drive teeth 14 are designed with the dimensions of the tooth surfaces, the tooth lines, and the like based on the pitch surface α, and are formed by die forging, for example.

サイドフェーススプライン15が形成されたハブユニット1は、製造後に、被動歯13の歯面形状、歯すじ、ピッチ等の各種寸法についての測定が行われ、これらの寸法が所定の精度を満たしているか否かの検査する検査工程が実施される。
サイドフェーススプライン15の被動歯13は、設計上、ピッチ面α(図2参照)を基準面として歯面形状等の寸法が設定されるが、この基準面α(以下、「設計基準面」ともいう)はあくまで仮想の面であるため、検査工程でこの設計基準面αを基準にして寸法測定を行うことができない。そのため、本実施形態においては、設計基準面αの代替となる適切な基準面(測定基準面)を設定するために、次に説明する基準設定具50を用いる。
After the manufacture, the hub unit 1 in which the side face spline 15 is formed is measured for various dimensions such as the tooth surface shape, tooth trace, and pitch of the driven tooth 13, and whether these dimensions satisfy a predetermined accuracy. An inspection process for inspecting for a failure is performed.
The driven tooth 13 of the side face spline 15 is designed to have a tooth surface shape and other dimensions with the pitch surface α (see FIG. 2) as a reference surface, and this reference surface α (hereinafter referred to as “design reference surface”). ) Is a virtual surface to the last, and the dimension measurement cannot be performed with reference to the design reference surface α in the inspection process. Therefore, in the present embodiment, a reference setting tool 50 described below is used to set an appropriate reference surface (measurement reference surface) that can be used as a substitute for the design reference surface α.

図3は、図2に示される被動歯の測定基準面を設定する様子を示す車両用ハブユニットの断面説明図である。図4は、基準設定具50の斜視図である。
基準設定具50は、円環状のブロックから形成されており、その中心軸線β方向の一端面(図3における基準設定具50の下面)には、複数の基準歯53が形成されている。この基準歯53は、等速ジョイント30の駆動歯14の形状を模して形成されたものであり、当該駆動歯14と全く同一の形状で所定の精度を満たした寸法に形成されている。したがって、この基準歯53においても、図2に示されるような仮想の設計基準面αが設定され、この設計基準面αを基準とした正確な寸法で基準歯53が形成されている。また、複数の基準歯53は、中心軸線βに対して所定の精度を満たす同軸度で円環状に配列されている。また、基準設定具50の中心軸線β上には孔55が形成されている。
FIG. 3 is a cross-sectional explanatory view of the vehicle hub unit showing a state in which the measurement reference plane of the driven tooth shown in FIG. 2 is set. FIG. 4 is a perspective view of the reference setting tool 50.
The reference setting tool 50 is formed of an annular block, and a plurality of reference teeth 53 are formed on one end surface of the central axis β direction (the lower surface of the reference setting tool 50 in FIG. 3). The reference tooth 53 is formed by imitating the shape of the drive tooth 14 of the constant velocity joint 30 and is formed in the same shape as the drive tooth 14 and having a predetermined accuracy. Therefore, a virtual design reference surface α as shown in FIG. 2 is set also in the reference tooth 53, and the reference tooth 53 is formed with an accurate dimension based on the design reference surface α. The plurality of reference teeth 53 are arranged in an annular shape with a coaxial degree that satisfies a predetermined accuracy with respect to the central axis β. Further, a hole 55 is formed on the central axis β of the reference setting tool 50.

基準設定具50の中心軸線β方向の他端面(図3における基準設定具50の上面)は、平坦な面に形成されている。この他端面は、中心軸線βに対して所定の精度で直交する面であり、基準歯53の設計基準面αに対して所定の精度で平行に形成されている。この基準設定具50の他端面が、被動歯13の寸法測定に使用される第1基準面51を構成する。   The other end surface of the reference setting tool 50 in the direction of the central axis β (the upper surface of the reference setting tool 50 in FIG. 3) is formed as a flat surface. The other end surface is a surface orthogonal to the central axis β with a predetermined accuracy, and is formed parallel to the design reference surface α of the reference tooth 53 with a predetermined accuracy. The other end surface of the reference setting tool 50 constitutes a first reference surface 51 used for measuring the dimension of the driven tooth 13.

また、基準設定具50の外周面52は、中心軸線βを中心とする円筒面に形成されている。また、基準設定具50の外周面52は、中心軸線βに対して所定の精度を満たす同軸度、真円度で形成されている。この基準設定具50の外周面52は、被動歯13の寸法測定に使用される第2基準面を構成する。   Further, the outer peripheral surface 52 of the reference setting tool 50 is formed in a cylindrical surface centered on the central axis β. In addition, the outer peripheral surface 52 of the reference setting tool 50 is formed with a coaxiality and a roundness that satisfy a predetermined accuracy with respect to the central axis β. The outer peripheral surface 52 of the reference setting tool 50 constitutes a second reference surface used for measuring the dimension of the driven tooth 13.

ハブユニット1のサイドフェーススプライン15の被動歯13の寸法測定を行うには、当該被動歯13に基準設定具50の基準歯53を噛み合わせた状態でハブユニット1を三次元測定機(本発明の測定部)60にセットする。この三次元測定機60は、図5に示されるように、定盤61と、この定盤61の前後方向(Y方向)へ移動自在に設けられた門形フレーム62と、この門形フレーム62の水平ビーム63に沿って左右方向(X方向)に移動自在に設けられたスライダ64と、このスライダ64に上下方向(Z方向)に昇降自在に設けられた昇降軸65と、この昇降軸65の下端にホルダ66を介して取り付けられたプローブ67とを有している。このプローブ67の先端には、球状の測定子68が設けられている。   In order to measure the dimension of the driven tooth 13 of the side face spline 15 of the hub unit 1, the hub unit 1 is measured with a three-dimensional measuring machine (the present invention) in a state where the reference tooth 53 of the reference setting tool 50 is engaged with the driven tooth 13. Measuring part) 60. As shown in FIG. 5, the coordinate measuring machine 60 includes a surface plate 61, a portal frame 62 provided so as to be movable in the front-rear direction (Y direction) of the surface plate 61, and the portal frame 62. A slider 64 provided so as to be movable in the left-right direction (X direction) along the horizontal beam 63, a lifting shaft 65 provided on the slider 64 so as to be movable up and down in the vertical direction (Z direction), and the lifting shaft 65. And a probe 67 attached to the lower end of the wire through a holder 66. A spherical measuring element 68 is provided at the tip of the probe 67.

そして、三次元測定機60は、プローブ67を三次元方向(XYZ方向)に移動させながら、ワークWの測定部位に測定子68を順次当接させ、当接点における座標値を測定する。そして、この座標値を演算することによってワークWの各種寸法を求めることが可能となっている。なお、この三次元測定機60は、従来公知の市販されているものを使用することができる。   Then, the coordinate measuring machine 60 moves the probe 67 in the three-dimensional direction (XYZ direction), sequentially contacts the measuring element 68 to the measurement site of the workpiece W, and measures the coordinate value at the contact point. Various dimensions of the workpiece W can be obtained by calculating the coordinate values. In addition, as this coordinate measuring machine 60, the conventionally well-known thing can be used.

本実施形態では、ワークWとして、図3に示されるように、基準設定具50を装着したハブユニット1を定盤61上にセットする。そして、基準設定具50の第1基準面51と第2基準面52とにそれぞれプローブ67の測定子68を当接させ、当該第1基準面51及び第2基準面52の座標をそれぞれ計測する。そして、第1基準面51及び第2基準面52をそれぞれ被動歯13の寸法を測定する際の測定基準面(測定基準位置)A、Bに設定する。   In the present embodiment, as shown in FIG. 3, the hub unit 1 on which the reference setting tool 50 is mounted is set on the surface plate 61 as the work W. Then, the probe 68 of the probe 67 is brought into contact with the first reference surface 51 and the second reference surface 52 of the reference setting tool 50, and the coordinates of the first reference surface 51 and the second reference surface 52 are measured. . Then, the first reference surface 51 and the second reference surface 52 are set to measurement reference surfaces (measurement reference positions) A and B for measuring the dimension of the driven tooth 13, respectively.

次に、定盤61上のハブユニット1から基準設定具50を取り外し、サイドフェーススプライン15の被動歯13に対してプローブ67の測定子68を当接させて、被動歯13の歯面、歯すじ、ピッチ等の各種寸法を計測する。この際、被動歯13に対する測定子68の当接点の座標は、第1基準面51及び第2基準面52により設定された測定基準面A,Bを基準とした座標とする。   Next, the reference setting tool 50 is removed from the hub unit 1 on the surface plate 61, the probe 68 of the probe 67 is brought into contact with the driven tooth 13 of the side face spline 15, and the tooth surface and teeth of the driven tooth 13 are detected. Measure various dimensions such as streaks and pitches. At this time, the coordinates of the contact point of the probe 68 with respect to the driven tooth 13 are coordinates based on the measurement reference surfaces A and B set by the first reference surface 51 and the second reference surface 52.

基準設定具50の第1基準面51は、基準歯53における設計基準面α(図2参照)に平行で、所定の間隔をあけて形成されている。そのため、基準設定具50の基準歯53をハブユニット1の被動歯13に噛み合わせることによって、被動歯13の設計基準面αをそのままZ方向に所定間隔だけ移動した第1基準面51に置き換えることが可能となる。したがって、この第1基準面51を測定基準面Aとし、測定基準面Aを基準に被動歯13の形状を測定することによってより正確な測定が可能となり、被動歯13の各種寸法が所定の精度を満たしているか否かを正確に検査することができる。   The first reference surface 51 of the reference setting tool 50 is formed in parallel with the design reference surface α (see FIG. 2) of the reference tooth 53 with a predetermined interval. Therefore, by engaging the reference tooth 53 of the reference setting tool 50 with the driven tooth 13 of the hub unit 1, the design reference surface α of the driven tooth 13 is replaced with the first reference surface 51 moved as it is in the Z direction by a predetermined interval. Is possible. Accordingly, the first reference surface 51 is used as the measurement reference surface A, and the shape of the driven tooth 13 is measured with reference to the measurement reference surface A, so that more accurate measurement is possible. It is possible to accurately inspect whether or not

また、第2基準面52を測定基準面Bとすることによって、基準歯53の中心軸線β(図4参照)の位置(座標)を求めることができる。この中心軸線βは、基準歯53を被動歯13に噛み合わせることによって、被動歯13における設計上の中心軸線に相当することになるため、この中心軸線βに対する各被動歯13の寸法を計測することによって、仮想の中心軸線に対する各被動歯13の同軸度等を正確に求めることができる。   Further, by using the second reference surface 52 as the measurement reference surface B, the position (coordinates) of the central axis β (see FIG. 4) of the reference tooth 53 can be obtained. Since the center axis β corresponds to the designed center axis of the driven tooth 13 by meshing the reference tooth 53 with the driven tooth 13, the dimension of each driven tooth 13 with respect to the center axis β is measured. Thus, the coaxiality of each driven tooth 13 with respect to the virtual center axis can be accurately obtained.

以上の測定は、サイドフェーススプライン15の全ての被動歯13に対して行われるものであり、ある程度の時間をかけて行う詳細な測定となる。そのため、全ての製品に対してではなく、同一の型番の製品のなかから一部を抜き取って行う抜き取り検査として好適に実施することができる。
そして、全ての製品に対して行う全数検査は、次に説明する測定方法によって基準設定具50を用いて簡易的に行うことが可能である。
The above measurement is performed on all the driven teeth 13 of the side face spline 15, and is a detailed measurement performed over a certain period of time. Therefore, it can be suitably implemented as a sampling inspection that is performed not on all products but on a part of products of the same model number.
And 100% inspection performed on all products can be easily performed using the reference setting tool 50 by the measurement method described below.

図6及び図7は、基準設定具を測定対象とする測定方法を示す車両用ハブユニットの断面説明図である。この図6及び図7に示される測定方法は、上述の測定方法のように各被動歯13の寸法を直接的に測定するのではなく、当該被動歯13に噛み合わせた基準設定具50自体を測定対象とするものである。   6 and 7 are cross-sectional explanatory views of the vehicle hub unit showing a measurement method using a reference setting tool as a measurement target. The measurement method shown in FIGS. 6 and 7 does not directly measure the dimension of each driven tooth 13 as in the above-described measurement method, but the reference setting tool 50 itself meshed with the driven tooth 13. It is intended for measurement.

ハブユニット1のサイドフェーススプライン15は、等速ジョイント30の駆動歯14に精度よく組み付けるために、いくつかの保証項目が設定されている。この保証項目としては、例えば、ハブホイール3を回転させたときの外輪5に対する被動歯13の軸心O方向の振れ量、同じくハブホイール3の軸心Oに対する被動歯13の同軸度(径方向の振れ量)、ハブホイール3のフランジ7面に対する被動歯13の高さの振れ量などがある。そして、これらの保証項目について検査するために、図6及び図7に示される測定方法を実施することができる。   In order to assemble the side face spline 15 of the hub unit 1 with the drive teeth 14 of the constant velocity joint 30 with high accuracy, several guarantee items are set. As the guarantee item, for example, the amount of deflection in the direction of the axis O of the driven tooth 13 with respect to the outer ring 5 when the hub wheel 3 is rotated, and the coaxiality of the driven tooth 13 with respect to the axis O of the hub wheel 3 (radial direction) ), And the height of the driven tooth 13 with respect to the flange 7 surface of the hub wheel 3. And in order to test | inspect about these guarantee items, the measuring method shown by FIG.6 and FIG.7 can be implemented.

まず、図6に示されるように、ハブユニット1のサイドフェーススプライン15に対して基準設定具50を噛み合わせた状態で、基準設定具50をハブユニット1に固定する。本実施形態では、ボルト72によって連結された一対の挟持板70,71でハブホイール3と基準設定具50とを挟み込んでいる。そして、ハブユニット1の外輪5を固定部材74に固定する。   First, as shown in FIG. 6, the reference setting tool 50 is fixed to the hub unit 1 in a state where the reference setting tool 50 is engaged with the side face spline 15 of the hub unit 1. In the present embodiment, the hub wheel 3 and the reference setting tool 50 are sandwiched between a pair of clamping plates 70 and 71 connected by bolts 72. Then, the outer ring 5 of the hub unit 1 is fixed to the fixing member 74.

そして、ダイヤルゲージ等の測定器具75,76を、基準設定具50の第1基準面51と、第2基準面52とに当接させた状態で、ハブホイール3を軸心O回りに1回転させる。これにより基準設定具50もハブホイール3に追従して1回転し、第1基準面51及び第2基準面52の振れ量を測定器具75,76によって計測することができる。第1基準面51の振れ量は、外輪5に対する被動歯13の軸心O方向の振れ量(基準面αの振れ量)に相当する。また、第2基準面52の振れ量は、ハブホイール3の回転中心(軸心O)に対する径方向の振れ量(同軸度)に相当する。   Then, the hub wheel 3 is rotated once around the axis O while the measuring instruments 75 and 76 such as dial gauges are in contact with the first reference surface 51 and the second reference surface 52 of the reference setting tool 50. Let As a result, the reference setting tool 50 also rotates once following the hub wheel 3, and the amount of deflection of the first reference surface 51 and the second reference surface 52 can be measured by the measuring instruments 75 and 76. The shake amount of the first reference surface 51 corresponds to the shake amount of the driven tooth 13 in the axis O direction with respect to the outer ring 5 (the shake amount of the reference surface α). Further, the amount of deflection of the second reference surface 52 corresponds to the amount of deflection (coaxiality) in the radial direction with respect to the rotation center (axis O) of the hub wheel 3.

また、図7に示されるように、基準設定具50を固定したハブユニット1のハブホイール3のフランジ7を回転ベース77上に載置する。そして、フランジ7から被動歯13の設計上の基準面αまでの高さに基準設定具50の高さ(基準歯53の設計基準面αから第1基準面51までの間隔)を足し合わせた寸法にブロックゲージ78を合わせ、回転ベース77上に載置する。そして、ダイヤルゲージ等の測定器具79によって、回転ベース77を軸心O回りに1回転させたときの基準設定具50の第1基準面51の高さの変化を、ブロックゲージ78の高さと比較し、第1基準面51に置き換えた被動歯13の設計基準面αの振れを測定する。   Further, as shown in FIG. 7, the flange 7 of the hub wheel 3 of the hub unit 1 to which the reference setting tool 50 is fixed is placed on the rotation base 77. Then, the height of the reference setting tool 50 (the distance from the design reference surface α of the reference tooth 53 to the first reference surface 51) is added to the height from the flange 7 to the design reference surface α of the driven tooth 13. A block gauge 78 is matched to the dimensions and placed on the rotating base 77. Then, the change in the height of the first reference surface 51 of the reference setting tool 50 when the rotation base 77 is rotated once around the axis O by a measuring instrument 79 such as a dial gauge is compared with the height of the block gauge 78. Then, the runout of the design reference surface α of the driven tooth 13 replaced with the first reference surface 51 is measured.

したがって、図6及び図7に示される測定方法では、被動歯13を直接的に測定しなくても、基準設定具50の第1基準面51及び第2基準面52を測定することによって特定の保証項目について検査を行うことができる。   Therefore, in the measurement method shown in FIG. 6 and FIG. 7, it is possible to specify a specific value by measuring the first reference surface 51 and the second reference surface 52 of the reference setting tool 50 without directly measuring the driven tooth 13. Inspections can be performed on guaranteed items.

本発明は、上記実施形態に限定されるものではなく、特許請求の範囲に記載された発明の範囲内において適宜変更可能である。
例えば、上記実施形態の基準設定具50は、第1基準面51と第2基準面52との2つの基準面を備えていたが、いずれか1つのみであってもよい。また、基準面は、基準歯53に対して所定の関係を有するものであれば、上述の第1,第2基準面51,52以外の基準面であってもよい。
The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the invention described in the claims.
For example, the reference setting tool 50 of the above embodiment includes the two reference surfaces, the first reference surface 51 and the second reference surface 52, but only one of them may be provided. The reference surface may be a reference surface other than the first and second reference surfaces 51 and 52 described above as long as it has a predetermined relationship with the reference tooth 53.

1:車両用ハブユニット、3:ハブホイール、12:かしめ部、13:被動歯、14:駆動歯、15:サイドフェーススプライン、30:等速ジョイント、50:基準設定具、51:第1基準面、52:第2基準面、53:基準歯、60:三次元測定機(測定部)、75:測定器具、76:測定器具、79:測定器具   1: vehicle hub unit, 3: hub wheel, 12: caulking part, 13: driven tooth, 14: driving tooth, 15: side face spline, 30: constant velocity joint, 50: reference setting tool, 51: first reference Surface, 52: second reference surface, 53: reference tooth, 60: three-dimensional measuring machine (measuring unit), 75: measuring instrument, 76: measuring instrument, 79: measuring instrument

Claims (1)

形状測定用の基準設定具を使用することにより、車両用ハブユニットのハブホイールの軸方向の端面に形成され、かつ等速ジョイントの駆動歯に噛み合わされる被動歯の形状を測定するサイドフェーススプラインの形状測定方法であって、
前記基準設定具は、
前記等速ジョイントの駆動歯の形状を模して円環状に配列して形成された基準歯と、
前記基準歯の配列中心軸線に対して直交する第1基準面と、を有し、
前記形状測定方法は、
前記基準設定具の基準歯を前記ハブホイールの被動歯に噛み合わせる工程と、
前記ハブホイールのフランジから前記被動歯の設計上の基準面までの高さに対し、前記基準設定具の基準歯の設計基準面から前記第1基準面までの間隔を足し合わせた寸法である、高さ寸法を求める工程と、
前記車両用ハブユニットの軸心回りに前記ハブホイールを回転させたときに、前記第1基準面の高さの変化を測定する工程と、
前記高さ寸法と前記第1基準面の高さの変化とを比較する工程と、
を含むことを特徴とするサイドフェーススプラインの形状測定方法。
A side face spline that measures the shape of the driven tooth that is formed on the axial end face of the hub wheel of the vehicle hub unit and meshes with the drive teeth of the constant velocity joint by using the reference setting tool for shape measurement. The shape measuring method of
The reference setting tool is:
Reference teeth formed in an annular shape to simulate the shape of the drive teeth of the constant velocity joint,
A first reference surface perpendicular to the array center axis of the reference teeth,
The shape measuring method is:
Meshing the reference teeth of the reference setting tool with the driven teeth of the hub wheel;
The height from the flange of the hub wheel to the design reference surface of the driven tooth is a dimension obtained by adding the distance from the design reference surface of the reference tooth of the reference setting tool to the first reference surface. A process for obtaining a height dimension;
Measuring a change in height of the first reference surface when the hub wheel is rotated about the axis of the vehicle hub unit;
Comparing the height dimension with a change in height of the first reference surface;
The shape measuring method of the side face spline characterized by including these.
JP2015134219A 2015-07-03 2015-07-03 Side face spline shape measurement method Expired - Fee Related JP6070779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015134219A JP6070779B2 (en) 2015-07-03 2015-07-03 Side face spline shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015134219A JP6070779B2 (en) 2015-07-03 2015-07-03 Side face spline shape measurement method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011188900A Division JP5870556B2 (en) 2011-08-31 2011-08-31 Side face spline shape measurement method

Publications (2)

Publication Number Publication Date
JP2016001177A JP2016001177A (en) 2016-01-07
JP6070779B2 true JP6070779B2 (en) 2017-02-01

Family

ID=55076830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015134219A Expired - Fee Related JP6070779B2 (en) 2015-07-03 2015-07-03 Side face spline shape measurement method

Country Status (1)

Country Link
JP (1) JP6070779B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635121Y2 (en) * 1988-12-05 1994-09-14 トヨタ自動車株式会社 Multi-point height measuring device
JP2002206402A (en) * 2001-01-12 2002-07-26 Honda Motor Co Ltd Rotary member assembling method
JP5157176B2 (en) * 2007-01-22 2013-03-06 株式会社ジェイテクト Wheel support device
JP5109852B2 (en) * 2008-07-22 2012-12-26 株式会社ジェイテクト Hub unit flange runout measurement jig and runout measurement method

Also Published As

Publication number Publication date
JP2016001177A (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP5870556B2 (en) Side face spline shape measurement method
US9212891B2 (en) Method of calibrating gear measuring device
JP5549429B2 (en) Hole position measuring device
US11754387B2 (en) Noncontact sensor calibration using single axis movement
EP3330662B1 (en) Pitch cone angle measurement method and pitch cone angle measurement device
CN100554867C (en) Method for detecting roller completed product
US20220049955A1 (en) Method for acquiring contact angle of angular contact ball bearing and method for manufacturing wheel bearing device
JP6070779B2 (en) Side face spline shape measurement method
CN110567626B (en) Indirect bearing pretightening force measuring method and system
CN105928435A (en) Bouncing detector for end-surface counter bore of bevel gear
CN104121843A (en) Tool suite for detecting coaxial degree and symmetric degree of internal conical surface and external profile surface and detection method thereof
CN208042913U (en) A kind of engine gear case cubing
JP2007240201A (en) Taper angle measuring method and apparatus
US20200300617A1 (en) Measuring device and measuring method for a grooved axially symmetric body
JP2005271536A (en) Measuring apparatus of circumferential surface of tire shaping mold and measuring method of its circumferential surface
CN109297691B (en) Detection equipment and method for parameters of smoke machine
JP6762926B2 (en) Vehicle wheel support
CN208998749U (en) Gear radial clearance and flank of tooth jitter detection apparatus
JP2021177133A (en) Preload measurement method of bearing device and manufacture method of bearing device
CN106169017A (en) A kind of hub-bearing unit steel ball based on play size matching process
JP5550529B2 (en) Method for measuring the inner shape of tire molds
CN106017373A (en) Flywheel cover basin mouth and end face run-out detection device
CN108413852B (en) Method and device for rapidly detecting symmetry degree of planar teeth
JP2007171007A (en) Position measuring method and device
CN114001626B (en) Device and method for measuring axial activity of inner rotor in blind cavity of engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6070779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees