JP6070593B2 - Mold for resin injection molding and manufacturing method of resin molded product - Google Patents

Mold for resin injection molding and manufacturing method of resin molded product Download PDF

Info

Publication number
JP6070593B2
JP6070593B2 JP2014016489A JP2014016489A JP6070593B2 JP 6070593 B2 JP6070593 B2 JP 6070593B2 JP 2014016489 A JP2014016489 A JP 2014016489A JP 2014016489 A JP2014016489 A JP 2014016489A JP 6070593 B2 JP6070593 B2 JP 6070593B2
Authority
JP
Japan
Prior art keywords
mold
resin
mold surface
injection molding
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014016489A
Other languages
Japanese (ja)
Other versions
JP2015142970A (en
Inventor
加藤 守
守 加藤
貴人 小木曽
貴人 小木曽
鈴木 一夫
一夫 鈴木
山田 達夫
達夫 山田
弘志 度会
弘志 度会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2014016489A priority Critical patent/JP6070593B2/en
Publication of JP2015142970A publication Critical patent/JP2015142970A/en
Application granted granted Critical
Publication of JP6070593B2 publication Critical patent/JP6070593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、意匠表面をもつ樹脂成形体を製造する射出成形用金型と、その金型を用いた樹脂成形品の製造方法に関するものである。本発明の射出成形用金型を用いて成形された樹脂成形体の意匠表面には、金属めっき層が形成される。   The present invention relates to an injection mold for manufacturing a resin molded body having a design surface, and a method for manufacturing a resin molded product using the mold. A metal plating layer is formed on the design surface of the resin molded body molded using the injection mold of the present invention.

自動車にはオーナメント、グリル、ホイールキャップ、レジスター、バンパーなど、金属めっき層を有する部材が多く用いられている。このような部材は、射出成形などによって樹脂基材を作成し、その意匠表面にクロムなどの金属めっきを施すことで製造されている。金属めっきは電解めっきによって行われるが、樹脂基材は絶縁体である場合が多く、電解めっきが困難であることが多い。   Many members having a metal plating layer such as an ornament, a grill, a wheel cap, a register, and a bumper are used in an automobile. Such a member is manufactured by creating a resin base material by injection molding or the like and applying a metal plating such as chromium on the design surface. Although metal plating is performed by electrolytic plating, the resin base material is often an insulator, and electrolytic plating is often difficult.

そこで樹脂基材に無電解めっきを施してニッケルなどの導電金属層を形成し、その後に電解めっきすることが行われている。あるいはめっきダイレクト工法により、無電解めっき処理を省略して電解めっきすることも行われている。   Therefore, electroless plating is performed on the resin base material to form a conductive metal layer such as nickel, and then electrolytic plating is performed. Alternatively, electroplating is performed by omitting the electroless plating process by a plating direct method.

ところが樹脂成形体に対するめっき被膜の付着性が問題になることが多く、付着性を改良すべく種々の方法が提案されている。例えば特開2011−063855号公報には、樹脂基材をオゾン溶液で処理して表面改質層を形成し、プラズマなどのエネルギーを付与して表面改質層の表層を除去した後に無電解めっきする方法が記載されている。   However, the adhesion of the plating film to the resin molded body often becomes a problem, and various methods have been proposed to improve the adhesion. For example, in Japanese Unexamined Patent Publication No. 2011-063855, a resin base material is treated with an ozone solution to form a surface modified layer, and after applying the energy such as plasma to remove the surface layer of the surface modified layer, electroless plating How to do is described.

また特開2007−327131号公報には、樹脂基材の表面を陰イオン性界面活性剤および有機溶剤を含む前処理溶液で処理し、次いで陰イオン性界面活性剤および貴金属イオンを含む貴金属イオン含有処理液で処理し、次いで被めっき材を加熱処理し、次いでアルカリ性水溶液で処理し、その後に無電解めっき処理する方法が記載されている。   JP-A 2007-327131 discloses that the surface of a resin substrate is treated with a pretreatment solution containing an anionic surfactant and an organic solvent, and then contains a noble metal ion containing an anionic surfactant and a noble metal ion. A method is described in which treatment is performed with a treatment liquid, and then a material to be plated is heat-treated, followed by treatment with an alkaline aqueous solution, followed by electroless plating treatment.

これらの方法によれば、クロム酸などの有害物質を用いずにめっき被膜の付着性が向上する。   According to these methods, the adhesion of the plating film is improved without using harmful substances such as chromic acid.

特開2011−063855号公報JP 2011-063855 特開2007−327131号公報JP 2007-327131 A

ところが上記公報に記載の技術で製造されためっき被膜付き樹脂成形品であっても、温度差の大きな熱履歴が作用した場合などには、めっき被膜に膨れや剥がれが生じることがあった。これは、金属めっき被膜と樹脂基材との熱膨張係数の差が大きいためと考えられている。また上記公報に記載の技術では、クロム酸などによるエッチング処理に比べて工数が大きく生産性が低いという不具合もあった。   However, even a resin molded product with a plating film manufactured by the technique described in the above publication may swell or peel off in the plating film when a thermal history with a large temperature difference is applied. This is considered because the difference in thermal expansion coefficient between the metal plating film and the resin base material is large. In addition, the technique described in the above publication has a problem that the man-hour is large and the productivity is low as compared with the etching process using chromic acid or the like.

本発明は上記問題に鑑みてなされたものであり、成形用金型を工夫することで脆化層の形成を抑制し、めっき被膜の付着性が格段に向上する樹脂成形体を安定して製造できるようにすることを解決すべき課題とする。   The present invention has been made in view of the above-mentioned problems, and by devising a molding die, the formation of a brittle layer is suppressed, and a resin molded body in which the adhesion of a plating film is remarkably improved is stably produced. Making it possible is an issue to be solved.

上記課題を解決できる本発明の樹脂射出成形用金型の特徴は、樹脂成形体の金属めっきが施される意匠表面を成形する第一型面と、意匠表面と反対側の裏面を成形し第一型面と対向する第二型面とを備え、第二型面には、射出成形時に第一型面と第二型面とで形成されるキャビティを流れる溶融樹脂の主たる流動方向に沿って、一般型面部から段差面を伴って一段高く又は低く延び次いで一般型面部に連続する段差部が複数個形成され、
段差面は溶融樹脂の主たる流動方向に対して交差し、第二型面は樹脂成形体の型抜き方向に延びる型面であり、段差部は段差面から型抜き方向と反対側へ又は型抜き方向へ向かって徐々に一般型面部に連続するテーパ段部であることにある。
The resin injection mold of the present invention that can solve the above problems is characterized in that the first mold surface for molding the design surface on which the metal plating of the resin molded body is applied and the back surface opposite to the design surface are molded. A second mold surface opposite to the one mold surface, and the second mold surface along the main flow direction of the molten resin flowing through the cavity formed by the first mold surface and the second mold surface during injection molding A plurality of stepped portions extending from the general mold surface portion with a step surface higher or lower and then continuing to the general mold surface portion;
The step surface intersects the main flow direction of the molten resin, the second mold surface is a mold surface extending in the mold drawing direction of the resin molded body, and the step portion is from the step surface to the opposite side of the mold cutting direction or from the mold. The taper step portion is continuous with the general mold surface portion in the direction.

従来の樹脂射出成形用金型で成形された樹脂成形体にめっき被膜を形成し、その剥離状態を調査したところ、めっき被膜と樹脂基材との界面から剥離するのではなく、樹脂基材のめっき被膜が形成された表層の内部で剥離することが明らかとなった。すなわち界面剥離ではなく、樹脂基材の凝集破壊によって剥離することがわかった。   A plating film was formed on a resin molded body molded by a conventional resin injection mold, and the peeling state was investigated. Instead of peeling from the interface between the plating film and the resin substrate, the resin substrate It became clear that it peeled inside the surface layer in which the plating film was formed. That is, it was found that the peeling occurred not by interfacial peeling but by cohesive failure of the resin substrate.

そこで樹脂成形体のめっきが施される表面を研磨によって所定深さまで除去し、それらにめっき被膜を形成して付着強度を測定する試験を行った。結果を図1に示す。図1に示すように研磨量が厚いほど、つまり表面から深く除去するほど付着強度が大きく向上することが明らかとなった。すなわち射出成形法によって成形された樹脂成形体は、表層と内部とで組織が異なり、表層には脆化層が形成されていることがわかった。   Accordingly, the surface of the resin molded body to be plated was removed to a predetermined depth by polishing, a plating film was formed on them, and a test was performed to measure the adhesion strength. The results are shown in FIG. As shown in FIG. 1, it became clear that the adhesion strength is greatly improved as the polishing amount is thicker, that is, as the polishing amount is deeper. That is, it was found that the resin molded body molded by the injection molding method has a different structure between the surface layer and the inside, and an embrittled layer is formed on the surface layer.

したがって、表面の脆化層の形成を抑制すればめっき被膜の付着性が向上することが推察され、鋭意研究を重ねた結果、本発明が完成された。   Therefore, it is presumed that if the formation of the brittle layer on the surface is suppressed, the adhesion of the plating film is improved, and as a result of extensive research, the present invention has been completed.

すなわち本発明の樹脂射出成形用金型によれば、第二型面の段差部によって成形時の溶融樹脂の流動が変化し、その影響が第一型面で成形される意匠表面の表層にも及ぶと考えられる。そのため脆化層の形成が抑制され、意匠表面に形成されるめっき被膜の付着性が向上する。   That is, according to the mold for resin injection molding of the present invention, the flow of the molten resin during molding is changed by the step portion of the second mold surface, and the influence is also applied to the surface layer of the design surface molded by the first mold surface. It is thought that it reaches. Therefore, formation of an embrittlement layer is suppressed and adhesion of a plating film formed on the design surface is improved.

そして段差部は、段差面から型抜き方向と反対側へ又は型抜き方向へ向かって徐々に一般型面部に連続するテーパ段部とされている。したがって段差部によって形成された凸部がアンダーカットとなるのが防止され、樹脂成形体の型抜きが可能となる。   And the level | step-difference part is made into the taper step part which continues to a general mold surface part gradually from the level | step difference surface to the opposite side to a die-cutting direction, or a die-cutting direction. Therefore, the convex portion formed by the step portion is prevented from being undercut, and the resin molded body can be die-cut.

樹脂成形体の意匠表面に対する研磨量とめっき被膜の剥離強度との関係を示すグラフである。It is a graph which shows the relationship between the grinding | polishing amount with respect to the design surface of a resin molding, and the peeling strength of a plating film. 本発明の一実施例に係る射出成形金型を一部断面で示す模式的な説明図である。It is typical explanatory drawing which shows the injection mold which concerns on one Example of this invention in a partial cross section. 本発明の一実施例に係る射出成形金型の第二型面の要部を示す斜視図である。It is a perspective view which shows the principal part of the 2nd mold surface of the injection mold which concerns on one Example of this invention. 本発明の一実施例に係る射出成形金型の第二型面の要部を示す模式的な平面図である。It is a typical top view which shows the principal part of the 2nd mold surface of the injection mold which concerns on one Example of this invention. 本発明の一実施例に係る射出成形金型の第二型面の要部を示す模式的な平面図である。It is a typical top view which shows the principal part of the 2nd mold surface of the injection mold which concerns on one Example of this invention.

本発明の樹脂射出成形用金型は、第一型面と第二型面とを備えている。第一型面とは、樹脂成形体の意匠表面、つまり金属めっきが施される表面を成形する型面をいう。また第二型面は、意匠表面と反対側である樹脂成形体の裏面を成形する型面であり、第一型面と対向する型面をいう。第一型面と第二型面は、一方を固定型の型面とし他方を可動型の型面とすることができる。また第二型面を、スライドコアの型面とすることもできる。   The mold for resin injection molding of the present invention includes a first mold surface and a second mold surface. A 1st type | mold surface means the type | mold surface which shape | molds the design surface of a resin molding, ie, the surface where metal plating is given. The second mold surface is a mold surface that molds the back surface of the resin molded body that is opposite to the design surface, and refers to a mold surface that faces the first mold surface. One of the first mold surface and the second mold surface can be a fixed mold surface and the other can be a movable mold surface. Further, the second mold surface may be a mold surface of the slide core.

段差部による作用を効果的に発現させるためには、第一型面と第二型面との間隔が重要であり、その間隔が大きすぎると段差部による作用が奏されなくなると考えられる。またその間隔は、キャビティ内を流動する溶融樹脂の流速、粘度、材質などによって最適範囲が異なると考えられる。例えば実施例に用いたABS樹脂の場合、溶融樹脂の流速が2cm〜150cm/secの範囲においては、上記間隔は2mm〜6mmの範囲が好ましく、2.5mm〜4mmの範囲が最適である。   In order to effectively express the action by the step portion, the distance between the first mold surface and the second mold surface is important. If the distance is too large, the action by the step portion is not achieved. Further, it is considered that the optimum range of the interval varies depending on the flow rate, viscosity, material, etc. of the molten resin flowing in the cavity. For example, in the case of the ABS resin used in the examples, when the flow rate of the molten resin is in the range of 2 cm to 150 cm / sec, the interval is preferably in the range of 2 mm to 6 mm, and most preferably in the range of 2.5 mm to 4 mm.

第二型面には、射出成形時に第一型面と第二型面とで形成されるキャビティを流れる溶融樹脂の主たる流動方向に沿って、一般型面部から段差面を伴って一段高く又は低く延び次いで一般型面部に連続する段差部が複数個形成されている。段差部は、段差面から型抜き方向と反対側へ又は型抜き方向へ向かって徐々に一般型面部に連続するテーパ段部である。段差面は、第二型面の一般型面部から立ち上がる壁面としてもよいし、一般型面部から第二型面の内部へ彫り込まれた凹部の壁面としてもよい。金型加工の容易性からは、第二型面の内部へ彫り込まれた凹部の壁面を段差面とするのが好ましい。   The second mold surface is one step higher or lower with a step surface from the general mold surface along the main flow direction of the molten resin flowing through the cavity formed by the first mold surface and the second mold surface during injection molding. A plurality of step portions extending and then continuing to the general mold surface portion are formed. The step portion is a taper step portion that gradually continues from the step surface toward the opposite side of the die-cutting direction or toward the die-cutting direction and gradually continues to the general die surface portion. The step surface may be a wall surface that rises from the general mold surface portion of the second mold surface, or may be a wall surface of a recess carved from the general mold surface portion to the inside of the second mold surface. From the viewpoint of ease of mold processing, it is preferable that the wall surface of the recess carved into the second mold surface is a stepped surface.

段差部は、樹脂成形体の意匠表面のうち少なくとも金属めっきが施される範囲を成形する第一型面に対向する第二型面に形成されるが、金属めっきが施されない範囲に対向する第二型面に形成しても構わない。   The step portion is formed on the second mold surface facing the first mold surface that molds at least a range where the metal plating is performed on the design surface of the resin molded body, but the step facing the range where the metal plating is not performed. It may be formed on the mold surface.

一般型面部と段差面とのなす角度は、90°以上とするのが望ましい。鋭角であると、アンダーカットとなって樹脂成形体の型抜きが困難となる場合がある。また一般型面部と段差面とは面取り状の曲面を介して連続していてもよいが、段差部を溶融樹脂の主たる流動方向と平行な平面で切断した断面において、一般型面部と段差面とはエッヂ状に交差していることが望ましい。このようにすることで、めっき被膜の付着性がさらに向上する場合がある。   The angle formed between the general mold surface portion and the step surface is desirably 90 ° or more. If the angle is acute, it may be undercut and it may be difficult to remove the molded resin. In addition, the general mold surface portion and the step surface may be continuous through a chamfered curved surface, but in the cross section obtained by cutting the step portion along a plane parallel to the main flow direction of the molten resin, the general mold surface portion and the step surface It is desirable to cross the edges. By doing in this way, the adhesiveness of a plating film may improve further.

段差部の深さ又は高さは、0.1mm〜0.3mmの範囲とすることが好ましい。深さ又は高さが0.3mmを超えると第一型面で成形される意匠表面にヒケが生じる場合がある。また0.1mmより浅くなると、段差部を形成した効果の発現が困難となり、めっき被膜の付着性が低下する。   The depth or height of the stepped portion is preferably in the range of 0.1 mm to 0.3 mm. If the depth or height exceeds 0.3 mm, sink marks may occur on the design surface formed by the first mold surface. On the other hand, when the depth is less than 0.1 mm, it is difficult to achieve the effect of forming the stepped portion, and the adhesion of the plating film is lowered.

段差部は、キャビティを流れる溶融樹脂の主たる流動方向に沿って、一般型面部と交互に複数個形成されている。溶融樹脂の主たる流動方向に沿う方向における段差部のピッチ、すなわち段差面どうしの間隔は、2mm〜20mmの範囲が好ましい。このピッチが20mmを超えると一般型面部の範囲が広がることになり、めっき被膜の付着性が低下する。またこのピッチが2mmより小さくても、めっき被膜の付着性が低下する。3〜10mm程度が最も好ましい。   A plurality of step portions are formed alternately with the general mold surface portions along the main flow direction of the molten resin flowing through the cavity. The pitch of the step portions in the direction along the main flow direction of the molten resin, that is, the distance between the step surfaces is preferably in the range of 2 mm to 20 mm. When this pitch exceeds 20 mm, the range of the general mold surface portion is widened, and the adhesion of the plating film is lowered. Even if the pitch is smaller than 2 mm, the adhesion of the plating film is lowered. Most preferred is about 3 to 10 mm.

段差面は溶融樹脂の主たる流動方向に対して直線状又は曲線状に交差している。段差面が溶融樹脂の主たる流動方向に対して曲線状より直線状に交差しているのが好ましい。溶融樹脂の主たる流動方向に対して直角に交差する平面を段差面とするのが最も好ましい。   The step surface intersects the main flow direction of the molten resin in a straight line or a curved line. It is preferable that the step surface intersects with the main flow direction of the molten resin in a straight line rather than a curved line. Most preferably, the step surface is a plane that intersects at right angles to the main flow direction of the molten resin.

段差部は、溶融樹脂の主たる流動方向に対して交差する方向にも互いに間隔を隔てて複数個形成されている。すなわち段差部と一般型面部とが溶融樹脂の主たる流動方向に対して垂直方向に交互に複数個形成されている。このようにすることで、溶融樹脂の流動の変化のばらつきが抑制され、めっき被膜の付着性が安定する。   A plurality of step portions are also formed at intervals from each other in the direction intersecting the main flow direction of the molten resin. That is, a plurality of step portions and general mold surface portions are alternately formed in a direction perpendicular to the main flow direction of the molten resin. By doing in this way, the dispersion | variation in the change of the flow of molten resin is suppressed and the adhesiveness of a plating film is stabilized.

溶融樹脂の主たる流動方向に対して垂直な平面で切断した断面における段差部の長さは、2mm以上とするのが好ましい。この長さが2mm未満であると、めっき被膜の付着性の向上が見込めない。溶融樹脂の主たる流動方向に対して垂直な平面で切断した断面における段差部どうしの間隔は特に制限されないが、溶融樹脂の主たる流動方向に対して垂直方向における段差部の長さと同程度の間隔とするのが好ましく、2mm以上とするのが好ましく、3mm〜20mmの範囲がより好ましい。   The length of the stepped portion in the cross section cut along a plane perpendicular to the main flow direction of the molten resin is preferably 2 mm or more. If the length is less than 2 mm, the adhesion of the plating film cannot be improved. The interval between the stepped portions in the cross section cut by a plane perpendicular to the main flow direction of the molten resin is not particularly limited, but the interval is approximately the same as the length of the stepped portion in the direction perpendicular to the main flow direction of the molten resin. It is preferably 2 mm or more, and more preferably in the range of 3 mm to 20 mm.

本発明の樹脂射出成形用金型を用いて成形できる樹脂種は、金属めっき被膜を形成できる樹脂種ばかりでなく、射出成形法で成形可能な樹脂種を用いてもよい。例えばポリエステル、ABS(アクリロニトリル−ブタジエン−スチレン)、PC/ABSポリマーアロイ、ポリスチレン、ポリカーボネート、アクリル、液晶ポリマー(LCP)、ポリオレフィン、セルロース変性樹脂、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリイミド、フッ素樹脂などを用いることができる。   The resin species that can be molded using the resin injection mold of the present invention may be not only a resin species that can form a metal plating film, but also a resin species that can be molded by an injection molding method. For example, polyester, ABS (acrylonitrile-butadiene-styrene), PC / ABS polymer alloy, polystyrene, polycarbonate, acrylic, liquid crystal polymer (LCP), polyolefin, cellulose modified resin, polysulfone, polyphenylene sulfide, polyethersulfone, polyetheretherketone, Polyimide, fluorine resin, or the like can be used.

本発明の樹脂射出成形用金型を用いて成形された樹脂成形体は、第一型面で成形された意匠表面と第二型面で成形された裏面とを有し、裏面に段差部が転写された複数の凸部又は凹部が形成されている。段差部の寸法やピッチを上記範囲とすることで、凸部又は凹部の体積を所定範囲以下とすることができ、意匠表面にヒケが生じたり、樹脂成形体の強度が低下するのが防止される。   The resin molded body molded using the mold for resin injection molding of the present invention has a design surface molded on the first mold surface and a back surface molded on the second mold surface, and a stepped portion is formed on the back surface. A plurality of transferred convex portions or concave portions are formed. By setting the size and pitch of the stepped portion within the above range, the volume of the convex portion or the concave portion can be reduced to a predetermined range or less, and it is possible to prevent the design surface from sinking or reducing the strength of the resin molded body. The

本発明の樹脂射出成形用金型を用いて成形された樹脂成形体は、第一型面で成形された意匠表面に金属めっき被膜を形成することができる。以下、金属めっき被膜を形成する方法を説明する。   The resin molded body molded using the mold for resin injection molding of the present invention can form a metal plating film on the design surface molded on the first mold surface. Hereinafter, a method for forming a metal plating film will be described.

樹脂成形体は先ず洗浄、脱脂などのクリーニング処理が行われ、その後一般にエッチング処理が行われる。エッチング処理は、クロム酸、クロム酸と硫酸との混液、過マンガン酸塩などを用いて行っても良いし、オゾン溶液あるいはオゾンガスを用いることもできる。例えば、クロム酸と硫酸の混合溶液を用い、適度に加温した溶液中に樹脂成形体の少なくとも意匠表面を浸漬すればよい。ABSから形成された樹脂成形体を用いる場合には、エッチング処理によって構成成分のブタジエンゴムがクロム酸の酸化作用により溶出し、樹脂表面に孔径1〜2μm程度のアンカー部が形成され、また、ブタジエンが酸化分解し、カルボニル基などの極性基が付与されるため、後工程における触媒の吸着が容易になる。   The resin molded body is first subjected to a cleaning process such as cleaning and degreasing, and then generally an etching process is performed. The etching treatment may be performed using chromic acid, a mixed liquid of chromic acid and sulfuric acid, permanganate, or the like, or an ozone solution or an ozone gas may be used. For example, a mixed solution of chromic acid and sulfuric acid may be used, and at least the design surface of the resin molded body may be immersed in an appropriately heated solution. In the case of using a resin molded body formed from ABS, the butadiene rubber as a constituent component is eluted by the etching process due to the oxidation of chromic acid, and an anchor portion having a pore diameter of about 1 to 2 μm is formed on the resin surface. Is oxidatively decomposed to give a polar group such as a carbonyl group, so that the catalyst can be easily adsorbed in the subsequent step.

エッチング処理後に、無電解めっき処理と電解めっき処理が行われる。あるいはめっきダイレクト工法のように、無電解めっき処理が行われない場合もある。無電解めっき処理を行う場合、無電解めっきに先だって触媒付着処理が行われる。無電解めっきに対して触媒活性を有する金属微粒子(触媒)は、金、銀、ルテニウム、ロジウム、パラジウム、スズ、イリジウム、オスミウム、白金などを単独又は混合して用いることができる。これら触媒はコロイド溶液として用いることが多い。   After the etching process, an electroless plating process and an electrolytic plating process are performed. Alternatively, there may be a case where the electroless plating process is not performed as in the plating direct method. In the case of performing electroless plating, a catalyst adhesion process is performed prior to electroless plating. As the metal fine particles (catalyst) having catalytic activity for electroless plating, gold, silver, ruthenium, rhodium, palladium, tin, iridium, osmium, platinum or the like can be used alone or in combination. These catalysts are often used as colloidal solutions.

触媒付着処理後、公知の方法で無電解めっき処理によってニッケル、銅などからなる導電性めっき層が形成され、その後公知の電解めっき法によりクロムなどからなる金属めっき被膜が形成される。   After the catalyst adhesion treatment, a conductive plating layer made of nickel, copper or the like is formed by an electroless plating treatment by a known method, and thereafter a metal plating film made of chromium or the like is formed by a known electrolytic plating method.

まためっきダイレクト工法の場合には、塩化スズで囲まれたスズ/パラジウム/コロイド溶液などのアクチベーター溶液で処理することで樹脂表面にできるだけ多くのパラジウムを吸着させる。その後、不活性のコロイドスズをパラジウム皮膜から除去するなどの導体化処理が行われ、次いで公知の電解めっき法によりクロムなどからなる金属めっき被膜が形成される。   In the case of the direct plating method, as much palladium as possible is adsorbed on the resin surface by treatment with an activator solution such as tin / palladium / colloid solution surrounded by tin chloride. Thereafter, a conductive treatment such as removal of inert colloidal tin from the palladium film is performed, and then a metal plating film made of chromium or the like is formed by a known electrolytic plating method.

めっきダイレクト工法の場合には、樹脂成形体の凸部は一般にめっき成長の障害となる。しかし本発明では段差部によって形成された凸部又は凹部は意匠表面と反対側の裏面に存在するため、問題となりにくい。また第二型面の段差部を上述の寸法とすれば、めっきダイレクト工法において凸部にもめっき成長させることができる。   In the case of the plating direct method, the convex portion of the resin molded body generally becomes an obstacle to plating growth. However, in the present invention, the convex portion or the concave portion formed by the step portion is present on the back surface on the opposite side to the design surface, so that it is difficult to cause a problem. Moreover, if the level | step-difference part of a 2nd type | mold surface is made into the above-mentioned dimension, it can be made to grow by plating also on a convex part in the plating direct construction method.

以下、実施例により本発明の実施態様を具体的に説明する。   Hereinafter, embodiments of the present invention will be described specifically by way of examples.

(実施例1)
図2に本実施例の樹脂射出成形用金型を示す。この金型は、固定型1と可動型2とを有し、固定型1の型面に樹脂成形体の意匠表面を成形する第一型面10をもち、可動型2の型面に意匠表面の裏面を成形する第二型面20をもつ。第二型面20の表面には、図3に示すように、第一型面10と第二型面20とで形成されるキャビティ100を流れる溶融樹脂の主たる流動方向に沿って、互いに間隔を隔てた複数の段差部21が形成されている。段差部21は、主たる流動方向に対して直交する方向に直線状に長く延びている。なお第一型面10と第二型面20との間隔(キャビティ100の厚さ)は、3mmである。
Example 1
FIG. 2 shows a resin injection mold according to the present embodiment. This mold has a fixed mold 1 and a movable mold 2, has a first mold surface 10 for molding a design surface of a resin molding on the mold surface of the fixed mold 1, and a design surface on the mold surface of the movable mold 2. The second mold surface 20 is formed on the back surface of the mold. As shown in FIG. 3, the surface of the second mold surface 20 is spaced from each other along the main flow direction of the molten resin flowing through the cavity 100 formed by the first mold surface 10 and the second mold surface 20. A plurality of stepped portions 21 spaced apart are formed. The step portion 21 extends long in a straight line in a direction orthogonal to the main flow direction. The distance between the first mold surface 10 and the second mold surface 20 (the thickness of the cavity 100) is 3 mm.

第二型面20には、ほぼ型開き方向に延びる第一縦面201と第二縦面202が存在し、第一縦面201と第二縦面202の間に型開き方向に対して直角方向に延びる平型面203が存在している。ゲート204から射出された溶融樹脂は、先ず第一縦面201に案内されて平型面203に到達し、平型面203から第二縦面202の端部へ進む。したがって第一縦面201と第二縦面202を流れる溶融樹脂の流動方向は、互いに逆向きとなる。   The second mold surface 20 has a first vertical surface 201 and a second vertical surface 202 extending substantially in the mold opening direction, and is perpendicular to the mold opening direction between the first vertical surface 201 and the second vertical surface 202. There is a flat surface 203 extending in the direction. The molten resin injected from the gate 204 is first guided by the first vertical surface 201 to reach the flat surface 203 and proceeds from the flat surface 203 to the end of the second vertical surface 202. Accordingly, the flow directions of the molten resin flowing through the first vertical surface 201 and the second vertical surface 202 are opposite to each other.

第一縦面201及び平型面203に形成されている段差部21は、図4にも示すように、エッヂ状の一般型面部21aから段差面21bを伴って深く彫り込まれ、次いで溶融樹脂の主たる流動方向に対する前方側に向かって深さが徐々に浅くなるテーパ溝21cが形成され、テーパ溝21cは次の一般型面部21aに連続している。テーパ溝21cの寸法は、最深部の深さが0.2mm、テーパ溝21cどうしのピッチ、つまり段差面21bどうしのピッチは4mmである。   As shown in FIG. 4, the stepped portion 21 formed on the first vertical surface 201 and the flat mold surface 203 is deeply carved with the stepped surface 21b from the edge-shaped general mold surface portion 21a, and then the molten resin A tapered groove 21c whose depth gradually decreases toward the front side with respect to the main flow direction is formed, and the tapered groove 21c is continuous with the next general mold surface portion 21a. As for the dimensions of the tapered grooves 21c, the depth of the deepest portion is 0.2 mm, and the pitch between the tapered grooves 21c, that is, the pitch between the stepped surfaces 21b is 4 mm.

一方、第二縦面202に形成されている段差部21は、図5に示すように、エッヂ状の一般型面部21aから溶融樹脂の主たる流動方向に対する前方側に向かって深さが徐々に深くなるテーパ溝21dが形成され、次いで段差面21eを伴って次の一般型面部21aに連続している。テーパ溝21dの寸法は、最深部の深さが0.2mm、テーパ溝21dどうしのピッチ、つまり段差面21eどうしのピッチは4mmである。   On the other hand, as shown in FIG. 5, the stepped portion 21 formed on the second vertical surface 202 gradually increases in depth from the edge-shaped general mold surface portion 21a toward the front side with respect to the main flow direction of the molten resin. A tapered groove 21d is formed, and then continues to the next general mold surface portion 21a with a step surface 21e. The taper groove 21d has a depth of 0.2 mm at the deepest portion, and the pitch between the taper grooves 21d, that is, the pitch between the stepped surfaces 21e is 4 mm.

なお図4,5には、樹脂成形体の型抜き方向も示している。第一縦面201と第二縦面202の両方で、樹脂成形体は段差面21b,21eから遠ざかる方向へ型抜きされる。   4 and 5 also show the die-cutting direction of the resin molded body. On both the first vertical surface 201 and the second vertical surface 202, the resin molded body is die-cut in a direction away from the step surfaces 21b and 21e.

したがって樹脂成形体は、第一縦面201と第二縦面202で成形された表面にテーパ溝21c,21dによって形成された複数のテーパ形状の凸部を有するが、それらの凸部は型抜きの際にアンダーカットとなることがない。また平型面203のテーパ溝21cで成形された凸部は、その縦壁が型開きに際して支障とはならない。したがって成形品は容易に型抜きすることができる。   Accordingly, the resin molded body has a plurality of tapered convex portions formed by the tapered grooves 21c and 21d on the surface formed by the first vertical surface 201 and the second vertical surface 202. There will be no undercutting. Further, the convex portion formed by the tapered groove 21c of the flat mold surface 203 does not interfere with the vertical wall of the mold opening. Therefore, the molded product can be easily punched.

(比較例1)
段差部21を形成しなかったこと以外は実施例1と同様の金型を比較例1とした。
(Comparative Example 1)
A mold similar to Example 1 was used as Comparative Example 1 except that the stepped portion 21 was not formed.

<試験例>
実施例1及び比較例1の金型を用い、ABS樹脂から樹脂成形体をそれぞれ成形した。成形条件は、溶融樹脂速度12cm/秒、溶融樹脂温度230℃にて行った。
<Test example>
Using the molds of Example 1 and Comparative Example 1, resin molded bodies were molded from ABS resin. The molding conditions were a molten resin speed of 12 cm / second and a molten resin temperature of 230 ° C.

得られた樹脂成形体にクリーニング処理を行い、その後、適度に加温したクロム酸と硫酸の混合溶液中に樹脂成形体を浸漬して意匠表面にエッチング処理を行った。次いで意匠表面にPd触媒を付着させ、無電解めっき法によってニッケルめっき層を形成した。さらに電解めっき法により、ニッケルめっき層の表面に金属クロムめっき層を形成した。   The obtained resin molded body was subjected to a cleaning process, and then the resin molded body was immersed in a moderately heated mixed solution of chromic acid and sulfuric acid to etch the design surface. Next, a Pd catalyst was adhered to the design surface, and a nickel plating layer was formed by electroless plating. Further, a metal chromium plating layer was formed on the surface of the nickel plating layer by electrolytic plating.

得られた金属めっき付樹脂成形体を25℃で48時間放置した後、膜物性測定装置(島津製作所社製「オートグラフAGS-500ND」)を用い、引張速度25mm/分、20℃の条件下にてめっき被膜の剥離強度を測定した。結果を表1に示す。   The obtained resin-molded product with metal plating was allowed to stand at 25 ° C. for 48 hours, and was then subjected to a film property measuring device (“Autograph AGS-500ND” manufactured by Shimadzu Corporation) at a tensile rate of 25 mm / min and 20 ° C. The peel strength of the plating film was measured. The results are shown in Table 1.

Figure 0006070593
Figure 0006070593

表1より、実施例1の射出成形用金型によれば、めっき被膜の剥離強度が比較例1より格段に向上していることがわかり、これは段差部21を形成したことによる効果である。なお、第一縦面201と第二縦面202で成形された表面に対応する意匠表面におけるめっき被膜の剥離強度は、理由は不明であるが、第一縦面201の方が第二縦面202より高かった。したがって平型面203の溝形状は、第一縦面201と同様に、溶融樹脂の主たる流動方向に対する前方側に向かって深さが徐々に浅くなるテーパ溝21cとするのが好ましい。   From Table 1, it can be seen that according to the injection mold of Example 1, the peel strength of the plating film is remarkably improved as compared with Comparative Example 1, which is an effect obtained by forming the step portion 21. . The reason for the peel strength of the plating film on the design surface corresponding to the surface formed by the first vertical surface 201 and the second vertical surface 202 is unknown, but the first vertical surface 201 is the second vertical surface. It was higher than 202. Therefore, the groove shape of the flat surface 203 is preferably a tapered groove 21c whose depth gradually decreases toward the front side with respect to the main flow direction of the molten resin, like the first vertical surface 201.

1:固定型 2:可動型
10:第一型面 20:第二型面 21:段差部
21a:一般型面部 21b,21e:段差面 21c,21d:テーパ溝
201:第一縦面 202:第二縦面 203:平型面
1: Fixed type 2: Movable type
10: First mold surface 20: Second mold surface 21: Stepped part
21a: General mold surface 21b, 21e: Stepped surface 21c, 21d: Tapered groove
201: First vertical surface 202: Second vertical surface 203: Flat surface

Claims (6)

樹脂成形体の金属めっきが施される意匠表面を成形する第一型面と、該意匠表面と反対側の裏面を成形し該第一型面と対向する第二型面とを備え、該第二型面には、射出成形時に該第一型面と該第二型面とで形成されるキャビティを流れる溶融樹脂の主たる流動方向に沿って、一般型面部から段差面を伴って一段高く又は低く延び次いで該一般型面部に連続する段差部が複数個形成され、
該段差面は前記主たる流動方向に対して交差し、該第二型面は該樹脂成形体の型抜き方向に延びる型面であり、該段差部は該段差面から該型抜き方向と反対側へ又は該型抜き方向へ向かって徐々に該一般型面部に連続するテーパ段部であることを特徴とする樹脂射出成形用金型。
A first mold surface for molding a design surface on which metal plating of the resin molded body is performed, and a second mold surface that molds a back surface opposite to the design surface and faces the first mold surface. On the two mold surfaces, along the main flow direction of the molten resin flowing through the cavity formed by the first mold surface and the second mold surface at the time of injection molding, one step higher from the general mold surface portion with a step surface or A plurality of step portions extending low and then continuing to the general mold surface portion are formed,
The step surface intersects the main flow direction, the second mold surface is a mold surface extending in the mold drawing direction of the resin molded body, and the step portion is on the side opposite to the mold drawing direction from the step surface. A mold for resin injection molding, characterized by being a taper step portion that continues to the general mold surface portion gradually toward or toward the die cutting direction.
前記主たる流動方向と平行方向における前記段差面どうしの間隔は2mm〜20mmの範囲にある請求項1に記載の樹脂射出成形用金型。   The mold for resin injection molding according to claim 1, wherein an interval between the step surfaces in a direction parallel to the main flow direction is in a range of 2 mm to 20 mm. 前記段差部は前記一般型面部との段差(前記段差面の高さ)が0.1mm〜0.3mmの範囲にある請求項1又は請求項2に記載の樹脂射出成形用金型。   The mold for resin injection molding according to claim 1 or 2, wherein the stepped portion has a step (height of the stepped surface) with respect to the general mold surface portion in a range of 0.1 mm to 0.3 mm. 前記段差部を前記主たる流動方向と平行な平面で切断した断面において、前記一般型面部と前記段差面とはエッヂ状に交差している請求項1〜3のいずれかに記載の樹脂射出成形用金型。   4. The resin injection molding according to claim 1, wherein the general mold surface portion and the step surface intersect in an edge shape in a cross section obtained by cutting the step portion along a plane parallel to the main flow direction. Mold. 請求項1〜4のいずれかに記載の樹脂射出成形用金型を用い熱可塑性樹脂を射出成形して樹脂成形体を形成し、該樹脂成形体の意匠表面に金属めっき層を形成することを特徴とする樹脂成形品の製造方法。   A resin molded body is formed by injection molding a thermoplastic resin using the resin injection mold according to any one of claims 1 to 4, and a metal plating layer is formed on a design surface of the resin molded body. A method for producing a resin molded product. 前記熱可塑性樹脂はブタジエンゴム粒子を含む請求項5に記載の樹脂成形品の製造方法。   The method for producing a resin molded product according to claim 5, wherein the thermoplastic resin includes butadiene rubber particles.
JP2014016489A 2014-01-31 2014-01-31 Mold for resin injection molding and manufacturing method of resin molded product Active JP6070593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014016489A JP6070593B2 (en) 2014-01-31 2014-01-31 Mold for resin injection molding and manufacturing method of resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014016489A JP6070593B2 (en) 2014-01-31 2014-01-31 Mold for resin injection molding and manufacturing method of resin molded product

Publications (2)

Publication Number Publication Date
JP2015142970A JP2015142970A (en) 2015-08-06
JP6070593B2 true JP6070593B2 (en) 2017-02-01

Family

ID=53888380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014016489A Active JP6070593B2 (en) 2014-01-31 2014-01-31 Mold for resin injection molding and manufacturing method of resin molded product

Country Status (1)

Country Link
JP (1) JP6070593B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192575A (en) * 2000-12-27 2002-07-10 Ube Cycon Ltd Method for manufacturing metallic resin molded object, mold for injection molding, and metallic resin molded object
JP4269522B2 (en) * 2001-01-26 2009-05-27 パナソニック電工株式会社 Mold device for molded products having fine irregularities
JP5103743B2 (en) * 2006-01-27 2012-12-19 株式会社ニコン Manufacturing method of molded products
JP2011093367A (en) * 2009-10-28 2011-05-12 Toyoda Gosei Co Ltd Molding mounting structure
EP2465658B1 (en) * 2010-12-15 2016-07-20 Canon Kabushiki Kaisha Resin molded article, method for manufacturing the same, and printer

Also Published As

Publication number Publication date
JP2015142970A (en) 2015-08-06

Similar Documents

Publication Publication Date Title
CN104562024B (en) The complex and its manufacture method of metal and resin
JP6070592B2 (en) Manufacturing method for resin injection molding dies and resin molded products
CN108356245B (en) Casting mold and method for manufacturing same
JP6070593B2 (en) Mold for resin injection molding and manufacturing method of resin molded product
KR101165396B1 (en) Forming method of nano structure using the metal nano ring pattern
JP5420071B2 (en) Selective deposition of metals on plastic substrates.
JP6135527B2 (en) Resin molded body for plating
JP2008169403A (en) Method for manufacturing plated resin product, and resin-molded article to be plated with the method
US8232205B2 (en) Methods of manufacturing a honeycomb extrusion die
EP1926358A1 (en) Molding circuit component and process for producing the same
JP2018502509A (en) Metal shell for communication equipment
CN109072439B (en) Resin substrate with coating, method for producing same, and method for forming coating
JP2009256164A (en) Metal mask and method for manufacturing the same, and glass molding die and method for manufacturing the same
KR100903003B1 (en) A Method of Making Functional Material and Particles/Powder Made By Using It
CN106222659B (en) Continuous engraving method for metal material belt
KR101322994B1 (en) Manufacturing method of intenna
KR101010943B1 (en) A laser planting method for chracter pad
CN105694657A (en) Electroplating protection glue and electroplating method of workpiece
JP2003073844A (en) Electroless plating method
JP2005200677A (en) Method of producing metal particulate
JP2016160461A (en) Manufacturing method of molded article for vehicle, and molded article for vehicle
KR101106694B1 (en) Metal nono ring pattern and forming method of the same
CN113459431B (en) Injection molding die
JP5120839B2 (en) Fine hole machining method
JP2017148975A (en) Molding die for fuel cell rubber gasket, and method for manufacturing the same, and method for regenerating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6070593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150