JP6068058B2 - Magnetic contactor - Google Patents

Magnetic contactor Download PDF

Info

Publication number
JP6068058B2
JP6068058B2 JP2012189281A JP2012189281A JP6068058B2 JP 6068058 B2 JP6068058 B2 JP 6068058B2 JP 2012189281 A JP2012189281 A JP 2012189281A JP 2012189281 A JP2012189281 A JP 2012189281A JP 6068058 B2 JP6068058 B2 JP 6068058B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
pair
contacts
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012189281A
Other languages
Japanese (ja)
Other versions
JP2014049208A (en
Inventor
晋 栗原
晋 栗原
工藤 高裕
高裕 工藤
晃 森田
晃 森田
貴裕 田口
貴裕 田口
Original Assignee
富士電機株式会社
富士電機機器制御株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 富士電機機器制御株式会社 filed Critical 富士電機株式会社
Priority to JP2012189281A priority Critical patent/JP6068058B2/en
Publication of JP2014049208A publication Critical patent/JP2014049208A/en
Application granted granted Critical
Publication of JP6068058B2 publication Critical patent/JP6068058B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気回路の開閉器に関し、特に電磁石を用いて一対の接点の開閉を制御する電磁接触器に関する。   The present invention relates to an electrical circuit switch, and more particularly to an electromagnetic contactor that controls opening and closing of a pair of contacts using an electromagnet.

特許文献1には、電磁開閉器に好適な封止接点装置が開示されている。特許文献1に開示された封止接点装置は封止容器内に接点機構を有している。接点機構は、対向配置された一対の接点を有している。封止接点装置は、この一対の接点の接離を制御して高電流を通電したり遮断したりできる。   Patent Document 1 discloses a sealed contact device suitable for an electromagnetic switch. The sealed contact device disclosed in Patent Document 1 has a contact mechanism in a sealed container. The contact mechanism has a pair of contacts arranged opposite to each other. The sealed contact device can turn on and off a high current by controlling the contact and separation of the pair of contacts.

特開平9−259728号公報JP-A-9-259728

しかしながら、当該封止容器は不透明であるため、封止容器を封止接点装置から取り除かない限り、封止容器内に配置された接点機構を外部から視認することができない。封止接点装置の稼働中に封止容器を取り除くことは極めて困難であるため、封止接点装置の稼働中に接点機構の導通/非導通状態は目視で確認し難い。このため、封止接点装置を導通状態に制御しているにも関わらず、封止接点装置に接続された電気回路に電流が流れない場合、接点機構が動作していないのか、あるいは接点機構は動作しているものの一対の接点が十分に接触していないのか、などの接点機構の状態を確認できないという問題がある。
そこで、本発明は上記の課題に鑑みてなされたものであり、本発明の目的は、接点を目視することができない場合であっても、接点の導通を検出することができる電磁接触器を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide an electromagnetic contactor capable of detecting the continuity of contacts even when the contacts cannot be visually observed. To do. However, since the sealing container is opaque, the contact mechanism disposed in the sealing container cannot be visually recognized from the outside unless the sealing container is removed from the sealing contact device. Since it is extremely difficult to remove the sealing container during the operation of the sealed contact device, it is difficult to visually confirm the conductive / non-conductive state of the contact mechanism during the operation of the sealed contact device. For this reason, if the current does not flow through the electrical circuit connected to the sealed contact device even though the sealed contact device is controlled to be in a conductive state, the contact mechanism is not operating or the contact mechanism is There is a problem that the state of the contact mechanism, such as whether the pair of contacts that are operating is not sufficiently in contact, cannot be confirmed. However, since the sealing container is opaque, the contact mechanism disposed in the sealing container cannot be visually recognized from the outside unless the sealing container is removed from the sealing contact device. Since it is extremely difficult to remove the sealing container during the operation of The sealed contact device, it is difficult to visually confirm the conductive / non-conductive state of the contact mechanism during the operation of the sealed contact device. For this reason, if the current does not flow through the electrical circuit connected to the sealed contact device even though the sealed contact device is controlled to be in a conductive state, the contact mechanism is not operating or the contact mechanism is There is a problem that the state of the contact mechanism, such as whether the pair of contacts that are operating is not sufficiently in contact, cannot be confirmed.
Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide an electromagnetic contactor capable of detecting contact continuity even when the contact cannot be visually observed. There is to do. Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide an electromagnetic contactor capable of detecting contact continuity even when the contact cannot be visually observed. There is to do.

本発明の一態様による電磁接触器は、接離可能に対向配置された一対の接点と、前記一対の接点の接離を制御する電磁石のコイルと、前記コイルに直列に接続され、前記コイルに供給する電流を制御するスイッチング素子と、前記スイッチング素子の端子間電圧を検出する電圧検出回路とを有することを特徴とする。
また、本発明の一態様による電磁接触器は、前記端子間電圧に基づいて前記一対の接点の動作状態を表示する表示部を有し得る。

また、前記電圧検出回路は、前記一対の接点が接触することに基づいて発生する前記端子間電圧に生じる変極点を検出し得る。 Further, the voltage detection circuit can detect a polarization point generated in the voltage between terminals generated based on the contact of the pair of contacts.
また、前記電圧検出回路は、前記一対の接点が離間状態から接触状態に移行を開始してから所定期間内に前記変極点が生じるか否かを検出し得る。 Further, the voltage detection circuit can detect whether or not the pole change point occurs within a predetermined period after the pair of contacts starts shifting from the separated state to the contact state. An electromagnetic contactor according to an aspect of the present invention includes a pair of contacts that are arranged so as to be capable of contacting and separating, a coil of an electromagnet that controls contact and separation of the pair of contacts, and the coil connected in series to the coil. It has a switching element for controlling a current to be supplied, and a voltage detection circuit for detecting a voltage between terminals of the switching element. An electromagnetic contactor according to an aspect of the present invention includes a pair of contacts that are arranged so as to be capable of contacting and separating, a coil of an electromagnet that controls contact and separation of the pair of contacts, and the coil connected in series to the coil. It has a switching element for controlling a current to be supplied, and a voltage detection circuit for detecting a voltage between terminals of the switching element.
Moreover, the electromagnetic contactor by 1 aspect of this invention can have a display part which displays the operation state of a pair of said contact based on the said voltage between terminals. Moreover, the electromagnetic contactor by 1 aspect of this invention can have a display part which displays the operation state of a pair of said contact based on the said voltage between terminals.
The voltage detection circuit may detect an inflection point generated in the inter-terminal voltage generated based on the contact of the pair of contacts. The voltage detection circuit may detect an inflection point generated in the inter-terminal voltage generated based on the contact of the pair of contacts.
In addition, the voltage detection circuit can detect whether or not the inflection point is generated within a predetermined period after the pair of contacts starts transition from the separated state to the contact state. In addition, the voltage detection circuit can detect whether or not the inflection point is generated within a predetermined period after the pair of contacts starts transition from the separated state to the contact state.

また、前記電圧検出回路は、前記端子間電圧に重畳するサージ電圧を除去するサージ電圧除去回路と、前記サージ電圧除去回路が出力した出力電圧に重畳する高周波ノイズ信号を除去する高周波ノイズ除去回路と、前記高周波ノイズ除去回路が出力した出力電圧の電圧レベルを増幅する増幅回路と、前記増幅回路が出力した出力電圧を微分する微分回路と、前記微分回路が出力した出力電圧と、所定の閾値電圧とを比較する比較回路とを備え得る。   The voltage detection circuit includes a surge voltage removal circuit that removes a surge voltage superimposed on the inter-terminal voltage, and a high-frequency noise removal circuit that removes a high-frequency noise signal superimposed on the output voltage output by the surge voltage removal circuit; An amplification circuit that amplifies the voltage level of the output voltage output from the high-frequency noise removal circuit, a differentiation circuit that differentiates the output voltage output from the amplification circuit, an output voltage output from the differentiation circuit, and a predetermined threshold voltage And a comparison circuit for comparing.

また、本発明の一態様による電磁接触器は、前記一対の接点を収容する不透明な収容ケースをさらに備え得る。
また、前記一対の接点の一方は、電流路に介挿され、前記収ケース内に所定間隔を保って固定配置された一対の固定接触子であり、前記一対の接点の他方は、前記一対の固定接触子に対して接離可能に配設された可動接触子であり得る。
The electromagnetic contactor according to an aspect of the present invention may further include an opaque housing case that houses the pair of contacts.
Further, the pair of one contact, inserted in a current path, wherein a fixedly arranged pair of fixed contacts with a predetermined interval in the yield capacity case, the other of the pair of contacts, said pair It may be a movable contact arranged so as to be able to contact and separate from the fixed contact. Further, the pair of one contact, inserted in a current path, wherein a fixedly arranged pair of fixed contacts with a predetermined interval in the yield capacity case, the other of the pair of contacts, said pair It may be a movable contact arranged so as to be able to contact and separate from the fixed contact.

本発明によれば、接点を目視することができない場合であっても、接点の導通を検出することができる。 According to the present invention, contact continuity can be detected even when the contact cannot be visually observed.

本発明の一実施の形態による電磁接触器1の概略構成の断面図である。 It is sectional drawing of schematic structure of the electromagnetic contactor 1 by one embodiment of this invention. 本発明の一実施の形態による電磁接触器1の回路構成を示す図である。 It is a figure which shows the circuit structure of the electromagnetic contactor 1 by one embodiment of this invention. 本発明の一実施の形態による電磁接触器1に備えられたスイッチング素子16 のソースドレイン間電圧Vdsの実測波形である。 It is an actual measurement waveform of source-drain voltage Vds of the switching element 16 provided in the electromagnetic contactor 1 by one Embodiment of this invention. 本発明の一実施の形態による電磁接触器1に備えられた電圧検出回路17の回 路ブロック図である。 It is a circuit block diagram of the voltage detection circuit 17 with which the electromagnetic contactor 1 by one embodiment of this invention was equipped. 本発明の一実施の形態による電磁接触器1に備えられた電圧検出回路17の回 路構成の一例を示す図である。 It is a figure which shows an example of the circuit structure of the voltage detection circuit 17 with which the electromagnetic contactor 1 by one embodiment of this invention was equipped. 本発明の一実施の形態による電磁接触器1に備えられた電圧検出回路17のシ ミュレーション動作波形を示す図である。 It is a figure which shows the simulation operation | movement waveform of the voltage detection circuit 17 with which the electromagnetic contactor 1 by one embodiment of this invention was equipped.

本発明の一実施の形態による電磁接触器について図1から図6を用いて説明する。まず、本実施の形態による電磁接触器1の概略構成について図1を用いて説明する。図1は、本実施の形態による電磁接触器1の断面図である。本実施の形態による電磁接触器1は直流及び交流のいずれにも適用できる。図1に示すように、電磁接触器1は外装ケース(収納ケース)20を有している。外装ケース20は例えば不透明な合成樹脂で形成されている。このため、外装ケース20内に配設された一対の接点33(詳細は後述)は外部から視認できないようになっている。外装ケース20は、下端面が開放された有底筒体20aと、有底筒体20aの下端面を閉塞する底板20bとで構成されている。   An electromagnetic contactor according to an embodiment of the present invention will be described with reference to FIGS. First, a schematic configuration of the electromagnetic contactor 1 according to the present embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view of an electromagnetic contactor 1 according to this embodiment. The electromagnetic contactor 1 according to the present embodiment can be applied to both direct current and alternating current. As shown in FIG. 1, the magnetic contactor 1 has an exterior case (storage case) 20. The outer case 20 is made of, for example, an opaque synthetic resin. For this reason, a pair of contacts 33 (details will be described later) disposed in the exterior case 20 are not visible from the outside. The exterior case 20 includes a bottomed cylindrical body 20a whose lower end surface is opened and a bottom plate 20b that closes the lower end surface of the bottomed cylindrical body 20a.

外装ケース20内には、接点機構を配置した接点装置2と、接点装置2を駆動する電磁石装置としての電磁石ユニット3とが収納されている。電磁石ユニット3は底板20b上に配置され、接点装置2は電磁石ユニット3上に配置されている。接点装置2及び電磁石ユニット3は、外装ケース20内に直列に収納されている。接点装置2は、接点収納ケース4を有している。接点収納ケース4は、セラミックス、合成樹脂等で形成されて下端を開放した桶状体4aと、桶状体4aの開放端面に密着固定された金属製の接合部材4bと、桶状体4aの側面を覆う金属筒体4cとで構成されている。接合部材4bは、電磁石ユニット3の上部磁気ヨーク22の上面にロー付け又は溶接等によって気密状態で固定されている。   In the exterior case 20, a contact device 2 having a contact mechanism and an electromagnet unit 3 as an electromagnet device for driving the contact device 2 are accommodated. The electromagnet unit 3 is disposed on the bottom plate 20 b, and the contact device 2 is disposed on the electromagnet unit 3. The contact device 2 and the electromagnet unit 3 are housed in series in the outer case 20. The contact device 2 has a contact storage case 4. The contact storage case 4 is formed of ceramics, synthetic resin, or the like, and has a bowl-like body 4a whose lower end is opened, a metal joint member 4b that is closely fixed to an open end surface of the bowl-like body 4a, and a bowl-like body 4a. It is comprised with the metal cylinder 4c which covers a side surface. The joining member 4b is fixed in an airtight state to the upper surface of the upper magnetic yoke 22 of the electromagnet unit 3 by brazing or welding.

桶状体4aの上面には、長手方向に所定間隔を保って断面円形の貫通孔24a,24bが設けられている。貫通孔24a,24b内に例えば銅製の一対の固定接触子6a,6bが挿通されている。一対の固定接触子6a,6bは貫通孔24a,24bに接着剤等によって固定されている。固定接触子6a,6bのそれぞれは、上部側の大径頭部7と大径頭部7と同軸的に連接された下部側の小径円柱部8とで構成されている。   On the upper surface of the bowl-shaped body 4a, through holes 24a and 24b having a circular cross section are provided with a predetermined interval in the longitudinal direction. A pair of, for example, copper fixed contacts 6a and 6b are inserted into the through holes 24a and 24b. The pair of fixed contacts 6a and 6b are fixed to the through holes 24a and 24b with an adhesive or the like. Each of the fixed contacts 6a and 6b includes an upper-side large-diameter head 7 and a lower-side small-diameter cylindrical portion 8 that is coaxially connected to the large-diameter head 7.

固定接触子6a,6bは、小径円柱部8を貫通孔24a,24b内に挿通した状態で桶状体4aに接着剤等によって固定されている。固定接触子6a,6bは、小径円柱部8によって貫通孔24a,24bを密封するようになっている。また、接点装置2は、固定接触子6a,6bの小径円柱部8の下端面に比較的狭い所定のギャップを隔てて対向配置された可動接触子11を有している。可動接触子11は小径円柱部8の下端面に対して接離可能に対向配置されている。可動接触子11は接触子ホルダ13に接触スプリング14によって上方に付勢されて装着されている。接触子ホルダ13は、後述する電磁石ユニット3の可動プランジャ25に連結されて上下方向に駆動される。固定接触子6a,6bと可動接触子11とにより、接離可能、すなわち接触状態及び離間状態のいずれか一方の状態を取り得る一対の接点33が構成されている。例えば一対の接点33の一方は固定接触子6a,6bであり、他方は可動接触子11である。
固定接触子6a,6bの大径頭部7には外部接続端子板15a,15bがビス止めされている。 External connection terminal plates 15a and 15b are screwed to the large diameter heads 7 of the fixed contacts 6a and 6b. The fixed contacts 6a and 6b are fixed to the flange 4a with an adhesive or the like with the small-diameter cylindrical portion 8 inserted through the through holes 24a and 24b. The fixed contacts 6 a and 6 b are configured to seal the through holes 24 a and 24 b with the small diameter cylindrical portion 8. Further, the contact device 2 has a movable contact 11 that is disposed to face the lower end surface of the small diameter cylindrical portion 8 of the fixed contacts 6a and 6b with a relatively narrow predetermined gap. The movable contact 11 is disposed so as to face and separate from the lower end surface of the small-diameter cylindrical portion 8. The movable contact 11 is attached to the contact holder 13 by being biased upward by a contact spring 14. The contact holder 13 is connected to a movable plunger 25 of the electromagnet unit 3 described later and is driven in the vertical direction. The fixed contacts 6a and 6b and the movable contact 11 constitute a pair of cont The fixed contacts 6a and 6b are fixed to the flange 4a with an adhesive or the like with the small-diameter cylindrical portion 8 inserted through the through holes 24a and 24b. The fixed contacts 6 a and 6 b are configured to seal the through holes 24 a and 24 b with the small diameter cylindrical portion 8. Further, the contact device 2 has a movable contact 11 that is disposed to face the lower end surface of the small diameter cylindrical portion 8 of the fixed contacts 6a and 6b with a relatively narrow predetermined gap. The movable contact 11 is disposed so as to face and separate from the lower end surface of the small-diameter cylindrical portion 8. The movable contact 11 is attached to the contact holder 13 by being biased upward by a contact spring 14 The contact holder 13 is connected to a movable flange 25 of the electromagnet unit 3 described later and is driven in the vertical direction. The fixed contacts 6a and 6b and the movable contact 11 constitute a pair of cont acts 33 that can be brought into contact with and separated from each other, that is, can take either a contact state or a separated state. For example, one of the pair of contacts 33 is the fixed contacts 6 a and 6 b and the other is the movable contact 11. acts 33 that can be brought into contact with and separated from each other, that is, can take either a contact state or a separated state. For example, one of the pair of contacts 33 is the fixed contacts 6 a and 6 b and the other is the movable contact 11.
External connection terminal plates 15a and 15b are screwed to the large-diameter heads 7 of the fixed contacts 6a and 6b. External connection terminal plates 15a and 15b are screwed to the large-diameter heads 7 of the fixed contacts 6a and 6b.

電磁石ユニット3は、側面から見てU字形状の磁気ヨーク21を有している。磁気ヨーク21の底板部21aの中央部には、下端を開放した円筒部21bが形成されている。磁気ヨーク21の上面側は上部磁気ヨーク22によって連接されている。
磁気ヨーク21の円筒部21bの外周面には励磁コイル(電磁石のコイル)23を巻装したコイルホルダ32が装着されている。 A coil holder 32 around which an exciting coil (electromagnet coil) 23 is wound is mounted on the outer peripheral surface of the cylindrical portion 21b of the magnetic yoke 21. 円筒部21bの内周面には可動プランジャ25を摺動可能に内装した有底円筒状のキャップ26が配設されている。 A bottomed cylindrical cap 26 in which a movable plunger 25 is slidably mounted is arranged on the inner peripheral surface of the cylindrical portion 21b. キャップ26の底面には、可動プランジャ25の底面と接触して可動プランジャ25の下降時の衝撃を吸収するゴム座27が配設されている。 On the bottom surface of the cap 26, a rubber seat 27 that comes into contact with the bottom surface of the movable plunger 25 and absorbs the impact when the movable plunger 25 is lowered is arranged. The electromagnet unit 3 has a U-shaped magnetic yoke 21 as viewed from the side. A cylindrical portion 21 b having an open lower end is formed at the center of the bottom plate portion 21 a of the magnetic yoke 21. The upper surface side of the magnetic yoke 21 is connected by the upper magnetic yoke 22. The electromagnet unit 3 has a U-shaped magnetic yoke 21 as viewed from the side. A cylindrical portion 21 b having an open lower end is formed at the center of the bottom plate portion 21 a of the magnetic yoke 21. The upper surface side. of the magnetic yoke 21 is connected by the upper magnetic yoke 22.
A coil holder 32 around which an exciting coil (electromagnet coil) 23 is wound is mounted on the outer peripheral surface of the cylindrical portion 21 b of the magnetic yoke 21. A cylindrical cap 26 with a bottom having a movable plunger 25 slidably mounted therein is disposed on the inner peripheral surface of the cylindrical portion 21b. A rubber seat 27 that contacts the bottom surface of the movable plunger 25 and absorbs an impact when the movable plunger 25 descends is disposed on the bottom surface of the cap 26. A coil holder 32 around which an exciting coil (electromagnet coil) 23 is wound is mounted on the outer peripheral surface of the cylindrical portion 21 b of the magnetic yoke 21. A cylindrical cap 26 with a bottom having a movable waveguide 25 slidably mounted therein Is disposed on the inner peripheral surface of the cylindrical portion 21b. A rubber seat 27 that contacts the bottom surface of the movable magnet 25 and absorbs an impact when the movable coil 25 descends is disposed on the bottom surface of the cap 26.

可動プランジャ25の中心部には連結軸28が嵌合されている。連結軸28の頭部は上部磁気ヨーク22に形成された貫通孔29を通じて上方に延長され、接触子ホルダ13に連結されている。可動プランジャ25の連結軸28の周囲にはスプリング挿通孔30が形成されている。スプリング挿通孔30と上部磁気ヨーク22との間に可動プランジャ25を下方に付勢する復帰スプリング31が装着されている。   A connecting shaft 28 is fitted in the center of the movable plunger 25. The head of the connecting shaft 28 extends upward through a through hole 29 formed in the upper magnetic yoke 22 and is connected to the contact holder 13. A spring insertion hole 30 is formed around the connecting shaft 28 of the movable plunger 25. A return spring 31 that biases the movable plunger 25 downward is mounted between the spring insertion hole 30 and the upper magnetic yoke 22.

桶状体4a、接合部材4b及び金属筒体4cで構成される接点収納ケース4、上部磁気ヨーク22及びキャップ26で構成される密封空間内に水素ガス、窒素ガス、水素及び窒素の混合ガス、空気、SF6等のアーク消弧ガスが封入されている。
電磁接触器1は、例えば外部接続端子板15a,15b上に配置された制御回路基板9を有している。 The magnetic contactor 1 has, for example, a control circuit board 9 arranged on the external connection terminal plates 15a and 15b. 制御回路基板9には、電磁石ユニット3を制御する電磁石コイル制御回路34(図1では不図示)を有している。 The control circuit board 9 has an electromagnet coil control circuit 34 (not shown in FIG. 1) that controls the electromagnet unit 3. 制御回路基板9は、外部接続端子板15a,15b上に設けられた基板ケース35内に収納されている。 The control circuit board 9 is housed in a board case 35 provided on the external connection terminal boards 15a and 15b. Hydrogen gas, nitrogen gas, a mixed gas of hydrogen and nitrogen in a sealed space constituted by the contact housing case 4 constituted by the bowl-shaped body 4a, the joining member 4b and the metal cylinder 4c, the upper magnetic yoke 22 and the cap 26, An arc extinguishing gas such as air or SF6 is enclosed. Hydrogen gas, nitrogen gas, a mixed gas of hydrogen and nitrogen in a sealed space composed by the contact housing case 4 composed by the bowl-shaped body 4a, the joining member 4b and the metal cylinder 4c, the upper magnetic yoke 22 and the cap 26, An arc extinguishing gas such as air or SF6 is enclosed.
The magnetic contactor 1 has a control circuit board 9 disposed on, for example, the external connection terminal plates 15a and 15b. The control circuit board 9 has an electromagnet coil control circuit 34 (not shown in FIG. 1) for controlling the electromagnet unit 3. The control circuit board 9 is housed in a board case 35 provided on the external connection terminal plates 15a and 15b. The magnetic contactor 1 has a control circuit board 9 disposed on, for example, the external connection terminal plates 15a and 15b. The control circuit board 9 has an electromagnet coil control circuit 34 (not shown in FIG. 1) for controlling the electromagnet unit 3. The control circuit board 9 is housed in a board case 35 provided on the external connection terminal plates 15a and 15b.

次に、電磁接触器1の回路構成について図2から図6を用いて説明する。図2は、電磁接触器1の回路構成の要部を電磁接触器1に接続された主回路基板9とともに示している。図2に示すように、電磁接触器1に設けられた制御回路基板9は、電磁石コイル制御回路34と電圧検出回路17とを有している。電磁石コイル制御回路34は、電磁石ユニット3に備えられた励磁コイル23に供給する電流を制御するスイッチング素子16と、スイッチング素子16のオン/オフを制御するスイッチング素子駆動回路18とを有している。スイッチング素子駆動回路18は、パルス幅変調(pulse width modulation:PWM)回路(不図示)を有している。スイッチング素子駆動回路18は、励磁コイル3に所定量の電流を流すために、PWM駆動によりスイッチング素子16のオン状態の時間とオフ状態の時間とを調整するようになっている。   Next, the circuit configuration of the magnetic contactor 1 will be described with reference to FIGS. FIG. 2 shows a main part of the circuit configuration of the magnetic contactor 1 together with the main circuit board 9 connected to the electromagnetic contactor 1. As shown in FIG. 2, the control circuit board 9 provided in the electromagnetic contactor 1 has an electromagnet coil control circuit 34 and a voltage detection circuit 17. The electromagnet coil control circuit 34 includes a switching element 16 that controls the current supplied to the exciting coil 23 provided in the electromagnet unit 3 and a switching element drive circuit 18 that controls on / off of the switching element 16. . The switching element drive circuit 18 has a pulse width modulation (PWM) circuit (not shown). The switching element driving circuit 18 adjusts the ON state time and the OFF state time of the switching element 16 by PWM driving in order to flow a predetermined amount of current through the exciting coil 3.

スイッチング素子16は例えばNチャネル型の電界効果トランジスタ(Field Effect Transistor:FET)で構成されている。スイッチング素子16のドレイン端子Dは励磁コイル23の一端子に接続され、ソース端子Sはグラウンドに接続(接地)されている。スイッチング素子16のゲート端子Gは、PWM駆動信号が出力されるスイッチング素子駆動回路18の信号出力端子(不図示)に接続されている。励磁コイル23の他端子は電磁接触器1に設けられた電源回路10に接続されている。励磁コイル23及びスイッチング素子16は、電源回路10とグラウンド間に直列に接続されている。   The switching element 16 is composed of, for example, an N-channel field effect transistor (FET). The drain terminal D of the switching element 16 is connected to one terminal of the exciting coil 23, and the source terminal S is connected (grounded) to the ground. The gate terminal G of the switching element 16 is connected to a signal output terminal (not shown) of the switching element drive circuit 18 that outputs a PWM drive signal. The other terminal of the exciting coil 23 is connected to the power supply circuit 10 provided in the electromagnetic contactor 1. The exciting coil 23 and the switching element 16 are connected in series between the power supply circuit 10 and the ground.

電圧検出回路17は入力端子17a,17bを有している。入力端子17aにはドレイン端子Dが接続され、入力端子17bにはソース端子Sが接続されている。電圧検出回路17は、スイッチング素子16の端子間電圧、すなわちソース端子Sとドレイン端子Dとの間のソースドレイン間電圧Vdsを検出するようになっている。詳細は後述するが、電圧検出回路17は特に、ソースドレイン間電圧Vdsに変極点が生じたか否かを検出するようになっている。
電源回路10は、励磁コイル23に印加される電圧や供給される電流の供給源である。 The power supply circuit 10 is a supply source of the voltage applied to the exciting coil 23 and the supplied current. 電源回路10は、例えばDC−DCコンバータ回路(不図示)を有し、励磁コイル23が所望の磁場を発生するために必要な電圧や電流を主回路5の電源電圧VDDから生成するようになっている。 The power supply circuit 10 has, for example, a DC-DC converter circuit (not shown), and a voltage or current required for the exciting coil 23 to generate a desired magnetic field is generated from the power supply voltage VDD of the main circuit 5. ing. The voltage detection circuit 17 has input terminals 17a and 17b. A drain terminal D is connected to the input terminal 17a, and a source terminal S is connected to the input terminal 17b. The voltage detection circuit 17 detects the inter-terminal voltage of the switching element 16, that is, the source-drain voltage Vds between the source terminal S and the drain terminal D. As will be described in detail later, the voltage detection circuit 17 particularly detects whether or not an inflection point has occurred in the source-drain voltage Vds. The voltage detection circuit 17 has input terminals 17a and 17b. A drain terminal D is connected to the input terminal 17a, and a source terminal S is connected to the input terminal 17b. The voltage detection circuit 17 detects the inter-terminal voltage of the switching element 16, that is, the source-drain voltage Vds between the source terminal S and the drain terminal D. As will be described in detail later, the voltage detection circuit 17 particularly detects whether or not an inflection point has occurred in the source -drain voltage Vds.
The power supply circuit 10 is a supply source of a voltage applied to the exciting coil 23 and a supplied current. The power supply circuit 10 includes, for example, a DC-DC converter circuit (not shown), and generates a voltage and a current necessary for the exciting coil 23 to generate a desired magnetic field from the power supply voltage VDD of the main circuit 5. ing. The power supply circuit 10 is a supply source of a voltage applied to the exciting coil 23 and a supplied current. The power supply circuit 10 includes, for example, a DC-DC converter circuit (not shown), and generates a voltage and a current necessary for the exciting coil 23 to generate a desired magnetic field from the power supply voltage VDD of the main circuit 5. ing.

また、主回路5は、電磁接触器1によって開閉が制御される負荷5cと、一対の接点33と、外部接続端子板15a,15bと、負荷5cに印加される電圧や供給される電流の供給源となる電源回路5dとを有している。外部接続端子板15aは電源回路5dの出力端子5aに接続され、外部接続端子板15bは負荷5cの入力端子5bに接続されている。電源回路5dは、例えばDC−DCコンバータ回路(不図示)を有し、電源回路10に印加されるのと同じ電源電圧VDDから負荷5cに必要な電圧や電流を生成するようになっている。一対の接点33が接触状態(閉状態)になると、負荷5cの入力端子5bは、外部接続端子板15b、一対の接点33及び外部接続端子板15aを介して電源回路5dの出力端子5aに接続される。これにより、電磁接触器1は、負荷5cに電圧を印加したり電流を供給したりする電力供給状態となる。一方、一対の接点33が離間状態(開状態)になると、負荷5cは一対の接点33によって電源回路5dから切断される。これにより、電磁接触器1は、負荷5cに電圧を印加したり電流を供給したりしない電力供給停止状態となる。   The main circuit 5 supplies a load 5c whose opening and closing is controlled by the electromagnetic contactor 1, a pair of contacts 33, external connection terminal plates 15a and 15b, and a voltage applied to the load 5c and a supplied current. And a power supply circuit 5d serving as a source. The external connection terminal plate 15a is connected to the output terminal 5a of the power supply circuit 5d, and the external connection terminal plate 15b is connected to the input terminal 5b of the load 5c. The power supply circuit 5d includes, for example, a DC-DC converter circuit (not shown), and generates a voltage and current necessary for the load 5c from the same power supply voltage VDD applied to the power supply circuit 10. When the pair of contacts 33 is in a contact state (closed state), the input terminal 5b of the load 5c is connected to the output terminal 5a of the power supply circuit 5d via the external connection terminal plate 15b, the pair of contacts 33 and the external connection terminal plate 15a. Is done. Thereby, the electromagnetic contactor 1 will be in the electric power supply state which applies a voltage to the load 5c, or supplies an electric current. On the other hand, when the pair of contacts 33 are separated (opened), the load 5 c is disconnected from the power supply circuit 5 d by the pair of contacts 33. Thereby, the magnetic contactor 1 will be in the electric power supply stop state which does not apply a voltage or supply an electric current to the load 5c.

次に、電圧検出回路17が検出するソースドレイン間電圧Vdsについて図2を参照しつつ図3を用いて説明する。図3は、スイッチング素子16がオフ状態からオン状態に切り替わる際のソースドレイン間電圧Vdsの実測波形を電圧の上昇途中から示している。図中上段には、負荷5cの入力端子5bとグラウンドとの間の端子電圧V5bの電圧波形が示され、図中下段には、ソースドレイン間電圧Vdsの電圧波形が示されている。図中縦軸は電圧を表し、横軸は時間を表し、図中左から右に向かって時間の経過を示している。端子電圧V5bにおける縦軸の電圧スケールは、1V/divであり、ソースドレイン間電圧Vdsにおける縦軸の電圧波形の電圧スケールは0.1V/divであり、両電圧波形における横軸の時間スケールは10msec/divである。   Next, the source-drain voltage Vds detected by the voltage detection circuit 17 will be described with reference to FIG. 3 and FIG. FIG. 3 shows the measured waveform of the source-drain voltage Vds when the switching element 16 is switched from the off state to the on state, from the middle of the voltage rise. In the upper part of the figure, the voltage waveform of the terminal voltage V5b between the input terminal 5b of the load 5c and the ground is shown, and in the lower part of the figure, the voltage waveform of the source-drain voltage Vds is shown. In the figure, the vertical axis represents voltage, the horizontal axis represents time, and the time has elapsed from left to right in the figure. The voltage scale of the vertical axis in the terminal voltage V5b is 1 V / div, the voltage scale of the voltage waveform of the vertical axis in the source-drain voltage Vds is 0.1 V / div, and the time scale of the horizontal axis in both voltage waveforms is 10 msec / div.

スイッチング素子16がオン状態になると、図3に示すように、ソースドレイン間電圧Vdsは上昇する。これにより、励磁コイル23に電流が流れ始め、励磁コイル23に流れる電流の電流値が所定値に到達すると(図中の時刻t)、一対の接点33が離間状態から接触状態に移行して、端子電圧V5bの電圧値は例えば0Vから2.5Vになる。一対の接点33が離間状態から接触状態に移行すると、開放状態にあった、電源回路5dの出力端子5aと負荷5cの入力端子5bとは一対の接点33により短絡される。このため、一対の接続端子5a,5b間のインピーダンスは、相対的に高い値(例えば、無限大と看做せる値)からそれよりも低い値(例えば、0Ωと看做せる値)に変化する。このインピーダンスの変化により、出力端子5aの電圧値は瞬間的に低下する。この瞬間的な電圧降下は、電源電圧VDD、電源回路10の出力電圧及びソースドレイン間電圧Vdsに順次影響し、電源電圧VDD、当該出力電圧及びソースドレイン間電圧Vdsのそれぞれの電圧値が瞬間的に低下する。これにより、図2の図中に仮想円αで囲んで示すように、ソースドレイン間電圧Vdsには、この瞬間的な電圧低下に基づいて生じる変極点が生じる。この変極点は一対の接点33が接触状態となった場合に生じるので、一対の接点33が離間状態から接触状態に移行を開始した後に、この変極点が生じるか否かを電圧検出回路17で検出することにより、一対の接点33の接離状態、すなわち固定接触子6a,6bと可動接触子11とが接触しているか離間しているかを判定することができる。   When the switching element 16 is turned on, the source-drain voltage Vds rises as shown in FIG. As a result, when the current starts to flow through the exciting coil 23 and the current value of the current flowing through the exciting coil 23 reaches a predetermined value (time t in the figure), the pair of contacts 33 shifts from the separated state to the contact state, The voltage value of the terminal voltage V5b is changed from 0V to 2.5V, for example. When the pair of contacts 33 shifts from the separated state to the contact state, the output terminal 5a of the power supply circuit 5d and the input terminal 5b of the load 5c, which are in the open state, are short-circuited by the pair of contacts 33. For this reason, the impedance between the pair of connection terminals 5a and 5b changes from a relatively high value (for example, a value that can be regarded as infinity) to a lower value (for example, a value that can be regarded as 0Ω). . Due to this change in impedance, the voltage value of the output terminal 5a instantaneously decreases. This instantaneous voltage drop sequentially affects the power supply voltage VDD, the output voltage of the power supply circuit 10 and the source-drain voltage Vds, and the voltage values of the power supply voltage VDD, the output voltage, and the source-drain voltage Vds are instantaneous. To drop. As a result, as shown in FIG. 2 surrounded by a virtual circle α, an inflection point is generated in the source-drain voltage Vds based on this instantaneous voltage drop. Since this inflection point is generated when the pair of contacts 33 are in contact, the voltage detection circuit 17 determines whether or not this inflection point occurs after the pair of contacts 33 starts shifting from the separated state to the contact state. By detecting, it is possible to determine whether the pair of contacts 33 are in contact with or separated from each other, that is, whether the fixed contacts 6a and 6b and the movable contact 11 are in contact with each other.

次に、電圧検出回路17の回路構成について図4から図6を用いて説明する。図4は、電圧検出回路17の回路構成のブロック図である。電圧検出回路17は、サージ電圧除去回路41と、高周波ノイズ除去回路43と、増幅回路45と、微分回路47と、比較回路49とを有している。高周波ノイズ除去回路41は、入力されたスイッチング素子16のソースドレイン間電圧Vdsに重畳するサージ電圧を除去し、電圧検出回路17に高電圧が印加されるのを防止するようになっている。高周波ノイズ除去回路43は、サージ電圧除去回路41が出力した出力電圧に重畳する高周波ノイズ信号を除去し、高周波ノイズ信号を変極点として検出してしまうのを防止するようになっている。増幅回路45は、高周波ノイズ除去回路43が出力した出力電圧の電圧レベルを増幅するようになっている。図3に示すように、変極点における電圧変化は50mV程度と電圧変動量が小さいため、電圧検出回路17は、発生した変極点を検出し損ねてしまう可能性がある。このため、電圧検出回路17は、高周波ノイズ除去回路43からの出力電圧を増幅回路45により約20倍に増幅することにより、変極点の検出誤りを防止できるようになっている。微分回路47は増幅回路45が出力した出力電圧を微分して、変極点を抽出するようになっている。比較回路49は、微分回路47が出力した出力電圧と、所定の閾値電圧とを比較して、当該出力電圧が所定の閾値電圧を下回ったらそれまで出力していた電圧とは異なる電圧値の電圧を出力し、その後に当該出力電圧が所定の閾値電圧を越えたら出力電圧の電圧値を元に戻すようになっている。   Next, the circuit configuration of the voltage detection circuit 17 will be described with reference to FIGS. FIG. 4 is a block diagram of the circuit configuration of the voltage detection circuit 17. The voltage detection circuit 17 includes a surge voltage removal circuit 41, a high frequency noise removal circuit 43, an amplification circuit 45, a differentiation circuit 47, and a comparison circuit 49. The high-frequency noise removal circuit 41 removes a surge voltage superimposed on the input source-drain voltage Vds of the switching element 16 and prevents a high voltage from being applied to the voltage detection circuit 17. The high frequency noise removal circuit 43 removes the high frequency noise signal superimposed on the output voltage output from the surge voltage removal circuit 41 to prevent the high frequency noise signal from being detected as an inflection point. The amplifying circuit 45 amplifies the voltage level of the output voltage output from the high frequency noise removing circuit 43. As shown in FIG. 3, since the voltage change at the inflection point is about 50 mV and the voltage fluctuation amount is small, the voltage detection circuit 17 may fail to detect the generated inflection point. For this reason, the voltage detection circuit 17 can amplify the detection error of the inflection point by amplifying the output voltage from the high frequency noise removal circuit 43 by about 20 times by the amplification circuit 45. The differentiating circuit 47 differentiates the output voltage output from the amplifying circuit 45 and extracts the inflection point. The comparison circuit 49 compares the output voltage output from the differentiating circuit 47 with a predetermined threshold voltage, and when the output voltage falls below the predetermined threshold voltage, the voltage having a voltage value different from the voltage output until then. After that, when the output voltage exceeds a predetermined threshold voltage, the voltage value of the output voltage is restored.

次に、電圧検出回路17の具体的な回路構成について図5を用いて説明する。図5は、電圧検出回路17の具体的な回路構成の一例であって、電圧検出回路17の動作シミュレーションに用いた回路図である。図5に示すように、電圧検出回路17に備えられたサージ電圧除去回路41は、ツェナーダイオード41aを有している。ツェナーダイオード41aの陰極は、入力端子17aに接続されている。ツェナーダイオード41aの陽極は、入力端子17b及びグラウンドに接続(接地)されている。当該陰極は、入力端子17aを介してスイッチング素子16のドレイン端子D(不図示)に接続され、当該陽極は入力端子17bを介してスイッチング素子16のソース端子S(不図示)に接続されている。サージ電圧除去回路41は、ツェナーダイオード41aのツェナー電圧以上の印加電圧が入力端子17a,17bに印加されると、当該印加電圧の電圧値をツェナーダイオード41aの順電圧まで低下させる。これにより、サージ電圧除去回路41は、電圧検出回路17に設けられた、サージ電圧除去回路41以外の各回路43〜49に高電圧が印加されるのを防止するようになっている。   Next, a specific circuit configuration of the voltage detection circuit 17 will be described with reference to FIG. FIG. 5 is an example of a specific circuit configuration of the voltage detection circuit 17 and is a circuit diagram used for an operation simulation of the voltage detection circuit 17. As shown in FIG. 5, the surge voltage removal circuit 41 provided in the voltage detection circuit 17 has a Zener diode 41a. The cathode of the Zener diode 41a is connected to the input terminal 17a. The anode of the Zener diode 41a is connected (grounded) to the input terminal 17b and the ground. The cathode is connected to the drain terminal D (not shown) of the switching element 16 via the input terminal 17a, and the anode is connected to the source terminal S (not shown) of the switching element 16 via the input terminal 17b. . When an applied voltage equal to or higher than the Zener voltage of the Zener diode 41a is applied to the input terminals 17a and 17b, the surge voltage removal circuit 41 reduces the voltage value of the applied voltage to the forward voltage of the Zener diode 41a. Thus, the surge voltage removal circuit 41 prevents a high voltage from being applied to the circuits 43 to 49 provided in the voltage detection circuit 17 other than the surge voltage removal circuit 41.

高周波ノイズ除去回路43は、抵抗43aとコンデンサ43bとで構成された低域通過フィルタを有している。抵抗43aの一端子は入力端子17a及びツェナーダイオード41aの陰極に接続され、他端子はコンデンサ43bの一方の電極に接続されている。コンデンサ43bの他方の電極は、入力端子17b、ツェナーダイオード41aの陽極及びグラウンドに接続(接地)されている。抵抗43aの抵抗値とコンデンサ43bの容量値は、当該低域通過フィルタの遮断周波数がソースドレイン間電圧Vdsに生じる変極点の周期の逆数よりも高くなるように設定される。これにより、高周波ノイズ除去回路43は、ソースドレイン間電圧Vdsに生じる変極点を残したまま高周波ノイズのみを除去した電圧を出力することできる。本実施の形態では、高周波ノイズ除去回路43は、受動型低域通過フィルタを有しているが、オペアンプ等を用いた能動型低域通過フィルタを有していてももちろんよい。   The high frequency noise removing circuit 43 has a low-pass filter composed of a resistor 43a and a capacitor 43b. One terminal of the resistor 43a is connected to the input terminal 17a and the cathode of the Zener diode 41a, and the other terminal is connected to one electrode of the capacitor 43b. The other electrode of the capacitor 43b is connected (grounded) to the input terminal 17b, the anode of the Zener diode 41a, and the ground. The resistance value of the resistor 43a and the capacitance value of the capacitor 43b are set so that the cutoff frequency of the low-pass filter is higher than the reciprocal of the period of the inflection point generated in the source-drain voltage Vds. Thereby, the high frequency noise removal circuit 43 can output the voltage from which only the high frequency noise is removed while leaving the inflection point generated in the source-drain voltage Vds. In the present embodiment, the high-frequency noise removal circuit 43 has a passive low-pass filter, but may of course have an active low-pass filter using an operational amplifier or the like.

増幅回路45は、オペアンプ45aと、オペアンプ45aの出力端子OUTとグラウンド間に直列接続された抵抗45b,45cとを有している。抵抗45bの一端子はオペアンプ45aの出力端子OUTに接続され、他端子は抵抗45cの一端子に接続されている。抵抗45cの他端子はグラウンドに接続(接地)されている。オペアンプ45aの非反転入力端子(+)は、高周波ノイズ除去回路43の抵抗43aの他端子及びコンデンサ43bの一方の電極に接続されている。オペアンプ45aの反転入力端子(−)は、抵抗45bの他端子及び抵抗45cの一端子に接続されている。抵抗45b,45cのそれぞれの抵抗値は、オペアンプ45aの増幅度が約20となるように設定される。増幅回路45は、非反転増幅回路として機能し、高周波ノイズ除去回路43から出力された出力電圧の位相を反転せずに増幅して出力するようになっている。   The amplifier circuit 45 includes an operational amplifier 45a and resistors 45b and 45c connected in series between the output terminal OUT of the operational amplifier 45a and the ground. One terminal of the resistor 45b is connected to the output terminal OUT of the operational amplifier 45a, and the other terminal is connected to one terminal of the resistor 45c. The other terminal of the resistor 45c is connected (grounded) to the ground. The non-inverting input terminal (+) of the operational amplifier 45a is connected to the other terminal of the resistor 43a of the high frequency noise removing circuit 43 and one electrode of the capacitor 43b. The inverting input terminal (−) of the operational amplifier 45a is connected to the other terminal of the resistor 45b and one terminal of the resistor 45c. The resistance values of the resistors 45b and 45c are set so that the operational amplifier 45a has an amplification factor of about 20. The amplifier circuit 45 functions as a non-inverting amplifier circuit, and amplifies and outputs the output voltage output from the high-frequency noise removing circuit 43 without inverting the phase.

微分回路47は、コンデンサ47aと抵抗47bとで構成された高域通過フィルタを有している。コンデンサ47aの一方の電極は、増幅回路45のオペアンプ45aの出力端子OUTと抵抗45bの一端子とに接続され、他方の電極は抵抗47bの一端子に接続されている。抵抗47bの他端子は、比較回路49のオペアンプ49a(詳細は後述)の反転入力端子(−)と、閾値電圧生成回路48のツェナーダイオード48b(詳細は後述)の陰極とに接続されている。コンデンサ47aの容量値と抵抗47bの抵抗値は、当該高域通過フィルタの遮断周波数がソースドレイン間電圧Vdsに生じる変極点の周期の逆数よりも低くなるように設定される。これにより、微分回路47は、ソースドレイン間電圧Vdsに生じる変極点の変化、すなわち変極点におけるソースドレイン電圧Vdsの電位変動を喪失せずに出力することができる。本実施の形態では、微分回路47は、受動型高域通過フィルタを有しているが、オペアンプ等を用いた能動型高域通過フィルタを有していてももちろんよい。   The differentiation circuit 47 has a high-pass filter composed of a capacitor 47a and a resistor 47b. One electrode of the capacitor 47a is connected to the output terminal OUT of the operational amplifier 45a of the amplifier circuit 45 and one terminal of the resistor 45b, and the other electrode is connected to one terminal of the resistor 47b. The other terminal of the resistor 47b is connected to an inverting input terminal (−) of an operational amplifier 49a (details will be described later) of the comparison circuit 49 and a cathode of a Zener diode 48b (details will be described later) of the threshold voltage generation circuit 48. The capacitance value of the capacitor 47a and the resistance value of the resistor 47b are set so that the cutoff frequency of the high-pass filter is lower than the reciprocal of the period of the inflection point generated in the source-drain voltage Vds. Thereby, the differentiating circuit 47 can output without losing the change of the inflection point generated in the source-drain voltage Vds, that is, the potential fluctuation of the source / drain voltage Vds at the inflection point. In the present embodiment, the differentiating circuit 47 has a passive high-pass filter, but may of course have an active high-pass filter using an operational amplifier or the like.

電圧検出回路17は、微分回路47の出力バッファとして機能するバッファアンプ67を有している。バッファアンプ67はオペアンプ67aを有している。オペアンプ67aの非反転入力端子(+)は微分回路47のコンデンサ47aの他方の電極及び抵抗47bの一端子に接続されている。オペアンプ67aの反転入力端子(−)と出力端子OUTとは接続されている。バッファアンプ67は、ボルテージフォロワ回路構成を有し、微分回路47から入力した入力電圧を増幅せず(増幅度は1)に出力する。   The voltage detection circuit 17 has a buffer amplifier 67 that functions as an output buffer of the differentiation circuit 47. The buffer amplifier 67 has an operational amplifier 67a. The non-inverting input terminal (+) of the operational amplifier 67a is connected to the other electrode of the capacitor 47a of the differentiation circuit 47 and one terminal of the resistor 47b. The inverting input terminal (−) of the operational amplifier 67a and the output terminal OUT are connected. The buffer amplifier 67 has a voltage follower circuit configuration, and does not amplify the input voltage input from the differentiating circuit 47 (amplification degree is 1).

比較回路49はバッファアンプ67の出力電圧が入力するようになっている。すなわち、微分回路47の出力電圧はバッファアンプ67を介して比較回路49に入力するようになっている。比較回路49はバッファアンプ67の出力電圧の電圧レベルと、閾値電圧生成回路48で生成した閾値電圧の電圧レベルとを比較する。比較回路49は、オペアンプ49aと抵抗49b,49cとを有している。抵抗49bの一端子はバッファアンプ67のオペアンプ67aの反転入力端子(−)及び出力端子OUTに接続され、他端子はオペアンプ49aの非反転入力端子(+)及び抵抗49cの一端子に接続されている。オペアンプ49aの出力端子OUTは抵抗49cの他端子に接続されている。比較回路49は、ヒステリシスコンパレータである。比較回路49は、オペアンプ49aの非反転入力端子(+)に入力する入力電圧の上昇時と下降時とで閾値の電圧レベルが異なるように、閾値にヒステリシスを設けている。これにより、比較回路49は、当該入力電圧に重畳するノイズ信号による誤動作を防止するようになっている。当該ヒステリシスの幅、すなわち入力電圧の上昇時の閾値(閾値電圧の下限値)と、下降時の閾値(閾値電圧の上限値)との差は、抵抗49b,49cの抵抗値で決定され、変極点における微分波形の電圧変動よりも小さくなるように設定される。   The comparison circuit 49 receives the output voltage of the buffer amplifier 67. That is, the output voltage of the differentiation circuit 47 is input to the comparison circuit 49 via the buffer amplifier 67. The comparison circuit 49 compares the voltage level of the output voltage of the buffer amplifier 67 with the voltage level of the threshold voltage generated by the threshold voltage generation circuit 48. The comparison circuit 49 has an operational amplifier 49a and resistors 49b and 49c. One terminal of the resistor 49b is connected to the inverting input terminal (−) and the output terminal OUT of the operational amplifier 67a of the buffer amplifier 67, and the other terminal is connected to the non-inverting input terminal (+) of the operational amplifier 49a and one terminal of the resistor 49c. Yes. The output terminal OUT of the operational amplifier 49a is connected to the other terminal of the resistor 49c. The comparison circuit 49 is a hysteresis comparator. In the comparison circuit 49, hysteresis is provided in the threshold value so that the voltage level of the threshold value differs between when the input voltage input to the non-inverting input terminal (+) of the operational amplifier 49a rises and when it falls. Thereby, the comparison circuit 49 prevents malfunction due to a noise signal superimposed on the input voltage. The width of the hysteresis, that is, the difference between the threshold value when the input voltage increases (the lower limit value of the threshold voltage) and the threshold value when the input voltage decreases (the upper limit value of the threshold voltage) is determined by the resistance values of the resistors 49b and 49c. It is set to be smaller than the voltage fluctuation of the differential waveform at the pole.

電圧検出回路17は、比較回路49に備えられたオペアンプ49aの反転入力端子(−)に入力される閾値電圧を生成する閾値電圧生成回路48を有している。閾値電圧生成回路48は、抵抗48aとツェナーダイオード48bとを有している。抵抗48aの一端子はアナログ用のアナログ電源Va(例えば、12V)の電圧出力端子に接続され、他端子はツェナーダイオード48bの陰極と、微分回路47bの抵抗47bの他端子と、オペアンプ49aの反転入力端子(−)に接続されている。ツェナーダイオード48bの陽極はグラウンドに接続(接地)されている。比較回路49に入力される閾値電圧は、アナログ電源Vaの電圧値を、抵抗48aの抵抗値とツェナーダイオード48bの抵抗値とで抵抗分割した値となる。   The voltage detection circuit 17 includes a threshold voltage generation circuit 48 that generates a threshold voltage input to the inverting input terminal (−) of the operational amplifier 49 a provided in the comparison circuit 49. The threshold voltage generation circuit 48 includes a resistor 48a and a Zener diode 48b. One terminal of the resistor 48a is connected to a voltage output terminal of an analog power supply Va for analog (for example, 12V), and the other terminal is a cathode of a Zener diode 48b, the other terminal of the resistor 47b of the differentiating circuit 47b, and an inversion of the operational amplifier 49a. It is connected to the input terminal (-). The anode of the Zener diode 48b is connected (grounded) to the ground. The threshold voltage input to the comparison circuit 49 is a value obtained by dividing the voltage value of the analog power supply Va by the resistance value of the resistor 48a and the resistance value of the Zener diode 48b.

微分回路47の抵抗47bの他端子は、抵抗48aとツェナーダイオード48bとが接続された接続部に接続されている。このため、微分回路47の出力電圧は全体的に、閾値電圧の電圧レベルにレベルシフトされる。
増幅回路45のオペアンプ45b及びバッファアンプ67のオペアンプ67aの正電源入力端子は、アナログ電源Vaの電圧出力端子に接続され、負電源入力端子はグラウンドに接続(接地)されている。 The positive power input terminal of the operational amplifier 45b of the amplifier circuit 45 and the operational amplifier 67a of the buffer amplifier 67 is connected to the voltage output terminal of the analog power supply Va, and the negative power input terminal is connected (grounded) to the ground. 比較回路49のオペアンプ49aの正電源入力端子は、デジタル用のデジタル電源Vd(例えば、5V)の電圧出力端子に接続され、負電源入力端子はグラウンドに接続(接地)されている。 The positive power input terminal of the operational amplifier 49a of the comparison circuit 49 is connected to the voltage output terminal of the digital power supply Vd (for example, 5V) for digital use, and the negative power supply input terminal is connected (grounded) to the ground. The other terminal of the resistor 47b of the differentiating circuit 47 is connected to a connection portion where the resistor 48a and the Zener diode 48b are connected. For this reason, the output voltage of the differentiating circuit 47 is entirely level-shifted to the threshold voltage level. The other terminal of the resistor 47b of the differentiating circuit 47 is connected to a connection portion where the resistor 48a and the Zener diode 48b are connected. For this reason, the output voltage of the differentiating circuit 47 is entirely level-shifted to the threshold voltage level.
The positive power supply input terminals of the operational amplifier 45b of the amplifier circuit 45 and the operational amplifier 67a of the buffer amplifier 67 are connected to the voltage output terminal of the analog power supply Va, and the negative power supply input terminal is connected (grounded) to the ground. The positive power supply input terminal of the operational amplifier 49a of the comparison circuit 49 is connected to the voltage output terminal of the digital digital power supply Vd (for example, 5V), and the negative power supply input terminal is connected to the ground (grounded). The positive power supply input terminals of the operational amplifier 45b of the amplifier circuit 45 and the operational amplifier 67a of the buffer amplifier 67 are connected to the voltage output terminal of the analog power supply Va, and the negative power supply input terminal is connected ( grounded) to the ground. The positive power supply input terminal of the operational amplifier 49a of the comparison circuit 49 is connected to the voltage output terminal of the digital digital power supply Vd (for example, 5V), and the negative power supply input terminal is connected to the ground (grounded).

図示は省略するが、電圧検出回路17は例えば、比較回路49の出力電圧が入力する発光素子駆動回路と、当該発光素子駆動回路で駆動され、外部から発光状態を視認できる発光素子とを有している。当該発光素子駆動回路は、一対の接点33が離間状態から接触状態に移行開始した時刻、すなわちスイッチング素子駆動回路18がスイッチング素子16のゲート端子Gにゲート信号の入力を開始してから所定時間内に当該出力電圧の電圧レベルに変化がないと、発光素子を点灯して一対の接点33に不具合が生じていることを電磁接触器1の使用者に報知するようになっている。このように、電圧検出回路17は、比較回路49の出力電圧を一対の接点33に不具合が生じているか否かを検出する検出信号として用いるようになっている。   Although not shown, the voltage detection circuit 17 includes, for example, a light emitting element driving circuit to which the output voltage of the comparison circuit 49 is input, and a light emitting element that is driven by the light emitting element driving circuit and whose light emission state can be visually recognized from the outside. ing. The light-emitting element driving circuit has a predetermined time after the switching element driving circuit 18 starts to input a gate signal to the gate terminal G of the switching element 16 when the pair of contacts 33 starts to shift from the separated state to the contact state. If the voltage level of the output voltage does not change, the light emitting element is turned on to notify the user of the electromagnetic contactor 1 that a problem has occurred in the pair of contacts 33. As described above, the voltage detection circuit 17 uses the output voltage of the comparison circuit 49 as a detection signal for detecting whether or not a failure occurs in the pair of contacts 33.

図5に示す、回路61は、スイッチング素子16のソースドレイン間電圧Vdsを模擬する模擬電圧生成回路であり、回路63は、電圧検出回路17の耐電圧検査用回路であり、回路65は、オペアンプ45bの入力保護の検査用回路であって、いずれも電圧検出回路17の動作シミュレーション用回路であるため、詳細な説明は省略する。   A circuit 61 shown in FIG. 5 is a simulated voltage generation circuit that simulates the source-drain voltage Vds of the switching element 16, a circuit 63 is a withstand voltage test circuit for the voltage detection circuit 17, and a circuit 65 is an operational amplifier. 45b is a circuit for testing input protection, and both are circuits for simulating the operation of the voltage detection circuit 17, and thus detailed description thereof is omitted.

次に、電圧検出回路17の動作シミュレーション結果について図6を用いて説明する。図6は、電圧検出回路17の各部の電圧波形のシミュレーション結果を示している。図中最上段には、ソースドレイン間電圧Vdsの電圧波形が示され、2段目には、図5に示す回路61の出力電圧V1の電圧波形が示され、3段目には、サージ電圧除去回路41の出力電圧V2の電圧波形が示され、4段目には、高周波ノイズ除去回路43の出力電圧V3の電圧波形が示され、5段目には、微分回路47の出力電圧と同波形である、バッファアンプ67の出力電圧V4の電圧波形が示され、最終段には、比較回路49の出力電圧V5の電圧波形が示されている。各電圧Vds,V1〜V5において、縦軸は電圧を表し、横軸は時間を表している。図中左から右に向かって時間の経過を示している。なお、3段目から最終段に示す各電圧V2、V3、V4、V5は、最上段に示すソースドレイン間電圧Vdsに対して、変極点の生じるタイミングを変えずに、電圧上昇の開始タイミングが1ms遅く、かつ経過時間24msで立ち下がる電圧波形となっている。ソースドレイン間電圧Vdsに対して各電圧V2、V3、V4、V5の電圧波形を異ならせているのは、シミュレーションにおいて、出力電圧V1のスイッチングノイズによる誤検出を防止するためである。これらの電圧波形の動作タイミングは、図5に示す回路63,65により異ならされている。   Next, an operation simulation result of the voltage detection circuit 17 will be described with reference to FIG. FIG. 6 shows the simulation result of the voltage waveform of each part of the voltage detection circuit 17. In the uppermost part of the figure, the voltage waveform of the source-drain voltage Vds is shown, the second stage shows the voltage waveform of the output voltage V1 of the circuit 61 shown in FIG. 5, and the third stage shows the surge voltage. The voltage waveform of the output voltage V2 of the removal circuit 41 is shown, the voltage waveform of the output voltage V3 of the high frequency noise removal circuit 43 is shown in the fourth stage, and the same as the output voltage of the differentiation circuit 47 in the fifth stage. A waveform of the output voltage V4 of the buffer amplifier 67, which is a waveform, is shown, and a voltage waveform of the output voltage V5 of the comparison circuit 49 is shown in the final stage. In each voltage Vds, V1 to V5, the vertical axis represents voltage, and the horizontal axis represents time. The passage of time is shown from the left to the right in the figure. Note that the voltages V2, V3, V4, and V5 shown from the third stage to the last stage have a voltage rise start timing without changing the timing at which an inflection point is generated with respect to the source-drain voltage Vds shown in the uppermost stage. The voltage waveform falls at 1 ms later and at an elapsed time of 24 ms. The reason why the voltage waveforms of the voltages V2, V3, V4, and V5 are different from the source-drain voltage Vds is to prevent erroneous detection due to switching noise of the output voltage V1 in the simulation. The operation timings of these voltage waveforms are varied by the circuits 63 and 65 shown in FIG.

図6の2段目に示すように、時刻t0〜t1において、回路61から出力された高電圧(例えば、200V一定)の出力電圧V1は、サージ電圧除去回路41により除去される。このため、図6の3段目以降に示すように、時刻t0〜t1において、サージ電圧除去回路41の出力電圧V2及び高周波ノイズ除去回路43の出力電圧V3は約0V一定となり、バッファアンプ67の出力電圧V4は、レベルシフトされているので約3V一定となる。また、時刻t0〜t1の期間において、比較回路49のオペアンプ49aの非反転入力端子(+)に入力する出力電圧V4の電圧値は、反転入力端子(−)に入力する閾値電圧の下限値よりも高いので、比較回路49の出力電圧V5はハイレベル(例えば、約3V一定)となる。なお、本例では、閾値電圧は、時刻t0〜t1の期間の出力電圧V4と同電圧であり、下限値は、当該期間の出力電圧V4よりも例えば数mVから数十mV低い値となる。   As shown in the second stage of FIG. 6, at time t0 to t1, the high voltage (for example, constant 200V) output voltage V1 output from the circuit 61 is removed by the surge voltage removal circuit 41. Therefore, as shown in the third and subsequent stages in FIG. 6, the output voltage V2 of the surge voltage removing circuit 41 and the output voltage V3 of the high frequency noise removing circuit 43 are constant at about 0 V from time t0 to t1, and the buffer amplifier 67 Since the output voltage V4 is level-shifted, it is constant at about 3V. In the period from time t0 to t1, the voltage value of the output voltage V4 input to the non-inverting input terminal (+) of the operational amplifier 49a of the comparison circuit 49 is lower than the lower limit value of the threshold voltage input to the inverting input terminal (−). Therefore, the output voltage V5 of the comparison circuit 49 is at a high level (for example, constant at about 3V). In this example, the threshold voltage is the same voltage as the output voltage V4 in the period from time t0 to t1, and the lower limit value is, for example, several mV to several tens mV lower than the output voltage V4 in the period.

本シミュレーションでは、時刻t1以降において、回路61は、図中上段に示すソースドレイン間電圧Vdsと同波形の出力電圧V1を出力するように設定されているので、サージ電圧除去回路41の出力電圧V2は、出力電圧V1と同波形となり、高周波ノイズ除去回路43の出力電圧V3は、出力電圧V2から高周波ノイズを除去した電圧波形となり、バッファアンプ67の出力電圧V4は出力電圧V3の微分波形となる。また、時刻t1〜t2の期間において、比較回路49のオペアンプ49aの非反転入力端子(+)に入力する出力電圧V4の電圧値は、反転入力端子(−)に入力する閾値電圧の上限値よりも高いので、比較回路49の出力電圧V5はハイレベルが維持される。なお、本例では、閾値電圧の上限値は、時刻t0〜t1の期間の出力電圧V4よりも例えば数mVから数十mV高い値となる。   In this simulation, after time t1, the circuit 61 is set to output the output voltage V1 having the same waveform as the source-drain voltage Vds shown in the upper part of the figure, so that the output voltage V2 of the surge voltage removal circuit 41 is set. Is the same waveform as the output voltage V1, the output voltage V3 of the high frequency noise removal circuit 43 is a voltage waveform obtained by removing high frequency noise from the output voltage V2, and the output voltage V4 of the buffer amplifier 67 is a differential waveform of the output voltage V3. . In the period from time t1 to time t2, the voltage value of the output voltage V4 input to the non-inverting input terminal (+) of the operational amplifier 49a of the comparison circuit 49 is higher than the upper limit value of the threshold voltage input to the inverting input terminal (−). Therefore, the output voltage V5 of the comparison circuit 49 is maintained at a high level. In this example, the upper limit value of the threshold voltage is, for example, several mV to several tens mV higher than the output voltage V4 in the period from time t0 to t1.

時刻t2〜t5の期間において、回路61の出力電圧V1に変極点が生じる。変極点の開始時刻t2において、それまで上昇していた出力電圧V3の電圧値は低下し始める。このため、一定電圧に収束し始めていた出力電圧V4は、時刻t2から再び低下し始め、時刻t3において、比較回路49のオペアンプ49aの非反転入力端子(+)に入力する出力電圧V4の電圧値が反転入力端子(−)に入力する閾値電圧の上限値よりも低くなる。これにより、時刻t3において、比較回路49の出力電圧V5はロウレベルに移行する。   An inflection point occurs in the output voltage V1 of the circuit 61 during the period from time t2 to t5. At the start point t2 of the inflection point, the voltage value of the output voltage V3 that has been increased starts to decrease. For this reason, the output voltage V4 that has started to converge to a constant voltage starts to decrease again from time t2, and at time t3, the voltage value of the output voltage V4 that is input to the non-inverting input terminal (+) of the operational amplifier 49a of the comparison circuit 49. Becomes lower than the upper limit value of the threshold voltage input to the inverting input terminal (−). As a result, at time t3, the output voltage V5 of the comparison circuit 49 shifts to a low level.

低下した出力電圧V3は再び上昇し始める。このため、出力電圧V4も上昇し始め、時刻t4において、比較回路49のオペアンプ49aの非反転入力端子(+)に入力する出力電圧V4の電圧値が反転入力端子(−)に入力する閾値電圧の下限値よりも高くなる。これにより、時刻t4において、比較回路49の出力電圧V5はハイレベルに移行する。
その後、回路61の出力電圧V1が0Vになるまで、比較回路49のオペアンプ49aの非反転入力端子(+)に入力する出力電圧V4の電圧値は、反転入力端子(−)に入力する閾値電圧の下限値よりも高いので、比較回路49の出力電圧V5はハイレベルが維持される。 After that, until the output voltage V1 of the circuit 61 becomes 0V, the voltage value of the output voltage V4 input to the non-inverting input terminal (+) of the operational amplifier 49a of the comparison circuit 49 is the threshold voltage input to the inverting input terminal (-). Since it is higher than the lower limit of, the output voltage V5 of the comparison circuit 49 is maintained at a high level. The lowered output voltage V3 starts to rise again. Therefore, the output voltage V4 also begins to rise, and at time t4, the threshold voltage at which the voltage value of the output voltage V4 input to the non-inverting input terminal (+) of the operational amplifier 49a of the comparison circuit 49 is input to the inverting input terminal (−). Higher than the lower limit of. As a result, at time t4, the output voltage V5 of the comparison circuit 49 shifts to a high level. The lowered output voltage V3 starts to rise again. Therefore, the output voltage V4 also begins to rise, and at time t4, the threshold voltage at which the voltage value of the output voltage V4 input to the non-expected input terminal (+) Of the operational amplifier 49a of the comparison circuit 49 is input to the similarly input terminal (−). Higher than the lower limit of. As a result, at time t4, the output voltage V5 of the comparison circuit 49 shifts to a high level ..
Thereafter, until the output voltage V1 of the circuit 61 becomes 0V, the voltage value of the output voltage V4 input to the non-inverting input terminal (+) of the operational amplifier 49a of the comparison circuit 49 is the threshold voltage input to the inverting input terminal (−). Therefore, the output voltage V5 of the comparison circuit 49 is maintained at a high level. Therefore, until the output voltage V1 of the circuit 61 becomes 0V, the voltage value of the output voltage V4 input to the non-expanding input terminal (+) of the operational amplifier 49a of the comparison circuit 49 is the threshold voltage input to the Therefore, the output voltage V5 of the comparison circuit 49 is maintained at a high level.

このように、電圧検出回路17は、一対の接点33が離間状態から接触状態に移行する際にスイッチング素子16のソースドレイン間電圧Vdsに生じる変極点を検出することができる。このため、電磁接触器1は、一対の接点33が離間状態から接触状態に移行を開始した時刻(本例では、時刻t1)から所定期間内(本例では、時刻t1から6〜7.5ms程度の期間)に出力電圧V5がロウレベルにならない場合には、一対の接点33に不具合が生じていると判定することができる。   Thus, the voltage detection circuit 17 can detect the inflection point generated in the source-drain voltage Vds of the switching element 16 when the pair of contacts 33 shifts from the separated state to the contact state. For this reason, the electromagnetic contactor 1 is within a predetermined period (in this example, from time t1 to 6 to 7.5 ms) from the time (in this example, time t1) when the pair of contacts 33 starts shifting from the separated state to the contact state. If the output voltage V5 does not become low level during a period of time), it can be determined that a failure has occurred in the pair of contacts 33.

次に、本実施の形態による電磁接触器1の動作について図1から図6を再度用いて説明する。電磁石ユニット3における励磁コイル23が非通電状態にあって、電磁石ユニット3で可動プランジャ25を可動させる励磁力を発生していないものとする。この状態では、可動プランジャ25が復帰スプリング31によって、上部磁気ヨーク22から離れる下方向に付勢されて、ゴム座27に当接した状態となる。このため、可動プランジャ25に連結軸28を介して連結された接触子ホルダ13に支持された可動接触子11は、固定接触子6a,6bの小径円柱部8の下端面から所定のギャップを挟んで対向しており、接点装置2が開極(釈放)状態となっている。   Next, the operation of the electromagnetic contactor 1 according to the present embodiment will be described with reference to FIGS. 1 to 6 again. It is assumed that the excitation coil 23 in the electromagnet unit 3 is in a non-energized state, and no excitation force for moving the movable plunger 25 by the electromagnet unit 3 is generated. In this state, the movable plunger 25 is urged downward by the return spring 31 away from the upper magnetic yoke 22 and comes into contact with the rubber seat 27. For this reason, the movable contact 11 supported by the contact holder 13 connected to the movable plunger 25 via the connection shaft 28 sandwiches a predetermined gap from the lower end surface of the small diameter cylindrical portion 8 of the fixed contacts 6a and 6b. The contact device 2 is in an open (released) state.

接点装置2の開極状態において、電磁石コイル制御回路34のスイッチング素子駆動回路18を駆動してスイッチング素子16がオン状態になると、電源回路10から電流が流れ、電磁石ユニット3の励磁コイル23は通電される。これにより、電磁石ユニット3で発生した励磁力は可動プランジャ25を復帰スプリング31に抗して上方に押し上げる。これに応じて、可動プランジャ25に連結軸28を介して連結されている接触子ホルダ13が上方に移動し、可動接触子11が固定接触子6a,6bの小径円柱部8の底面に接触スプリング14の接触圧で接触し、一対の接点33が接触状態になる。これにより、接点装置2は、電源回路5dから出力端子5a、外部接続端子板15a、固定接触子6a、可動接触子11、固定接触子6b、外部接続端子板15b及び入力端子5bを通じて電流が負荷5cに供給される閉極(投入)状態となる。   When the switching device drive circuit 18 of the electromagnet coil control circuit 34 is driven and the switching device 16 is turned on in the open state of the contact device 2, a current flows from the power supply circuit 10, and the excitation coil 23 of the electromagnet unit 3 is energized. Is done. Thereby, the exciting force generated in the electromagnet unit 3 pushes the movable plunger 25 upward against the return spring 31. Accordingly, the contact holder 13 connected to the movable plunger 25 via the connecting shaft 28 moves upward, and the movable contact 11 contacts the bottom surface of the small-diameter cylindrical portion 8 of the fixed contacts 6a and 6b. 14 contact pressure, the pair of contacts 33 are in contact. As a result, the contact device 2 receives a load from the power supply circuit 5d through the output terminal 5a, the external connection terminal plate 15a, the fixed contact 6a, the movable contact 11, the fixed contact 6b, the external connection terminal plate 15b, and the input terminal 5b. A closed (turned on) state is supplied to 5c.

接点装置2の閉極状態から負荷5cへの電流供給を遮断する場合には、スイッチング素子駆動回路18を非駆動状態としてスイッチング素子16をオフ状態とし、電磁石ユニット3の励磁コイル23への電圧印加及び電流供給を停止する。これにより、電磁石ユニット3で可動プランジャ25を上方に移動させる励磁力がなくなることにより、可動プランジャ25が復帰スプリング31の付勢力によって下降する。可動プランジャ25が下降することにより、連結軸28を介して連結された接触子ホルダ13が下降し、これに応じて接触スプリング14で接触圧を与えている間は可動接触子11が固定接触子6a,6bに接触している。その後、接触スプリング14の接触圧がなくなった時点で可動接触子11が固定接触子6a,6bから下方に低下し、接点装置2は一対の接点33を離間状態とする開極状態となる。   When the current supply to the load 5c is interrupted from the closed state of the contact device 2, the switching element drive circuit 18 is set in a non-driven state, the switching element 16 is turned off, and voltage is applied to the excitation coil 23 of the electromagnet unit 3. And the current supply is stopped. As a result, the exciting force that moves the movable plunger 25 upward by the electromagnet unit 3 disappears, and the movable plunger 25 is lowered by the biasing force of the return spring 31. When the movable plunger 25 is lowered, the contact holder 13 connected via the connecting shaft 28 is lowered, and the movable contact 11 is fixed to the fixed contact while the contact spring 14 applies the contact pressure accordingly. 6a and 6b are in contact. After that, when the contact pressure of the contact spring 14 disappears, the movable contact 11 is lowered downward from the fixed contacts 6a and 6b, and the contact device 2 enters an open state in which the pair of contacts 33 are separated.

接点装置2が開極状態となると、固定接触子6a,6bと可動接触子11との間にアークが発生する。このアークは、図示しないアーク消弧用永久磁石によって大きく引き伸ばされて消弧される。
このようにして、電磁石ユニット3の励磁コイル23を非通電状態及び通電状態に制御することにより、接点装置2が一対の固定接触子6a,6bから可動接触子11が所定ギャップを保って離間している開極状態と、一対の固定接触子6a及び6bに可動接触子11が接触する閉極状態とに動作される。
When the contact device 2 is in the open state, an arc is generated between the fixed contacts 6 a and 6 b and the movable contact 11. This arc is greatly extended by an arc extinguishing permanent magnet (not shown) and extinguished.
In this way, by controlling the exciting coil 23 of the electromagnet unit 3 to the non-energized state and the energized state, the contact device 2 moves away from the pair of fixed contacts 6a and 6b while the movable contact 11 maintains a predetermined gap. And the closed contact state in which the movable contact 11 is in contact with the pair of fixed contacts 6a and 6b. In this way, by controlling the exciting coil 23 of the electromagnet unit 3 to the non-energized state and the energized state, the contact device 2 moves away from the pair of fixed contacts 6a and 6b while the movable contact 11 maintains a predetermined gap And the closed contact state in which the movable contact 11 is in contact with the pair of fixed contacts 6a and 6b.

一対の接点33が接触状態となると、図3に示すように、スイッチング素子16のソースドレイン間電圧Vdsに変極点が生じる。図5及び図6を用いて説明したように、電圧検出回路17は、当該変極点を検出したら、例えば不図示の発光素子の非点灯状態を維持して一対の接点33が正常に動作していることを電磁接触器1の使用者に報知する。一方、一対の接点33に異常が生じて離間状態のままであると、スイッチング素子16のソースドレイン間電圧Vdsには変極点が生じない。このため、電圧検出回路17は、一対の接点33が離間状態から接触状態に移行開始した時刻から所定時間内に当該変極点を検出できないので、例えば不図示の発光素子を点灯して一対の接点33に不具合が生じていることを電磁接触器1の使用者に報知する。   When the pair of contacts 33 are brought into contact, an inflection point occurs in the source-drain voltage Vds of the switching element 16 as shown in FIG. As described with reference to FIGS. 5 and 6, when the voltage detection circuit 17 detects the inflection point, for example, the light emitting element (not shown) is maintained in a non-lighted state, and the pair of contacts 33 operate normally. That the user of the magnetic contactor 1 is informed. On the other hand, if an abnormality occurs in the pair of contacts 33 and remains in a separated state, no inflection point occurs in the source-drain voltage Vds of the switching element 16. For this reason, the voltage detection circuit 17 cannot detect the inflection point within a predetermined time from the time when the pair of contacts 33 starts to shift from the separated state to the contact state. Inform the user of the magnetic contactor 1 that a problem has occurred in 33.

以上説明したように、本実施の形態による電磁接触器1は、接離可能に対向配置された一対の接点33と、一対の接点33の接離を制御する励磁コイル23と、励磁コイル23に直列に接続され、励磁コイル33に供給する電流を制御するスイッチング素子16と、スイッチング素子16の端子間電圧(ソースドレイン間電圧Vds)を検出する電圧検出回路17とを有している。これにより、電磁接触器1の外装ケース20が不透明であって一対の接点33が外部から視認できない場合や、外装ケース30が透明であっても、電磁接触器1が所定箇所に取り付けられて一対の接点33が外部から視認できない場合であっても、一対の接点33の導通を検出することができる。また、本実施の形態による電磁接触器1によれば、一対の接点33の目視での確認や主回路5の例えば負荷5cに流れる電流を測定する必要がなくなる。   As described above, the electromagnetic contactor 1 according to the present embodiment includes a pair of contacts 33 that are opposed to each other so as to be able to contact and separate, an excitation coil 23 that controls contact and separation of the pair of contacts 33, and the excitation coil 23. The switching element 16 is connected in series and controls the current supplied to the exciting coil 33, and the voltage detection circuit 17 detects the voltage between terminals of the switching element 16 (source-drain voltage Vds). Thereby, even when the exterior case 20 of the electromagnetic contactor 1 is opaque and the pair of contacts 33 cannot be visually recognized from the outside, or even when the exterior case 30 is transparent, the electromagnetic contactor 1 is attached to a predetermined location and is paired. Even when the contact 33 is not visible from the outside, the conduction of the pair of contacts 33 can be detected. Moreover, according to the electromagnetic contactor 1 by this Embodiment, it becomes unnecessary to visually confirm a pair of contact 33, and to measure the electric current which flows into the load 5c of the main circuit 5, for example.

また、電磁接触器1に備えられた電圧検出回路17は、一対の接点33が接触することに基づいて発生するスイッチング素子16のソースドレイン間電圧Vdsに生じる変極点を検出するようになっている。当該構成を備えた電磁接触器1によれば、一対の接点33を目視できない場合であっても、一対の接点33の導通を検出することができる。
また、電圧検出回路17は、一対の接点33が離間状態から接触状態に移行を開始してから所定期間内に変極点が生じるか否かを検出することができる。 Further, the voltage detection circuit 17 can detect whether or not a pole change occurs within a predetermined period after the pair of contacts 33 start shifting from the separated state to the contact state. 当該構成を備えた電磁接触器1によれば、一対の接点33が接触状態となるように駆動されているにも関わらず、固定接触子6a,6bと可動接触子11とが接触していないことを検出できる。 According to the electromagnetic contactor 1 having this configuration, the fixed contactors 6a and 6b and the movable contactor 11 are not in contact with each other even though the pair of contacts 33 are driven so as to be in contact with each other. Can be detected. The voltage detection circuit 17 provided in the electromagnetic contactor 1 detects an inflection point generated in the source-drain voltage Vds of the switching element 16 generated based on the contact of the pair of contacts 33. . According to the electromagnetic contactor 1 having the configuration, even when the pair of contacts 33 cannot be visually observed, the conduction of the pair of contacts 33 can be detected. The voltage detection circuit 17 provided in the electromagnetic contactor 1 detects an inflection point generated in the source-drain voltage Vds of the switching element 16 generated based on the contact of the pair of contacts 33 .. According to the electromagnetic contactor 1 having the configuration , even when the pair of contacts 33 cannot be visually observed, the conduction of the pair of contacts 33 can be detected.
In addition, the voltage detection circuit 17 can detect whether or not an inflection point occurs within a predetermined period after the pair of contacts 33 starts shifting from the separated state to the contact state. According to the electromagnetic contactor 1 provided with the said structure, although the pair of contact 33 is driven so that it may be in a contact state, the fixed contacts 6a and 6b and the movable contact 11 are not in contact. Can be detected. In addition, the voltage detection circuit 17 can detect whether or not an inflection point occurs within a predetermined period after the pair of contacts 33 starts shifting from the separated state to the contact state. According to the electromagnetic contactor 1 provided with the said structure, Although the pair of contact 33 is driven so that it may be in a contact state, the fixed contacts 6a and 6b and the movable contact 11 are not in contact. Can be detected.

また、電圧検出回路17は、ソースドレイン間電圧Vdsに重畳するサージ電圧を除去するサージ電圧除去回路41と、サージ電圧除去回路41が出力した出力電圧に重畳する高周波ノイズ信号を除去する高周波ノイズ除去回路43と、高周波ノイズ除去回路43が出力した出力電圧の電圧レベルを増幅する増幅回路45と、増幅回路45が出力した出力電圧を微分する微分回路47と、微分回路47が出力した出力電圧と、所定の閾値電圧とを比較する比較回路49とを有している。当該構成を備えた電磁接触器1によれば、ソースドレイン間電圧Vdsからサージ電圧やノイズ信号を除去するとともに、ソースドレイン間電圧Vdsに生じる変極点における数十mV程度の電圧変動を増幅して検出することができる。   The voltage detection circuit 17 also includes a surge voltage removal circuit 41 that removes a surge voltage superimposed on the source-drain voltage Vds, and a high-frequency noise removal that removes a high-frequency noise signal superimposed on the output voltage output from the surge voltage removal circuit 41. A circuit 43; an amplifying circuit 45 that amplifies the voltage level of the output voltage output from the high-frequency noise removing circuit 43; a differentiating circuit 47 that differentiates the output voltage output from the amplifying circuit 45; and an output voltage output from the differentiating circuit 47. And a comparison circuit 49 for comparing with a predetermined threshold voltage. According to the electromagnetic contactor 1 having this configuration, the surge voltage and noise signal are removed from the source-drain voltage Vds, and the voltage fluctuation of about several tens of mV at the inflection point generated in the source-drain voltage Vds is amplified. Can be detected.

また、電磁接触器1は、一対の接点33を収容する不透明な収容ケース(外装ケース20)を有している。当該構成を備えた電磁接触器1によれば、一対の接点33が不透明な外装ケース20に収容されて視認できない状態であっても、一対の接点33が導通しているか否かを検出することができる。
また、一対の接点33の一方は、電流路に介挿され、外装ケース33内に所定間隔を保って固定配置された一対の固定接触子6a,6bであり、一対の接点33の他方は、一対の固定接触子6a,6bに対して接離可能に配設された可動接触子11である。 Further, one of the pair of contacts 33 is a pair of fixed contacts 6a and 6b inserted in the current path and fixedly arranged in the outer case 33 at predetermined intervals, and the other of the pair of contacts 33 is. A movable contact 11 arranged so as to be contactable and detachable with respect to the pair of fixed contacts 6a and 6b. 当該構成を備えた電磁接触器1によれば、固定接触子6a,6b及び可動接触子11が外部から視認できない状態であっても、固定接触子6a,6bと可動接触子11と接触状態であるか離間状態であるかを検出することができる。 According to the electromagnetic contactor 1 having the above configuration, even if the fixed contactors 6a and 6b and the movable contactor 11 are not visible from the outside, the fixed contactors 6a and 6b and the movable contactor 11 are in contact with each other. It is possible to detect whether it is in a separated state or in a separated state. The electromagnetic contactor 1 also has an opaque housing case (exterior case 20) that houses the pair of contacts 33. According to the electromagnetic contactor 1 having the configuration, even if the pair of contacts 33 is accommodated in the opaque outer case 20 and cannot be visually recognized, it is detected whether the pair of contacts 33 is conductive. Can do. The electromagnetic contactor 1 also has an opaque housing case (exterior case 20) that houses the pair of contacts 33. According to the electromagnetic contactor 1 having the configuration, even if the pair of contacts 33 is accommodated in the opaque outer case 20 and cannot be visually recognized, it is detected whether the pair of contacts 33 is conductive. Can do.
In addition, one of the pair of contacts 33 is a pair of fixed contacts 6a and 6b that are inserted in the current path and fixedly arranged in the exterior case 33 at a predetermined interval, and the other of the pair of contacts 33 is The movable contact 11 is disposed so as to be able to contact and separate from the pair of fixed contacts 6a and 6b. According to the electromagnetic contactor 1 provided with the said structure, even if the stationary contacts 6a and 6b and the movable contact 11 cannot be visually recognized from the outside, the stationary contacts 6a and 6b and the movable contact 11 are in contact with each other. It is possible to detect whether there is a separated state. In addition, one of the pair of contacts 33 is a pair of fixed contacts 6a and 6b that are inserted in the current path and fixedly arranged in the exterior case 33 at a predetermined interval, and the other of the pair of contacts 33 is The movable contact 11 is disposed so as to be able to contact and separate from the pair of fixed contacts 6a and 6b. According to the electromagnetic contactor 1 provided with the said structure, even if the stationary contacts 6a and 6b and the movable contact 11 cannot be visually recognized from the outside, the stationary contacts 6a and 6b and the movable contact 11 are in contact with each other. It is possible to detect whether there is a separated state.

1 電磁接触器
2 接点装置
3 電磁石ユニット
4 接点収納ケース
4a 桶状体
4b 接合部材
4c 金属筒体
5 主回路
5a 出力端子
5b 入力端子
5c 負荷
5d,10 電源回路
6a,6b 固定接触子
9 制御回路基板
11 可動接触子
13 接触子ホルダ
14 接触スプリング
15a,15b 外部接続端子板
16 スイッチング素子
17 電圧検出回路
17a,17b 入力端子
18 スイッチング素子駆動回路
20 外装ケース
20a 有底筒体
20b 底板
21 磁気ヨーク
22 上部磁気ヨーク
23 励磁コイル
24 コイルホルダ
25 可動プランジャ
26 キャップ
28 連結軸
31 復帰スプリング
33 一対の接点
34 電磁石コイル制御回路
35 基板ケース
41 サージ電圧除去回路
41a,48b ツェナーダイオード
43 高周波ノイズ除去回路
43a,45b,45c48a,49b,49c 抵抗
43b,47a コンデンサ
45 増幅回路
45a,49a,67a オペアンプ
47 微分回路
49 比較回路
67 バッファアンプ
DESCRIPTION OF SYMBOLS 1 Electromagnetic contactor 2 Contact apparatus 3 Electromagnet unit 4 Contact storage case 4a Rod-like body 4b Joining member 4c Metal cylinder 5 Main circuit 5a Output terminal 5b Input terminal 5c Load 5d, 10 Power supply circuit 6a, 6b Fixed contact 9 Control circuit Substrate 11 Movable contact 13 Contact holder 14 Contact spring 15a, 15b External connection terminal plate 16 Switching element 17 Voltage detection circuit 17a, 17b Input terminal 18 Switching element drive circuit 20 Exterior case 20a Bottomed cylinder 20b Bottom plate 21 Magnetic yoke 22 Upper magnetic yoke 23 Excitation coil 24 Coil holder 25 Movable plunger 26 Cap 28 Connection shaft 31 Return spring 33 Pair of contacts 34 Electromagnetic coil control circuit 35 Substrate case 41 Surge voltage elimination circuits 41a and 48b Zener diode 43 High frequency noise elimination circuits 43a and 4 b, 45c48a, 49b, 49c resistors 43 b, 47a capacitor 45 amplifier circuit 45a, 49a, 67a operational amplifier 47 differential circuit 49 comparison circuit 67 buffer amplifier

Claims (7)

  1. 接離可能に対向配置された一対の接点と、
    前記一対の接点の接離を制御する電磁石のコイルと、
    前記コイルに直列に接続され、前記コイルに供給する電流を制御するスイッチング素子と、
    前記スイッチング素子の端子間電圧を検出する電圧検出回路と
    を有することを特徴とする電磁接触器。
    A pair of contacts arranged opposite to each other,
    An electromagnet coil for controlling contact and separation of the pair of contacts;
    A switching element connected in series to the coil and controlling a current supplied to the coil;
    And a voltage detection circuit for detecting a voltage between terminals of the switching element.
  2. 前記端子間電圧に基づいて前記一対の接点の動作状態を表示する表示部を有することA display unit that displays an operation state of the pair of contacts based on the voltage between the terminals;
    を特徴とする請求項1記載の電磁接触器。The electromagnetic contactor according to claim 1.
  3. 前記電圧検出回路は、前記一対の接点が接触することに基づいて発生する前記端子間電圧に生じる変極点を検出すること
    を特徴とする請求項1又は2に記載の電磁接触器。
    The voltage detection circuit, an electromagnetic contactor according to claim 1 or 2, characterized in that detecting the inflection point generated in the inter-terminal voltage the pair of contacts is generated based on the contact.
  4. 前記電圧検出回路は、前記一対の接点が離間状態から接触状態に移行を開始してから所定期間内に前記変極点が生じるか否かを検出すること を特徴とする請求項記載の電磁接触器。 4. The electromagnetic contact according to claim 3 , wherein the voltage detection circuit detects whether or not the inflection point is generated within a predetermined period after the pair of contacts starts transition from the separated state to the contact state. 5. vessel.
  5. 前記電圧検出回路は、
    前記端子間電圧に重畳するサージ電圧を除去するサージ電圧除去回路と、
    前記サージ電圧除去回路が出力した出力電圧に重畳する高周波ノイズ信号を除去する高周波ノイズ除去回路と、

    前記高周波ノイズ除去回路が出力した出力電圧の電圧レベルを増幅する増幅回路と、 An amplifier circuit that amplifies the voltage level of the output voltage output by the high-frequency noise removal circuit, and an amplifier circuit.
    前記増幅回路が出力した出力電圧を微分する微分回路と、 A differentiating circuit that differentiates the output voltage output by the amplifier circuit and
    前記微分回路が出力した出力電圧と、所定の閾値電圧とを比較する比較回路と を有すること を特徴とする請求項1からまでのいずれか一項に記載の電磁接触器。 The electromagnetic contactor according to any one of claims 1 to 4, further comprising a comparison circuit for comparing an output voltage output by the differentiating circuit with a predetermined threshold voltage. The voltage detection circuit includes: The voltage detection circuit includes:
    A surge voltage removing circuit for removing a surge voltage superimposed on the voltage between the terminals; A surge voltage removing circuit for removing a surge voltage multiplexed on the voltage between the terminals;
    A high-frequency noise removal circuit for removing a high-frequency noise signal superimposed on the output voltage output by the surge voltage removal circuit; A high-frequency noise removal circuit for removing a high-frequency noise signal replicated on the output voltage output by the surge voltage removal circuit;
    An amplifying circuit for amplifying the voltage level of the output voltage output by the high-frequency noise removing circuit; An promoting circuit for amplifying the voltage level of the output voltage output by the high-frequency noise removing circuit;
    A differentiating circuit for differentiating the output voltage output from the amplifier circuit; A differentiating circuit for differentiating the output voltage output from the amplifier circuit;
    The electromagnetic contactor according to any one of claims 1 to 4 , further comprising: a comparison circuit that compares an output voltage output from the differentiation circuit with a predetermined threshold voltage. The electromagnetic contactor according to any one of claims 1 to 4 , further comprising: a comparison circuit that compares an output voltage output from the differentiation circuit with a predetermined threshold voltage.
  6. 前記一対の接点を収容する不透明な収容ケースを有すること を特徴とする請求項1からまでのいずれか一項に記載の電磁接触器。 The electromagnetic contactor according to any one of claims 1 to 5, further comprising an opaque housing case that houses the pair of contacts.
  7. 前記一対の接点の一方は、電流路に介挿され、前記収ケース内に所定間隔を保って固定配置された一対の固定接触子であり、
    前記一対の接点の他方は、前記一対の固定接触子に対して接離可能に配設された可動接触子であること を特徴とする請求項記載の電磁接触器。 The magnetic contactor according to claim 6 , wherein the other of the pair of contacts is a movable contactor arranged so as to be contactable and detachable with respect to the pair of fixed contactors. The one of the pair of contacts, are inserted in the current path, a fixedly arranged pair of fixed contacts with a predetermined interval in the yield capacity case, The one of the pair of contacts, are inserted in the current path, a fixedly arranged pair of fixed contacts with a predetermined interval in the yield capacity case,
    The electromagnetic contactor according to claim 6 , wherein the other of the pair of contacts is a movable contact disposed so as to be able to contact with and separate from the pair of fixed contacts. The electromagnetic contactor according to claim 6 , wherein the other of the pair of contacts is a movable contact disposed so as to be able to contact with and separate from the pair of fixed contacts.
JP2012189281A 2012-08-29 2012-08-29 Magnetic contactor Expired - Fee Related JP6068058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012189281A JP6068058B2 (en) 2012-08-29 2012-08-29 Magnetic contactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012189281A JP6068058B2 (en) 2012-08-29 2012-08-29 Magnetic contactor

Publications (2)

Publication Number Publication Date
JP2014049208A JP2014049208A (en) 2014-03-17
JP6068058B2 true JP6068058B2 (en) 2017-01-25

Family

ID=50608703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012189281A Expired - Fee Related JP6068058B2 (en) 2012-08-29 2012-08-29 Magnetic contactor

Country Status (1)

Country Link
JP (1) JP6068058B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895452B (en) * 2016-05-27 2017-11-10 浙江英洛华新能源科技有限公司 Closed type HVDC relay

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215982B2 (en) * 1976-09-29 1987-04-10 Hitachi Ltd
JPH0319160Y2 (en) * 1983-11-16 1991-04-23
JP2523924B2 (en) * 1990-03-15 1996-08-14 松下電工株式会社 Overcurrent detection device
JPH09320429A (en) * 1996-05-28 1997-12-12 Fuji Electric Co Ltd Electromagnetic contactor
JP3777805B2 (en) * 1998-07-13 2006-05-24 松下電器産業株式会社 Inverter device
JP2005318759A (en) * 2004-04-30 2005-11-10 Yazaki Corp Motor control device
US7960997B2 (en) * 2007-08-08 2011-06-14 Advanced Analogic Technologies, Inc. Cascode current sensor for discrete power semiconductor devices
JP2009289690A (en) * 2008-05-30 2009-12-10 Yazaki Corp Relay control device

Also Published As

Publication number Publication date
JP2014049208A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
US8193881B2 (en) Relay
ES2632288T3 (en) Display device and procedure for its operation
CN102804315B (en) The electromagnetic switch of contact device and use contact device
US4202267A (en) Device for monitoring the ink supply in ink-operated printers
TWI444106B (en) Gas ionization apparatuses and methods of producing ionized gas stream
US20070146945A1 (en) Intelligent life testing methods and apparatus for leakage current protection device with indicating means
CN104520958A (en) Electromagnetic switch and adjustment method for contact position thereof
KR101750073B1 (en) Circuit for monitoring relay
US9207288B2 (en) Electrical current sensor
WO2006085915A3 (en) Method and system using liquid dielectric for electrostatic power generation
US20100044581A1 (en) Ionizer and Static Elimination Method
TW200705351A (en) LED driving circuit having dimming circuit
TW200502555A (en) Image display device, drive circuit device and defect detection method of light-emitting diode
US8228005B2 (en) Light-emitting-element driving circuit
GB2463829A (en) Battery tester for electric vehicle
EP1903417A3 (en) Electronic control device comprising a transistor with a tap connection
US8198818B2 (en) Vehicle lighting control device
US20090284889A1 (en) Relay controller for controlling an excitation current of a relay
CN104823379B (en) Signal circuit
TW200622995A (en) Liquid crystal display and driving method
JP4687716B2 (en) High voltage power supply and mass spectrometer using the power supply
DE102015000796B4 (en) Switching device with permanent magnetic arc extinguishing
WO2007079767A1 (en) Method and device for operating a switching device
CN103390412A (en) Disk drive comprising extended range head proximity sensor
CN104508785B (en) The deposition detection device of electromagnetic relay and its deposition detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161222

R150 Certificate of patent or registration of utility model

Ref document number: 6068058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees