JP6066216B2 - Structure excellent in low temperature toughness and method for producing the same - Google Patents

Structure excellent in low temperature toughness and method for producing the same Download PDF

Info

Publication number
JP6066216B2
JP6066216B2 JP2014177315A JP2014177315A JP6066216B2 JP 6066216 B2 JP6066216 B2 JP 6066216B2 JP 2014177315 A JP2014177315 A JP 2014177315A JP 2014177315 A JP2014177315 A JP 2014177315A JP 6066216 B2 JP6066216 B2 JP 6066216B2
Authority
JP
Japan
Prior art keywords
joint
joining
tool
steel
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014177315A
Other languages
Japanese (ja)
Other versions
JP2016049555A (en
Inventor
祐太 本間
祐太 本間
相澤 大器
大器 相澤
林造 茅野
林造 茅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2014177315A priority Critical patent/JP6066216B2/en
Publication of JP2016049555A publication Critical patent/JP2016049555A/en
Application granted granted Critical
Publication of JP6066216B2 publication Critical patent/JP6066216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

この発明は、API(米国石油協会)5Lパイプグレードであるラインパイプ用鋼を用い、その継手部に摩擦撹拌接合によって低温靱性に優れた接合部を有する構造体およびその製造方法に関するものである。   The present invention relates to a structure using a steel for a line pipe, which is an API (American Petroleum Institute) 5L pipe grade, and having a joint excellent in low temperature toughness by friction stir welding at the joint, and a method for manufacturing the same.

ラインパイプ用鋼は、C、Si、Mnを主成分としてV、Ca、Al、Moの添加、またはTi、B等の合金成分を微量添加して構成されているAPI(米国石油協会規定)パイプ仕様5Lグレードが用いられることが多い。該鋼は所定の焼入れ焼戻し(調質)、または転炉による制御圧延(TMCP)などにより製造されている。近年はユーザーの低温靱性の仕様が厳しく要求されている。この理由としてパイプラインの緊急停止時にはパイプの各部位が低温(約−40℃)に曝されるため、脆性破壊の危険性が指摘されているためである。一方で、パイプや構造物の組立にはサブマージアーク溶接(SAW)などの溶融溶接技術が用いられており、これらの溶融溶接により高温(1250〜1400℃)に曝された熱影響部(以下HAZという)において靱性が低下することが言われている。従って、低温靱性に優れた母材を製造したとしても、HAZの低温靱性を満足することが困難となっている。   Steels for line pipes are API (American Petroleum Institute Regulations) pipes composed of C, Si, Mn as main components and addition of V, Ca, Al, Mo or alloy components such as Ti, B, etc. The specification 5L grade is often used. The steel is manufactured by predetermined quenching and tempering (tempering) or controlled rolling (TMCP) using a converter. In recent years, the specification of low temperature toughness of users has been strictly demanded. This is because each part of the pipe is exposed to a low temperature (about −40 ° C.) during an emergency stop of the pipeline, and the risk of brittle fracture is pointed out. On the other hand, a fusion welding technique such as submerged arc welding (SAW) is used for assembling pipes and structures, and a heat-affected zone (hereinafter referred to as HAZ) exposed to high temperatures (1250 to 1400 ° C.) by these fusion weldings. It is said that the toughness decreases. Therefore, even if a base material excellent in low temperature toughness is manufactured, it is difficult to satisfy the low temperature toughness of HAZ.

これらの改良技術として、特許文献1では、Ti、N、Nb、V、Bを添加し、微細なTiNを鋼中に析出させることによってHAZのオーステナイト粒径を細粒とし、HAZの靱性を向上させるものが提案されている。しかし、TiNは最高到達温度が1400℃を超える領域では、ほとんど固溶してしまうため、溶接金属との境界近傍では結晶粒径が粗粒化してしまう。その結果、境界近傍では靱性の向上が図れない。   As these improved technologies, Patent Document 1 adds Ti, N, Nb, V, and B, and precipitates fine TiN in the steel, thereby reducing the austenite grain size of the HAZ and improving the toughness of the HAZ. Something has been proposed. However, since TiN almost dissolves in the region where the maximum temperature reached 1400 ° C., the crystal grain size becomes coarse near the boundary with the weld metal. As a result, the toughness cannot be improved near the boundary.

また、特許文献2では、高温に長時間さらされたときのオーステナイト粒粗大化を、介在物粒子数などのコントロールにより抑制し、HAZの靱性改善を図ったものが提案されている。しかし、これらの微小介在物制御は、一般の製鋼工程ではコントロールが難しく、特に電気炉での溶解ではコスト増加に繋がる。   Further, Patent Document 2 proposes that austenite coarsening when exposed to a high temperature for a long time is suppressed by controlling the number of inclusion particles and the like, thereby improving HAZ toughness. However, the control of these fine inclusions is difficult to control in a general steelmaking process, and in particular, melting in an electric furnace leads to an increase in cost.

一方で、摩擦撹拌接合(以下FSWという)技術を利用した改良技術の検討も行われている。FSWは回転ツールと接合部材の摩擦熱による金属の塑性流動を利用した固相接合であるため、溶融を伴わない。これにより、接合時の加熱温度が低いだけでなく、塑性流動の強加工によって細かいオーステナイト粒径が得られることが知られている。   On the other hand, an improvement technique using a friction stir welding (hereinafter referred to as FSW) technique is also being studied. FSW is not accompanied by melting because it is a solid-phase bonding utilizing the plastic flow of metal caused by frictional heat between the rotating tool and the bonding member. Thereby, it is known that not only the heating temperature at the time of joining is low, but also a fine austenite grain size can be obtained by strong processing of plastic flow.

特許文献3では、該FSW技術を用いた高強度および高靱性構造体の作製技術を図ったものが提案されている。この提案では、接合する際に欠陥の入らない十分な条件において接合することで、高強度で、かつ高靱性な接合部が得られることを示している。しかし、FSW適用は表面1パスのみであり、接合深さの比較的浅いFSWでは、厚肉材料の接合の場合、両面からの接合が必要となるケースがある。この場合、次パスの熱影響を受けた撹拌部では材料特性、特に靱性が劣化する可能性がある。   Patent Document 3 proposes a technique for producing a high-strength and high-toughness structure using the FSW technique. In this proposal, it is shown that a high-strength and high-toughness joint can be obtained by joining under a sufficient condition that does not cause defects when joining. However, application of FSW is only one pass on the surface, and in the case of FSW having a relatively shallow junction depth, there are cases in which joining from both sides is required when joining thick materials. In this case, the material properties, particularly toughness, may be deteriorated in the stirring section that is affected by the heat of the next pass.

特許文献4では、裏面の溶接ルート部を溶融溶接で施工した後に、表面をFSWで接合する技術が提案されている。この方法であれば、厚肉材料の接合も可能であり、HAZの領域も少なくなるものの、溶融溶接を使用するために、靱性の低下する部位が形成されてしまう。   In patent document 4, the technique of joining the surface by FSW after constructing the welding route part of a back surface by fusion welding is proposed. With this method, it is possible to join thick materials and the HAZ area is reduced. However, since fusion welding is used, a portion with reduced toughness is formed.

特公昭55−26164号公報Japanese Patent Publication No.55-26164 特開2001−226739号公報JP 2001-226739 A 特表2012−509178号公報Special table 2012-509178 gazette 特表2012−513306号公報Special table 2012-513306 gazette

従来の課題として、通常のラインパイプ用鋼の調質材において、母材と溶接部の境界、熱影響部での低温靱性の確保というユーザー要求を満足するような接合を含んだ構造体の製造が必要である。さらに、母材よりも接合部の方が、強度が高い必要(オーバーマッチ要求)もあるため、高強度および高靱性な接合部の形成が必要となっている。   As a conventional problem, in the conventional tempered steel for line pipes, the manufacture of structures that include joints that satisfy the user's requirement to ensure low temperature toughness at the boundary between the base metal and the welded part and in the heat affected zone is necessary. Furthermore, since the joint portion needs to have higher strength than the base material (overmatch requirement), it is necessary to form a joint portion having high strength and high toughness.

そこで、本発明はFSW技術を利用し、高強度および高靱性な接合部を有する構造体を提供することを基本的な目的とし、第1に従来の溶融溶接よりも高靱性で、かつ母材よりも強度の高い接合部が製作可能なFSW接合条件の明確化を図り、第2として母材と接合部の境界およびHAZの低温靱性改善を図ることを目的としている。   Therefore, the basic object of the present invention is to provide a structure having a high strength and high toughness joint using the FSW technology. First, the base material has higher toughness than conventional fusion welding and is a base material. The purpose of the present invention is to clarify the FSW bonding conditions in which a higher strength joint can be produced, and secondly, to improve the boundary between the base material and the joint and the low temperature toughness of the HAZ.

この発明に関し、API−X65鋼をベースとして、多くのFSW接合条件において、接合部の引張特性および接合部ならびにHAZにノッチを入れたシャルピー衝撃特性について検討した。また、厚肉材料に適用するために、材料の両面から接合を実施し、次パスの熱影響に曝された部位での特性の評価を行った。さらに、従来実施されている溶融溶接とも比較を行い、FSW接合部の優位性を検討した。その結果、FSW接合条件を適正化することにより、厚肉材料であっても接合欠陥が無く、高強度かつ高靱性の接合部およびHAZを得ることのできる接合方法を見出し、本発明に至った。   With respect to this invention, based on API-X65 steel, the tensile properties of the joints and the Charpy impact properties with notches in the HAZ were studied under many FSW joining conditions. In addition, for application to a thick material, bonding was performed from both sides of the material, and the characteristics of the portion exposed to the thermal effect of the next pass were evaluated. Furthermore, it compared with the fusion welding currently performed conventionally, and examined the superiority of the FSW joint. As a result, by optimizing the FSW bonding conditions, a bonding method capable of obtaining a high-strength and high-toughness bonded portion and HAZ without a bonding defect even with a thick material was found, and the present invention was achieved. .

すなわち、本発明の低温靱性に優れた構造体の製造方法のうち、第1の本発明は、API(米国石油協会)5Lパイプグレードで、質量%で、C≦0.26%、Mn≦1.65%、P≦0.03%、S≦0.03%、(V+Nb+Ti)1種以上≦0.15%、残部Feと不可避不純物からなる組成を有するラインパイプ用鋼の継手部に摩擦撹拌接合を用い、前記摩擦撹拌接合では、接合条件を、下記式(1)で表される入熱指数を20×10 〜120×10 r・kg/mm、摩擦工具の回転速度を80〜200rpm、前記摩擦工具の回転ピッチ(工具が1回転する間に移動する距離)を0.3〜0.8mm/rとして、接合部が母材よりも高強度で、かつ熱影響部においてサブサイズVノッチシャルピー衝撃試験にて測定された延性脆性破面遷移温度(FATT)が−70℃以下で、かつ−70℃での吸収エネルギーが40J以上である接合部を形成することを特徴とする。
q(入熱指数)=押込み荷重(kg)×回転速度(rpm)×摩擦工具ショルダー径(mm)/(接合速度(mm/分)×板厚(mm)) …(1)
That is, among the methods for producing a structure excellent in low-temperature toughness according to the present invention, the first present invention is an API (American Petroleum Institute) 5L pipe grade in mass%, C ≦ 0.26%, Mn ≦ 1 .65%, P ≦ 0.03%, S ≦ 0.03%, (V + Nb + Ti) 1 or more ≦ 0.15%, the joint portion of steel for a line pipe that have a composition the balance being Fe and unavoidable impurities Friction stir welding is used , and in the friction stir welding, the welding conditions are 20 × 10 3 to 120 × 10 3 r · kg / mm, the heat input index represented by the following formula (1), and the rotational speed of the friction tool. 80 to 200 rpm, the rotational pitch of the friction tool (the distance traveled while the tool rotates once) is 0.3 to 0.8 mm / r, and the joint is stronger than the base material and in the heat affected zone Measured in sub-size V-notch Charpy impact test Brittle fracture appearance transition temperature (FATT) is at -70 ° C. or less, and the absorbed energy at -70 ° C. and forming the joint is at least 40 J.
q (heat input index) = indentation load (kg) × rotational speed (rpm) × friction tool shoulder diameter (mm) / (joining speed (mm / min) × plate thickness (mm)) (1)

の本発明の低温靱性に優れた構造体の製造方法は、前記第1の本発明において、前記摩擦撹拌接合を、前記ラインパイプ用鋼の両面での接合パスにより行うことを特徴とする。 The method for producing a structure having excellent low temperature toughness according to the second aspect of the present invention is characterized in that, in the first aspect of the present invention , the friction stir welding is performed by a joining path on both surfaces of the steel for line pipes. .

の本発明の低温靱性に優れた構造体は、API(米国石油協会)5Lパイプグレードで、質量%で、C≦0.26%、Mn≦1.65%、P≦0.03%、S≦0.03%、(V+Nb+Ti)1種以上≦0.15%、残部Feと不可避不純物からなる組成を有するラインパイプ用鋼の継手に摩擦撹拌接合部が形成されており、前記接合部において、境界角度15°以上とした際の最大EBSD粒径が12.0μm以下であり、前記接合部が母材よりも高強度で、かつ熱影響部においてサブサイズVノッチシャルピー衝撃試験にて測定された延性脆性破面遷移温度(FATT)が−70℃以下で、かつ−70℃での吸収エネルギーが40J以上であることを特徴とする。 The structure excellent in low temperature toughness according to the third aspect of the present invention is API (American Petroleum Institute) 5L pipe grade , mass%, C ≦ 0.26%, Mn ≦ 1.65%, P ≦ 0.03%. , S ≦ 0.03%, (V + Nb + Ti) 1 or more ≦ 0.15%, the friction stir joining portion to the joint of that line steel pipe having a composition the balance being Fe and unavoidable impurities is formed, wherein The maximum EBSD grain size when the boundary angle is 15 ° or more at the joint is 12.0 μm or less, the joint is stronger than the base material, and the sub-size V notch Charpy impact test is performed in the heat affected zone. The ductile brittle fracture surface transition temperature (FATT) measured in this manner is −70 ° C. or lower, and the absorbed energy at −70 ° C. is 40 J or higher.

上記本発明によれば、接合部において母材よりも高い強度を有し、さらに高い靱性が得ることができる。
また、API(米国石油協会)5Lパイプグレードとして、品番X42〜X60、X65、X70が示されており(2012年版)、以下の組成(質量%)を例示することができる。
C≦0.26%、Mn≦1.65%、P≦0.03%、S≦0.03%、(V+Nb+Ti)1種以上≦0.15%、残部Feと不可避不純物
According to the present invention, the joint has higher strength than the base material, and higher toughness can be obtained.
Further, as API (American Petroleum Institute) 5L pipe grade, product numbers X42 to X60, X65, and X70 are shown (2012 version), and the following composition (mass%) can be exemplified.
C ≦ 0.26%, Mn ≦ 1.65%, P ≦ 0.03%, S ≦ 0.03%, (V + Nb + Ti) 1 type or more ≦ 0.15%, balance Fe and inevitable impurities

サブサイズVノッチシャルピー衝撃試験は、例えばJIS Z2242:2005により実施することができる。   The sub-size V-notch Charpy impact test can be performed, for example, according to JIS Z2242: 2005.

以下、本発明における条件の限定範囲について詳細に説明する。
入熱指数:20×10〜120×10r・kg/mm
入熱指数は以下の式で与えられ、接合時の入熱に起因する値である。
q(入熱指数)=押込み荷重(kg)×回転数(rpm)×工具ショルダー径(mm)/(接合速度(mm/分)×板厚(mm)) …(1)
入熱指数は適切な接合条件を検討するために必要な指数であり、20×10r・kg/mm未満であると、接合欠陥の発生、ツールの破損が発生し、120×10を超えると、バリの発生および接合入熱過剰による接合部およびHAZの特性低下が起こるので、上記範囲が望ましい。なお、同様の理由で、下限を35×10r・kg/mm、上限を80×10r・kg/mmとするのが一層望ましい。
Hereinafter, the limited range of conditions in the present invention will be described in detail.
Heat input index: 20 × 10 3 to 120 × 10 3 r · kg / mm
The heat input index is given by the following equation, and is a value resulting from heat input during bonding.
q (heat input index) = indentation load (kg) × rotational speed (rpm) × tool shoulder diameter (mm) / (joining speed (mm / min) × plate thickness (mm)) (1)
The heat input index is an index necessary for examining an appropriate joining condition. If it is less than 20 × 10 3 r · kg / mm, a joining defect occurs, a tool breaks, and 120 × 10 3 is obtained. If it exceeds the above range, generation of burrs and deterioration of the properties of the joint and HAZ due to excessive joining heat input occur, so the above range is desirable. For the same reason, it is more desirable that the lower limit is 35 × 10 3 r · kg / mm and the upper limit is 80 × 10 3 r · kg / mm.

摩擦工具回転速度:80〜200rpm
摩擦工具の回転速度は、接合時の塑性流動の程度に影響を与える因子である。すなわち、回転速度が低い場合には、塑性流動不足により接合部に欠陥が発生するため、下限を80rpmとするのが望ましい。回転速度が高い場合には、塑性流動が過剰となり、バリの発生およびそれに伴う欠陥および靱性の低下が発生する。また、回転速度の増加は接合部ならびにHAZの靱性の低下にも影響する。このため、摩擦工具の回転速度の上限を200rpmとするのが望ましい。また、同様の理由で、下限を100rpm、上限を150rpmとするのが一層望ましい。
Friction tool rotation speed: 80-200 rpm
The rotational speed of the friction tool is a factor that affects the degree of plastic flow during joining. That is, when the rotational speed is low, defects occur in the joint due to insufficient plastic flow, so the lower limit is desirably 80 rpm. When the rotational speed is high, the plastic flow becomes excessive, and burrs are generated and defects and toughness are reduced accordingly. Further, the increase in the rotational speed also affects the reduction in the joint and HAZ toughness. For this reason, it is desirable that the upper limit of the rotational speed of the friction tool be 200 rpm. For the same reason, it is more desirable to set the lower limit to 100 rpm and the upper limit to 150 rpm.

摩擦工具の回転ピッチ:0.3〜0.8mm/r
摩擦工具が1回転する間に移動する距離が回転ピッチである。回転ピッチは、以下の式(2)で与えられ、本発明のような移動接合の場合に適用される値である。
回転ピッチ=接合速度/ツール回転速度 (mm/r) …(2)
回転ピッチの増加は、塑性流動不足による接合部の欠陥発生に加え、ツール材に付与される荷重が増加し、ツールが破損する原因となるため、上限を0.8mm/rとするのが望ましい。回転ピッチが低い場合は、塑性流動が過剰となり、バリの発生およびそれに伴う欠陥が発生するため0.3mm/rを下限とするのが望ましい。なお、同様の理由で下限を0.4mm/r、上限を0.6mm/rとするのが一層望ましい。
Rotational pitch of friction tool: 0.3 to 0.8 mm / r
The distance that the friction tool moves during one rotation is the rotation pitch. The rotation pitch is given by the following equation (2), and is a value applied in the case of moving joint as in the present invention.
Rotation pitch = joining speed / tool rotation speed (mm / r) (2)
The increase in the rotation pitch increases the load applied to the tool material in addition to the occurrence of defects in the joint due to insufficient plastic flow, and causes the tool to break. Therefore, the upper limit is preferably set to 0.8 mm / r. . When the rotational pitch is low, the plastic flow becomes excessive, and burrs are generated and the accompanying defects are generated. Therefore, it is desirable to set the lower limit to 0.3 mm / r. For the same reason, it is more desirable to set the lower limit to 0.4 mm / r and the upper limit to 0.6 mm / r.

EBSD粒径:最大12.0μm以下
EBSD(電子線後方散乱回折法)は、各結晶の方位を測定する方法である。一般的に鋼の場合は15°以上の大角境界で囲まれた結晶粒径(EBSD粒径)が靱性と相関を持つことが報告されている。このEBSD粒径が細かいほど鋼の低温靱性が良好な結果となる。本発明のFSW接合条件によれば最大EBSD粒径が12.0μm以下の接合部が得られ、良好な低温靱性が得られる。一方で、最大EBSD粒径が12.0μmを超える場合は良好な低温靱性を得ることができないため、これを上限値とするのが望ましい。
EBSD particle size: 12.0 μm or less at maximum EBSD (electron beam backscatter diffraction method) is a method for measuring the orientation of each crystal. In general, in the case of steel, it has been reported that the crystal grain size (EBSD grain size) surrounded by a large angle boundary of 15 ° or more has a correlation with toughness. The finer the EBSD grain size, the better the low temperature toughness of the steel. According to the FSW bonding conditions of the present invention, a bonded portion having a maximum EBSD particle size of 12.0 μm or less is obtained, and good low temperature toughness is obtained. On the other hand, when the maximum EBSD particle size exceeds 12.0 μm, good low temperature toughness cannot be obtained.

厚肉材の接合方法
通常、FSWの接合深さは、摩擦工具のピン形状によって決定される。ピンが長ければ長いほど厚肉材料の施工が可能である。しかし、接合深さが深くなるにつれ、接合の際に必要な荷重は大きくなり、大規模な装置が必要となる。さらに摩擦工具への負荷も大きくなり、接合中に摩擦工具の破損が発生する可能性がある。それらの問題を解決するために、開先に対して、両面から施工を実施し、従来の回転工具による接合深さであっても、厚肉材料の接合を可能とする。さらに、適切な接合条件を選択することにより、次パスの熱影響を受けた接合部であっても特性を低下させることなく接合が可能となる。
Method of joining thick materials Normally, the joining depth of FSW is determined by the pin shape of the friction tool. The longer the pin, the thicker the material can be constructed. However, as the joining depth increases, the load required for joining increases and a large-scale device is required. Further, the load on the friction tool is increased, and the friction tool may be broken during the joining. In order to solve these problems, construction is performed on both sides of the groove so that thick materials can be joined even with a joining depth by a conventional rotary tool. Furthermore, by selecting an appropriate bonding condition, it is possible to bond without deteriorating characteristics even in a bonded portion that is affected by the heat of the next pass.

以上説明したように、本発明によれば、摩擦撹拌接合によって、母材よりも高強度で、さらに従来の溶融溶接に比べて接合部およびHAZにおいて低温靱性を改善できる。つまり、接合部が母材よりも高強度で、かつ熱影響部であってもサブサイズVノッチシャルピー衝撃試験にて測定された延性脆性破面遷移温度(FATT)が−70℃以下で、かつ−50℃での吸収エネルギーが40J以上となる低温靱性に優れた接合部を得ることができる。また、このため、両面施工の実施により、厚肉材の接合を可能することができる。   As described above, according to the present invention, by friction stir welding, the strength is higher than that of the base material, and the low temperature toughness can be improved at the joint and HAZ as compared with the conventional fusion welding. That is, the ductile brittle fracture surface transition temperature (FATT) measured by the subsize V-notch Charpy impact test is −70 ° C. or lower, even if the joint is higher in strength than the base metal and is a heat affected zone, and A joint having excellent low-temperature toughness with an absorbed energy at −50 ° C. of 40 J or more can be obtained. For this reason, a thick material can be joined by carrying out double-sided construction.

本発明の一実施形態における接合状態の過程を示す概略図である。It is the schematic which shows the process of the joining state in one Embodiment of this invention. 同じく、実施形態に用いられる摩擦工具を示す図である。Similarly, it is a figure which shows the friction tool used for embodiment. 本発明の実施例におけるEBSD測定用サンプルの採取要領を示す図である。It is a figure which shows the extraction | collection point of the sample for EBSD measurement in the Example of this invention. 同じく、サブサイズシャルピー衝撃試験片の採取要領を示す図である。Similarly, it is a figure which shows the sampling procedure of a subsize Charpy impact test piece. 同じく、入熱指数と最大EBSD粒径の相関を示すグラフである。Similarly, it is a graph showing the correlation between the heat input index and the maximum EBSD particle size. 同じく、入熱指数と試験温度‐70℃での吸収エネルギーの相関を示す図である。Similarly, it is a figure which shows the correlation of a heat input index and the absorbed energy in test temperature -70 degreeC. 同じく、継手引張試験片の採取要領を示す図である。Similarly, it is a figure which shows the sampling procedure of a joint tensile test piece. 同じく、継手引張試験後の試験片断面観察結果(回転速度:200rpm)を示す図である。Similarly, it is a figure which shows the test piece cross-section observation result (rotation speed: 200 rpm) after a joint tensile test.

以下に本発明の実施形態を添付図面に基づき説明する。
本発明に用いられるラインパイプ用鋼は、API(米国石油協会)5Lパイプグレードで規定されており(2012年度)、以下の成分を示すことができる。
C≦0.26%、Mn≦1.65%、P≦0.03%、S≦0.03%、(V+Nb+Ti)1種以上≦0.15%、残部Feと不可避不純物
Embodiments of the present invention will be described below with reference to the accompanying drawings.
The steel for line pipes used for this invention is prescribed | regulated by API (American Petroleum Institute) 5L pipe grade (2012), and can show the following components.
C ≦ 0.26%, Mn ≦ 1.65%, P ≦ 0.03%, S ≦ 0.03%, (V + Nb + Ti) 1 type or more ≦ 0.15%, balance Fe and inevitable impurities

上記ラインパイプ用鋼は、熱間圧延、焼き入れ、焼き戻し処理を経て提供することができる。例えば約1000℃に加熱した後、熱間圧延を実施し、その後、950℃で焼き入れし、560℃で焼き戻しを行うことができる。
なお、ラインパイプ用鋼の上記製造方法は例示であり、本願発明に用いるラインパイプ用鋼の製造方法が上記に限定されるものではない。
The steel for line pipes can be provided through hot rolling, quenching, and tempering treatment. For example, after heating to about 1000 ° C., hot rolling can be performed, followed by quenching at 950 ° C. and tempering at 560 ° C.
In addition, the said manufacturing method of the steel for line pipes is an illustration, and the manufacturing method of the steel for line pipes used for this invention is not limited above.

摩擦工具は、PCBN(立方晶窒化ホウ素焼結体)とW−Re合金の複合材料などを用いることができる。ただし、本発明としては、該ツール材の形状および材質は特定のものに限定されるものではなく、鉄鋼材料に使用可能な工具であればよい。例えば、セラミック、金属、複合材料、およびその他の派生材料を含む、鉄鋼材料を接合可能な任意の工具材料の適用が可能である。
図2に、摩擦工具10の例を示す。摩擦工具10は、円柱状の本体部11と、本体部11の先端側に設けられ、本体部11よりも大径とした円柱状のショルダー12とを有しており、ショルダー12の先端側に、先端側を小径として円錐台形状のピン13を有している。例えば、本体部の径を25mm、本体部の長さを約60mmとし、ショルダー12の径を約37mm、ピン13の軸方向に対する外周傾きを30度とし、ピン13の深さは4mmとする。
As the friction tool, a composite material of PCBN (cubic boron nitride sintered body) and a W-Re alloy can be used. However, in the present invention, the shape and material of the tool material are not limited to specific ones, and any tool that can be used for steel materials may be used. Any tool material capable of joining steel materials is possible, including, for example, ceramics, metals, composite materials, and other derived materials.
FIG. 2 shows an example of the friction tool 10. The friction tool 10 includes a columnar main body 11 and a columnar shoulder 12 that is provided on the distal end side of the main body 11 and has a larger diameter than the main body 11. The pin 13 has a truncated cone shape with a small diameter on the tip side. For example, the diameter of the main body portion is 25 mm, the length of the main body portion is about 60 mm, the diameter of the shoulder 12 is about 37 mm, the outer peripheral inclination with respect to the axial direction of the pin 13 is 30 degrees, and the depth of the pin 13 is 4 mm.

上記摩擦工具10は、ラインパイプ用鋼1の継手部2に対し、ピン13を接した状態で立てた状態で配置し、ラインパイプ用鋼1側に所定の荷重を加えつつ、所定の回転速度、所定の回転ピッチによって接合方向に、相対的に摩擦工具10を移動させる。摩擦工具の回転速度は80〜200rpmが望ましく、回転ピッチは、0.3〜0.8mm/rとするのが望ましい。なお、ラインパイプ用鋼1側を摩擦工具10に対し移動させるようにしてもよい。
さらに、摩擦撹拌接合では、下記式(1)で表される入熱指数が20×10〜120×10r・kg/mmとなる接合条件で実行する。
q(入熱指数)=押込み荷重(kg)×回転速度(rpm)×摩擦工具ショルダー径(mm)/(接合速度(mm/分)×板厚(mm)) …(1)
上記動作に基づく摩擦撹拌接合によって継手部2には、接合部3が形成される。
The friction tool 10 is disposed in a state where the pin 13 is in contact with the joint portion 2 of the line pipe steel 1 and applies a predetermined load to the line pipe steel 1 side while maintaining a predetermined rotational speed. The friction tool 10 is relatively moved in the joining direction by a predetermined rotation pitch. The rotational speed of the friction tool is desirably 80 to 200 rpm, and the rotational pitch is desirably 0.3 to 0.8 mm / r. Note that the line pipe steel 1 side may be moved with respect to the friction tool 10.
Further, the friction stir welding is performed under the joining conditions in which the heat input index represented by the following formula (1) is 20 × 10 3 to 120 × 10 3 r · kg / mm.
q (heat input index) = indentation load (kg) × rotational speed (rpm) × friction tool shoulder diameter (mm) / (joining speed (mm / min) × plate thickness (mm)) (1)
A joint 3 is formed at the joint 2 by friction stir welding based on the above operation.

上記接合部3は、母材であるラインパイプ用鋼1よりも高い強度を有し、サブサイズVノッチシャルピー衝撃試験にて測定された延性脆性破面遷移温度(FATT)が−70℃以下で、かつ−70℃での吸収エネルギーが40J以上となっている。
サブサイズVノッチシャルピー衝撃試験は、JIS Z2242:2005に規定する条件により実施することができる。
具体的には、試験片幅:5mm、高さ:10mm、長さ:55mmの試験片を用意し、ノッチ形状はノッチ角度45°、ノッチ深さ2mm及びノッチ底半径0.25mmとした。試験にはアルコールおよび液体窒素などの冷媒を使用し、所定の試験温度に対して±2℃に保たれた液槽中に、少なくとも10分間一定に保った後、試験を実施した。
The joint 3 has higher strength than the base pipe steel 1 as a base material, and has a ductile brittle fracture surface transition temperature (FATT) of −70 ° C. or less as measured in a subsize V-notch Charpy impact test. And the absorbed energy in -70 degreeC is 40J or more.
The subsize V-notch Charpy impact test can be performed under the conditions specified in JIS Z2242: 2005.
Specifically, a test piece having a test piece width of 5 mm, a height of 10 mm, and a length of 55 mm was prepared, and the notch shape had a notch angle of 45 °, a notch depth of 2 mm, and a notch bottom radius of 0.25 mm. For the test, a refrigerant such as alcohol and liquid nitrogen was used, and the test was carried out after being kept constant for at least 10 minutes in a liquid bath maintained at ± 2 ° C. with respect to a predetermined test temperature.

また、接合部3において、境界角度15°以上とした際の最大EBSD(Electron Back Scatter Diffraction;電子線後方散乱回折法)粒径が12.0μm以下となっている。
EBSD粒径は、走査電子顕微鏡(SEM)による結晶解析により行うことができる。
Further, in the joint portion 3, the maximum EBSD (Electron Back Scatter Diffraction) particle diameter when the boundary angle is 15 ° or more is 12.0 μm or less.
The EBSD particle size can be determined by crystal analysis using a scanning electron microscope (SEM).

摩擦撹拌接合の検討において、API−X65グレードのラインパイプ用鋼を使用した。
ラインパイプ用鋼には、質量%で、C:0.05%、Mn:1.43%、P:0.009%、S:0.004%、V+Nb+Ti:0.07%、残部Feおよび不可避不純物の材料を用いた。該鋼は、溶製後、約1000℃に加熱した後、熱間圧延を実施し、その後、950℃で焼き入れし、560℃で焼き戻しを行った。
図1に示す摩擦撹拌接合を行った構造材について、図3に示すように片面1パス接合を実施した接合部3の中央から、供試材としてサンプル4を採取し、EBSD(TSL社製OIM)測定を実施した。
EBSD測定では、測定ピッチは0.05μmとし、100μm×100μm範囲2視野の測定結果を元に粒径測定を実施した。表1に摩擦撹拌接合の接合条件とEBSD粒径測定結果を示す。回転速度50rpmでは接合部に欠陥が発生したため、本条件では良好な接合部が得られなかった。回転速度が200rpm以下であれば最大EBSD粒径であっても12.0μm以下となることを示している。
In the study of friction stir welding, API-X65 grade steel for line pipes was used.
For steel for line pipes, in mass%, C: 0.05%, Mn: 1.43%, P: 0.009%, S: 0.004%, V + Nb + Ti: 0.07%, balance Fe and inevitable Impurity material was used. After melting, the steel was heated to about 1000 ° C. and then hot-rolled, then quenched at 950 ° C. and tempered at 560 ° C.
As for the structural material subjected to the friction stir welding shown in FIG. 1, a sample 4 is taken as a test material from the center of the joint 3 where the single-sided one-pass joining is performed as shown in FIG. 3, and EBSD (OIM manufactured by TSL) is obtained. ) Measurement was carried out.
In the EBSD measurement, the measurement pitch was set to 0.05 μm, and the particle size measurement was performed based on the measurement results in the 100 μm × 100 μm range two visual fields. Table 1 shows the welding conditions for friction stir welding and the EBSD particle size measurement results. At the rotational speed of 50 rpm, defects occurred in the joints, so that good joints could not be obtained under these conditions. If the rotational speed is 200 rpm or less, even the maximum EBSD particle size is 12.0 μm or less.

Figure 0006066216
Figure 0006066216

接合部およびHAZの衝撃特性を評価するために、実施例1に示す条件で摩擦撹拌接合を行い、図4に示した要領でサブサイズシャルピー衝撃試験片を採取した。また、本実施例では次パスの熱影響を考慮するために両面パス施工により接合部3を作製した。なお、両面パスにおける接合条件は同一とした。
なお、供試材採取では、接合部側試験片20では、ノッチ位置を接合部幅方向の中央位置で採取した。また、HAZ側試験片22では、ノッチ位置を接合部幅方向近接位置で採取した。
さらに、比較のため、溶融溶接をAPI−X65鋼の接合で使用される溶接材料によるSAWとした比較例をさらに容易にした。
なお、サブサイズシャルピー衝撃試験は、実施例1と同様にJIS Z2242:2005に規定する条件により実施した。
表2にサブサイズシャルピー衝撃試験結果を示す。
In order to evaluate the impact characteristics of the joint and HAZ, friction stir welding was performed under the conditions shown in Example 1, and subsize Charpy impact test pieces were collected in the manner shown in FIG. Moreover, in this example, in order to consider the thermal effect of the next pass, the joint portion 3 was produced by double-sided pass construction. The joining conditions in the double-sided pass were the same.
In the specimen collection, the notch position was sampled at the center position in the joint width direction of the joint-side test piece 20. Moreover, in the HAZ side test piece 22, the notch position was sampled at a position adjacent to the joint width direction.
Further, for comparison, a comparative example in which the fusion welding is SAW using a welding material used for joining API-X65 steel is further facilitated.
The subsize Charpy impact test was performed under the conditions specified in JIS Z2242: 2005 in the same manner as in Example 1.
Table 2 shows the results of the subsize Charpy impact test.

Figure 0006066216
Figure 0006066216

試験の結果、発明例では接合部、HAZともに溶融溶接(SAW)よりもFATTが低温側にシフトしており、優れた低温靱性を示した。発明例では‐70℃での吸収エネルギー(vE−70)が40J以上となった。さらに接合部においては回転速度100rpm条件で母材とほぼ同等の衝撃特性を示した。一方で、比較例2では良好な低温靱性が得られなかった。
各供試材において、入熱指数とEBSD粒径および靱性の相関を図5、6に示す。入熱指数の増加に伴い、EBSD粒径が増加し、入熱指数が120×10r・kg/mm以上では、12.0μm以上となり、接合部の良好な低温靱性が得られなかった。
As a result of the test, in the inventive example, FATT was shifted to a lower temperature side than melt welding (SAW) in both the joint and HAZ, and excellent low temperature toughness was exhibited. In the inventive example, the absorbed energy (vE −70 ) at −70 ° C. was 40 J or more. Further, the joint exhibited substantially the same impact characteristics as the base material at a rotational speed of 100 rpm. On the other hand, in Comparative Example 2, good low temperature toughness was not obtained.
The correlation between the heat input index, the EBSD grain size, and the toughness is shown in FIGS. As the heat input index increased, the EBSD particle size increased. When the heat input index was 120 × 10 3 r · kg / mm or more, it became 12.0 μm or more, and good low temperature toughness of the joint was not obtained.

接合部の強度を評価するために、実施例1に示す条件で摩擦撹拌接合を行い、図6に示すように試験材から、接合部3とラインパイプ鋼1を含めた継手引張試験片5を供試材として採取した。継手引張試験片5は微小試験片(G.L.5mm、厚さ0.34mm)とし、試験温度を室温、引張速度を0.5mm/minとした条件での継手引張試験を行った。試験結果を表3に示す。   In order to evaluate the strength of the joint portion, friction stir welding was performed under the conditions shown in Example 1, and a joint tensile test piece 5 including the joint portion 3 and the line pipe steel 1 as shown in FIG. It collected as a test material. The joint tensile test piece 5 was a micro test piece (GL 5 mm, thickness 0.34 mm), and a joint tensile test was performed under conditions where the test temperature was room temperature and the tensile speed was 0.5 mm / min. The test results are shown in Table 3.

Figure 0006066216
Figure 0006066216

また、図8には継手引張試験後の破断位置の組織観察結果を示す。破断位置は母材であった。このことより、本発明例で得られた接合部は母材よりも高強度であることが示され、高強度かつ低温靱性が良好な接合部が本発明によって得られた。   Further, FIG. 8 shows a structure observation result at the fracture position after the joint tensile test. The fracture position was the base material. From this, it was shown that the joint part obtained in the present invention example had higher strength than the base material, and a joint part having high strength and good low-temperature toughness was obtained by the present invention.

本発明は、天然ガスのパイプラインなどに使用される鋼材の摩擦撹拌接合(以下FSW)として適用することができ、特に低温靱性が要求される環境においての接合部および熱影響部の優れた低温靱性に特化した接合方法として利用することができる。但し、本発明としては適用範囲がこれらに限定されるものではない。   INDUSTRIAL APPLICABILITY The present invention can be applied as friction stir welding (hereinafter referred to as FSW) of steel materials used for natural gas pipelines and the like, and has excellent low temperatures in joints and heat-affected zones particularly in environments where low temperature toughness is required It can be used as a joining method specialized in toughness. However, the scope of application of the present invention is not limited to these.

以上、本発明について上記実施形態に基づいて説明したが、本発明の範囲を逸脱しない限りは上記説明の内容に限定されるものではなく、適宜の変更を行うことが可能である。   Although the present invention has been described based on the above embodiment, the present invention is not limited to the above description unless departing from the scope of the present invention, and appropriate modifications can be made.

1 ラインパイプ用鋼
2 継手部
3 接合部
10 摩擦工具
12 ショルダー
13 ピン
1 Steel for Line Pipe 2 Joint 3 Joint 10 Friction Tool 12 Shoulder 13 Pin

Claims (3)

API(米国石油協会)5Lパイプグレードで、質量%で、C≦0.26%、Mn≦1.65%、P≦0.03%、S≦0.03%、(V+Nb+Ti)1種以上≦0.15%、残部Feと不可避不純物からなる組成を有するラインパイプ用鋼の継手部に摩擦撹拌接合を用い、前記摩擦撹拌接合では、接合条件を、下記式(1)で表される入熱指数を20×10 〜120×10 r・kg/mm、摩擦工具の回転速度を80〜200rpm、前記摩擦工具の回転ピッチ(工具が1回転する間に移動する距離)を0.3〜0.8mm/rとして、接合部が母材よりも高強度で、かつ熱影響部においてサブサイズVノッチシャルピー衝撃試験にて測定された延性脆性破面遷移温度(FATT)が−70℃以下で、かつ−70℃での吸収エネルギーが40J以上である接合部を形成することを特徴とする低温靱性に優れた構造体の製造方法。
q(入熱指数)=押込み荷重(kg)×回転速度(rpm)×摩擦工具ショルダー径(mm)/(接合速度(mm/分)×板厚(mm)) …(1)
API (American Petroleum Institute) 5L pipe grade , mass%, C ≦ 0.26%, Mn ≦ 1.65%, P ≦ 0.03%, S ≦ 0.03%, (V + Nb + Ti) 1 or more types ≦ 0.15%, using the friction stir welding to the joint portion for the line pipe steel that have a composition the balance being Fe and unavoidable impurities, in the friction stir welding, the bonding condition, represented by the following formula (1) The heat input index is 20 × 10 3 to 120 × 10 3 r · kg / mm, the rotation speed of the friction tool is 80 to 200 rpm, and the rotation pitch of the friction tool (the distance moved during one rotation of the tool) is 0. The ductile brittle fracture surface transition temperature (FATT) measured by the subsize V-notch Charpy impact test in the heat-affected zone is −70 ° C. at 3 to 0.8 mm / r. Absorption energy at −70 ° C. below Method for producing a good structure low temperature toughness characterized in that over to form a joint at least 40 J.
q (heat input index) = indentation load (kg) × rotational speed (rpm) × friction tool shoulder diameter (mm) / (joining speed (mm / min) × plate thickness (mm)) (1)
前記摩擦撹拌接合を、前記ラインパイプ用鋼の両面での接合パスにより行うことを特徴とする請求項1に記載の低温靱性に優れた構造体の製造方法。 The method for producing a structure excellent in low-temperature toughness according to claim 1, wherein the friction stir welding is performed by a joining pass on both surfaces of the steel for a line pipe. API(米国石油協会)5Lパイプグレードで、質量%で、C≦0.26%、Mn≦1.65%、P≦0.03%、S≦0.03%、(V+Nb+Ti)1種以上≦0.15%、残部Feと不可避不純物からなる組成を有するラインパイプ用鋼の継手に摩擦撹拌接合部が形成されており、前記接合部において、境界角度15°以上とした際の最大EBSD粒径が12.0μm以下であり、前記接合部が母材よりも高強度で、かつ熱影響部においてサブサイズVノッチシャルピー衝撃試験にて測定された延性脆性破面遷移温度(FATT)が−70℃以下で、かつ−70℃での吸収エネルギーが40J以上であることを特徴とする低温靱性に優れた構造体。 API (American Petroleum Institute) 5L pipe grade , mass%, C ≦ 0.26%, Mn ≦ 1.65%, P ≦ 0.03%, S ≦ 0.03%, (V + Nb + Ti) 1 or more types ≦ 0.15%, the friction stir joining portion to the joint of that line steel pipe having a composition the balance being Fe and unavoidable impurities is formed at the junction, the maximum EBSD when used as a boundary angle 15 ° or more The particle size is 12.0 μm or less, the joint is stronger than the base metal, and the ductile brittle fracture surface transition temperature (FATT) measured by the subsize V-notch Charpy impact test in the heat-affected zone is − A structure excellent in low temperature toughness, characterized in that the absorbed energy at 70 ° C. or lower and −70 ° C. is 40 J or higher.
JP2014177315A 2014-09-01 2014-09-01 Structure excellent in low temperature toughness and method for producing the same Active JP6066216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014177315A JP6066216B2 (en) 2014-09-01 2014-09-01 Structure excellent in low temperature toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014177315A JP6066216B2 (en) 2014-09-01 2014-09-01 Structure excellent in low temperature toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016049555A JP2016049555A (en) 2016-04-11
JP6066216B2 true JP6066216B2 (en) 2017-01-25

Family

ID=55657495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014177315A Active JP6066216B2 (en) 2014-09-01 2014-09-01 Structure excellent in low temperature toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP6066216B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111660003B (en) * 2020-06-22 2021-08-03 浙江最成半导体科技有限公司 Sputtering target welding method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2454401B (en) * 2004-04-30 2009-06-24 Hidetoshi Fujii Method of connecting metal material
JP4751625B2 (en) * 2005-03-03 2011-08-17 昭和電工株式会社 Formation method of welded joint
US8038047B2 (en) * 2006-08-25 2011-10-18 Osaka University Method for welding metal material
JP5255781B2 (en) * 2007-04-17 2013-08-07 英俊 藤井 Stainless steel joining method
EA018568B1 (en) * 2008-07-09 2013-08-30 Флуор Текнолоджиз Корпорейшн High-speed friction stir welding
US20100136369A1 (en) * 2008-11-18 2010-06-03 Raghavan Ayer High strength and toughness steel structures by friction stir welding
US7874471B2 (en) * 2008-12-23 2011-01-25 Exxonmobil Research And Engineering Company Butt weld and method of making using fusion and friction stir welding
JP5803069B2 (en) * 2010-08-31 2015-11-04 スズキ株式会社 Bonding method of dissimilar metal materials

Also Published As

Publication number Publication date
JP2016049555A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
CA2929359C (en) Friction stir welding method for high-strength steel sheets or plates
Maduraimuthu et al. Effect of activated flux on the microstructure, mechanical properties, and residual stresses of modified 9Cr-1Mo steel weld joints
Park et al. Microstructures and mechanical properties of friction stir welds of 60% Cu–40% Zn copper alloy
Santos et al. Fracture toughness of ISO 3183 X80M (API 5L X80) steel friction stir welds
Venkatesh et al. Review on friction stir welding of steels
Dong et al. Effect of post-weld heat treatment on properties of friction welded joint between TC4 titanium alloy and 40Cr steel rods
US20220145435A1 (en) Weathering steel for solid-state welding, weathering steel material for solid-state welding, solid-state welded structure and solid-state welding method
Puli et al. Characterization of friction surfaced martensitic stainless steel (AISI 410) coatings
Dhandha et al. Comparison of mechanical and metallurgical properties of modified 9Cr–1Mo steel for conventional TIG and A-TIG welds
WO2020184123A1 (en) Steel for solid-state welding, steel material for solid-state welding, solid-state welded joint, and solid-state welded structure
Kim et al. Effect of laser beam wobbling on the overlap joint strength of hot-press-forming steel over 2.0 GPa tensile strength
Ragab et al. Microstructure evolution during friction stir welding of 1Cr11Ni2W2MoV martensitic stainless steel at different tool rotation rates
Shunmugasamy et al. Friction stir welding of low-carbon AISI 1006 steel: room and high-temperature mechanical properties
JP5874402B2 (en) Welded steel pipe excellent in weld crack resistance and slurry corrosion wear resistance and method for producing the same
JP6066216B2 (en) Structure excellent in low temperature toughness and method for producing the same
Zhao et al. Clarifying effect of welding conditions on microstructure and mechanical properties of friction stir spot-welded DH590 automotive high-strength steel plates
JP6720825B2 (en) Thermal processing control type 590 MPa class H-section steel
JP2017082267A (en) Thick steel plate
JP2002220634A (en) High tension steel superior in resistance to stress aging, and manufacturing method therefor
JP6634616B2 (en) Steel for friction stir welding and friction stir welding method
Yamamoto et al. Surface microstructure modifications of low carbon steel welds produced by low-heat-input friction stir processing
Feng et al. Friction stir welding of API Garde 65 steel pipes
JP2022142983A (en) Steel pipe having excellent low temperature toughness
Choi et al. Microstructures and mechanical properties of friction stir welded 2.25 Cr–1Mo steel
KR20190039743A (en) Method and apparatus for friction stir welding

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161214

R150 Certificate of patent or registration of utility model

Ref document number: 6066216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250