JP6062193B2 - Ion chromatograph analyzer and ion chromatograph analysis method - Google Patents

Ion chromatograph analyzer and ion chromatograph analysis method Download PDF

Info

Publication number
JP6062193B2
JP6062193B2 JP2012201670A JP2012201670A JP6062193B2 JP 6062193 B2 JP6062193 B2 JP 6062193B2 JP 2012201670 A JP2012201670 A JP 2012201670A JP 2012201670 A JP2012201670 A JP 2012201670A JP 6062193 B2 JP6062193 B2 JP 6062193B2
Authority
JP
Japan
Prior art keywords
concentration
ion
separation
conductivity
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012201670A
Other languages
Japanese (ja)
Other versions
JP2014055892A (en
Inventor
利明 青木
利明 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2012201670A priority Critical patent/JP6062193B2/en
Publication of JP2014055892A publication Critical patent/JP2014055892A/en
Application granted granted Critical
Publication of JP6062193B2 publication Critical patent/JP6062193B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、液体サンプル中に含まれるイオン成分の分析を行うイオンクロマトグラフ分析装置およびイオンクロマトグラフ分析方法に関する。   The present invention relates to an ion chromatograph analyzer and an ion chromatograph analysis method for analyzing an ion component contained in a liquid sample.

液体サンプル中に含まれるイオン成分の分析において、イオンクロマトグラフ分析装置が用いられている。イオンクロマトグラフ分析において、液体サンプル中に含まれるイオン成分の濃度が低い(例えばppb〜pptレベル)測定を実施する場合は、液体サンプルを濃縮して分析することが可能な低濃度対応タイプのイオンクロマトグラフ分析装置が用いられている。この低濃度対応タイプのイオンクロマトグラフ分析装置は、例えば、液体サンプル中の測定対象成分と測定対象成分以外の成分(非測定対象成分)とを分離する分離カラムとは別に濃縮カラムを備えており、サンプル液を濃縮カラムに通液し、イオン成分を濃縮してから、分離カラムにより測定対象成分の分離を行い、検出部において分析を行うものである。測定が終わった測定対象成分を含むサンプル液は系外へ排出される(例えば、特許文献1〜4参照)。   An ion chromatograph analyzer is used to analyze ion components contained in a liquid sample. In ion chromatographic analysis, when measurement is performed with a low concentration of ion components contained in a liquid sample (for example, ppb to ppt level), a low-concentration type ion that can be analyzed by concentrating the liquid sample. A chromatographic analyzer is used. This low-concentration type ion chromatograph analyzer includes, for example, a concentration column separately from a separation column that separates a measurement target component in a liquid sample from a component other than the measurement target component (non-measurement target component). The sample liquid is passed through a concentration column, the ionic component is concentrated, the component to be measured is separated by the separation column, and the analysis is performed in the detection unit. The sample liquid containing the measurement target component after measurement is discharged out of the system (for example, see Patent Documents 1 to 4).

従来の低濃度対応タイプのイオンクロマトグラフ分析装置は、例えば図8に示すように構成されている。イオンクロマトグラフ分析装置50は、サンプル液を送液するサンプル液ポンプ62と、溶離液を送液する溶離液ポンプ64と、再生液を送液する再生液ポンプ66と、サンプル液と溶離液の流路を切り替える六方バルブである切替バルブ60と、サンプル液中のイオン成分をトラップして所定の倍率に濃縮する濃縮カラム52と、濃縮後の各種のイオン成分を分離する分離カラム56と、分離カラム56を保護するためのガードカラム54と、溶離液の導電率を低下させるサプレッサ(除去カラム)58と、分離されたイオン成分を導電率により検出する導電率測定装置68とを備える。   A conventional low-concentration type ion chromatograph analyzer is configured, for example, as shown in FIG. The ion chromatograph analyzer 50 includes a sample liquid pump 62 for supplying a sample liquid, an eluent pump 64 for supplying an eluent, a regenerative liquid pump 66 for supplying a regenerant, and a sample liquid and an eluent. A switching valve 60 that is a six-way valve for switching the flow path, a concentration column 52 that traps and concentrates ion components in the sample liquid to a predetermined magnification, a separation column 56 that separates various ion components after concentration, and a separation A guard column 54 for protecting the column 56, a suppressor (removal column) 58 for reducing the conductivity of the eluent, and a conductivity measuring device 68 for detecting the separated ion component based on the conductivity are provided.

このイオンクロマトグラフ分析装置50において、例えば図8に示すように、切替バルブ60の開口部1−2,3−4,5−6が連通している状態で、サンプル液ポンプ62により所定量のサンプル液が切替バルブ60を経由して濃縮カラム52に通液され、濃縮カラム52においてサンプル液中のイオン成分が濃縮される。このとき溶離液は、溶離液ポンプ64により切替バルブ60を経由して分離カラム56の方向に送液されている。次に、例えば図9に示すように、切替バルブ60が開口部6−1,2−3,4−5が連通するように切り替わると、サンプル液はドレインに排出されるが、溶離液が濃縮カラム52内の濃縮イオン成分を分離カラム56の方向に押し出す。このようにして濃縮イオン成分が溶離液と共に分離カラム56に送り込まれると、濃縮イオン成分は分離カラム56において各イオン成分に分離される。各イオン成分の分離は、分離カラム56に充填されたイオン交換樹脂への各イオン成分の親和力の差等を利用して行われる。分離カラム56を出た分離イオン成分は、溶離液と共にサプレッサ58に送り込まれ、サプレッサ58においてイオン交換樹脂により溶離液の導電率が低下される。目的の測定対象成分を含む分離イオン成分について導電率測定装置68において導電率が測定され、これにより測定対象成分が検出される。このように、低濃度のサンプル液であっても、濃縮カラムにより高濃度のサンプル液に変換されて所定の測定が行われる。   In this ion chromatograph analysis apparatus 50, for example, as shown in FIG. 8, a predetermined amount of water is supplied by the sample liquid pump 62 while the openings 1-2, 3-4, and 5-6 of the switching valve 60 are in communication. The sample liquid is passed through the concentration column 52 via the switching valve 60, and the ion component in the sample liquid is concentrated in the concentration column 52. At this time, the eluent is sent in the direction of the separation column 56 via the switching valve 60 by the eluent pump 64. Next, for example, as shown in FIG. 9, when the switching valve 60 is switched so that the openings 6-1, 2-3 and 4-5 communicate with each other, the sample liquid is discharged to the drain, but the eluent is concentrated. The concentrated ion component in the column 52 is pushed in the direction of the separation column 56. When the concentrated ion component is sent to the separation column 56 together with the eluent in this way, the concentrated ion component is separated into each ion component in the separation column 56. The separation of each ion component is performed by utilizing the difference in the affinity of each ion component to the ion exchange resin packed in the separation column 56 and the like. The separated ion component that has exited the separation column 56 is sent to the suppressor 58 together with the eluent, and the conductivity of the eluent is reduced by the ion exchange resin in the suppressor 58. The conductivity measurement device 68 measures the conductivity of the separated ion component including the target measurement target component, thereby detecting the measurement target component. In this way, even a low concentration sample solution is converted into a high concentration sample solution by the concentration column, and a predetermined measurement is performed.

このようにして低濃度測定を実施する場合、濃縮カラムにおける濃縮量を増やすことで、検出部である導電率測定装置における感度を上げることができるため、測定感度を上げることができる。   Thus, when performing a low concentration measurement, since the sensitivity in the conductivity measuring apparatus which is a detection part can be raised by increasing the amount of concentration in a concentration column, a measurement sensitivity can be raised.

しかし、このような低濃度対応タイプのイオンクロマトグラフ分析装置を用いて、高濃度の非測定対象成分と低濃度の測定対象成分が混在した液体サンプルの測定を実施した場合、以下の問題が生じる場合がある。
(1)測定対象成分と非測定対象成分の検出ピークが近接している場合、高濃度の非測定対象成分のピークが大きすぎて、測定対象成分のピークの検出が困難となる。
(2)濃縮カラムの交換容量が限られているため、高濃度の非測定対象イオン成分がサンプルに含まれる場合、濃縮カラムによる濃縮量を増やすのが困難となる。
However, when a liquid sample containing a high concentration non-measurement target component and a low concentration measurement target component is measured using such a low concentration type ion chromatograph analyzer, the following problems occur. There is a case.
(1) When the detection peaks of the measurement target component and the non-measurement target component are close to each other, the peak of the high concentration non-measurement target component is too large, and it becomes difficult to detect the peak of the measurement target component.
(2) Since the exchange capacity of the concentration column is limited, it is difficult to increase the concentration by the concentration column when a high concentration non-measurement target ion component is included in the sample.

特開2001−141709号公報JP 2001-141709 A 特開2001−004610号公報JP 2001-004610 A 特開2007−033232号公報JP 2007-033322 A 特開2000−081422号公報Japanese Patent Laid-Open No. 2000-081422

本発明の目的は、測定対象成分に対して非測定対象成分が高濃度に含まれたサンプルでも低濃度の測定対象成分の検出を高感度で行うことができるイオンクロマトグラフ分析装置およびイオンクロマトグラフ分析方法を提供することにある。   An object of the present invention is to provide an ion chromatograph analyzer and an ion chromatograph capable of detecting a low-concentration measurement target component with high sensitivity even in a sample containing a non-measurement target component at a high concentration relative to the measurement target component. It is to provide an analysis method.

本発明は、測定対象成分および非測定対象成分を含む複数のイオン成分を分離して検出するイオンクロマトグラフ分析装置であって、前記複数のイオン成分を含むサンプル液を送液するサンプル液送液手段と、溶離液を送液する溶離液送液手段と、前記サンプル液送液手段により送液されたサンプル液に含まれるイオン成分を濃縮する第一濃縮カラムと、濃縮後の濃縮イオン成分を分離する分離カラムと、前記分離カラムへの通液後の分離液の導電率を低下させるサプレッサと、前記導電率を低下させた分離液に含まれる分離イオン成分を導電率により検出する導電率測定手段と、前記分離イオン成分のうち少なくとも前記測定対象成分を含む部分を画分したものを二次濃縮する第二濃縮カラムと、を備え、前記第二濃縮カラムによる二次濃縮後の二次濃縮イオン成分について前記分離カラムにより二次分離を行うイオンクロマトグラフ分析装置である。   The present invention relates to an ion chromatograph analyzer for separating and detecting a plurality of ion components including a measurement target component and a non-measurement target component, and supplying a sample liquid containing the plurality of ion components Means, an eluent feeding means for feeding an eluent, a first concentration column for concentrating an ionic component contained in the sample liquid fed by the sample liquid feeding means, and a concentrated ionic component after concentration. Separation column for separation, suppressor for reducing the conductivity of the separation liquid after passing through the separation column, and conductivity measurement for detecting separated ion components contained in the separation liquid for which the conductivity has been lowered by the conductivity. Means and a second concentration column for secondarily concentrating a fraction obtained by fractionating at least the portion to be measured among the separated ion components, and a second concentration column by the second concentration column. An ion chromatographic analysis apparatus for performing secondary separated by the separation column for the secondary concentrating ion component after.

また、本発明は、測定対象成分および非測定対象成分を含む複数のイオン成分を分離して検出するイオンクロマトグラフ分析方法であって、前記複数のイオン成分を含むサンプル液を第一濃縮カラムに通液してイオン成分を濃縮する一次濃縮工程と、前記一次濃縮工程後の一次濃縮イオン成分を溶離液により分離カラムに通液して分離する一次分離工程と、前記一次分離工程後の一次分離液の導電率を低下させる一次導電率低下工程と、前記一次導電率低下工程後の一次分離液に含まれる一次分離イオン成分を導電率により検出する一次導電率測定工程と、前記一次分離イオン成分のうち少なくとも前記測定対象成分を含む部分を画分したものを第二濃縮カラムに通液して濃縮する二次濃縮工程と、前記二次濃縮工程後の二次濃縮イオン成分を溶離液により前記分離カラムに通液して分離する二次分離工程と、前記二次分離工程後の二次分離液の導電率を低下させる二次導電率低下工程と、前記二次導電率低下工程後の二次分離液に含まれる二次分離イオン成分を導電率により検出する二次導電率測定工程と、を含むイオンクロマトグラフ分析方法である。   The present invention also provides an ion chromatographic analysis method for separating and detecting a plurality of ion components including a measurement target component and a non-measurement target component, wherein the sample liquid containing the plurality of ion components is applied to a first concentration column. A primary concentration step of passing through and concentrating the ionic component; a primary separation step of separating the primary concentrated ionic component after the primary concentration step through a separation column with an eluent; and primary separation after the primary separation step A primary conductivity lowering step for reducing the electrical conductivity of the liquid, a primary conductivity measuring step for detecting a primary separation ion component contained in the primary separation liquid after the primary conductivity lowering step based on the conductivity, and the primary separation ion component A secondary concentration step of concentrating the fraction containing at least the measurement target component through a second concentration column, and a secondary concentrated ion component after the secondary concentration step A secondary separation step of separating by passing through the separation column with an eluent, a secondary conductivity lowering step of lowering the conductivity of the secondary separation liquid after the secondary separation step, and the secondary conductivity lowering A secondary conductivity measuring step of detecting a secondary separation ion component contained in the secondary separation liquid after the step by conductivity.

本発明では、測定対象成分を含む部分を画分したものについて濃縮を複数回行うことにより、測定対象成分に対して非測定対象成分が高濃度に含まれたサンプルでも低濃度の測定対象成分の検出を高感度で行うことができる。   In the present invention, the fraction containing the measurement target component is subjected to concentration multiple times, so that even if the sample contains a non-measurement target component at a high concentration relative to the measurement target component, Detection can be performed with high sensitivity.

本発明の実施形態に係るイオンクロマトグラフ分析装置の一例を示す概略構成図であり、一次濃縮の際の液の流れの概略を示す図である。It is a schematic block diagram which shows an example of the ion chromatograph analyzer which concerns on embodiment of this invention, and is a figure which shows the outline of the flow of the liquid in the case of primary concentration. 本発明の実施形態に係るイオンクロマトグラフ分析装置における一次分析の際の液の流れの概略を示す図である。It is a figure which shows the outline of the flow of the liquid in the case of the primary analysis in the ion chromatograph analyzer which concerns on embodiment of this invention. 本発明の実施形態に係るイオンクロマトグラフ分析装置における二次濃縮の際の液の流れの概略を示す図である。It is a figure which shows the outline of the flow of the liquid in the case of the secondary concentration in the ion chromatograph analyzer which concerns on embodiment of this invention. 本発明の実施形態に係るイオンクロマトグラフ分析装置における二次分析の際の液の流れの概略を示す図である。It is a figure which shows the outline of the flow of the liquid in the case of the secondary analysis in the ion chromatograph analyzer which concerns on embodiment of this invention. 本発明の実施形態に係るイオンクロマトグラフ分析装置における三次濃縮の際の液の流れの概略を示す図である。It is a figure which shows the outline of the flow of the liquid in the case of the tertiary concentration in the ion chromatograph analyzer which concerns on embodiment of this invention. 本発明の実施形態に係るイオンクロマトグラフ分析装置における三次分析の際の液の流れの概略を示す図である。It is a figure which shows the outline of the flow of the liquid in the case of the tertiary analysis in the ion chromatograph analyzer which concerns on embodiment of this invention. 実施例における(a)一次濃縮後、(b)二次濃縮後、(c)三次濃縮後のイオンクロマトグラフ分析の結果を示す図である。It is a figure which shows the result of the ion chromatograph analysis after (a) primary concentration, (b) secondary concentration, and (c) tertiary concentration in an Example. 従来のイオンクロマトグラフ分析装置の一例を示す概略構成図であり、濃縮の際の液の流れの概略を示す図である。It is a schematic block diagram which shows an example of the conventional ion chromatograph analyzer, and is a figure which shows the outline of the flow of the liquid in the case of concentration. 従来のイオンクロマトグラフ分析装置における分析の際の液の流れの概略を示す図である。It is a figure which shows the outline of the flow of the liquid in the case of the analysis in the conventional ion chromatograph analyzer.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

高濃度の非測定対象成分と低濃度の測定対象成分が混在した液体サンプルの測定を実施する場合、上記の通り、以下の問題が生じる場合がある。
(1)測定対象成分と非測定対象成分の検出ピークが近接している場合、高濃度の非測定対象成分のピークが大きすぎて、測定対象成分のピークの検出が困難となる。
(2)濃縮カラムの交換容量が限られているため、高濃度の非測定対象イオン成分がサンプルに含まれる場合、濃縮カラムによる濃縮量を増やすのが困難となる。
When performing measurement of a liquid sample in which a high concentration non-measurement target component and a low concentration measurement target component are mixed, the following problem may occur as described above.
(1) When the detection peaks of the measurement target component and the non-measurement target component are close to each other, the peak of the high concentration non-measurement target component is too large, and it becomes difficult to detect the peak of the measurement target component.
(2) Since the exchange capacity of the concentration column is limited, it is difficult to increase the concentration by the concentration column when a high concentration non-measurement target ion component is included in the sample.

本発明者らは、鋭意検討した結果、測定対象成分に対して非測定対象成分が高濃度に含まれたサンプルでも、非測定対象成分を含む部分を画分したものについてはできるだけ系外へ排出し、測定対象成分を含む部分を画分したものの濃縮を複数回行うことにより、低濃度の測定対象成分の検出を高感度で行うことができることを見出した。高濃度の非測定対象成分が含まれたサンプルの場合、高濃度の非測定対象成分のピークが大きすぎて測定対象成分のピークの検出が困難になる原因は、導電率測定装置において非測定対象成分の導電率に対して測定対象成分の導電率が小さいため、その変化が埋もれてしまうことにある。非測定対象成分の量が少なくなれば、大きな非測定対象成分のピークに埋もれていた変化が顕著に表れ、測定対象成分の検出が可能となる。濃縮カラムの交換容量内でイオン成分の濃縮を行い、分離カラムで分離後、従来のように全てのサンプルを系外へ排出せずに、非測定対象成分を含む部分を画分したものについてはできるだけ系外へ排出し、測定対象成分を含む部分を画分したものについては濃縮を複数回行うことにより、好ましくは測定対象成分を含む部分だけを画分したものについては濃縮を複数回行うことにより、測定対象成分に対して非測定対象成分の量が相対的に少なくなり、測定対象成分のピークが検出しやすくなる。さらに、非測定対象成分の量が少なくなっているため、測定対象成分を含む部分を画分したものの濃縮を複数回行うことにより、検出下限を下げることが可能となる。   As a result of intensive investigations, the inventors of the present invention discharged samples out of the system as much as possible from fractions containing non-measurement target components even in samples containing non-measurement target components at high concentrations relative to the measurement target components. Then, it has been found that the concentration of the measurement target component can be detected with high sensitivity by concentrating the fraction containing the measurement target component multiple times. In the case of a sample containing a high concentration of non-measurement target components, the cause of the difficulty in detecting the peak of the measurement target component because the peak of the high concentration non-measurement component is too large is the non-measurement target in the conductivity measuring device. Since the conductivity of the component to be measured is smaller than the conductivity of the component, the change is buried. If the amount of the non-measurement target component is reduced, the change buried in the large peak of the non-measurement target component appears significantly, and the measurement target component can be detected. Concentration of ionic components within the exchange capacity of the concentration column, separation with a separation column, and fractionation of parts containing non-measurement target components without discharging all samples out of the system as in the past Discharge out of the system as much as possible and concentrate the fraction containing the component to be measured multiple times, preferably concentrate multiple times for the fraction containing only the component to be measured Thus, the amount of the non-measurement target component is relatively small with respect to the measurement target component, and the peak of the measurement target component is easily detected. Furthermore, since the amount of the non-measurement target component is reduced, the lower limit of detection can be lowered by concentrating the fraction containing the measurement target component multiple times.

本発明の実施形態に係るイオンクロマトグラフ分析装置の一例の概略を図1に示し、その構成について説明する。イオンクロマトグラフ分析装置1は、サンプル液を送液するサンプル液送液手段としてのサンプル液ポンプ26と、溶離液を送液する溶離液送液手段としての溶離液ポンプ28と、再生液を送液する再生液送液手段としての再生液ポンプ30と、サンプル液と溶離液の流路を切り替える第一流路切り替え手段としての六方バルブである第一切替バルブ20と、サンプル液中のイオン成分をトラップして所定の倍率に濃縮する第一濃縮カラム10と、濃縮後の濃縮イオン成分を分離する分離カラム16と、分離カラム16を保護するためのガードカラム14と、分離カラム16への通液後の分離液の導電率を低下させるサプレッサ(除去カラム)18と、分離液中の分離イオン成分をトラップして所定の倍率に濃縮する第二濃縮カラム12と、分離液と溶離液の流路を切り替える六方バルブである第二流路切り替え手段としての第二切替バルブ22と、二次濃縮液と溶離液の流路を切り替える第三流路切り替え手段としての六方バルブである第三切替バルブ24と、分離液に含まれる分離イオン成分を導電率により検出する導電率測定手段としての導電率測定装置32とを備える。第一切替バルブ20、第二切替バルブ22、第三切替バルブ24、サンプル液ポンプ26、溶離液ポンプ28、再生液ポンプ30および導電率測定装置32は、それぞれ制御部(図示せず)に電気的接続等により接続されてもよい。制御部は、導電率測定装置32からの信号の処理、第一切替バルブ20、第二切替バルブ22、第三切替バルブ24、サンプル液ポンプ26、溶離液ポンプ28および再生液ポンプ30の制御等を行い、導電率測定装置32による導電率の測定結果等に基づく、第一切替バルブ20、第二切替バルブ22、第三切替バルブ24、サンプル液ポンプ26、溶離液ポンプ28および再生液ポンプ30の制御等が可能となっている。   An outline of an example of an ion chromatograph analyzer according to an embodiment of the present invention is shown in FIG. 1 and the configuration thereof will be described. The ion chromatograph analyzer 1 includes a sample liquid pump 26 as a sample liquid supply means for supplying a sample liquid, an eluent pump 28 as an eluent liquid supply means for supplying an eluent, and a regenerative liquid. A regenerative liquid pump 30 serving as a regenerative liquid feeding means, a first switching valve 20 serving as a six-way valve as a first flow path switching means for switching the flow path between the sample liquid and the eluent, and ionic components in the sample liquid. The first concentration column 10 that traps and concentrates to a predetermined magnification, the separation column 16 that separates the concentrated ion component after concentration, the guard column 14 that protects the separation column 16, and the liquid flow to the separation column 16 A suppressor (removal column) 18 that lowers the conductivity of the subsequent separation liquid, a second concentration column 12 that traps separated ion components in the separation liquid and concentrates them at a predetermined magnification, A second switching valve 22 as a second flow path switching means that is a six-way valve for switching the flow path between the separation liquid and the eluent, and a six-way switching function as a third flow path switching means for switching the flow path between the secondary concentrated liquid and the eluent. A third switching valve 24, which is a valve, and a conductivity measuring device 32 as conductivity measuring means for detecting a separated ion component contained in the separation liquid based on the conductivity are provided. The first switching valve 20, the second switching valve 22, the third switching valve 24, the sample liquid pump 26, the eluent pump 28, the regeneration liquid pump 30, and the conductivity measuring device 32 are each electrically connected to a control unit (not shown). It may be connected by a general connection or the like. The control unit processes signals from the conductivity measuring device 32, controls the first switching valve 20, the second switching valve 22, the third switching valve 24, the sample liquid pump 26, the eluent pump 28, the regeneration liquid pump 30, and the like. And the first switching valve 20, the second switching valve 22, the third switching valve 24, the sample liquid pump 26, the eluent pump 28, and the regenerative liquid pump 30 based on the conductivity measurement result by the conductivity measuring device 32. And the like can be controlled.

本実施形態に係るイオンクロマトグラフ分析方法およびイオンクロマトグラフ分析装置1の動作について、図面を参照して説明する。イオンクロマトグラフ分析装置1において、例えば図1に示すように、第一切替バルブ20の開口部1−2,3−4,5−6が連通している状態で、サンプル液ポンプ26により所定量のサンプル液が第一切替バルブ20(開口部6→5)を経由して第一濃縮カラム10に通液され、第一濃縮カラム10においてサンプル液中のイオン成分が濃縮される(一次濃縮工程)。サンプル液は第一切替バルブ20(開口部2→1)を経由してドレインに排出される。このとき溶離液は、第三切替バルブ24の開口部1−6,3−4が連通している状態で、溶離液ポンプ28により第三切替バルブ24(開口部1→6)、第一切替バルブ20(開口部3→4)、第三切替バルブ24(開口部3→4)を順に経由して分離カラム16の方向に送液されている。   The operation of the ion chromatograph analyzing method and the ion chromatograph analyzing apparatus 1 according to the present embodiment will be described with reference to the drawings. In the ion chromatograph analyzer 1, for example, as shown in FIG. 1, a predetermined amount is supplied by the sample liquid pump 26 in a state where the openings 1-2, 3-4, and 5-6 of the first switching valve 20 are in communication. Is passed through the first concentration column 10 via the first switching valve 20 (opening 6 → 5), and the ionic components in the sample solution are concentrated in the first concentration column 10 (primary concentration step). ). The sample liquid is discharged to the drain via the first switching valve 20 (opening 2 → 1). At this time, the eluent is in a state where the openings 1-6 and 3-4 of the third switching valve 24 communicate with each other, and the eluent pump 28 causes the third switching valve 24 (opening 1 → 6) to be switched first. The solution is fed in the direction of the separation column 16 through the valve 20 (opening 3 → 4) and the third switching valve 24 (opening 3 → 4) in this order.

次に、例えば図2に示すように、第一切替バルブ20が開口部6−1,2−3,4−5が連通するように切り替わると、サンプル液は第一切替バルブ20(開口部6→1)を経由してドレインに排出されるが、溶離液が、第三切替バルブ24(開口部1→6)、第一切替バルブ20(開口部3→2)、第一濃縮カラム10、第一切替バルブ20(開口部5→4)、第三切替バルブ24(開口部3→4)を順に経由して、第一濃縮カラム10内の一次濃縮イオン成分を分離カラム16の方向に押し出す。このようにして一次濃縮イオン成分が溶離液と共にガードカラム14を経て分離カラム16に送り込まれると、一次濃縮イオン成分は分離カラム16において各イオン種の溶出時間ごとに各イオン成分に分離される(一次分離工程)。一次濃縮イオン成分中の各イオン成分の分離は、分離カラム16に充填されたイオン交換樹脂への各イオン成分の親和力の差、イオンの大きさ等を利用して行われる。分離カラム16を出た一次分離イオン成分は、溶離液と共にサプレッサ18に送り込まれ、サプレッサ18において一次分離液はイオン交換樹脂により溶離液中のイオンが除去されあるいは電気伝導度の低いものに変換され、導電率が低下される(一次導電率低下工程)。目的の測定対象成分を含む一次分離イオン成分について導電率測定装置32において導電率が測定され(一次導電率測定工程)、予め求めておいた所定の時間、または導電率測定結果に基づいて、非測定対象成分を含む部分を画分したものは、第二切替バルブ22(開口部6→1)を経由してドレインに排出される。   Next, for example, as shown in FIG. 2, when the first switching valve 20 is switched so that the openings 6-1, 2-3, 4-5 communicate with each other, the sample liquid is transferred to the first switching valve 20 (opening 6. 1), the eluent is discharged to the drain via the third switching valve 24 (opening 1 → 6), the first switching valve 20 (opening 3 → 2), the first concentration column 10, The primary concentrated ion component in the first concentration column 10 is pushed out in the direction of the separation column 16 via the first switching valve 20 (opening 5 → 4) and the third switching valve 24 (opening 3 → 4) in this order. . When the primary concentrated ion component is sent to the separation column 16 through the guard column 14 together with the eluent in this manner, the primary concentrated ion component is separated into each ion component at each elution time of each ion species in the separation column 16 ( Primary separation step). Separation of each ion component in the primary concentrated ion component is performed using the difference in the affinity of each ion component to the ion exchange resin packed in the separation column 16, the size of the ions, and the like. The primary separation ion component that has exited the separation column 16 is sent to the suppressor 18 together with the eluent, and in the suppressor 18, the ions in the eluent are removed or converted into one having low electrical conductivity by the ion exchange resin. The conductivity is lowered (primary conductivity lowering step). Conductivity is measured in the conductivity measuring device 32 for the primary separated ion component including the target component to be measured (primary conductivity measuring step), and based on the predetermined time obtained in advance or the conductivity measurement result, A fraction containing the measurement target component is discharged to the drain via the second switching valve 22 (opening 6 → 1).

次に、測定対象成分の溶出タイミングで、例えば図3に示すように、第二切替バルブ22が開口部1−2,3−4,5−6が連通するように切り替わると、溶離液は、図2と同様にして分離カラム16、サプレッサ18を経由した後、第二切替バルブ22(開口部6→5)を経由して、測定対象成分を含む一次分離イオン成分が第二濃縮カラム12に通液され、第二濃縮カラム12において測定対象成分を含む部分を画分したものが二次濃縮される(二次濃縮工程)。上記所定のタイミングとは、例えば、予め求めておいた非測定対象成分が主に排出する排出時間が経過したとき、予め求めておいた測定対象成分が主に排出する排出時間となったとき等が挙げられる。   Next, when the second switching valve 22 is switched so that the opening portions 1-2, 3-4, and 5-6 communicate with each other at the elution timing of the measurement target component, for example, as shown in FIG. In the same manner as in FIG. 2, after passing through the separation column 16 and the suppressor 18, the primary separation ion component including the measurement target component is transferred to the second concentration column 12 via the second switching valve 22 (opening 6 → 5). The solution is passed through and the fraction containing the measurement target component in the second concentration column 12 is subjected to secondary concentration (secondary concentration step). The predetermined timing is, for example, when a discharge time for mainly discharging a non-measurement target component obtained in advance has elapsed, or when a discharge time for mainly discharging a measurement target component determined in advance has been reached. Is mentioned.

次に、例えば図4に示すように、第二切替バルブ22が開口部6−1,2−3,4−5が連通するように、第三切替バルブ24が開口部1−2,4−5が連通するように切り替わると、溶離液が、第三切替バルブ24(開口部1→2)、第二切替バルブ22(開口部3→2)、第二濃縮カラム12、第二切替バルブ22(開口部5→4)、第三切替バルブ24(開口部5→4)を順に経由して、第二濃縮カラム12内の二次濃縮イオン成分を分離カラム16の方向に押し出す。このようにして二次濃縮イオン成分が溶離液と共にガードカラム14を経て分離カラム16に送り込まれると、二次濃縮イオン成分は分離カラム16において各種イオン成分に分離される(二次分離工程)。分離カラム16を出た二次分離イオン成分は、溶離液と共にサプレッサ18を経由して(二次導電率低下工程)、導電率測定装置32において導電率が測定され、分析が行われる(二次導電率測定工程)。これにより測定対象成分に対して非測定対象成分が高濃度に含まれたサンプルでも低濃度の測定対象成分の検出を高感度で行うことができる。   Next, as shown in FIG. 4, for example, the third switching valve 24 is connected to the openings 1-2, 4-, so that the second switching valve 22 communicates with the openings 6-1, 2-3, 4-5. 5 is switched so that the eluent is switched to the third switching valve 24 (opening portion 1 → 2), the second switching valve 22 (opening portion 3 → 2), the second concentration column 12, and the second switching valve 22. The secondary concentrated ion component in the second concentration column 12 is pushed out in the direction of the separation column 16 through the (opening 5 → 4) and the third switching valve 24 (opening 5 → 4) in this order. When the secondary concentrated ion component is sent to the separation column 16 through the guard column 14 together with the eluent in this way, the secondary concentrated ion component is separated into various ion components in the separation column 16 (secondary separation step). The secondary separation ion component exiting the separation column 16 passes through the suppressor 18 together with the eluent (secondary conductivity lowering step), and the conductivity is measured by the conductivity measuring device 32 and analyzed (secondary). Conductivity measurement process). Thereby, even in a sample in which a non-measurement target component is contained in a high concentration with respect to the measurement target component, a low-concentration measurement target component can be detected with high sensitivity.

二次濃縮および二次分離において、測定対象成分と非測定対象成分との分離が不十分である場合には、二次分離後の測定対象成分を含む部分を画分したものを再度濃縮してもよい。測定対象成分の溶出タイミングで、例えば図5に示すように、第二切替バルブ22が開口部1−2,3−4,5−6が連通するように切り替わると、測定対象成分を含む部分を画分したものが、第二切替バルブ22(開口部6→5)を経由して、第二濃縮カラム12に通液され、第二濃縮カラム12において測定対象成分を含む部分を画分したものが三次濃縮される(三次濃縮工程)。   In secondary concentration and secondary separation, if separation of the measurement target component and non-measurement target component is insufficient, concentrate the fraction containing the measurement target component after secondary separation again. Also good. When the second switching valve 22 is switched so that the openings 1-2, 3-4, and 5-6 communicate with each other at the elution timing of the measurement target component, for example, as shown in FIG. The fraction is passed through the second switching valve 22 (opening 6 → 5) and passed through the second concentration column 12, and the fraction containing the component to be measured in the second concentration column 12 is fractionated. Is subjected to tertiary concentration (tertiary concentration step).

次に、例えば図6に示すように、第二切替バルブ22が開口部6−1,2−3,4−5が連通するように、溶離液が、第三切替バルブ24(開口部1→2)、第二切替バルブ22(開口部3→2)、第二濃縮カラム12、第二切替バルブ22(開口部5→4)、第三切替バルブ24(開口部5→4)を順に経由して、第二濃縮カラム12内の三次濃縮イオン成分を分離カラム16の方向に押し出す。このようにして三次濃縮イオン成分が溶離液と共にガードカラム14を経て分離カラム16に送り込まれると、三次濃縮イオン成分は分離カラム16において各種イオン成分に分離される(三次分離工程)。分離カラム16を出た三次分離イオン成分は、溶離液と共にサプレッサ18を経由して(三次導電率低下工程)、導電率測定装置32において導電率が測定され、分析が行われる(三次導電率測定工程)。このように、濃縮工程、分離工程を繰り返すことにより、測定対象成分に対して非測定対象成分が高濃度に含まれたサンプルでも低濃度の測定対象成分の検出をより高感度で行うことができる。必要に応じて、第二濃縮カラム12による図5の濃縮工程、図6の分離工程の操作を繰り返してもよい。この場合、上記三次濃縮工程、三次分離工程、三次導電率低下工程、三次導電率測定工程を、それぞれn次濃縮工程、n次分離工程、n次導電率低下工程、n次導電率測定工程とすればよい(nは3以上の整数)。   Next, for example, as shown in FIG. 6, the eluent is supplied to the third switching valve 24 (opening 1 →→ so that the second switching valve 22 communicates with the opening 6-1, 2-3, 4-5. 2), second switching valve 22 (opening 3 → 2), second concentration column 12, second switching valve 22 (opening 5 → 4), and third switching valve 24 (opening 5 → 4) in that order. Then, the tertiary concentrated ion component in the second concentration column 12 is pushed out in the direction of the separation column 16. When the tertiary concentrated ion component is sent to the separation column 16 through the guard column 14 together with the eluent in this way, the tertiary concentrated ion component is separated into various ion components in the separation column 16 (tertiary separation step). The tertiary separation ion component exiting the separation column 16 passes through the suppressor 18 together with the eluent (tertiary conductivity lowering step), and the conductivity is measured and analyzed by the conductivity measuring device 32 (third conductivity measurement). Process). In this way, by repeating the concentration step and the separation step, it is possible to detect a low concentration measurement target component with higher sensitivity even in a sample in which a non-measurement target component is contained in a high concentration with respect to the measurement target component. . As needed, you may repeat operation of the concentration process of FIG. 5 by the 2nd concentration column 12, and the isolation | separation process of FIG. In this case, the third concentration step, the third separation step, the third conductivity reduction step, and the third conductivity measurement step are respectively referred to as an nth concentration step, an nth separation step, an nth conductivity reduction step, and an nth conductivity measurement step. (N is an integer of 3 or more).

本実施形態では、第二濃縮カラム12において二次濃縮以降の濃縮を行って第二濃縮カラム12に二次濃縮イオン成分を滞留させた後、図1のようにして第一濃縮カラム10において一次濃縮を行った一次濃縮イオン成分を一次分離した一次分離イオン成分のうち、測定対象成分を含む部分を画分したものを第二濃縮カラム12に通液して、追加濃縮することができる(追加濃縮工程)。図8,9に示す従来のイオンクロマトグラフ分析装置では、濃縮カラムが1つであるために、このような追加濃縮は困難であるが、本実施形態に係るイオンクロマトグラフ分析装置1では、濃縮カラムを2つ有するために、このような追加濃縮が可能である。   In this embodiment, after the secondary concentration is performed in the second concentration column 12 and the secondary concentrated ion component is retained in the second concentration column 12, the primary concentration is performed in the first concentration column 10 as shown in FIG. Among the primary separated ion components obtained by primary separation of the concentrated primary concentrated ion components, the fraction containing the component to be measured can be passed through the second concentration column 12 for additional concentration (additional) Concentration step). In the conventional ion chromatograph analyzer shown in FIGS. 8 and 9, since there is one concentration column, such additional concentration is difficult. However, in the ion chromatograph analyzer 1 according to this embodiment, the concentration is not concentrated. Such additional concentration is possible because of having two columns.

第一濃縮カラム10、第二濃縮カラム12に用いる充填材としては、濃縮対象成分に応じて決めればよく、陰イオン(例えば、F、Cl、Br、NO 、NO 、PO 2−、SO 2−等)を濃縮する場合には、四級アンモニウム基等の陰イオン交換基を有する陰イオン交換樹脂等の陰イオン交換体を用い、陽イオン(例えば、Li、Na、NH 、K、Mg2+、Ca2+等)を濃縮する場合には、スルホン酸基等の陽イオン交換基を有する陽イオン交換樹脂等の陽イオン交換体を用いる。これらの陰イオン交換体、陽イオン交換体としては、ポリマー基材、無機基材等の基材に、イオンと親和性のある官能基(陰イオン交換基、陽イオン交換基等)を付与したものが用いられる。 The filler used for the first concentration column 10 and the second concentration column 12 may be determined according to the component to be concentrated, and includes anions (for example, F , Cl , Br , NO 2 , NO 3 , In the case of concentrating PO 4 2− , SO 4 2−, etc., an anion exchanger such as an anion exchange resin having an anion exchange group such as a quaternary ammonium group is used, and a cation (for example, Li + , Na + , NH 4 + , K + , Mg 2+ , Ca 2+ and the like), a cation exchanger such as a cation exchange resin having a cation exchange group such as a sulfonic acid group is used. As these anion exchangers and cation exchangers, functional groups having an affinity for ions (anion exchange groups, cation exchange groups, etc.) were imparted to substrates such as polymer substrates and inorganic substrates. Things are used.

第一濃縮カラム10、第二濃縮カラム12に用いるイオン交換体の交換容量は、サンプル水に含まれるイオン量等により決定すればよいが、例えば、260meq/g程度のものを用いればよい。   The exchange capacity of the ion exchangers used for the first concentration column 10 and the second concentration column 12 may be determined by the amount of ions contained in the sample water or the like. For example, a capacity of about 260 meq / g may be used.

第一濃縮カラム10、第二濃縮カラム12における濃縮時間は、各濃縮カラムの交換容量の範囲内で行えばよく、サンプル液の濃度および濃縮カラムの交換容量等に応じて決めればよい。   The concentration time in the first concentration column 10 and the second concentration column 12 may be performed within the range of the exchange capacity of each concentration column, and may be determined according to the concentration of the sample solution, the exchange capacity of the concentration column, and the like.

分離カラム16に用いる充填材としては、測定対象成分に応じて決めればよく、陰イオンを分離する場合には陰イオン交換基を有する陰イオン交換樹脂等の陰イオン交換体が用いられ、陽イオンを分離する場合には陽イオン交換基を有する陽イオン交換樹脂等の陽イオン交換体が用いられる。   The packing material used for the separation column 16 may be determined according to the component to be measured. When anions are separated, an anion exchanger such as an anion exchange resin having an anion exchange group is used. In the case of separating the cation exchanger, a cation exchanger such as a cation exchange resin having a cation exchange group is used.

ガードカラム14は、分離カラム16を保護するためのものであり、通常は、分離カラム16と同じ充填材が用いられる。   The guard column 14 is for protecting the separation column 16, and usually the same packing material as the separation column 16 is used.

サプレッサ(除去カラム)18は、溶離液の導電率を低下させるものである。サプレッサ(除去カラム)18は、陰イオンを分析する場合には、溶離液中の陽イオンを水素イオン(H)に交換し、導電率測定装置32における溶離液のバックグラウンド濃度を下げるために用いられ、陽イオン交換樹脂、陽イオン交換膜等の陽イオン交換体で構成されたものであり、陽イオンを分析する場合には、溶離液中の陰イオンを水酸化物イオン(OH)に交換し、導電率測定装置32における溶離液のバックグラウンド濃度を下げるために用いられ、陰イオン交換樹脂、陰イオン交換膜等の陰イオン交換体で構成されたものである。 The suppressor (removal column) 18 reduces the conductivity of the eluent. When analyzing the anion, the suppressor (removal column) 18 replaces the cation in the eluent with hydrogen ion (H + ), and reduces the background concentration of the eluent in the conductivity measuring device 32. It is composed of a cation exchanger such as a cation exchange resin or a cation exchange membrane. When analyzing cations, the anions in the eluent are converted to hydroxide ions (OH ). It is used to lower the background concentration of the eluent in the conductivity measuring device 32 and is composed of an anion exchanger such as an anion exchange resin or an anion exchange membrane.

溶離液としては、陰イオンを分析する場合には、例えば、炭酸ナトリウムの希薄水溶液、または炭酸ナトリウムと炭酸水素ナトリウムを組み合わせた希薄水溶液、陽イオンを分析する場合には、例えば、メタンスルホン酸の希薄水溶液等の電解質水溶液が用いられる。   As an eluent, when analyzing anions, for example, a dilute aqueous solution of sodium carbonate, or a dilute aqueous solution combining sodium carbonate and sodium bicarbonate, and when analyzing cations, for example, methanesulfonic acid An aqueous electrolyte solution such as a dilute aqueous solution is used.

再生液としては、通常、純水の他、陰イオン交換体の場合には、水酸化ナトリウム水溶液等が用いられ、陽イオン交換体の場合には、塩酸水溶液または硫酸水溶液等が用いられてもよい。また、再生液ポンプ30を使用せず、再生液の供給源を、例えば第二切替バルブ22の流路1に接続してもよい。   As the regenerating solution, in addition to pure water, in the case of an anion exchanger, a sodium hydroxide aqueous solution or the like is usually used. In the case of a cation exchanger, a hydrochloric acid aqueous solution or a sulfuric acid aqueous solution or the like may be used. Good. Further, the regeneration liquid supply source may be connected to the flow path 1 of the second switching valve 22 without using the regeneration liquid pump 30, for example.

第一切替バルブ20および第二切替バルブ22は、サンプル液、溶離液、分離液等の流路を切り替えることができるものであればよく、特に制限はないが、通常は六方バルブが用いられる。第三切替バルブ24は、二次濃縮液、分離液等の流路を切り替えることができるものであればよく、特に制限はないが、通常は二連三方バルブが用いられる。   The first switching valve 20 and the second switching valve 22 are not particularly limited as long as they can switch the flow path of the sample liquid, the eluent, the separation liquid, and the like, but normally a six-way valve is used. The third switching valve 24 is not particularly limited as long as it can switch the flow path of the secondary concentrated liquid, the separated liquid, and the like, but a double three-way valve is usually used.

導電率測定手段としては、分離されたイオン成分を導電率により検出することができるものであればよく、特に制限はない。通常は導電率測定装置が用いられる。   The conductivity measuring means is not particularly limited as long as it can detect the separated ion component by the conductivity. Usually, a conductivity measuring device is used.

制御部では、導電率測定装置32から送られる信号より、時間と信号強度等をプロットしたクロマトグラムを作成し、各イオンに相当するピークの検出時間(保持時間)等より、各イオンの定性を行い、各イオンに相当するピークの面積等より各イオンの定量を行うことができる。制御部はまた、第一切替バルブ20、第二切替バルブ22、第三切替バルブ24、サンプル液ポンプ26、溶離液ポンプ28および再生液ポンプ30の制御を行うことができ、各切替バルブおよび各ポンプを操作し、液体サンプルの濃縮、分離、分離された各イオンの定性、定量等の操作を自動化することができる。また、導電率測定装置32による導電率の測定結果に基づく、第一切替バルブ20、第二切替バルブ22、第三切替バルブ24、サンプル液ポンプ26、溶離液ポンプ28および再生液ポンプ30の制御等を行うことができる。   In the control unit, a chromatogram in which time and signal intensity are plotted from the signal sent from the conductivity measuring device 32 is created, and the qualitativeness of each ion is determined from the detection time (holding time) of the peak corresponding to each ion. The amount of each ion can be determined from the area of the peak corresponding to each ion. The control unit can also control the first switching valve 20, the second switching valve 22, the third switching valve 24, the sample liquid pump 26, the eluent pump 28, and the regenerative liquid pump 30. By operating the pump, it is possible to automate operations such as concentration, separation, qualitative and quantitative determination of the separated ions. Control of the first switching valve 20, the second switching valve 22, the third switching valve 24, the sample liquid pump 26, the eluent pump 28, and the regenerative liquid pump 30 based on the conductivity measurement result by the conductivity measuring device 32. Etc. can be performed.

本実施形態に係るイオンクロマトグラフ分析装置では、測定対象成分に対して非測定対象成分が高濃度に含まれたサンプルでも低濃度の測定対象成分の検出を高感度で行うことができるが、「測定対象成分に対して非測定対象成分が高濃度に含まれたサンプル」とは、例えば、測定対象成分に対して非測定対象成分が濃度で10倍以上程度含まれたサンプルのことをいう。また、本実施形態に係るイオンクロマトグラフ分析装置は、液体サンプル中に含まれる測定対象成分の濃度が低い(例えばppb〜pptレベル)低濃度測定を実施する場合に好適に使用される。特に、測定対象成分に対して非測定対象成分が高濃度に含まれ、かつ、導電率測定等のイオン濃度測定で得られるクロマトグラムにおいて測定対象成分の検出ピークと非測定対象成分の検出ピークとが重なるサンプルに好適に使用される。   The ion chromatograph analyzer according to the present embodiment can detect a low concentration measurement target component with high sensitivity even in a sample in which a non-measurement target component is contained in a high concentration with respect to the measurement target component. The “sample in which the non-measurement target component is contained at a high concentration relative to the measurement target component” means, for example, a sample in which the non-measurement target component is contained at a concentration of about 10 times or more with respect to the measurement target component. In addition, the ion chromatograph analyzer according to the present embodiment is suitably used when performing low concentration measurement where the concentration of the measurement target component contained in the liquid sample is low (for example, ppb to ppt level). In particular, in the chromatogram obtained by ion concentration measurement such as conductivity measurement, the detection peak of the measurement target component and the detection peak of the non-measurement target component Is preferably used for samples with overlapping.

本実施形態において、測定対象となるサンプルは、イオン成分を含むものであれば特に制限はないが、例えば、火力発電所、原子力発電所等で発生する測定対象成分(例えば、K、Mg2+、Ca2+等)に対して非測定対象成分(アンモニア、エタノールアミン等)が高濃度に含まれたボイラ水等におけるイオン成分の分析に好適に用いることができる。 In the present embodiment, the sample to be measured is not particularly limited as long as it contains an ionic component, but for example, a measurement target component (for example, K + , Mg 2+) generated in a thermal power plant, a nuclear power plant, or the like. , Ca 2+, etc.) can be suitably used for analysis of ionic components in boiler water or the like in which non-measurement target components (ammonia, ethanolamine, etc.) are contained at high concentrations.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

<実施例1>
Mg2+イオン、Ca2+イオン、Kイオンを各1ppb、アンモニアを10ppm含む水溶液を調製し、サンプル液とした。図1に示すイオンクロマトグラフ分析装置を用い、Mg2+イオン、Ca2+イオン、Kイオンのイオンクロマトグラフ分析を行った。分析条件は以下の通りとした。
<Example 1>
An aqueous solution containing 1 ppb each of Mg 2+ ions, Ca 2+ ions and K + ions and 10 ppm of ammonia was prepared as a sample solution. Using the ion chromatograph analyzer shown in FIG. 1, ion chromatograph analysis of Mg 2+ ions, Ca 2+ ions, and K + ions was performed. The analysis conditions were as follows.

[分析条件]
サンプル液流量:4mL/min
溶離液:メタンスルホン酸水溶液(15mmol/L)
溶離液流量:1.5mL/min
再生液:純水
再生液流量:1.5mL/min
第一濃縮カラム:サーモフィッシャー製 TCC−LP1(陽イオン交換樹脂)
第二濃縮カラム:サーモフィッシャー製 TCC−LP1(陽イオン交換樹脂)
分離カラム:サーモフィッシャー製 CS15(陽イオン交換樹脂)
サプレッサ:サーモフィッシャー製 CSRS300
カラム温度:30℃
一次濃縮時間:30min
二次濃縮時間:12min
三次濃縮時間:21min
[Analysis conditions]
Sample liquid flow rate: 4 mL / min
Eluent: Methanesulfonic acid aqueous solution (15 mmol / L)
Eluent flow rate: 1.5 mL / min
Regeneration solution: Pure water Regeneration solution flow rate: 1.5 mL / min
First concentration column: Thermo Fisher TCC-LP1 (cation exchange resin)
Second concentration column: Thermo Fisher TCC-LP1 (cation exchange resin)
Separation column: Thermo Fisher CS15 (cation exchange resin)
Suppressor: Thermo Fisher's CSRS300
Column temperature: 30 ° C
Primary concentration time: 30 min
Secondary concentration time: 12 min
Tertiary concentration time: 21 min

図7(a)に一次濃縮後、図7(b)に二次濃縮後、図7(c)に三次濃縮後のイオンクロマトグラフ分析の結果を示す。一次濃縮後に、図7(a)に示すように、保持時間5〜16minの部分を画分したものを排出し、16〜28minの部分を画分したものについて二次濃縮を行った。また、二次濃縮後に、図7(b)に示すように、保持時間5.5〜7minの部分を画分したものを排出し、7〜28minの部分を画分したものについて三次濃縮を行った。図7(a)〜(c)に示すように、非測定対象成分(アンモニア)のピークを小さくすることで、測定対象成分(Mg2+、Ca2+、K)のピークが検出されるようになることがわかる。 FIG. 7A shows the results of ion chromatographic analysis after primary concentration, FIG. 7B after secondary concentration, and FIG. 7C after tertiary concentration. After the primary concentration, as shown in FIG. 7 (a), the fraction with a retention time of 5 to 16 min was discharged, and the fraction with a fraction of 16 to 28 min was subjected to secondary concentration. In addition, after the secondary concentration, as shown in FIG. 7 (b), the fraction with the retention time of 5.5 to 7 min is discharged, and the fraction with the 7 to 28 min fraction is subjected to the tertiary concentration. It was. As shown in FIGS. 7A to 7C, by reducing the peak of the non-measurement target component (ammonia), the peaks of the measurement target components (Mg 2+ , Ca 2+ , K + ) are detected. I understand that

このように、二次濃縮、三次濃縮を行うことにより、測定対象成分(実施例ではMg2+、Ca2+、K)に対して非測定対象成分(実施例ではアンモニア)が高濃度(実施例ではMg2+、Ca2+、Kそれぞれに対してアンモニアが10,000倍)に含まれたサンプルでも低濃度の測定対象成分の検出を高感度で行うことができた。 Thus, by performing the secondary concentration and the tertiary concentration, the non-measurement target component (ammonia in the example) has a higher concentration (example) than the measurement target component (Mg 2+ , Ca 2+ , K + in the example). Thus, even in a sample containing 10,000 times as much ammonia as Mg 2+ , Ca 2+ , and K + , a low-concentration component to be measured could be detected with high sensitivity.

1,50 イオンクロマトグラフ分析装置、10 第一濃縮カラム、12 第二濃縮カラム、14,54 ガードカラム、16,56 分離カラム、18,58 サプレッサ(除去カラム)、20 第一切替バルブ、22 第二切替バルブ、24 第三切替バルブ、26,62 サンプル液ポンプ、28,64 溶離液ポンプ、30,66 再生液ポンプ、32,68 導電率測定装置、52 濃縮カラム、60 切替バルブ。   1,50 ion chromatograph analyzer, 10 first concentration column, 12 second concentration column, 14,54 guard column, 16,56 separation column, 18,58 suppressor (removal column), 20 first switching valve, 22 first Two switching valves, 24 Third switching valve, 26, 62 Sample liquid pump, 28, 64 Eluent pump, 30, 66 Regeneration liquid pump, 32, 68 Conductivity measuring device, 52 Concentration column, 60 Switching valve.

Claims (2)

測定対象成分および非測定対象成分を含む複数のイオン成分を分離して検出するイオンクロマトグラフ分析装置であって、
前記複数のイオン成分を含むサンプル液を送液するサンプル液送液手段と、
溶離液を送液する溶離液送液手段と、
前記サンプル液送液手段により送液されたサンプル液に含まれるイオン成分を濃縮する第一濃縮カラムと、
濃縮後の濃縮イオン成分を分離する分離カラムと、
前記分離カラムへの通液後の分離液の導電率を低下させるサプレッサと、
前記導電率を低下させた分離液に含まれる分離イオン成分を導電率により検出する導電率測定手段と、
前記分離イオン成分のうち少なくとも前記測定対象成分を含む部分を画分したものを二次濃縮する第二濃縮カラムと、
を備え、
前記第二濃縮カラムによる二次濃縮後の二次濃縮イオン成分について前記分離カラムにより二次分離を行うことを特徴とするイオンクロマトグラフ分析装置。
An ion chromatograph analyzer for separating and detecting a plurality of ion components including a measurement target component and a non-measurement target component,
A sample liquid feeding means for feeding a sample liquid containing the plurality of ion components;
An eluent feeding means for feeding the eluent;
A first concentration column for concentrating ionic components contained in the sample liquid fed by the sample liquid feeding means;
A separation column for separating concentrated ion components after concentration;
A suppressor for reducing the conductivity of the separation liquid after passing through the separation column;
A conductivity measuring means for detecting a separated ion component contained in the separation liquid having lowered conductivity by the conductivity;
A second concentration column for secondarily concentrating a fraction obtained by fractionating at least the measurement target component of the separated ion component;
With
An ion chromatograph analyzer characterized by performing secondary separation on the secondary concentrated ion component after secondary concentration by the second concentration column by the separation column.
測定対象成分および非測定対象成分を含む複数のイオン成分を分離して検出するイオンクロマトグラフ分析方法であって、
前記複数のイオン成分を含むサンプル液を第一濃縮カラムに通液してイオン成分を濃縮する一次濃縮工程と、
前記一次濃縮工程後の一次濃縮イオン成分を溶離液により分離カラムに通液して分離する一次分離工程と、
前記一次分離工程後の一次分離液の導電率を低下させる一次導電率低下工程と、
前記一次導電率低下工程後の一次分離液に含まれる一次分離イオン成分を導電率により検出する一次導電率測定工程と、
前記一次分離イオン成分のうち少なくとも前記測定対象成分を含む部分を画分したものを第二濃縮カラムに通液して濃縮する二次濃縮工程と、
前記二次濃縮工程後の二次濃縮イオン成分を溶離液により前記分離カラムに通液して分離する二次分離工程と、
前記二次分離工程後の二次分離液の導電率を低下させる二次導電率低下工程と、
前記二次導電率低下工程後の二次分離液に含まれる二次分離イオン成分を導電率により検出する二次導電率測定工程と、
を含むことを特徴とするイオンクロマトグラフ分析方法。
An ion chromatographic analysis method for separating and detecting a plurality of ion components including a measurement target component and a non-measurement target component,
A primary concentration step of passing the sample solution containing the plurality of ion components through a first concentration column to concentrate the ion components;
A primary separation step of separating the primary concentrated ionic component after the primary concentration step through a separation column with an eluent; and
A primary conductivity lowering step for reducing the electrical conductivity of the primary separation liquid after the primary separation step;
A primary conductivity measuring step of detecting a primary separation ion component contained in the primary separation liquid after the primary conductivity lowering step by conductivity; and
A secondary concentration step of concentrating by passing through a second concentration column a fraction obtained by fractionating at least the measurement target component of the primary separation ion component;
A secondary separation step of separating the secondary concentrated ion component after the secondary concentration step by passing through the separation column with an eluent; and
A secondary conductivity reduction step of reducing the conductivity of the secondary separation liquid after the secondary separation step;
A secondary conductivity measuring step of detecting a secondary separation ion component contained in the secondary separation liquid after the secondary conductivity lowering step by conductivity;
An ion chromatograph analysis method comprising:
JP2012201670A 2012-09-13 2012-09-13 Ion chromatograph analyzer and ion chromatograph analysis method Expired - Fee Related JP6062193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012201670A JP6062193B2 (en) 2012-09-13 2012-09-13 Ion chromatograph analyzer and ion chromatograph analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012201670A JP6062193B2 (en) 2012-09-13 2012-09-13 Ion chromatograph analyzer and ion chromatograph analysis method

Publications (2)

Publication Number Publication Date
JP2014055892A JP2014055892A (en) 2014-03-27
JP6062193B2 true JP6062193B2 (en) 2017-01-18

Family

ID=50613332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012201670A Expired - Fee Related JP6062193B2 (en) 2012-09-13 2012-09-13 Ion chromatograph analyzer and ion chromatograph analysis method

Country Status (1)

Country Link
JP (1) JP6062193B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102498445B1 (en) 2015-10-20 2023-02-13 삼성전자주식회사 Detector for measuring concentration of ions in solutions and an ion chromatography and ion chromatography system including the same
WO2017115841A1 (en) * 2015-12-29 2017-07-06 株式会社アイスティサイエンス Analysis preprocessing method for sample containing multiple constituents in significantly different concentrations
CN117129583A (en) * 2022-09-05 2023-11-28 中国科学院大气物理研究所 Automatic detection method for low-concentration organic amine containing concentration device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190463A (en) * 1986-02-17 1987-08-20 Hitachi Ltd Recycle liquid chromatography and recycle liquid chromatograph
JP3907892B2 (en) * 1999-11-17 2007-04-18 日機装株式会社 Ion chromatograph
JP2006201039A (en) * 2005-01-20 2006-08-03 Shimadzu Corp Liquid chromatography
JP2009019889A (en) * 2007-07-10 2009-01-29 Senshu Scientific Co Ltd Chromatograph

Also Published As

Publication number Publication date
JP2014055892A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
US7682506B2 (en) IC system including sample pretreatment and using a single pump
CN106872596B (en) Ion chromatograph based on multi-valve switching dual-channel offline and online analysis and detection method thereof
US9322815B2 (en) Ion chromatography system with eluent recycle
JP2008520960A (en) Sample stream parking and sample suppression
JP6062193B2 (en) Ion chromatograph analyzer and ion chromatograph analysis method
CN213210022U (en) Ion chromatography-mass spectrometry combined on-line detection protection device
KR101907600B1 (en) Ion exchange based volatile component removal device for ion chromatography
JP4735959B2 (en) Concentrated ion chromatograph measuring method and concentrated ion chromatograph measuring apparatus
JP5365116B2 (en) Ion chromatograph measuring apparatus and ion chromatograph measuring method
CN102183600A (en) Ion chromatography-valve changeover analysis system
JP6711188B2 (en) Ion chromatograph switching suppressors
CN110412161A (en) The detection system and detection method of micro bromide ion in a kind of sodium peroxydisulfate
JP3907892B2 (en) Ion chromatograph
JPH07181173A (en) Method and apparatus for gradient analysis of liquid chromatography
JPS59133459A (en) Ion chromatograph
CN220568727U (en) Ion chromatograph tandem synchronous testing anion and cation instrument
US20230075933A1 (en) Check standard recycle setup for ion chromatography
US20230194485A1 (en) Desalting system for chromatography
Christison et al. Using electrospray ionization mass spectrometry as an ion chromatography confirmation tool for the determination of alkylamines and alkanolamines in scrubbing solutions
JPH01116444A (en) Anion analyzer
JPS62140042A (en) Concentrator
JP4431708B2 (en) Method and apparatus for highly sensitive separation and measurement of silicate ions
CN111257493A (en) Method and device for detecting total amount of anions and cations in water
JPH0587787A (en) Measuring method of negative ions
JPH01265156A (en) Method of concentrating silicic acid ion in water to be tested in ion chromatographic method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161214

R150 Certificate of patent or registration of utility model

Ref document number: 6062193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees