JPS62140042A - Concentrator - Google Patents

Concentrator

Info

Publication number
JPS62140042A
JPS62140042A JP60280928A JP28092885A JPS62140042A JP S62140042 A JPS62140042 A JP S62140042A JP 60280928 A JP60280928 A JP 60280928A JP 28092885 A JP28092885 A JP 28092885A JP S62140042 A JPS62140042 A JP S62140042A
Authority
JP
Japan
Prior art keywords
column
analyzed
large capacity
ion exchange
eluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60280928A
Other languages
Japanese (ja)
Inventor
Hidekazu Kitatsume
北爪 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60280928A priority Critical patent/JPS62140042A/en
Publication of JPS62140042A publication Critical patent/JPS62140042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To achieve the enhancement of the sensitivity in flow analysis, by introducing aqueous ammonia between a large capacity column and an ion change column. CONSTITUTION:A specimen solution containing an element to be analyzed and a matrix element obstructing the measurement is introduced from a specimen introducing port (a) and passes through a large capacity ion exchange column (c) to adsorb only the element to be analyzed while the matrix element is discharged from a valve (d). Next, an eluent (k) is introduced in the column (c) using a pump in order to move the element to be analyzed to a low capacity ion exchange column (h) and aqueous ammonia (l) is added to the specimen solution between the column (c) and a large capacity anion exchange column or exchange membrane (f) to make the liquidity introduced into the exchange membrane (f) ammonia-akaline. By this method, a heavy metal forming an ammine complex ion is conc. in the column (h) without being sedimented. Next, an eluent (m) is introduced to elute only the element to be analyzed adsorbed by the column (h) and said element is guided to a detector (j) to perform detection.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は微量元素のイオン交換法による濃縮装置に係り
、特にアンミン錯イオンを形成する金属イオンの濃縮に
好適な濃縮装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a concentrating device for trace elements using an ion exchange method, and particularly to a concentrating device suitable for concentrating metal ions forming ammine complex ions.

〔発明の背景〕[Background of the invention]

従来、感度を上げるためにイオン交換樹脂に−たん吸着
させた元素を溶離して低容量のイオン交換カラムに吸着
させることは行われていない。しかし1分析化学(An
al、 Chem)16,221〜225 (1984
)に示されたように1、イオンクロマトグラフィーにお
いて分離カラムで分離した特定イオンのみを検出器を通
加した後に濃縮カラムで濃縮した例はある。この場合は
、陰イオンの分析であるので、特別の配慮は入らず、た
だ接続するだけで可能である。
Conventionally, in order to increase sensitivity, elements that have been adsorbed onto an ion exchange resin have not been eluted and adsorbed onto a low capacity ion exchange column. However, 1 analytical chemistry (An
al, Chem) 16, 221-225 (1984
) As shown in 1. In ion chromatography, there is an example in which only specific ions separated by a separation column are passed through a detector and then concentrated in a concentration column. In this case, since the analysis is of anions, no special considerations are required; just a connection is required.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、流れ分析等で高感度化を達成するため
、微量元素のイオン交換法による濃縮装置を提供するこ
とにある。
An object of the present invention is to provide a concentration device using an ion exchange method for trace elements in order to achieve high sensitivity in flow analysis and the like.

〔発明の概要〕[Summary of the invention]

微量元素をイオン交換カラムで濃縮し、連続的に検出器
に導く場合、カラムが大容量であるとピークがブロード
になる。高感度を得るためには低容量のカラムに再濃縮
が必要となるが、金属イオンの場合、再吸着の際の酸濃
度イオン交換カラムで下げると水酸化物が沈殿して目的
を達成できない。そこで酸濃度を下げる前にアンモニア
を加えることにより、銅、亜鉛、ニッケル、コバルトな
どをアンミン錯イオンとしてアルカリ性でも安定にして
再吸着させる。
When trace elements are concentrated using an ion exchange column and continuously guided to a detector, if the column has a large capacity, the peaks will be broad. In order to obtain high sensitivity, it is necessary to reconcentrate on a low-capacity column, but in the case of metal ions, if the acid concentration during re-adsorption is lowered using an ion exchange column, hydroxides will precipitate, making it impossible to achieve the objective. Therefore, by adding ammonia before lowering the acid concentration, copper, zinc, nickel, cobalt, etc. are stabilized as ammine complex ions even in alkaline conditions and are re-adsorbed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。はじ
めに、図面列の試料導入口(a)より分析目的元素(金
属イオン)と、測定を妨害するマトリックス元素を含む
試料溶液が導入される。試料は大容量イオン交換カラム
(c)を通り、そこで目的元素のみ吸着され、マトリッ
クスはバルブ(d)より排出される。次に目的元素を低
容量のイオン交換カラム(h)に移動するため溶離液(
J)をポンプOを用いてカラム(c)に導入する。目的
元素が金属イオンの場合、カラム(c)は陽イオン交換
樹脂、溶離液(K)は主として酸が使われる。ここでは
仮に塩酸(HCI)とする。目的元素および溶離液は大
容量陰イオン交換カラムまたはそれに相等する陰イオン
交換膜(f)を通りそこで中性またはアルカリ性となり
、低容量の濃縮カラム(h)に導入される。その際、ア
ルカリ金属やアルカリ土類金属以外の金属、例えば重金
属などは溶液中の水素イオン濃度が低下するので、溶解
度の小さい水酸化物を生成し、沈殿となるので(h)に
補集できない。そこで、本実施例では大容量陽イオン交
換カラム(c)と大容量陰イオン交換カラムまたは交換
膜(f)の間でアンモニア水(Q)を試料溶液に加え(
f)に導入される液性をアンモニアアルカリ性とする。
An embodiment of the present invention will be described below with reference to FIG. First, a sample solution containing an element to be analyzed (metal ion) and a matrix element that interferes with measurement is introduced through the sample introduction port (a) in the drawing row. The sample passes through a large capacity ion exchange column (c), where only the target element is adsorbed, and the matrix is discharged through a valve (d). Next, the eluent (
J) is introduced into column (c) using pump O. When the target element is a metal ion, a cation exchange resin is used as the column (c), and an acid is mainly used as the eluent (K). Here, it is assumed that hydrochloric acid (HCI) is used. The target element and the eluent pass through a large-capacity anion-exchange column or an equivalent anion-exchange membrane (f), where they become neutral or alkaline, and are introduced into a low-volume concentration column (h). At this time, metals other than alkali metals and alkaline earth metals, such as heavy metals, reduce the concentration of hydrogen ions in the solution, producing hydroxides with low solubility and becoming precipitates, which cannot be collected in (h). . Therefore, in this example, aqueous ammonia (Q) was added to the sample solution between the large capacity cation exchange column (c) and the large capacity anion exchange column or exchange membrane (f).
The liquid introduced in step f) is ammonia alkaline.

こうすることにより、アンミン錯イオンを形成する重金
属など(銅、亜鉛、ニッケル。
By doing this, heavy metals (copper, zinc, nickel, etc.) that form ammine complex ions.

コバルト)などは沈殿することなく低容量陽イオン交換
カラム(h)に濃縮される。
Cobalt) etc. are concentrated in the low capacity cation exchange column (h) without precipitation.

次に溶離液(m)を導入し、(h)に吸着された目的元
素のみを溶離し、検出器(j)に導いて検出を行う。
Next, an eluent (m) is introduced to elute only the target element adsorbed to (h), and the eluent is guided to a detector (j) for detection.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、銅、亜鉛、ニッケルなどの金属を低容
量のイオン交換カラムに濃縮できる。
According to the present invention, metals such as copper, zinc, and nickel can be concentrated in low capacity ion exchange columns.

従来の大容量のイオン交換カラムを用いる場合に比べて
著しくピークのブロードニングが低減できるので、超微
量分析が可能となる。
Since peak broadening can be significantly reduced compared to the case of using conventional large capacity ion exchange columns, ultratrace analysis becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は装置の構成図を示す。 FIG. 1 shows a block diagram of the apparatus.

Claims (1)

【特許請求の範囲】[Claims] 試料濃縮用大容量カラムと溶離液中の陰イオンをとり除
くためのイオン交換カラムおよび試料再濃縮用の低容量
カラムより成る連続的イオン交換濃縮系において、大容
量カラムとイオン交換カラムの間にアンモニア水を導入
する装置を設けたことを特徴とする極微量金属イオン用
濃縮装置。
In a continuous ion exchange concentration system consisting of a large capacity column for sample concentration, an ion exchange column for removing anions in the eluent, and a low capacity column for sample reconcentration, ammonia is placed between the large capacity column and the ion exchange column. A concentrating device for ultratrace metal ions, characterized by being equipped with a device for introducing water.
JP60280928A 1985-12-16 1985-12-16 Concentrator Pending JPS62140042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60280928A JPS62140042A (en) 1985-12-16 1985-12-16 Concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60280928A JPS62140042A (en) 1985-12-16 1985-12-16 Concentrator

Publications (1)

Publication Number Publication Date
JPS62140042A true JPS62140042A (en) 1987-06-23

Family

ID=17631882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60280928A Pending JPS62140042A (en) 1985-12-16 1985-12-16 Concentrator

Country Status (1)

Country Link
JP (1) JPS62140042A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194988A (en) * 1988-01-27 1989-08-04 Sumitomo Metal Ind Ltd Treatment of metal-containing water
US6874942B2 (en) 2001-03-02 2005-04-05 Nsk Ltd. Rolling device
EP2511687A3 (en) * 2011-04-14 2013-11-20 Helmholtz-Zentrum für Umweltforschung GmbH-UFZ Device and method for solid phase extraction from a liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194988A (en) * 1988-01-27 1989-08-04 Sumitomo Metal Ind Ltd Treatment of metal-containing water
US6874942B2 (en) 2001-03-02 2005-04-05 Nsk Ltd. Rolling device
EP2511687A3 (en) * 2011-04-14 2013-11-20 Helmholtz-Zentrum für Umweltforschung GmbH-UFZ Device and method for solid phase extraction from a liquid

Similar Documents

Publication Publication Date Title
Sturgeon et al. Pre-concentration of trace metals from sea-water for determination by graphite-furnace atomic-absorption spectrometry
Liu et al. Application of isodiphenylthiourea immobilized silica gel to flow injection on-line microcolumn preconcentration and separation coupled with flame atomic absorption spectrometry for interference-free determination of trace silver, gold, palladium and platinum in geological and metallurgical samples
US4765909A (en) Ion exchange method for separation of scandium and thorium
Ball et al. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis
Michalski Recent development and applications of ion chromatography
Small Twenty years of ion chromatography
Nielen et al. Use of cation exchangers for the on-line preconcentration of polar anilines in liquid chromatography
US11226274B2 (en) Method of analyzing using analyte concentrator system having eluent generation module
Fisher et al. Use of ion exchange resins for determination of uranium in ores and solutions
JPS62140042A (en) Concentrator
Taylor et al. Trace gold determination in cyanide process solutions-preconcentration using supported liquid membranes in a flow-injection manifold
US3920398A (en) Method for chromatographic analysis of organic acids or their carboxylate salts
Sadiq et al. Liquid chromatography
Tsizin et al. Adsorption and extraction preconcentration of trace components in flow analytical systems
Ding et al. Improved scheme of chelation ion chromatography with a mixed eluent for the simultaneous analysis of transition metals at μg l− 1 levels
Nietzel et al. Ion exchange-spectrophotometric determination of thorium
Hiraide et al. Immobilization of 1-nitroso-2-naphthol on surfactant-coated alumina for the collection of traces of cobalt (II) ions
Fritz et al. A separation scheme for the analysis of multicomponent samples
Wang et al. Hyphenated techniques combined with atomic spectrometry for environmental studies
Tao et al. Preconcentration of trace amounts of silver and cadmium by ion exchange and micro-extraction from water for flame atomic absorption spectrometry
Comber Determination of dissolved copper, nickel and cadmium in natural waters by high-performance liquid chromatography
Staff et al. Recovering Ga (III) from coordination complexes using pyridine 2, 6‐dicarboxylic acid chelation ion chromatography
Schmuckler High-performance liquid ion-exchange chromatography
JP3956508B2 (en) Inorganic anion analysis method
Tarter Eluent selection criteria for the simultaneous determination of anions and cations