JP6062140B2 - Dissimilar material joining method - Google Patents

Dissimilar material joining method Download PDF

Info

Publication number
JP6062140B2
JP6062140B2 JP2010187431A JP2010187431A JP6062140B2 JP 6062140 B2 JP6062140 B2 JP 6062140B2 JP 2010187431 A JP2010187431 A JP 2010187431A JP 2010187431 A JP2010187431 A JP 2010187431A JP 6062140 B2 JP6062140 B2 JP 6062140B2
Authority
JP
Japan
Prior art keywords
resin
region
temperature
joining
dissimilar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010187431A
Other languages
Japanese (ja)
Other versions
JP2012045730A (en
Inventor
松本 聡
松本  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2010187431A priority Critical patent/JP6062140B2/en
Publication of JP2012045730A publication Critical patent/JP2012045730A/en
Application granted granted Critical
Publication of JP6062140B2 publication Critical patent/JP6062140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/028Non-mechanical surface pre-treatments, i.e. by flame treatment, electric discharge treatment, plasma treatment, wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91943Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined higher than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0877Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table

Description

本発明は、少なくとも一方が樹脂材料からなる部材同士を接合して異種材料接合体を製造する異種材料接合方法に関する。   The present invention relates to a dissimilar material joining method for producing a dissimilar material joined body by joining members made of a resin material at least one of them.

上記技術分野の異種材料接合方法として、特許文献1には、樹脂材料からなる樹脂部材及び無機材料からなる無機部材を用意し、少なくとも樹脂部材の表面に対して表面活性化処理を施した後、樹脂部材の表面と無機部材の表面とを接触させた状態で、樹脂部材の温度が樹脂材料の融点(軟化点)以上となるようにレーザ光を照射し、樹脂部材と無機部材とを接合する方法が記載されている。   As a dissimilar material joining method in the above technical field, Patent Document 1 prepares a resin member made of a resin material and an inorganic member made of an inorganic material, and after performing a surface activation treatment on at least the surface of the resin member, In a state where the surface of the resin member and the surface of the inorganic member are in contact with each other, laser light is irradiated so that the temperature of the resin member becomes equal to or higher than the melting point (softening point) of the resin material, thereby joining the resin member and the inorganic member. A method is described.

なお、特許文献2,3には、第1の樹脂材料からなる第1の樹脂部材及び第2の樹脂材料からなる第2の樹脂部材を用意し、第1の樹脂部材の表面と第2の樹脂部材の表面とを接触させた状態で、樹脂部材の温度が樹脂材料の融点以上かつ樹脂材料の分解点(特性劣化温度)未満となるようにレーザ光を照射し、第1の樹脂部材と第2の樹脂部材とを接合する方法が記載されている。また、特許文献4には、第1の樹脂材料からなる第1の樹脂部材及び第2の樹脂材料からなる第2の樹脂部材を用意し、樹脂部材の表面に対して真空紫外光を照射した後、第1の樹脂部材の表面と第2の樹脂部材の表面とを接触させた状態で、ヒータや加熱炉を用いて樹脂部材を昇温させ、第1の樹脂部材と第2の樹脂部材とを接合する方法が記載されている。   In Patent Documents 2 and 3, a first resin member made of the first resin material and a second resin member made of the second resin material are prepared, and the surface of the first resin member and the second resin member are prepared. In a state where the surface of the resin member is in contact, the laser beam is irradiated so that the temperature of the resin member is equal to or higher than the melting point of the resin material and lower than the decomposition point (characteristic deterioration temperature) of the resin material. A method of joining the second resin member is described. In Patent Document 4, a first resin member made of a first resin material and a second resin member made of a second resin material were prepared, and the surface of the resin member was irradiated with vacuum ultraviolet light. Then, the temperature of the resin member is raised using a heater or a heating furnace in a state where the surface of the first resin member and the surface of the second resin member are in contact with each other, and the first resin member and the second resin member Is described.

特開2008−208296号公報JP 2008-208296 A 特開2002−18961号公報JP 2002-18961 A 特開2005−305985号公報JP-A-2005-305985 特開2009−173894号公報JP 2009-173894 A

しかしながら、特許文献1記載の異種材料接合方法にあっては、レーザ光の照射によって樹脂部材が溶融するため、樹脂部材において表面活性化処理が施された処理面が流れて非処理面が現れてしまい、表面活性化処理の効果が失われるおそれがある。無機部材の表面に対して表面活性化処理を施した場合でも、溶融した樹脂部材に官能基が巻き込まれてしまい、表面活性化処理の効果が失われるおそれがある。このように、樹脂部材の溶融に起因して表面活性化処理の効果が失われると、樹脂部材と無機部材と接合が不十分となる。   However, in the dissimilar material joining method described in Patent Document 1, since the resin member is melted by the irradiation of the laser beam, the treated surface subjected to the surface activation process flows in the resin member and the non-treated surface appears. As a result, the effect of the surface activation treatment may be lost. Even when the surface activation treatment is performed on the surface of the inorganic member, the functional group is caught in the molten resin member, and the effect of the surface activation treatment may be lost. As described above, when the effect of the surface activation treatment is lost due to melting of the resin member, bonding between the resin member and the inorganic member becomes insufficient.

そこで、本発明は、少なくとも一方が樹脂材料からなる部材同士を確実に接合することができる異種材料接合方法を提供することを課題とする。   Then, this invention makes it a subject to provide the dissimilar-material joining method which can join reliably the member which at least one consists of a resin material.

上記課題を解決するために、本発明の異種材料接合方法は、第1の樹脂材料からなる第1の部材の表面と、第1の樹脂材料と異なる第2の材料からなる第2の部材の表面と、を接合予定領域において接合して、異種材料接合体を製造する異種材料接合方法であって、第1の部材の表面及び第2の部材の表面の少なくとも一方に対して表面活性化処理を施す第1の工程と、第1の工程の後、第1の部材の表面と第2の部材の表面とを接触させた状態で、接合予定領域に対してレーザ光を照射することにより、第1の部材の表面と第2の部材の表面とを接合予定領域において接合する第2の工程と、を備え、第2の工程では、接合予定領域における第1の部材の温度が第1の樹脂材料のガラス転移点以上かつ第1の樹脂材料の流動開始温度未満の温度に上昇するように、レーザ光を照射することを特徴とする。   In order to solve the above-described problem, a dissimilar material bonding method according to the present invention includes a surface of a first member made of a first resin material and a second member made of a second material different from the first resin material. A dissimilar material joining method for producing a dissimilar material joined body by joining the surfaces in a region to be joined, and a surface activation treatment for at least one of the surface of the first member and the surface of the second member By irradiating a laser beam to the region to be bonded in a state where the surface of the first member and the surface of the second member are in contact with each other after the first step and the first step, A second step of joining the surface of the first member and the surface of the second member in the region to be joined, and in the second step, the temperature of the first member in the region to be joined is the first More than the glass transition point of the resin material and less than the flow start temperature of the first resin material To rise each time, and then irradiating the laser beam.

この異種材料接合方法では、接合予定領域における第1の部材の温度がレーザ光の照射によって第1の樹脂材料のガラス転移点以上かつ第1の樹脂材料の流動開始温度(その樹脂が軟化して流れ出す温度)未満の温度に上昇させられる。第1の部材の温度が第1の材料のガラス転移点以上の温度に上昇させられるので、第1の部材が接合予定領域において選択的に弾性に富んだ状態となり、かつ当該領域において選択的に膨張することになる。このとき、第1の部材の温度が第1の樹脂材料の流動開始温度未満の温度に上昇させられるので、第1の部材の溶融に起因して表面活性化処理の効果が失われることが防止される。従って、レーザ光が照射された際に、第1の部材の表面と第2の部材の表面とが接合予定領域において密着し、その結果、第1の部材の表面と第2の部材の表面とが接合予定領域において分子間力によって接合される。よって、この異種材料接合方法によれば、レーザ光の選択的な照射によって部材間に分子間力を有効に作用させることができ、少なくとも一方が樹脂材料からなる部材同士を確実に接合することが可能となる。   In this dissimilar material bonding method, the temperature of the first member in the region to be bonded is equal to or higher than the glass transition point of the first resin material and the flow start temperature of the first resin material (the resin softens) It is raised to a temperature below (flowing temperature). Since the temperature of the first member is raised to a temperature equal to or higher than the glass transition point of the first material, the first member is selectively elastic in the region to be bonded and selectively in the region. Will expand. At this time, since the temperature of the first member is raised to a temperature lower than the flow start temperature of the first resin material, the effect of the surface activation treatment is prevented from being lost due to melting of the first member. Is done. Therefore, when the laser beam is irradiated, the surface of the first member and the surface of the second member are in close contact with each other in the region to be bonded, and as a result, the surface of the first member and the surface of the second member Are joined by intermolecular forces in the region to be joined. Therefore, according to this dissimilar material joining method, the intermolecular force can be effectively applied between the members by selective irradiation of the laser beam, and members at least one of which is made of the resin material can be reliably joined together. It becomes possible.

ここで、第2の材料は、第1の樹脂材料のガラス転移点以上のガラス転移点、及び第1の樹脂材料の流動開始温度以上の流動開始温度を有する第2の樹脂材料であることが好ましい。これによれば、少なくとも第1の部材が接合予定領域において選択的に弾性に富んだ状態となり、かつ当該領域において選択的に膨張することになる。しかも、第1の部材及び第2の部材の溶融に起因して表面活性化処理の効果が失われることが防止される。従って、両方が樹脂材料からなる部材同士を確実に接合することができる。   Here, the second material is a second resin material having a glass transition point equal to or higher than the glass transition point of the first resin material and a flow start temperature equal to or higher than the flow start temperature of the first resin material. preferable. According to this, at least the first member is selectively elastic in the region to be joined, and is selectively expanded in the region. In addition, loss of the effect of the surface activation treatment due to melting of the first member and the second member is prevented. Therefore, it is possible to reliably join the members made of the resin material.

また、第2の工程では、接合予定領域が所定のラインを中心線として延在している場合、接合予定領域における第1の部材の温度がライン上において第1の樹脂材料の流動開始温度未満の温度に上昇するようにレーザ光の出力を調節しつつ、レーザ光の照射領域をラインに沿って相対的に移動させることが好ましい。これによれば、接合予定領域の中心線上の領域において第1の部材の溶融に起因して表面活性化処理の効果が失われることが防止される。そのため、接合予定領域の中央部(中心線上の領域)において第1の部材と第2の部材とが接合されずに、接合予定領域の両縁部(中心線両側の領域)において第1の部材と第2の部材とが接合されるという接合状態が生じるのを防止することができる。   Further, in the second step, when the planned joining region extends with the predetermined line as the center line, the temperature of the first member in the scheduled joining region is lower than the flow start temperature of the first resin material on the line. It is preferable to relatively move the irradiation region of the laser light along the line while adjusting the output of the laser light so as to increase the temperature of the laser light. According to this, it is prevented that the effect of the surface activation treatment is lost due to the melting of the first member in the region on the center line of the planned joining region. Therefore, the first member and the second member are not joined at the central portion (region on the center line) of the planned joining region, and the first member is formed at both edges (regions on both sides of the center line) of the planned joining region. It is possible to prevent a joined state in which the first member and the second member are joined.

このとき、第2の工程では、照射領域が環形状となるようにレーザ光を照射することが好ましい。これによれば、接合予定領域の幅方向(所定のラインと直交する方向)において第1の部材の温度が均一化される。従って、接合予定領域の全体に渡って第1の部材と第2の部材との接合状態を均一化することができる。   At this time, in the second step, it is preferable to irradiate the laser beam so that the irradiation region has a ring shape. According to this, the temperature of the first member is made uniform in the width direction (direction orthogonal to the predetermined line) of the planned joining region. Therefore, the joining state of the first member and the second member can be made uniform over the entire joining region.

また、第1の工程では、第1の部材の表面及び第2の部材の表面の少なくとも一方に対して電子線を照射することにより、表面活性化処理を施すことが好ましい。これによれば、第1の部材の表面及び第2の部材の表面の少なくとも一方に対する表面活性化処理を容易にかつ確実に実現することができる。   In the first step, it is preferable to perform surface activation treatment by irradiating at least one of the surface of the first member and the surface of the second member with an electron beam. According to this, the surface activation process for at least one of the surface of the first member and the surface of the second member can be easily and reliably realized.

本発明によれば、少なくとも一方が樹脂材料からなる部材同士を確実に接合することができる。   According to the present invention, at least one member made of a resin material can be reliably bonded.

本発明の一実施形態の異種材料接合方法によって製造された異種材料接合体の斜視図である。It is a perspective view of the dissimilar-material joined body manufactured by the dissimilar-material joining method of one Embodiment of this invention. 本発明の一実施形態の異種材料接合方法に用いられる集光光学系の構成図である。It is a block diagram of the condensing optical system used for the dissimilar-material joining method of one Embodiment of this invention. 図2の集光光学系を通過したレーザ光の集光スポット到達前の光強度プロファイルを示すグラフである。It is a graph which shows the light intensity profile before the condensing spot of the laser beam which passed the condensing optical system of FIG. 本発明の一実施形態の異種材料接合方法を説明するための斜視図である。It is a perspective view for demonstrating the dissimilar-material joining method of one Embodiment of this invention. 本発明の一実施形態の異種材料接合方法を説明するための斜視図である。It is a perspective view for demonstrating the dissimilar-material joining method of one Embodiment of this invention. 本発明の一実施形態の異種材料接合方法を説明するための平面図である。It is a top view for demonstrating the dissimilar-material joining method of one Embodiment of this invention. 本発明の一実施形態の異種材料接合方法を説明するための一部断面図である。It is a partial cross section for demonstrating the dissimilar-material joining method of one Embodiment of this invention. 本発明の一実施形態の異種材料接合方法を説明するための一部断面図である。It is a partial cross section for demonstrating the dissimilar-material joining method of one Embodiment of this invention. 本発明の一実施形態の異種材料接合方法が実施された場合における樹脂部材の温度プロファイルを示すグラフである。It is a graph which shows the temperature profile of the resin member when the dissimilar-material joining method of one Embodiment of this invention is implemented. 本発明の他の実施形態の異種材料接合方法が実施された場合における樹脂部材の温度プロファイルを示すグラフである。It is a graph which shows the temperature profile of the resin member when the dissimilar-material joining method of other embodiment of this invention is implemented. 比較例としての異種材料接合方法が実施された場合における樹脂部材の温度プロファイルを示すグラフである。It is a graph which shows the temperature profile of the resin member when the dissimilar material joining method as a comparative example is implemented.

以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.

図1は、本発明の一実施形態の異種材料接合方法によって製造された異種材料接合体の斜視図である。図1に示されるように、異種材料接合体10は、矩形板状の樹脂部材(第1の部材)11の表面11aと矩形板状の樹脂部材(第2の部材)12の表面12aとが接合予定領域13において接合されたものである。樹脂部材11は、カーボンブラック等のレーザ光吸収材を含むポリブチレンテレフタレート(第1の樹脂材料)からなり、樹脂部材12は、ポリアミド66(第2の材料、第2の樹脂材料)からなる。接合予定領域13は、樹脂部材11,12の外縁に沿って矩形環状に設定されたライン14を中心線として延在している。すなわち、接合予定領域13は、ライン14を中心線としてその両側に均等の幅を有するように矩形環状に設定されている。なお、樹脂部材11,12の形状としては、矩形板状に限定されず、様々な形状を適用することができる。また、接合予定領域13の形状としては、矩形環状に限定されず、様々な形状を適用することができる。   FIG. 1 is a perspective view of a dissimilar material joined body manufactured by a dissimilar material joining method according to an embodiment of the present invention. As shown in FIG. 1, the dissimilar material joined body 10 includes a surface 11 a of a rectangular plate-shaped resin member (first member) 11 and a surface 12 a of a rectangular plate-shaped resin member (second member) 12. It is joined in the joining planned region 13. The resin member 11 is made of polybutylene terephthalate (first resin material) including a laser light absorbing material such as carbon black, and the resin member 12 is made of polyamide 66 (second material, second resin material). The joining region 13 extends along the outer peripheral edge of the resin members 11 and 12 with a line 14 set in a rectangular ring shape as a center line. In other words, the joining region 13 is set in a rectangular shape so as to have a uniform width on both sides of the line 14 as a center line. In addition, as a shape of the resin members 11 and 12, it is not limited to rectangular plate shape, Various shapes can be applied. Further, the shape of the joining region 13 is not limited to a rectangular ring shape, and various shapes can be applied.

図2は、本発明の一実施形態の異種材料接合方法に用いられる集光光学系の構成図である。図2に示されるように、集光光学系1は、レーザ光Lの光源LS側から順に、コリメート用レンズ2、集光用レンズ3及び円錐凹状のアキシコンレンズ4が光軸OA上に配置されて構成されている。この集光光学系1をレーザ光Lが通過すると、レーザ光Lの光軸OAに対して垂直なレーザ光Lの断面形状は、集光スポットFSに対して光源LS側で円環形状となり、集光スポットFSに対して光源LSと反対側で中実円形状となる。   FIG. 2 is a configuration diagram of a condensing optical system used in the dissimilar material bonding method according to the embodiment of the present invention. As shown in FIG. 2, the condensing optical system 1 includes a collimating lens 2, a condensing lens 3, and a conical concave axicon lens 4 arranged on the optical axis OA in order from the light source LS side of the laser light L. Has been configured. When the laser light L passes through the condensing optical system 1, the cross-sectional shape of the laser light L perpendicular to the optical axis OA of the laser light L becomes an annular shape on the light source LS side with respect to the condensing spot FS. A solid circular shape is formed on the side opposite to the light source LS with respect to the condensing spot FS.

図3は、図2の集光光学系を通過したレーザ光の集光スポット到達前の光強度プロファイルを示すグラフである。図3に示されるように、レーザ光Lの光強度プロファイルは、集光スポットFS到達前において、ガウシアン分布やトップハット分布のレーザ光の光強度プロファイルとは逆に、中央部の光強度が周囲部の光強度よりも低いものとなっている。なお、図3の光強度プロファイルは、光軸OA及びレーザ光Lの進行方向と直交する方向にレーザ光Lの光強度を積分した場合である。   FIG. 3 is a graph showing a light intensity profile of the laser light that has passed through the condensing optical system of FIG. 2 before reaching the condensing spot. As shown in FIG. 3, the light intensity profile of the laser light L has a light intensity profile at the center portion that is opposite to the light intensity profile of the laser light with the Gaussian distribution or the top hat distribution before reaching the focused spot FS. It is lower than the light intensity of the part. 3 is a case where the light intensity of the laser light L is integrated in the direction orthogonal to the optical axis OA and the traveling direction of the laser light L.

なお、集光光学系として、上述の集光光学系1において円錐凹状のアキシコンレンズ4を円錐凸状のアキシコンレンズに代えたものを用いてもよい。そのような集光光学系をレーザ光Lが通過すると、レーザ光Lの光軸OAに対して垂直なレーザ光Lの断面形状は、集光スポットFSに対して光源LS側で中実円形状となり、集光スポットFSに対して光源LSと反対側で円環形状となる。このとき、レーザ光Lの光強度プロファイルは、集光スポットFS到達後において、ガウシアン分布やトップハット分布のレーザ光の光強度プロファイルとは逆に、中央部の光強度が周囲部の光強度よりも低いものとなる。   As the condensing optical system, a conical concave axicon lens 4 in the condensing optical system 1 described above may be replaced with a conical convex axicon lens. When the laser light L passes through such a condensing optical system, the cross-sectional shape of the laser light L perpendicular to the optical axis OA of the laser light L is a solid circular shape on the light source LS side with respect to the condensing spot FS. Thus, an annular shape is formed on the side opposite to the light source LS with respect to the condensing spot FS. At this time, the light intensity profile of the laser beam L is different from the light intensity profile of the laser beam having the Gaussian distribution or the top hat distribution after reaching the condensing spot FS. Is also low.

次に、上述した異種材料接合体10を製造する異種材料接合方法について説明する。まず、図4に示されるように、低速電子線照射装置を用いて、所定の条件(例えば、酸素濃度0〜5000ppm、吸収線量4000kGy)で、樹脂部材11の表面11a及び樹脂部材12の表面12aに対して電子線を照射することにより、樹脂部材11の表面11a及び樹脂部材12の表面12aに対して表面活性化処理を施す。続いて、図5に示されるように、樹脂部材11の表面11aと樹脂部材12の表面12aとを向かい合わせ、表面11aと表面12aとが接触するように所定の押圧力(例えば30kgf)で樹脂部材11,12の一方を樹脂部材11,12の他方に対して押圧する。   Next, the dissimilar material joining method for manufacturing the above-described dissimilar material joined body 10 will be described. First, as shown in FIG. 4, the surface 11a of the resin member 11 and the surface 12a of the resin member 12 under a predetermined condition (for example, an oxygen concentration of 0 to 5000 ppm and an absorbed dose of 4000 kGy) using a low-speed electron beam irradiation apparatus. By irradiating an electron beam to the surface 11a, the surface 11a of the resin member 11 and the surface 12a of the resin member 12 are subjected to surface activation treatment. Subsequently, as shown in FIG. 5, the surface 11a of the resin member 11 and the surface 12a of the resin member 12 face each other, and the resin is applied with a predetermined pressing force (for example, 30 kgf) so that the surface 11a and the surface 12a come into contact with each other. One of the members 11 and 12 is pressed against the other of the resin members 11 and 12.

続いて、図6に示されるように、樹脂部材11の表面11aと樹脂部材12の表面12aとを接触させた状態で、樹脂部材12側から接合予定領域13に対してレーザ光Lを照射することにより、樹脂部材11の表面11aと樹脂部材12の表面12aとを接合予定領域13において接合する。ここでは、集光光学系1を用いて、レーザ光Lの照射領域Rが円環形状となるようにレーザ光Lを照射する。そして、照射領域Rの中心をライン14上に位置させた状態で、照射領域Rをライン14に沿って相対的に移動させる。このとき、レーザ光Lは、接合予定領域13における樹脂部材11の温度がポリブチレンテレフタレートのガラス転移点(40℃〜60℃)以上かつポリブチレンテレフタレートの流動開始温度(融点)(225℃〜230℃)未満の温度(例えば210℃)に上昇するように、所定の条件(例えば、照射領域の相対的な移動速度100mm/sec、レーザ光Lの出力10w)で照射される。   Subsequently, as shown in FIG. 6, the laser beam L is irradiated from the resin member 12 side to the joining region 13 in a state where the surface 11 a of the resin member 11 and the surface 12 a of the resin member 12 are in contact with each other. As a result, the surface 11 a of the resin member 11 and the surface 12 a of the resin member 12 are bonded in the planned bonding region 13. Here, the condensing optical system 1 is used to irradiate the laser beam L so that the irradiation region R of the laser beam L has an annular shape. Then, the irradiation region R is relatively moved along the line 14 with the center of the irradiation region R positioned on the line 14. At this time, the laser beam L is such that the temperature of the resin member 11 in the bonding planned region 13 is not less than the glass transition point (40 ° C. to 60 ° C.) of polybutylene terephthalate and the flow start temperature (melting point) of polybutylene terephthalate (225 ° C. to 230 ° C. Irradiation is performed under predetermined conditions (for example, the relative moving speed of the irradiation region is 100 mm / sec and the output of the laser beam L is 10 w) so as to increase to a temperature (for example, 210 ° C.) lower than (° C.).

このように照射されたレーザ光Lは、図7に示されるように、樹脂部材12を透過して、樹脂部材11の表面11aに到達し、樹脂部材11の材料であるポリブチレンテレフタレートに混入されているレーザ光吸収材によって光熱変換される。これにより、樹脂部材11の温度は、接合予定領域13においてポリブチレンテレフタレートのガラス転移点以上かつポリブチレンテレフタレートの流動開始温度(融点)未満の温度(例えば210℃)に上昇する。一方、樹脂部材12の材料であるポリアミド66は、ポリブチレンテレフタレートのガラス転移点と同程度のガラス転移点(49℃)、及びポリブチレンテレフタレートの流動開始温度(融点)以上の流動開始温度(融点)(267℃)を有しているので、樹脂部材12の温度も、接合予定領域13においてポリアミド66のガラス転移点以上かつポリアミド66の流動開始温度(融点)未満の温度(例えば210℃)に上昇する。   As shown in FIG. 7, the laser light L irradiated in this way passes through the resin member 12, reaches the surface 11 a of the resin member 11, and is mixed into polybutylene terephthalate that is a material of the resin member 11. Photothermal conversion is performed by the laser light absorbing material. As a result, the temperature of the resin member 11 rises to a temperature (for example, 210 ° C.) at or above the glass transition point of the polybutylene terephthalate and less than the flow start temperature (melting point) of the polybutylene terephthalate in the bonding region 13. On the other hand, the polyamide 66 which is the material of the resin member 12 has a glass transition point (49 ° C.) that is similar to the glass transition point of polybutylene terephthalate and a flow start temperature (melting point) that is equal to or higher than the flow start temperature (melting point) of polybutylene terephthalate. ) (267 ° C.), the temperature of the resin member 12 is also higher than the glass transition point of the polyamide 66 and lower than the flow start temperature (melting point) of the polyamide 66 (for example, 210 ° C.) in the region to be joined 13. To rise.

樹脂部材11,12の温度がそれぞれの材料のガラス転移点以上とされることで、図8に示されるように、樹脂部材11,12が接合予定領域13において選択的に弾性に富んだ状態となり、かつ当該領域13において選択的に膨張することになる。このとき、樹脂部材11,12の温度がそれぞれの材料の流動開始温度未満とされるので、樹脂部材11,12の溶融に起因して表面活性化処理の効果が失われることが防止される。従って、レーザ光Lが照射された際に、樹脂部材11の表面11aと樹脂部材12の表面12aとが接合予定領域13において密着し、その結果、樹脂部材11の表面11aと樹脂部材12の表面12aとが接合予定領域13において分子間力により高強度(例えば60kgf以上のせん断強度)で接合される。   By setting the temperature of the resin members 11 and 12 to be equal to or higher than the glass transition point of each material, as shown in FIG. 8, the resin members 11 and 12 are selectively in a state of being rich in elasticity in the planned joining region 13. In addition, the region 13 is selectively expanded. At this time, since the temperatures of the resin members 11 and 12 are lower than the flow start temperatures of the respective materials, it is possible to prevent the effect of the surface activation treatment from being lost due to the melting of the resin members 11 and 12. Therefore, when the laser beam L is irradiated, the surface 11a of the resin member 11 and the surface 12a of the resin member 12 are brought into close contact with each other in the region 13 to be joined. As a result, the surface 11a of the resin member 11 and the surface of the resin member 12 12a is bonded with high strength (for example, shear strength of 60 kgf or more) by intermolecular force in the planned bonding region 13.

なお、樹脂の流動開始温度とは、その樹脂が軟化して流れ出す温度をいう(例えば、射出成型時の樹脂温度の下限値に相当する)。樹脂が結晶性樹脂の場合には、その樹脂の流動開始温度は、その樹脂の融点である。樹脂が非結晶性樹脂の場合には、その樹脂の流動開始温度は、その樹脂の各分子鎖の配列が相対的に崩れて非可逆的に移動する温度である(可逆的に相対位置が変化する状態はゴム状態で、この状態の始まりの温度がガラス転移点である)。非結晶性樹脂の具体例は、次のとおりである。ポリカーボネートの場合には、ガラス転移点が145℃〜150℃であり、流動開始温度が200℃程度である。ポリスチレンの場合には、ガラス転移点が110℃であり、流動開始温度が200℃程度である。ポリエーテルサルホンの場合には、ガラス転移点が225℃〜230℃であり、流動開始温度が330℃程度である。なお、レーザ光Lを照射する前に、樹脂部材の温度がガラス転移点を超えている場合(例えば樹脂部材がポリプロピレン(ガラス転移点−20℃)からなる場合)があるが、このような場合にも、レーザ光Lの照射によって樹脂部材の温度を上昇させることで、樹脂部材を選択的に膨張させて、樹脂部材同士を良好に接合することができる。   The flow start temperature of the resin means a temperature at which the resin softens and flows out (for example, corresponds to a lower limit value of the resin temperature at the time of injection molding). When the resin is a crystalline resin, the flow start temperature of the resin is the melting point of the resin. When the resin is an amorphous resin, the flow start temperature of the resin is a temperature at which the arrangement of each molecular chain of the resin is relatively collapsed and moves irreversibly (reversibly changing the relative position). The state to be done is a rubber state, and the temperature at the beginning of this state is the glass transition point). Specific examples of the amorphous resin are as follows. In the case of polycarbonate, the glass transition point is 145 ° C. to 150 ° C., and the flow start temperature is about 200 ° C. In the case of polystyrene, the glass transition point is 110 ° C., and the flow start temperature is about 200 ° C. In the case of polyethersulfone, the glass transition point is 225 ° C to 230 ° C, and the flow start temperature is about 330 ° C. In addition, before irradiating the laser beam L, the temperature of the resin member may exceed the glass transition point (for example, the resin member is made of polypropylene (glass transition point −20 ° C.)). In addition, by increasing the temperature of the resin member by irradiation with the laser light L, the resin member can be selectively expanded and the resin members can be favorably bonded.

以上説明したように、異種材料接合体10を製造するための異種材料接合方法では、接合予定領域13における樹脂部材11,12の温度がレーザ光Lの照射によって樹脂部材11,12のそれぞれの材料のガラス転移点以上かつ流動開始温度未満の温度に上昇させられる。樹脂部材11,12の温度がそれぞれの材料のガラス転移点以上の温度に上昇させられるので、樹脂部材11,12が接合予定領域13において選択的に弾性に富んだ状態となり、かつ当該領域13において選択的に膨張することになる。このとき、樹脂部材11,12の温度がそれぞれの材料の流動開始温度未満の温度に上昇させられるので、樹脂部材11,12の溶融に起因して表面活性化処理の効果が失われることが防止される。従って、レーザ光Lが照射された際に、樹脂部材11の表面11aと樹脂部材12の表面12aとが接合予定領域13において密着し、その結果、樹脂部材11の表面11aと樹脂部材12の表面12aとが接合予定領域13において分子間力によって接合される。このように、異種材料接合体10を製造するための異種材料接合方法によれば、レーザ光Lの選択的な照射によって樹脂部材11,12間に分子間力を有効に作用させることができ、接着剤を使用せずに、異種の樹脂材料からなる樹脂部材11,12同士を確実にかつ安定的に接合することが可能となる。   As described above, in the dissimilar material joining method for manufacturing the dissimilar material joined body 10, the temperature of the resin members 11 and 12 in the planned joining region 13 is changed to the respective materials of the resin members 11 and 12 by the laser light L irradiation. The glass transition point is raised to a temperature not lower than the flow start temperature. Since the temperature of the resin members 11 and 12 is raised to a temperature equal to or higher than the glass transition point of each material, the resin members 11 and 12 are selectively in a state of being highly elastic in the planned joining region 13 and in the region 13. It will expand selectively. At this time, since the temperature of the resin members 11 and 12 is raised to a temperature lower than the flow start temperature of each material, the effect of the surface activation treatment due to the melting of the resin members 11 and 12 is prevented from being lost. Is done. Therefore, when the laser beam L is irradiated, the surface 11a of the resin member 11 and the surface 12a of the resin member 12 are brought into close contact with each other in the region 13 to be joined. As a result, the surface 11a of the resin member 11 and the surface of the resin member 12 12a is bonded to the bonding region 13 by intermolecular force. Thus, according to the dissimilar material joining method for manufacturing the dissimilar material joined body 10, an intermolecular force can be effectively applied between the resin members 11 and 12 by selective irradiation of the laser beam L, It is possible to reliably and stably join the resin members 11 and 12 made of different kinds of resin materials without using an adhesive.

なお、樹脂部材12は、ポリブチレンテレフタレートのガラス転移点と同等のガラス転移点、及びポリブチレンテレフタレートの流動開始温度(融点)以上の流動開始温度(融点)を有するポリアミド66からなる。そのため、接合予定領域13における樹脂部材11の温度がポリブチレンテレフタレートのガラス転移点以上かつポリブチレンテレフタレートの流動開始温度(融点)未満の温度に上昇するようにレーザ光Lを照射する限り、少なくとも樹脂部材11が接合予定領域13において選択的に弾性に富んだ状態となり、かつ当該領域13において選択的に膨張することになる。しかも、上述のようにレーザ光Lを照射する限り、樹脂部材11,12の両方が溶融し流動することがないので、樹脂部材11,12の溶融に起因して表面活性化処理の効果が失われることが防止される。   The resin member 12 is made of polyamide 66 having a glass transition point equivalent to the glass transition point of polybutylene terephthalate and a flow start temperature (melting point) equal to or higher than the flow start temperature (melting point) of polybutylene terephthalate. Therefore, as long as the laser beam L is irradiated so that the temperature of the resin member 11 in the region to be bonded 13 rises above the glass transition point of polybutylene terephthalate and below the flow start temperature (melting point) of polybutylene terephthalate, at least resin The member 11 is selectively rich in elasticity in the region to be joined 13 and is selectively expanded in the region 13. In addition, as long as the laser beam L is irradiated as described above, both the resin members 11 and 12 do not melt and flow, so the effect of the surface activation treatment is lost due to the melting of the resin members 11 and 12. Is prevented.

また、ライン14を中心線として延在する接合予定領域13に対してレーザ光Lを照射する際に、円環形状の照射領域Rをライン14に沿って相対的に移動させる。このとき、レーザ光Lの光強度プロファイルは、中央部の光強度が周囲部の光強度よりも低いものとなる。これにより、図9に示されるように、接合予定領域13の幅方向(ライン14と直交する方向)において樹脂部材11の温度が均一化されることになる。従って、接合予定領域13の全体に渡って樹脂部材11,12同士の接合状態を均一化することができる。   Further, when the laser beam L is irradiated to the bonding scheduled region 13 extending with the line 14 as the center line, the annular irradiation region R is relatively moved along the line 14. At this time, the light intensity profile of the laser light L is such that the light intensity at the central part is lower than the light intensity at the peripheral part. As a result, as shown in FIG. 9, the temperature of the resin member 11 is made uniform in the width direction (the direction orthogonal to the line 14) of the planned joining region 13. Therefore, the joining state of the resin members 11 and 12 can be made uniform over the entire joining region 13.

また、樹脂部材11の表面11a及び樹脂部材12の表面12aに対して電子線を照射することにより、表面活性化処理を施す。このような電子線処理によれば、極性を有する官能基(水酸基、カルボキシル基、カルボニル基等)を各表面11a,12aに生成することができ、よって、各表面11a,12aに対する表面活性化処理を容易にかつ確実に実現することが可能となる。なお、電子線処理は、ポリプロピレンやポリアセタールの改質も可能であるため、ポリブチレンテレフタレートとポリアミド66との接合の他、ポリプロピレンとポリアミドとの接合や、ポリアセタールとポリカーボネートとの接合等も可能である。   Further, the surface activation treatment is performed by irradiating the surface 11 a of the resin member 11 and the surface 12 a of the resin member 12 with an electron beam. According to such an electron beam treatment, a functional group having a polarity (hydroxyl group, carboxyl group, carbonyl group, etc.) can be generated on each surface 11a, 12a, and thus surface activation treatment for each surface 11a, 12a. Can be realized easily and reliably. In addition, since the electron beam treatment can also modify polypropylene and polyacetal, in addition to joining polybutylene terephthalate and polyamide 66, joining of polypropylene and polyamide, joining of polyacetal and polycarbonate, and the like are also possible. .

以上、本発明の一実施形態について説明したが、本発明は、上記実施形態に限定されるものではない。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.

例えば、レーザ光Lの照射領域Rの形状は、円環形状に限定されず、中実円形状等であってもよい。照射領域Rが中実円形状であると、レーザ光Lの光強度プロファイルは、中央部の光強度が周囲部の光強度よりも高いものとなる(図3参照)。そのため、中実円形状の照射領域Rをライン14に沿って相対的に移動させると、接合予定領域13における樹脂部材11の温度がライン14上(照射領域Rの中心)においてポリブチレンテレフタレートの流動開始温度(融点)以上の温度に上昇し易くなる。従って、図11に示されるように、接合予定領域13の中央部における樹脂部材11の温度がポリブチレンテレフタレートの流動開始温度(融点)以上の温度に上昇し、接合予定領域13の両縁部における樹脂部材11の温度がポリブチレンテレフタレートのガラス転移点以上かつポリブチレンテレフタレートの流動開始温度(融点)未満の温度に上昇する場合がある。これにより、接合予定領域13の中央部において、樹脂部材11,12の溶融に起因して表面活性化処理の効果が失われ、その結果、接合予定領域13の中央部において樹脂部材11と樹脂部材12とが接合されずに、接合予定領域13の両縁部において樹脂部材11と樹脂部材12とが接合されるという接合状態が生じる。   For example, the shape of the irradiation region R of the laser light L is not limited to an annular shape, and may be a solid circular shape or the like. When the irradiation region R has a solid circular shape, the light intensity profile of the laser light L is such that the light intensity at the center is higher than the light intensity at the peripheral part (see FIG. 3). Therefore, when the solid circular irradiation region R is relatively moved along the line 14, the temperature of the resin member 11 in the bonding planned region 13 flows on the line 14 (center of the irradiation region R). It tends to rise to a temperature above the starting temperature (melting point). Therefore, as shown in FIG. 11, the temperature of the resin member 11 at the center of the planned joining region 13 rises to a temperature equal to or higher than the flow start temperature (melting point) of polybutylene terephthalate, and at both edges of the planned joining region 13. There are cases where the temperature of the resin member 11 rises to a temperature not lower than the glass transition point of polybutylene terephthalate and lower than the flow start temperature (melting point) of polybutylene terephthalate. As a result, the effect of the surface activation treatment is lost in the central portion of the planned joining region 13 due to the melting of the resin members 11 and 12, and as a result, the resin member 11 and the resin member are disposed in the central portion of the planned joining region 13. The joining state that the resin member 11 and the resin member 12 are joined at both edge portions of the joining planned region 13 without joining to the member 12 occurs.

そこで、接合予定領域13がライン14を中心線として延在している場合において、中実円形状の照射領域Rをライン14に沿って相対的に移動させるときには、接合予定領域13における樹脂部材11の温度がライン14上(照射領域Rの中心)においてポリブチレンテレフタレートの流動開始温度(融点)未満の温度に上昇するようにレーザ光Lの出力を調節する。これによれば、図10に示されるように、設定し得る接合予定領域13の幅は狭くなるものの、異種の樹脂材料からなる樹脂部材11,12同士を確実に接合することができる。しかも、接合予定領域13の中央部において樹脂部材11の溶融に起因して表面活性化処理の効果が失われることが防止されるので、図11に示されるような接合状態が生じるのを防止することができる。   Therefore, when the planned joining region 13 extends with the line 14 as the center line, the resin member 11 in the planned joining region 13 is used when the solid circular irradiation region R is relatively moved along the line 14. The output of the laser beam L is adjusted so that the temperature increases to a temperature below the flow start temperature (melting point) of polybutylene terephthalate on the line 14 (center of the irradiation region R). According to this, as shown in FIG. 10, although the width of the bonding scheduled region 13 that can be set is narrowed, the resin members 11 and 12 made of different resin materials can be reliably bonded. Moreover, since the effect of the surface activation treatment is prevented from being lost due to the melting of the resin member 11 at the central portion of the planned joining region 13, it is possible to prevent the joining state as shown in FIG. 11 from occurring. be able to.

図10に示されるような接合状態にあっては、接合予定領域13の両側(外側)の部分での樹脂部材11,12の温度変化が小さいので、その温度変化に起因して残留する応力も小さくなる。一方、図11に示されるような接合状態にあっては、接合予定領域13の中央部での樹脂部材11,12の温度変化が大きいので、その温度変化に起因して残留する応力も大きくなる。従って、図10に示されるような接合状態は、残留応力が小さい分だけ剥がれ難くなり、図11に示されるような接合状態は、残留応力が大きい分だけ剥がれ易くなる。   In the joined state as shown in FIG. 10, since the temperature change of the resin members 11 and 12 at both sides (outside) of the joining planned region 13 is small, the residual stress due to the temperature change is also reduced. Get smaller. On the other hand, in the joined state as shown in FIG. 11, since the temperature change of the resin members 11 and 12 at the center portion of the planned joining region 13 is large, the residual stress due to the temperature change also becomes large. . Therefore, the bonding state as shown in FIG. 10 is less likely to be peeled off due to the small residual stress, and the bonding state as shown in FIG. 11 is more likely to peel off due to the larger residual stress.

また、電子線処理の他、UVオゾン処理、プラズマ処理、コロナ処理等によって、樹脂部材11の表面11a及び樹脂部材12の表面12aの少なくとも一方に対して表面活性化処理を施してもよい。ここで、UVオゾン処理は、樹脂部材11,12を収容した容器にUV光を照射することにより、その容器内にオゾンを発生させ、そのオゾンの酸化力によって、極性を有する官能基(水酸基、カルボキシル基、カルボニル基等)を樹脂部材11,12の表面に生成する処理である。UVオゾン処理は、2重結合を有する材料に対して有効な方法であり、例えば、シクロオレフィンとポリフェニレンサルファイドとの接合が可能である。   In addition to the electron beam treatment, surface activation treatment may be performed on at least one of the surface 11a of the resin member 11 and the surface 12a of the resin member 12 by UV ozone treatment, plasma treatment, corona treatment, or the like. Here, in the UV ozone treatment, ozone is generated in the container by irradiating the container containing the resin members 11 and 12 with UV light, and the functional group having a polarity (hydroxyl group, (Carboxyl group, carbonyl group, etc.) is generated on the surfaces of the resin members 11 and 12. The UV ozone treatment is an effective method for a material having a double bond. For example, a cycloolefin and polyphenylene sulfide can be bonded.

また、樹脂部材11,12の材料としては、接着剤での接合が困難な材料(例えば、ポリオレフィン、ポリアセタール、フッ素樹脂等)を含め、様々な材料を適用することができる。更に、以上の実施形態は、第1の部材が第1の樹脂材料からなり、第2の部材が第2の樹脂材料からなる場合であったが、第2の部材が樹脂以外の第2の材料(例えば、ガラス、金属、セラミックス、半導体等の無機材料)からなる場合にも、以上の実施形態と同様の効果が奏される。   Moreover, as a material of the resin members 11 and 12, various materials including a material (for example, polyolefin, polyacetal, fluororesin, etc.) that is difficult to join with an adhesive can be applied. Furthermore, although the above embodiment was a case where the first member is made of the first resin material and the second member is made of the second resin material, the second member is a second material other than the resin. Even when it is made of a material (for example, an inorganic material such as glass, metal, ceramics, or semiconductor), the same effects as those of the above-described embodiment can be obtained.

上述した異種材料接合方法においては、異種の樹脂材料同士の組み合わせであっても、樹脂材料と無機材料との組み合わせであっても、お互いの材料表面に極性を有する必要がある。ただし、樹脂材料や無機材料には、材料表面に極性を有するものが存在する。従って、材料表面に極性を有しない材料に表面活性化処理を施せばよい。つまり、第1の部材の表面及び第2の部材の表面の少なくとも一方に対して表面活性化処理を施せばよい。   In the dissimilar material bonding method described above, it is necessary to have polarities on the surface of each material regardless of the combination of different resin materials or the combination of a resin material and an inorganic material. However, some resin materials and inorganic materials have polarity on the material surface. Therefore, a surface activation treatment may be performed on a material having no polarity on the material surface. That is, the surface activation process may be performed on at least one of the surface of the first member and the surface of the second member.

最後に、樹脂材料と表面活性化処理との関係について説明する。ポリオレフィン(ポリエチレンやポリプロピレン等、C2nからなるポリマーの一般名称)には、表面活性化処理として、電子線処理が有効である。ポリエステル(ポリエチレンテレフタレートやポリブチレンテレフタレート等、エステル結合(−CO−O−)を主鎖にもつポリマーの一般名称)には、表面活性化処理として、電子線処理、UVオゾン処理、プラズマ処理、コロナ処理が有効である。ポリアミド(6ナイロンや66ナイロン等、アミド結合(−CO−NH−)を主鎖にもつポリマーの一般名称)には、表面活性化処理として、UVオゾン処理、プラズマ処理、コロナ処理が有効である。電子線処理は、汎用性の高い樹脂材料であるポリエチレンやポリプロピレンに有効であるため、特に好ましい表面活性化処理といえる。 Finally, the relationship between the resin material and the surface activation treatment will be described. Electron beam treatment is effective as a surface activation treatment for polyolefins (general names of polymers made of C n H 2n , such as polyethylene and polypropylene). For polyester (general name of polymer having ester bond (—CO—O—) in the main chain, such as polyethylene terephthalate and polybutylene terephthalate), as the surface activation treatment, electron beam treatment, UV ozone treatment, plasma treatment, corona Processing is effective. For polyamides (general names of polymers having an amide bond (—CO—NH—) in the main chain, such as 6 nylon and 66 nylon), UV ozone treatment, plasma treatment, and corona treatment are effective as surface activation treatments. . Since electron beam treatment is effective for polyethylene and polypropylene, which are highly versatile resin materials, it can be said to be a particularly preferable surface activation treatment.

10…異種材料接合体、11…樹脂部材(第1の部材)、11a…表面、12…樹脂部材(第2の部材)、12a…表面、13…接合予定領域、14…ライン、L…レーザ光、R…照射領域。   DESCRIPTION OF SYMBOLS 10 ... Dissimilar-material joined body, 11 ... Resin member (1st member), 11a ... Surface, 12 ... Resin member (2nd member), 12a ... Surface, 13 ... Planned joining area | region, 14 ... Line, L ... Laser Light, R ... irradiation area.

Claims (4)

第1の樹脂材料からなる第1の部材の表面と、前記第1の樹脂材料と異なる第2の材料からなる第2の部材の表面と、を接合予定領域において接合して、異種材料接合体を製造する異種材料接合方法であって、
前記第1の部材の前記表面及び前記第2の部材の前記表面の少なくとも一方に対して表面活性化処理を施す第1の工程と、
前記第1の工程の後、前記第1の部材の前記表面と前記第2の部材の前記表面とを接触させた状態で、前記接合予定領域に対してレーザ光を照射することにより、前記第1の部材の前記表面と前記第2の部材の前記表面とを前記接合予定領域において接合する第2の工程と、を備え、
前記第2の工程では、前記接合予定領域における前記第1の部材の温度が前記第1の樹脂材料のガラス転移点以上かつ前記第1の樹脂材料の流動開始温度未満の温度に上昇するように、前記接合予定領域に対してレーザ光の照射領域を相対的に移動させ
前記表面活性化処理として、前記第1の部材の前記表面及び前記第2の部材の前記表面の少なくとも一方に極性を有する官能基を生成する処理を行うことを特徴とする異種材料接合方法。
A surface of a first member made of a first resin material and a surface of a second member made of a second material different from the first resin material are joined in a region to be joined, and a dissimilar material joined body A dissimilar material joining method for manufacturing
A first step of performing a surface activation treatment on at least one of the surface of the first member and the surface of the second member;
After the first step, in the state where the surface of the first member and the surface of the second member are in contact with each other, the region to be joined is irradiated with laser light, thereby A second step of joining the surface of the first member and the surface of the second member in the joining planned region,
In the second step, the temperature of the first member in the region to be joined is increased to a temperature equal to or higher than the glass transition point of the first resin material and lower than the flow start temperature of the first resin material. , Moving the irradiation region of the laser beam relative to the planned joining region ,
The dissimilar material joining method characterized by performing the process which produces | generates the functional group which has polarity in at least one of the said surface of the said 1st member, and the said surface of the said 2nd member as the said surface activation process.
前記第2の材料は、前記第1の樹脂材料のガラス転移点以上のガラス転移点、及び前記第1の樹脂材料の流動開始温度以上の流動開始温度を有する第2の樹脂材料であることを特徴とする請求項1記載の異種材料接合方法。   The second material is a second resin material having a glass transition point not lower than the glass transition point of the first resin material and a flow start temperature not lower than the flow start temperature of the first resin material. The dissimilar material joining method according to claim 1. 前記第2の工程では、前記接合予定領域が所定のラインを中心線として延在している場合、前記接合予定領域における前記第1の部材の温度が前記ライン上において前記第1の樹脂材料の流動開始温度未満の温度に上昇するように前記レーザ光の出力を調節しつつ、前記レーザ光の照射領域を前記ラインに沿って相対的に移動させることを特徴とする請求項1又は2記載の異種材料接合方法。   In the second step, when the planned joining region extends with a predetermined line as a center line, the temperature of the first member in the planned joining region is the temperature of the first resin material on the line. 3. The laser light irradiation region is relatively moved along the line while adjusting the output of the laser light so as to rise to a temperature lower than a flow start temperature. Dissimilar material joining method. 前記第1の工程では、前記第1の部材の前記表面及び前記第2の部材の前記表面の少なくとも一方に対して電子線を照射することにより、前記表面活性化処理を施すことを特徴とする請求項1〜3のいずれか一項記載の異種材料接合方法。   In the first step, the surface activation treatment is performed by irradiating at least one of the surface of the first member and the surface of the second member with an electron beam. The dissimilar-material joining method as described in any one of Claims 1-3.
JP2010187431A 2010-08-24 2010-08-24 Dissimilar material joining method Active JP6062140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010187431A JP6062140B2 (en) 2010-08-24 2010-08-24 Dissimilar material joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010187431A JP6062140B2 (en) 2010-08-24 2010-08-24 Dissimilar material joining method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015038966A Division JP6023830B2 (en) 2015-02-27 2015-02-27 Dissimilar material joining method

Publications (2)

Publication Number Publication Date
JP2012045730A JP2012045730A (en) 2012-03-08
JP6062140B2 true JP6062140B2 (en) 2017-01-18

Family

ID=45901199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010187431A Active JP6062140B2 (en) 2010-08-24 2010-08-24 Dissimilar material joining method

Country Status (1)

Country Link
JP (1) JP6062140B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2635651C2 (en) * 2012-04-17 2017-11-14 Конинклейке Филипс Н.В. Emitter
JP2016016429A (en) * 2014-07-08 2016-02-01 輝創株式会社 Bonding method of member using laser
JP6413951B2 (en) * 2015-06-26 2018-10-31 株式会社デンソー Resin molded body and manufacturing method thereof
JPWO2018216804A1 (en) * 2017-05-25 2020-03-26 ポリプラスチックス株式会社 Method of joining resin molded products
WO2021260813A1 (en) * 2020-06-24 2021-12-30 三菱重工業株式会社 Joining method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162288A (en) * 2004-06-02 2008-07-17 Nagoya Industrial Science Research Inst Laser bonding process of members
JP2008075030A (en) * 2006-09-22 2008-04-03 Uinzu:Kk Adhering apparatus and adhering method
JP2008208296A (en) * 2007-02-28 2008-09-11 Toyobo Co Ltd Resin composition for laser welding and formed article using the same
JP2010076437A (en) * 2008-08-29 2010-04-08 Toray Ind Inc Manufacturing method for composite of molding comprising thermoplastic resin composition and metal
JP5646235B2 (en) * 2010-07-21 2014-12-24 浜松ホトニクス株式会社 Resin welding method and resin welding apparatus

Also Published As

Publication number Publication date
JP2012045730A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP6062140B2 (en) Dissimilar material joining method
US9193138B2 (en) Laser bonding method
JP4751554B2 (en) Method for joining two workpieces made of plastic without using foreign matter
WO2013084758A1 (en) Laser joining method
KR101162902B1 (en) Glass welding method and glass layer fixing method
JP2006106517A (en) Method for manufacturing camera module
WO2016114174A1 (en) Method for producing bonded structure, and bonded structure
WO2013125664A1 (en) Laser joining method
EP2923821B1 (en) Method for direct infrared laser welding
WO2013154037A1 (en) Method for laser bonding
JP2012223889A (en) Method for laser bonding
JP6023830B2 (en) Dissimilar material joining method
JP4439892B2 (en) Laser welding method
US20190224924A1 (en) Micro-Pull To Strengthen Plastics Weld
JP6724443B2 (en) Laser joining method
JP2003251699A (en) Welding method of resin component by laser
JP4636374B2 (en) Thermal crystallization treatment method for synthetic resin cup-shaped containers
JP2005231172A (en) Resin welding apparatus
WO2011074072A1 (en) Method of welding resin
CN111050983B (en) Method for producing joined body of dissimilar materials
US20150298391A1 (en) Method for joining a joining partner of a thermoplastic material to a joining partner of glass
JP5547883B2 (en) Method of welding resin material
WO2018074059A1 (en) Bonding method
JPS6274631A (en) Joining of synthetic resin material
TWI697400B (en) Fabricating method of resin body bonding article and resin body bonding article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150311

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161214

R150 Certificate of patent or registration of utility model

Ref document number: 6062140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250