JP6061624B2 - Transparent crystallized glass - Google Patents

Transparent crystallized glass Download PDF

Info

Publication number
JP6061624B2
JP6061624B2 JP2012243059A JP2012243059A JP6061624B2 JP 6061624 B2 JP6061624 B2 JP 6061624B2 JP 2012243059 A JP2012243059 A JP 2012243059A JP 2012243059 A JP2012243059 A JP 2012243059A JP 6061624 B2 JP6061624 B2 JP 6061624B2
Authority
JP
Japan
Prior art keywords
glass
crystallized glass
heat treatment
range
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012243059A
Other languages
Japanese (ja)
Other versions
JP2014091650A (en
Inventor
達也 手塚
達也 手塚
沢登 成人
成人 沢登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumita Optical Glass Manufacturing Co Ltd
Original Assignee
Sumita Optical Glass Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumita Optical Glass Manufacturing Co Ltd filed Critical Sumita Optical Glass Manufacturing Co Ltd
Priority to JP2012243059A priority Critical patent/JP6061624B2/en
Publication of JP2014091650A publication Critical patent/JP2014091650A/en
Application granted granted Critical
Publication of JP6061624B2 publication Critical patent/JP6061624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、短波長固体レーザーやフルカラーディスプレー、赤外光検出センサー等に供して好適な、高効率波長上方変換特性に優れた透明結晶化ガラスに関するものである。   The present invention relates to a transparent crystallized glass excellent in high-efficiency wavelength upward conversion characteristics, which is suitable for use in short-wavelength solid-state lasers, full-color displays, infrared light detection sensors, and the like.

近年、希土類イオンの複数のエネルギー準位間の電子遷移を利用する波長上方変換材料は、青色や緑色の固体レーザーを初め、フルカラーディスプレー、赤外光検出センサー等様々な分野での応用が可能なため、強い関心を集めている。   In recent years, wavelength up-conversion materials that use electronic transitions between multiple energy levels of rare earth ions can be applied in various fields such as blue and green solid-state lasers, full-color displays, and infrared light detection sensors. Because of the strong interest.

従来、波長上方変換透明結晶化ガラスとしては、フッ化鉛系透明結晶化ガラス(例えば特許文献1)やフッ化ストロンチウム系透明結晶化ガラス(例えば非特許文献1)が知られている。
しかしながら、フッ化鉛系透明結晶化ガラスは、耐失透安定性が低いために生産性が低く、また有毒な鉛を多量に含有しているため、応用範囲が限られていた。
一方、フッ化ストロンチウム系透明結晶化ガラスは、鉛を使用することなく、比較的高い波長上方変換特性を有しているが、やはり耐失透安定性が低く、また熔融温度が非常に高く揮発による品質のバラつきが大きいために、実用的なサイズのものを安定して作製することが非常に困難、すなわちガラスの製造安定性の面で問題を残していた。
Conventionally, as the wavelength upward conversion transparent crystallized glass, lead fluoride-based transparent crystallized glass (for example, Patent Document 1) and strontium fluoride-based transparent crystallized glass (for example, Non-patent Document 1) are known.
However, lead fluoride-based transparent crystallized glass has low productivity due to low devitrification stability, and contains a large amount of toxic lead, so its application range is limited.
On the other hand, strontium fluoride-based transparent crystallized glass has relatively high wavelength up-conversion characteristics without using lead, but also has low devitrification stability and a very high melting temperature and volatilization. Due to the large variation in quality due to the above, it is very difficult to stably produce a practical size product, that is, a problem remains in terms of glass production stability.

特許第3411067号公報Japanese Patent No. 3411067

「Journal of the Ceramic Society of Japan 115(1346), 605−607, 2007−10−01」"Journal of the Ceramic Society of Japan 115 (1346), 605-607, 2007-10-01"

このように、従来の波長上方変換透明結晶化ガラスは、耐失透安定性が低く、有毒な鉛を多量に含有しているものや、鉛は使用していないものの、やはり耐失透安定性が低く、またガラスの製造安定性が悪いという問題があった。   As described above, the conventional wavelength-up-converting transparent crystallized glass has low devitrification stability and contains a large amount of toxic lead or does not use lead. However, there was a problem that the production stability of the glass was poor.

本発明は、上記の現状に鑑み開発されたもので、鉛を使用することなく、高い耐失透安定性および波長上方変換特性を有し、さらには製造安定性にも優れた透明結晶化ガラスを、その有利な製造方法と共に提供することを目的とする。   The present invention was developed in view of the above-mentioned present situation, and without using lead, has a high devitrification stability and wavelength up-conversion characteristics, and further has excellent production stability. As well as its advantageous production method.

なお、本発明における目標特性は次のとおりである。
・耐失透安定性
熱処理前ガラスにおいて、ガラス厚み3mmにおける600nmの分光透過率が90%以上であること。
・透明性
熱処理後結晶化ガラスにおいて、ガラス厚み3mmにおける600nmの分光透過率が90%以上であること。
・波長上方変換特性
熱処理後結晶化ガラスにおいて、赤外レーザー(波長:1064nm、出力:0.9W)にて励起した際の発光強度が0.0005μW以上であること。
The target characteristics in the present invention are as follows.
-Devitrification stability In the glass before heat treatment, the spectral transmittance at 600 nm at a glass thickness of 3 mm is 90% or more.
-Transparency In the crystallized glass after heat treatment, the spectral transmittance at 600 nm at a glass thickness of 3 mm is 90% or more.
-Wavelength up-conversion characteristics In the crystallized glass after heat treatment, the emission intensity when excited by an infrared laser (wavelength: 1064 nm, output: 0.9 W) is 0.0005 μW or more.

さて、発明者らは、上記の目的を達成すべく数多くの実験と検討を重ねた結果、以下に述べる知見を得た。
(a)希土類イオンを含む酸化フッ化物ガラスを熔融法で作製する場合に、適量のB23を含有させると、熔融温度が低下して、従来問題とされていたガラスの製造安定性が大幅に改善される。
(b)B23を含有させた場合、使用する希土類イオンとしては、特にErとYbが有効で、これらを複合添加することにより、ガラスに安定して波長上方変換特性を付与することができる。
本発明は、上記の知見に立脚するものである。
As a result of many experiments and studies to achieve the above object, the inventors have obtained the following knowledge.
(A) When an oxyfluoride glass containing rare earth ions is produced by a melting method, if an appropriate amount of B 2 O 3 is contained, the melting temperature is lowered, and the production stability of the glass, which has been regarded as a problem in the past, is reduced. Greatly improved.
(B) When B 2 O 3 is contained, particularly rare earth ions to be used are Er and Yb. By adding these in combination, it is possible to stably impart wavelength up-conversion characteristics to glass. it can.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.モル%で、
SiO2:10〜48%と
23 :2〜40%を、
(SiO2+B23):26〜50%
を満足する範囲で含有し、かつ
SrF2 :25〜45%および
Al23:15〜35%
を含有し、さらに
Er23:0〜5%と
ErF3 :0〜5%を、
(Er23+ErF3):0.01〜5%
を満足する範囲で含有すると共に、
Yb23:0〜10%と
YbF3 :0〜10%を、
(Yb23+YbF3):0.01〜10%
を満足する範囲で含有し、さらに
AlF3:0〜10%
を含有する組成からなり、希土類イオンを包容するフッ化ストロンチウム微結晶が析出してなる透明結晶化ガラス。
That is, the gist configuration of the present invention is as follows.
1. In mol%
SiO 2: 10~48% and B 2 O 3: 2 to 40%
(SiO 2 + B 2 O 3 ): 26 to 50%
Incorporated within a range that satisfies, and SrF 2: 25 to 45% and Al 2 O 3: 15~35%
Er 2 O 3 : 0 to 5% and ErF 3 : 0 to 5%
(Er 2 O 3 + ErF 3 ): 0.01 to 5%
In a range that satisfies the requirements,
Yb 2 O 3 : 0 to 10% and YbF 3 : 0 to 10%,
(Yb 2 O 3 + YbF 3 ): 0.01 to 10%
In addition, AlF 3 : 0 to 10%
A transparent crystallized glass having a composition containing strontium fluoride microcrystals containing rare earth ions.

2.希土類イオンを含む酸フッ化物ガラスを熔融法で作製し、ついでガラス転移温度より高い温度で熱処理することにより、該ガラス中に、希土類イオンを包容するフッ化ストロンチウム微結晶を析出させたことを特徴とする前記1に記載の透明結晶化ガラスの製造方法。 2. A feature is that oxyfluoride glass containing rare earth ions is produced by a melting method, and then heat-treated at a temperature higher than the glass transition temperature, thereby precipitating strontium fluoride microcrystals containing rare earth ions in the glass. 2. The method for producing a transparent crystallized glass according to 1 above.

本発明によれば、有毒な鉛を使用せずに、耐失透安定性が高く、また波長上方変換特性に優れ、さらには製造安定性にも優れた透明結晶化ガラスを得ることができる。   According to the present invention, it is possible to obtain a transparent crystallized glass having high devitrification stability, excellent wavelength upward conversion characteristics, and excellent manufacturing stability without using toxic lead.

実施例ガラス(熱処理前)9と実施例結晶化ガラス(熱処理後)9のX線回折パターンを比較して示した図である。It is the figure which compared and showed the X-ray-diffraction pattern of Example glass (before heat processing) 9 and Example crystallized glass (after heat processing) 9. FIG. 実施例ガラス(熱処理前)9と実施例結晶化ガラス(熱処理後)9の透過スペクトルを比較して示した図である。It is the figure which compared and showed the transmission spectrum of Example glass (before heat processing) 9 and Example crystallized glass (after heat processing) 9. FIG. 実施例ガラス(熱処理前)9と実施例結晶化ガラス(熱処理後)9の発光スペクトルを比較して示した図である。It is the figure which showed and compared the emission spectrum of Example glass (before heat processing) 9 and Example crystallized glass (after heat processing) 9. FIG.

以下、本発明を具体的に説明する。
まず、本発明において、ガラス組成を前記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限りモル%を意味するものとする。
SiO2:10〜48%
SiO2は、ガラスの網目構造を形成して、ガラスに製造可能な耐失透安定性を持たせることができる有用成分である。しかしながら、その含有量が48%を超えると、熔融性が低下したり、微結晶が析出しにくくなるおそれがあり、一方10%未満では、化学的、機械的耐久性が低下したり、耐失透安定性が低下しガラス化が困難になるおそれがあるので、SiO2の含有量は10〜48%の範囲に限定した。好ましくは11〜47モル%、より好ましくは12〜46モル%の範囲である。
Hereinafter, the present invention will be specifically described.
First, the reason why the glass composition is limited to the above range in the present invention will be described. In addition, unless otherwise indicated, the "%" display regarding a component shall mean mol%.
SiO 2: 10~48%
SiO 2 is a useful component capable of forming a glass network structure and imparting devitrification resistance that can be produced to glass. However, if its content exceeds 48%, the meltability may be reduced, or microcrystals may be difficult to precipitate. On the other hand, if it is less than 10%, the chemical and mechanical durability may be reduced, or the loss resistance may be reduced. Since there is a possibility that vitrification is lowered and vitrification becomes difficult, the content of SiO 2 is limited to a range of 10 to 48%. Preferably it is 11-47 mol%, More preferably, it is the range of 12-46 mol%.

23:2〜40%
本発明において、B23は特に重要な成分である。このB23はSiO2と同様、ガラスの網目構造を形成して、ガラスに製造可能な耐失透安定性を持たせる機能がある。また、ガラスの熔融性を高めて熔融温度を低く抑えることができるので、製造安定性が向上する。その結果、フッ素の揮発を抑え、波長上方変換特性の低下を抑制することができる。しかしながら、その含有量が40%を超えると、耐失透安定性が低下しガラス化が困難になるおそれがあり、一方2%未満では、熔融性向上の効果が得られないおそれがあるので、B23の含有量は2〜40%の範囲に制限した。好ましくは3〜38%、より好ましくは4〜36%の範囲である。
B 2 O 3 : 2 to 40%
In the present invention, B 2 O 3 is a particularly important component. This B 2 O 3 has a function of forming a glass network structure and imparting devitrification resistance that can be produced to glass, like SiO 2 . Further, since the melting temperature of the glass can be increased and the melting temperature can be kept low, the production stability is improved. As a result, it is possible to suppress the volatilization of fluorine and suppress the deterioration of the wavelength upward conversion characteristics. However, if its content exceeds 40%, the stability of devitrification may decrease and vitrification may become difficult. On the other hand, if it is less than 2%, the effect of improving meltability may not be obtained. The content of B 2 O 3 was limited to a range of 2 to 40%. Preferably it is 3-38%, More preferably, it is the range of 4-36%.

(SiO2+B23):26〜50%
また、SiO2とB23の合計量が50%を超えると、微結晶が析出し難くなるおそれがあり、一方26%未満では、耐失透安定性が低下しガラス化が困難になるおそれがあるので、これらの合計量は26〜50%の範囲とする。好ましくは27〜49%、より好ましくは28〜48%の範囲である。
(SiO 2 + B 2 O 3 ): 26 to 50%
On the other hand, if the total amount of SiO 2 and B 2 O 3 exceeds 50%, microcrystals may be difficult to precipitate. On the other hand, if the total amount is less than 26%, devitrification resistance decreases and vitrification becomes difficult. Therefore, the total amount of these is set to a range of 26 to 50%. Preferably it is 27 to 49%, more preferably 28 to 48%.

SrF2:25〜45%
本発明において、SrF2は特に重要な成分である。このSrF2は、ガラスの耐失透安定性及び熔融性を高めるだけでなく、微結晶の析出には不可欠の成分である。しかしながら、その含有量が45%を超えると、機械的耐久性が低下したり、耐失透安定性が低下しガラス化が困難になるおそれがあり、一方25%未満では、熔融性が低下したり、微結晶が析出しにくくなるおそれがあるので、SrF2の含有量は25〜45%の範囲に制限した。好ましくは26〜44%、より好ましくは27〜43%の範囲である。
SrF 2 : 25 to 45%
In the present invention, SrF 2 is a particularly important component. This SrF 2 not only enhances the devitrification stability and meltability of the glass, but is an essential component for the precipitation of microcrystals. However, if its content exceeds 45%, the mechanical durability may decrease, or the stability of devitrification may decrease and vitrification may be difficult. On the other hand, if the content is less than 25%, the meltability decreases. In other words, the SrF 2 content is limited to a range of 25 to 45%. Preferably it is 26 to 44%, more preferably 27 to 43%.

Al23:15〜35%
Al23は、ガラスの網目構造を形成すると共に、修飾酸化物としてもガラスの耐失透安定性及び化学的、機械的耐久性を高める効果がある。しかしながら、その含有量が35%を超えると、熔融性が低下したり、微結晶が析出しにくくなるおそれがあり、一方15%未満では、化学的、機械的耐久性が低下したり、耐失透安定性が低下しガラス化が困難になるおそれがあるので、Al23の含有量は15〜35%の範囲に制限した。好ましくは16〜34%、より好ましくは17〜33%の範囲である。
Al 2 O 3 : 15 to 35%
Al 2 O 3 has the effect of improving the devitrification resistance and chemical and mechanical durability of the glass as a modified oxide as well as forming a network structure of glass. However, if its content exceeds 35%, the meltability may be reduced, or microcrystals may be difficult to precipitate. On the other hand, if it is less than 15%, the chemical and mechanical durability may be reduced, and the loss resistance may be reduced. Since the permeability stability is lowered and vitrification may be difficult, the content of Al 2 O 3 is limited to a range of 15 to 35%. Preferably it is 16 to 34%, more preferably 17 to 33% of range.

Er23:0〜5%、ErF3:0〜5%で、かつ(Er23+ErF3):0.01〜5%
Er23およびErF3はいずれも、発光成分であるEr3+の供給源である。しかしながら、その含有量が5%を超えると、濃度消光により波長上方変換特性が低下するおそれがあるので、Er23およびErF3の含有量はそれぞれ0〜5%の範囲とする。好ましくは0〜4.5%、より好ましくは0〜4%の範囲である。
また、Er23とErF3の合計量が5%を超えると、濃度消光により波長上方変換特性が低下するおそれがあり、一方合計量が0・01%未満では、発光成分であるEr3+の含有量が少なく、波長上方変換特性を示さないおそれがあるので、その合計量は0.01〜5%の範囲とする。好ましくは0.05〜4.5%、より好ましくは0.05〜4%の範囲である。
Er 2 O 3 : 0 to 5%, ErF 3 : 0 to 5%, and (Er 2 O 3 + ErF 3 ): 0.01 to 5%
Both Er 2 O 3 and ErF 3 are sources of Er 3+ which is a luminescent component. However, if the content exceeds 5%, there is a possibility that the wavelength up-conversion characteristics may be deteriorated due to concentration quenching. Therefore, the contents of Er 2 O 3 and ErF 3 are set in the range of 0 to 5%, respectively. Preferably it is 0 to 4.5%, More preferably, it is 0 to 4% of range.
On the other hand, if the total amount of Er 2 O 3 and ErF 3 exceeds 5%, the wavelength up-conversion characteristics may be reduced due to concentration quenching. On the other hand, if the total amount is less than 0.01%, Er 3 , which is a light emitting component. Since the + content is small and there is a possibility that the wavelength upward conversion characteristics may not be exhibited, the total amount is set in the range of 0.01 to 5%. Preferably it is 0.05 to 4.5%, More preferably, it is 0.05 to 4% of range.

Yb23:0〜10%、YbF3:0〜10%で、かつ(Yb23+YbF3):0.01〜10%
Yb23およびYbF3はいずれも、増感剤として作用するYb3+の供給源である。しかしながら、その含有量が10%を超えると、ガラスの耐失透安定性が低下しガラス化が困難になるおそれがあるので、Yb23およびYbF3の含有量はそれぞれ0〜10%の範囲とする。好ましくは0〜9.5%、より好ましくは0〜9%の範囲である。
また、Yb23とYbF3の合計量が10%を超えると、ガラスの耐失透安定性が低下しガラス化が困難になるおそれがあり、一方0.01%未満では、増感剤として作用するYb3+の含有量が少なく、波長上方変換特性が低下するおそれがあるので、その合計量は0.01〜10%の範囲とする。好ましくは0.5〜9.5%、より好ましくは0.5〜9%の範囲である。
Yb 2 O 3 : 0 to 10%, YbF 3 : 0 to 10%, and (Yb 2 O 3 + YbF 3 ): 0.01 to 10%
Yb 2 O 3 and YbF 3 are both sources of Yb 3+ that act as sensitizers. However, if the content exceeds 10%, the devitrification resistance stability of the glass may be lowered and vitrification may be difficult. Therefore, the content of Yb 2 O 3 and YbF 3 is 0 to 10%, respectively. Range. Preferably it is 0 to 9.5%, more preferably 0 to 9% of range.
On the other hand, if the total amount of Yb 2 O 3 and YbF 3 exceeds 10%, the devitrification resistance stability of the glass may be lowered and vitrification may be difficult. Therefore, the total amount of Yb 3+ acting as the above may be in the range of 0.01 to 10%. Preferably it is 0.5 to 9.5%, more preferably 0.5 to 9%.

AlF3:0〜10%
AlF3は、F-イオンの供給源として、ガラスの化学的耐久性及び熔融性を高める効果がある。しかしながら、その含有量が10%を超えると、耐失透安定性が低下するおそれがある。また、上記したSrF2やErF3、YbF3などから必要量のF-イオンが供給されている場合には、このAlF3は必ずしも含有させる必要はない。従って、AlF3の含有量は0〜10%の範囲とする。好ましくは9%以下、より好ましくは8%以下である。
AlF 3 : 0 to 10%
AlF 3 has the effect of improving the chemical durability and meltability of glass as a source of F ions. However, when the content exceeds 10%, the devitrification resistance may be deteriorated. Further, when a necessary amount of F ions are supplied from the above-described SrF 2 , ErF 3 , YbF 3, etc., this AlF 3 is not necessarily contained. Therefore, the content of AlF 3 is set in the range of 0 to 10%. Preferably it is 9% or less, More preferably, it is 8% or less.

次に、本発明の透明結晶化ガラスの製造方法について説明する。
本発明では、高効率波長上方変換透明結晶化ガラスを得る方法として、各成分の原料としてそれぞれに相当する酸化物、水酸化物、炭酸塩、硝酸塩及びフッ化物などを所定の割合で秤量し、十分混合したものをガラス調合原料とする。ついで、この原料を、好ましくは白金坩堝又は金坩堝に投入して、電気炉にて1200〜1400℃に加熱して熔融しながら適時撹拌したのち、電気炉で清澄、均質化してから、適当な温度に予熱した金型に鋳込んだのち、電気炉内で徐冷して歪みを取り除く。
ここまでは、通常の酸化物ガラスとほぼ同じ作製法で行い、様々な形状の透明ガラスとするが、本発明では、原料中に適量のB23を含有させているので、熔融温度を従来よりも低く抑えることができる。ちなみに、従来の溶融温度は1400〜1600℃程度であった。
Next, the manufacturing method of the transparent crystallized glass of this invention is demonstrated.
In the present invention, as a method for obtaining a highly efficient wavelength upward-converting transparent crystallized glass, oxides, hydroxides, carbonates, nitrates, fluorides, and the like corresponding to the raw materials of each component are weighed at a predetermined ratio, A well-mixed material is used as a glass preparation raw material. Next, this raw material is preferably put into a platinum crucible or a gold crucible, heated to 1200 to 1400 ° C. in an electric furnace and stirred while being melted, then clarified and homogenized in an electric furnace, After casting into a mold preheated to temperature, it is slowly cooled in an electric furnace to remove strain.
Up to this point, a transparent glass having various shapes is obtained by using almost the same manufacturing method as that of a normal oxide glass. However, in the present invention, since an appropriate amount of B 2 O 3 is contained in the raw material, the melting temperature is set. It can be kept lower than before. Incidentally, the conventional melting temperature was about 1400 to 1600 ° C.

ついで、得られた透明なガラスをさらに、ガラス転移温度より高く、かつ結晶化温度未満の失透しない温度域で数時間熱処理する。好適な熱処理条件は500〜700℃、3〜12時間である。
この熱処理により、透明度が全く損なわれることなしに、希土類の発光効率を格段に向上させることができる。
Next, the obtained transparent glass is further heat-treated for several hours in a temperature range higher than the glass transition temperature and lower than the crystallization temperature and not devitrifying. Suitable heat treatment conditions are 500 to 700 ° C. and 3 to 12 hours.
By this heat treatment, the luminous efficiency of the rare earth can be remarkably improved without any loss of transparency.

この理由は、上記の熱処理によって、ガラス中に希土類イオンを包容したフッ化物微結晶が多量に析出したためである。なお、透明結晶化ガラス中に析出している微結晶粒子は、そのサイズが光の波長より小さく、可視光を散乱させることが無視できるほど少ないため、熱処理前後のガラスは構造的には異なるものの、見掛け上は同じ透明度を持つのである。   This is because a large amount of fluoride crystallites containing rare earth ions in the glass was precipitated by the heat treatment. Note that the microcrystalline particles deposited in the transparent crystallized glass have a size smaller than the wavelength of light and are so small that it is negligible to scatter visible light. It has the same transparency.

以下、実施例及び比較例を挙げて、本発明の透明結晶化ガラスを具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and the transparent crystallized glass of this invention is demonstrated concretely, this invention is not limited to these Examples.

表1,3に記載の酸化物及びフッ化物を合計量が100gになるように原料を秤量し、十分混合したのち白金坩堝に投入し、電気炉にて1200〜1400℃で1〜2時間の熔融処理したのち、撹拌して、さらに1〜2時間熔融し、適宜撹拌して均質化を図り、清澄してから、550℃に予熱した金型に鋳込んだのち、電気炉内で徐冷して、実施例ガラス(熱処理前)1〜12及び比較例ガラス(熱処理前)1〜5を得た。
ついで、得られたガラスを、さらに650℃の温度で3時間の熱処理を行ったのち、室温に放冷することにより、実施例結晶化ガラス(熱処理後)1〜12及び比較例結晶化ガラス(熱処理後)1〜5を得た。
The raw materials are weighed so that the total amount of the oxides and fluorides described in Tables 1 and 3 is 100 g, mixed well, then put into a platinum crucible, and heated at 1200 to 1400 ° C. for 1 to 2 hours in an electric furnace. After melting, stir, melt for an additional 1-2 hours, stir properly, homogenize, clarify, and cast into a mold preheated to 550 ° C, then slowly cool in an electric furnace Example glass (before heat treatment) 1 to 12 and comparative glass (before heat treatment) 1 to 5 were obtained.
Next, the obtained glass was further subjected to a heat treatment at a temperature of 650 ° C. for 3 hours, and then allowed to cool to room temperature, whereby Example crystallized glass (after heat treatment) 1 to 12 and Comparative Example crystallized glass ( 1-5 were obtained after heat treatment.

表2,4に、熔融処理時における熔融温度、熱処理前のガラスの耐失透安定性ならびに熱処理後の結晶化ガラスの透明性及び波長上方変換特性(発光強度)について調べた結果を示す。
なお、各特性は次のようにして評価した。
(1) 耐失透安定性
熱処理前のガラスについて、厚み:3mmにおける600nmの分光透過率で評価した。なお、測定には、分光光度計U−4100(日立製)を使用した。
○:分光透過率が90%以上
△:分光透過率が50%以上、90%未満
×:分光透過率が50%以下未満
Tables 2 and 4 show the results of examining the melting temperature at the time of the melting treatment, the devitrification stability of the glass before the heat treatment, the transparency of the crystallized glass after the heat treatment, and the wavelength upward conversion characteristics (luminescence intensity).
Each characteristic was evaluated as follows.
(1) Devitrification stability The glass before heat treatment was evaluated with a spectral transmittance of 600 nm at a thickness of 3 mm. In addition, the spectrophotometer U-4100 (made by Hitachi) was used for the measurement.
○: Spectral transmittance is 90% or more Δ: Spectral transmittance is 50% or more and less than 90% ×: Spectral transmittance is less than 50%

(2) 透明性
熱処理後の結晶化ガラスについて、厚み:3mmにおける600nmの分光透過率で評価した。なお、測定には、分光光度計U−4100(日立製)を使用した。
○:分光透過率が90%以上
△:分光透過率が50%以上、90%未満
×:分光透過率が50%以下未満
(2) Transparency The crystallized glass after the heat treatment was evaluated with a spectral transmittance of 600 nm at a thickness of 3 mm. In addition, the spectrophotometer U-4100 (made by Hitachi) was used for the measurement.
○: Spectral transmittance is 90% or more Δ: Spectral transmittance is 50% or more and less than 90% ×: Spectral transmittance is less than 50%

(3) 波長上方変換特性
各結晶化ガラスを赤外レーザーにて励起した際の550nmの発光強度で評価した。なお、励起には波長:1064nm、出力:0.9WのNd:YAGレーザーを、また発光強度の測定には光スペクトルアナライザーAQ−6315A(ANDO製)を使用した。
○:発光強度が0.0005μW以上
△:発光強度が0.0001μW以上、0.0005μW未満
×:発光強度が0.0001μW未満
(3) Wavelength upward conversion characteristics Each crystallized glass was evaluated by the emission intensity of 550 nm when excited by an infrared laser. An Nd: YAG laser with a wavelength of 1064 nm and an output of 0.9 W was used for excitation, and an optical spectrum analyzer AQ-6315A (manufactured by ANDO) was used for measurement of emission intensity.
○: Emission intensity is 0.0005 μW or more Δ: Emission intensity is 0.0001 μW or more and less than 0.0005 μW ×: Emission intensity is less than 0.0001 μW

Figure 0006061624
Figure 0006061624

Figure 0006061624
Figure 0006061624

Figure 0006061624
Figure 0006061624

Figure 0006061624
Figure 0006061624

表2に示したように、本発明に従い得られた実施例結晶化ガラスは全て、溶融温度が1400℃以下に抑えられ、また製造可能な耐失透安定性を持ち、さらに実用可能な透明性と波長上方変換特性(発光強度)を有している。   As shown in Table 2, all of the example crystallized glasses obtained according to the present invention have a melting temperature of 1400 ° C. or less, have devitrification resistance that can be produced, and can be used for transparency. And wavelength up-conversion characteristics (emission intensity).

これに対し、表4に示した比較例結晶化ガラス1〜5は、それぞれ以下に述べる問題を残していた。
比較例結晶化ガラス1は、SiO2及びSiO2+B23の含有量が多いため、発光強度が低い。
比較例結晶化ガラス2は、SiO2及びSiO2+B23の含有量が少ないため、耐失透安定性が低く、透明性も低い。
比較例結晶化ガラス3は、B23を含有していないため、熔融温度が非常に高く、耐失透安定性も低いため、透明性も低い。
比較例結晶化ガラス4は、SrF2の含有量が少ないため、発光強度が低い。
比較例結晶化ガラス5は、Er23及びEr23+ErF3の含有量が多いため、発光強度が低い。
On the other hand, the comparative example crystallized glasses 1 to 5 shown in Table 4 had the following problems.
Since the comparative example crystallized glass 1 has a large content of SiO 2 and SiO 2 + B 2 O 3 , the emission intensity is low.
Since the comparative example crystallized glass 2 has a low content of SiO 2 and SiO 2 + B 2 O 3 , it has low devitrification stability and low transparency.
Since the comparative example crystallized glass 3 does not contain B 2 O 3 , the melting temperature is very high, the devitrification resistance is low, and the transparency is also low.
Since the comparative example crystallized glass 4 has a low SrF 2 content, the emission intensity is low.
Since the comparative example crystallized glass 5 has a large content of Er 2 O 3 and Er 2 O 3 + ErF 3 , the emission intensity is low.

図1は、実施例ガラス(熱処理前)9と実施例結晶化ガラス(熱処理後)9のX線回折パターンを比較して示したものである。なお、測定には粉末X線回折装置UltimaIV(リガク製)を使用し、X線源にはCuKα(40kV−50mA)を用いた。
図1から明らかなように、実施例ガラス(熱処理前)9は回折ピークが見られないため、ガラス状態である。これに対し、熱処理後である実施例結晶化ガラス(熱処理後)9はフッ化ストロンチウム結晶に起因する鋭い回折ピークが見られることから、ガラス内部に結晶が析出していることが分かる。
FIG. 1 shows a comparison of X-ray diffraction patterns of Example Glass (before heat treatment) 9 and Example Crystallized Glass (after heat treatment) 9. For the measurement, a powder X-ray diffractometer Ultima IV (manufactured by Rigaku) was used, and CuKα (40 kV-50 mA) was used as the X-ray source.
As is clear from FIG. 1, the example glass (before heat treatment) 9 is in a glass state because no diffraction peak is observed. On the other hand, in Example crystallized glass 9 after heat treatment (after heat treatment), since a sharp diffraction peak due to strontium fluoride crystals is observed, it can be seen that crystals are precipitated inside the glass.

図2は、実施例ガラス(熱処理前)9と実施例結晶化ガラス(熱処理後)9の3mm厚での透過スペクトルを比較して示したものである。なお、測定には分光光度計U−4100(日立製)を使用した。
図2から明らかなように、実施例ガラス(熱処理前)9と実施例結晶ガラス(熱処理後)9では透過率に大きな違いはない。すなわち、結晶析出による透過率の低下は認められない。
FIG. 2 shows a comparison of transmission spectra of Example Glass (before heat treatment) 9 and Example Crystallized Glass (after heat treatment) 9 at a thickness of 3 mm. In addition, the spectrophotometer U-4100 (made by Hitachi) was used for the measurement.
As is clear from FIG. 2, there is no significant difference in transmittance between the example glass (before heat treatment) 9 and the example crystal glass (after heat treatment) 9. That is, no decrease in transmittance due to crystal precipitation is observed.

図3は、実施例ガラス(熱処理前)9と実施例結晶化ガラス(熱処理後)9の発光スペクトルを比較して示したものである。なお、励起には波長:1064nm、出力:0.9WのYAGレーザーを、またスペクトル測定には光スペクトルアナライザーAQ−6315A(ANDO製)を使用した。
図3から明らかなように、実施例ガラス(熱処理前)9は発光が見られないのに対し、実施例結晶化ガラス(熱処理後)9は550nm及び650nm付近に明瞭な発光が見られる。これにより、結晶析出により希土類の発光強度が格段に向上したことが分かる。
FIG. 3 shows a comparison of emission spectra of Example Glass (before heat treatment) 9 and Example Crystallized Glass (after heat treatment) 9. A YAG laser having a wavelength of 1064 nm and an output of 0.9 W was used for excitation, and an optical spectrum analyzer AQ-6315A (manufactured by ANDO) was used for spectrum measurement.
As is clear from FIG. 3, the example glass (before heat treatment) 9 does not emit light, whereas the example crystallized glass (after heat treatment) 9 shows clear light emission at around 550 nm and 650 nm. Thus, it can be seen that the emission intensity of the rare earth is remarkably improved by the crystal precipitation.

Claims (2)

モル%で、
SiO2:10〜48%と
23 :2〜40%を、
(SiO2+B23):26〜50%
を満足する範囲で含有し、かつ
SrF2:25〜45%および
Al23:15〜35%
を含有し、さらに
Er23:0〜5%と
ErF3:0〜5%を、
(Er23+ErF3):0.01〜5%
を満足する範囲で含有すると共に、
Yb23:0〜10%と
YbF3:0〜10%を、
(Yb23+YbF3):0.01〜10%
を満足する範囲で含有し、さらに
AlF3:0〜10%
を含有する組成のみからなり、希土類イオンを包容するフッ化ストロンチウム微結晶が析出してなる透明結晶化ガラス。
In mol%
SiO 2: 10~48% and B 2 O 3: 2 to 40%
(SiO 2 + B 2 O 3 ): 26 to 50%
Incorporated within a range that satisfies, and SrF 2: 25 to 45% and Al 2 O 3: 15~35%
Er 2 O 3 : 0 to 5% and ErF 3 : 0 to 5%
(Er 2 O 3 + ErF 3 ): 0.01 to 5%
In a range that satisfies the requirements,
Yb 2 O 3 : 0 to 10% and YbF 3 : 0 to 10%,
(Yb 2 O 3 + YbF 3 ): 0.01 to 10%
In addition, AlF 3 : 0 to 10%
Transparent crystallized glass comprising only a composition containing strontium fluoride microcrystals containing rare earth ions.
希土類イオンを含む酸フッ化物ガラスを熔融法で作製し、ついでガラス転移温度より高い温度で熱処理することにより、該ガラス中に、希土類イオンを包容するフッ化ストロンチウム微結晶を析出させたことを特徴とする請求項1に記載の透明結晶化ガラスの製造方法。   A feature is that oxyfluoride glass containing rare earth ions is prepared by a melting method, and then heat-treated at a temperature higher than the glass transition temperature, thereby precipitating strontium fluoride microcrystals containing rare earth ions in the glass. The manufacturing method of the transparent crystallized glass of Claim 1.
JP2012243059A 2012-11-02 2012-11-02 Transparent crystallized glass Active JP6061624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012243059A JP6061624B2 (en) 2012-11-02 2012-11-02 Transparent crystallized glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012243059A JP6061624B2 (en) 2012-11-02 2012-11-02 Transparent crystallized glass

Publications (2)

Publication Number Publication Date
JP2014091650A JP2014091650A (en) 2014-05-19
JP6061624B2 true JP6061624B2 (en) 2017-01-18

Family

ID=50936001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012243059A Active JP6061624B2 (en) 2012-11-02 2012-11-02 Transparent crystallized glass

Country Status (1)

Country Link
JP (1) JP6061624B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102022975B1 (en) * 2017-05-19 2019-09-20 한국광기술원 Fluorophosphate Glasses for Active Device with high emission cross section
JP6901560B2 (en) 2017-05-19 2021-07-14 コリア フォトニクス テクノロジー インスティテュート Fluorophosphate-based glass for active devices
KR102075439B1 (en) * 2018-05-17 2020-02-10 한국광기술원 Fluorophosphate Glasses for Active Device with Strong Down- and Upconverstion Emission
KR102022976B1 (en) * 2017-05-19 2019-09-20 한국광기술원 Fluorophosphate Glasses for Active Device with Long Luminescence Lifetime
JP7090905B2 (en) * 2018-11-28 2022-06-27 株式会社住田光学ガラス Transparent crystallized glass and method for producing transparent crystallized glass
CN113135665A (en) * 2021-04-25 2021-07-20 泉州师范学院 Material for measuring temperature of upconversion fluorescence lifetime and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411067B2 (en) * 1993-08-27 2003-05-26 株式会社住田光学ガラス Wavelength up-converting transparent glass-ceramics and method for producing the same
US5955388A (en) * 1997-01-02 1999-09-21 Corning Incorporated Transparent oxyflouride glass-ceramic composition and process of making
FR2758321A1 (en) * 1997-01-14 1998-07-17 Corning Inc GLASS COMPOSITION AND OPTICAL DEVICE
JP2007063065A (en) * 2005-08-31 2007-03-15 Ohara Inc Glass
JP5170502B2 (en) * 2007-01-10 2013-03-27 国立大学法人東北大学 Fluoride bulk single crystal material for upconversion
JP2009286681A (en) * 2008-05-30 2009-12-10 Ohara Inc Luminescent glass and luminescent crystallized glass

Also Published As

Publication number Publication date
JP2014091650A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP6061624B2 (en) Transparent crystallized glass
Chenu et al. Tuneable nanostructuring of highly transparent zinc gallogermanate glasses and glass‐ceramics
JP3411067B2 (en) Wavelength up-converting transparent glass-ceramics and method for producing the same
Caldiño et al. Down-shifting by energy transfer in Tb3+/Dy3+ co-doped zinc phosphate glasses
RU2579056C1 (en) Luminescent nano-glass-ceramic
WO2014131881A1 (en) Nanostructured lenses and vitroceramics that are transparent in visible and infrared ranges
Gao et al. Effect of heat treatment mechanism on upconversion luminescence in Er3+/Yb3+ co-doped NaYF4 oxyfluoride glass-ceramics
Qiu et al. Highly efficient green up-conversion luminescence of Nd 3+–Yb 3+–Ho 3+ codoped fluorite-type nanocrystals in transparent glass ceramics
Biswas et al. Formation and spectral probing of transparent oxyfluoride glass-ceramics containing (Eu2+, Eu3+: BaGdF5) nano-crystals
Hu et al. Microstructures and upconversion luminescence of Er3+ doped and Er3+/Yb3+ co-doped oxyfluoride glass ceramics
Jia et al. Effect of Mg2+/Sr2+ addition on luminescence properties of Dy3+ doped glass ceramics containing Ca2Ti2O6
León-Luis et al. Up-conversion and colour tuneability in Yb3+–Er3+–Tm3+ co-doped transparent nano-glass-ceramics
Żmojda et al. White Upconversion in Yb^3+//Tm^3+//Ho^3+ Co-Doped Antimony-Germanate Glasses
Biswas et al. Photoluminescence of Tb3+/Sm3+ ions co-activated in SrO-Na2O-WO3-tellurite glasses for multicolor laser applications
CN108409148B (en) Infrared incoherent LED excited upconversion NaLuF4Glass-ceramic and method for producing the same
Duan et al. Effect of CdF2 addition on thermal stability and upconversion luminescence properties in Tm3+–Yb3+ codoped oxyfluoride silicate glasses
Zhang et al. Efficient Quantum Cutting in Tb 3+/Yb 3+ Codoped $\alpha $-NaYF 4 Single Crystals Grown by Bridgman Method Using KF Flux for Solar Photovoltaic
JP2010053213A (en) Fluorescent light emitting material, and method for producing the same
Xu et al. Structure, luminescence and thermal stability of Dy2O3–Eu2O3 co-doped transparent glass-ceramics containing Y2Sn2O7 crystal
JP7090905B2 (en) Transparent crystallized glass and method for producing transparent crystallized glass
CN105271730A (en) Multicolor-emitting tellurium bismuth titanium glass and preparation method thereof
CN109437572B (en) Precipitated BaTbF5Nanocrystalline germanosilicate microcrystalline glass and preparation method thereof
Shi et al. Visible and infrared luminescence, energy transfer in Er/Yb codoped oxyfluoride glass ceramics
JP7339667B2 (en) Crystallized glass and its manufacturing method
Kashif et al. ICMMS-2: Influences the Addition of Neodymium Oxide on Structural and Optical Properties of Oxyfluoride Lead Borate Glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161213

R150 Certificate of patent or registration of utility model

Ref document number: 6061624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250